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Abstract

The powerset operator, P, is compared with other operators of
similar type and logical complexity. Namely we examine positive op-
erators whose defining formula has a canonical form containing at
most a string of universal quantifiers. We call them ∀-operators. The
question we address in this paper is: How is the class of ∀-operators
generated? It is shown that every positive ∀-operator Γ such that
Γ(∅) 6= ∅, is finitely generated from P, the identity operator Id, con-
stant operators and certain trivial ones by composition, ∪ and ∩. This
extends results of [3] concerning bounded positive operators.
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1 Introduction

P is a very special operator in set theory. On the one hand its it-
erations along the ordinals create the entire universe. On the other
hand P is relative, to the effect that many people wonder whether, for
infinite X, the objects P(X) (among them the universe V as well as
the set R of real numbers) are well-determined and definite (cf. [1] for
a recent discussion on the issue). In [3] we started an investigation
of the main features of P, with the aim to detect all those operators
that share these features. The main properties of P are: (1) It is set-
theoretic, i.e., it sends sets to sets (as a consequence of the powerset
axiom), (2) it is positive, i.e., defined by a positive formula (hence
monotone) (3) it is cardinality raising, i.e., |x| < |P(x)|, for every set
x, and (as a consequence (3)), (4) the least fixed point of P is a proper
class. Let us call an operator Γ, having the above properties (1)-(3)
P-like.

In [3] we addressed the questions: (a) How does P contribute to
the generation of the class of all positive operators? (b) Are there any
positive P-like operators “independent” of P?

We showed the following: (a) The class of all positive operators is
generated from P, the identity Id and almost constant operators by
composition, finitary ∪,∩ and uniform and infinitary

⋃
and

⋂
. This

enables one to define strictly what a P-independent operator is. (b) If
Γ is positive, P-independent and bounded (i.e., defined by a bounded
formula), then Γ is not P-like.

So the question whether there are positive, P-independent, un-
bounded P-like operators remains open. Obviously the simplest cases
of unbounded operators are those with quantifier prefix ∀w or ∃w in
their defining formula (the latter being in its canonical form). How-
ever even for these operators with such a low logical complexity – let
alone those containing alternations of quantifiers – it is quite hard
to check whether they are all P-independent or not. The reason is
that each proof is ad hoc, by cases, and no general method seems to
be available. In this paper we examine positive unbounded operators
whose defining formula has a quantifier prefix Qw consisted (at most)
only of universal quantifiers, i.e., Q = ∀ or Q = ∅ (see lemma 1.1
below). We couldn’t establish the analogous result for prefix ∃. (Note
that in the defining formula of P, Q = ∅.) Specifically, it is shown
that every operator Γ defined by a positive formula with prefix ∀, for
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which in addition Γ(∅) 6= ∅, is (finitely) generated from P, Id, con-
stant operators and certain trivial ones, extending thus the result (a)
of [3]. (Obviously the operators Γ for which Γ(∅) = ∅ are not P-like in
a striking way, so leaving them out of consideration is no restriction
at all.)

Throughout our metatheory will be GBC (Gödel-Bernays set the-
ory). L will be the language of GBC. As usual upper case letters
X, Y, S, . . . denote class variables or constants, while lower case let-
ters x, y, a, b, u, w, . . . denote set variables or constants. We recall the
following definitions.

A (unary) operator (without parameters) is produced by a second-
order formula φ(v, S) of the language of set theory, where v is a set
variable and S is a class variable. φ(v, S) gives rise to the operator Γφ

defined by
Γφ(X) = {x : φ(x,X)}. (1)

In general Γφ sends classes to classes but, mainly, we shall be interested
in those φ such that for every set a, Γφ(a) is a set. Such an operator
will be called set-theoretic, or a set-operator.

An operator Γφ is said to be monotone if X ⊆ Y ⇒ Γφ(X) ⊆
Γφ(Y ). (In the preceding notation, lower case letters x, y denote sets,
while upper case X, Y denote classes.) In order for Γφ to be monotone
it suffices for φ to be positive in S. φ is positive in S if it is constructed
by formulas not containing S and atomic formulas u ∈ S using only
the logical operations ∧, ∨, ∃ and ∀. (See e.g. [2].)

X is a fixed point of Γφ if Γφ(X) = X. Every monotone operator
Γφ has a least fixed point denoted Iφ. Moreover it is well-known that
Iφ =

⋃
α∈On Iα

φ , where

I0
φ = ∅, Iα+1

φ = Γφ(Iα
φ ), Iα

φ =
⋃

β<α

Iβ
φ , for limit α.

Moschovakis [2] has discovered a canonical form for positive for-
mulas.

Lemma 1.1 (Moschovakis) Let φ(v, S) be a positive formula of L.
Then there is a quantifier-free and S-free formula θ(v, w, u), where
w = (w1, . . . , wm), and a string of quantifiers Q = (Q1, . . . , Qm) such
that, for every x and every class X 6= V ,

φ(x,X) ⇐⇒ (Qw)(∀u)(θ(x,w, u) ∨ u ∈ X).
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Proof. See [2], pp. 57-58. a

By 1.1 we may assume that every positive formula has the form

φ(v, S) := (Qw)(∀u)(θ(v, w, u) ∨ u ∈ S). (2)

We shall refer to (2) as the canonical form of φ. The string of quan-
tifiers Q in the above form measures the complexity of φ.

Let

O = {Γ : Γ is positive operator of the language of set theory}.

The main operation in O is composition, but also finite meets and
unions are natural natural operations under which O is closed. Given
Γ1, . . . ,Γn, let Γ1 ∪ · · · ∪Γn, Γ1 ∩ · · · ∩Γn, be the operators defined by

(Γ1 ∪ · · · ∪ Γn)(X) = Γ1(X) ∪ · · · ∪ Γn(X),

(Γ1 ∩ · · · ∩ Γn)(X) = Γ1(X) ∩ · · · ∩ Γn(X).

Clearly if Γ1, . . . ,Γn are positive then so are Γ1 ∪ · · · ∪ Γn and Γ1 ∩
· · · ∩ Γn.

Definition 1.2 A positive Γ is said to be a ∀-operator if it is defined
by a formula φ(v, S) with canonical form (Qw)(∀u)(θ(v, w, u)∨u ∈ S),
where Q = ∀, or Q = ∅.

In the class of all operators the constant ones is natural to play a
significant role.

Definition 1.3 Γ is said to be constant if there is a class A such that
Γ(x) = A for every set x. We denote this operator by CA.

Apart from constant another kind of trivial operators are those Γ
for which Γ(∅) is a proper class.

Definition 1.4 Γ is said to be big if Γ(∅) is a proper class.
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2 ∀-operators

In this section we shall prove the following

Theorem 2.1 Let Γφ be a ∀-operator. Then either Iφ = ∅, or Γφ =
Γ1 ∩ · · · ∩ Γm, where at most two of the Γi’s are big, while the rest Γi

are of the form Γi = Pki(Id ∪ CVri
) ∪ Id for some ki, ri ≥ 0.

We consider first the case where ∀ = ∅, i.e., when φ(v, S) ⇐⇒
(∀u)(θ(v, u) ∨ u ∈ S)..

Proposition 2.2 Let φ(v, S) ⇐⇒ (∀u)(θ(v, u) ∨ u ∈ S).
(i) If u does not occur in θ, then Γφ = CA for some A.
(ii) If u occurs in θ, then Γφ = C∅, or Γφ = CV , or Γφ = P or

Γφ = Id, or Γφ = P ∪ Id.

Proof. (i) If u does not occur in θ, then for every X 6= V , φ(x,X) =
θ(x) ∨ (∀u)(u ∈ X) ⇔ θ(x). So for every X, Γφ(X) = {x : θ(x)} = A.
Thus Γφ = CA is constant.

(ii) Let u occur in θ. If θ ⇔ >, then Γφ = CV and if θ ⇔ ⊥, then
Γφ = C∅

Suppose θ contains both variables u, v and θ 6⇔ >,⊥. Then θ is a
{∨,∧}-combination of the formulas u ∈ v, v ∈ u, u = v, u /∈ v, v /∈ u,
u 6= v (as well as of the formulas u = u, u ∈ u, v = v, v ∈ v and their
negations; but in view of the fact that each one of them is equivalent
to either > or ⊥, we can ignore them). For every set a let

−a = {x : x /∈ a}, â = {x : a ∈ x}, −â = {x : a /∈ x}.
Clearly −a, â,−â are proper classes for all sets a. We have the

following cases for atomic θ:
Case 1. θ = (u ∈ v). Then for any set a, Γφ(a) = {x : (∀u)(u /∈

x ⇒ u ∈ a)} = {x : −x ⊆ a} = ∅. Thus Γφ = C∅.
Case 2. θ = (v ∈ u). Then for any set a, Γφ(a) = {x : (∀u)(x /∈

u ⇒ u ∈ a)} = {x : −x̂ ⊆ a} = ∅. Thus Γφ = C∅.
Case 3. θ = (u = v). Then Γφ(a) = {x : (∀u)(u 6= x ⇒ u ∈ a)} =

{x : −{x} ⊆ a} = ∅. Thus Γφ = C∅.
Case 4. θ = (u /∈ v). Then for all X, Γφ(X) = {x : (∀u)(u ∈ x ⇒

u ∈ X)} = {x : x ⊆ X} = P(X). Hence Γφ = P.
Case 5. θ = (v /∈ u). Then for all a, Γφ(a) = {x : (∀u)(x ∈ u ⇒

u ∈ a)} = {x : x̂ ⊆ a} = ∅. Thus Γφ = C∅.
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Case 6. θ = (u 6= v). Then for all X, Γφ(X) = {x : (∀u)(u = x ⇒
u ∈ X)} = X. Hence Γφ = Id.

We come now to the case when θ is not atomic. Let Σ = {u ∈
v, v ∈ u, u = v, u /∈ v, v /∈ u, u 6= v}. Let η0 := (u ∈ v ∨ v ∈ u∨ u = v),
η1 := (u ∈ v ∨ v ∈ u), η2 = (u ∈ v ∨ u = v) and η3 = (v ∈ u ∨ u = v).
Let Σ∗ = Σ ∪ {ηi,¬ηi : i ≤ 3} ∪ {>,⊥}.

Claim. If θ is a {∨,∧}-combination of formulas of Σ, then there is
σ ∈ Σ∗ such that θ ⇔ σ.

Proof. By induction on the length of θ. Let θ be a {∨,∧}-
combination of formulas Σ for which the claim holds. It suffices to
prove the claim for θ ∨ σ and θ ∧ σ for every σ ∈ Σ. By the induction
hypothesis, θ ⇔ τ for some τ ∈ Σ∗, so we have to examine all the
combinations τ ∨ σ and τ ∧ σ, with τ ∈ Σ∗ and σ ∈ Σ, taking into
account certain facts imposed by the foundation axiom of ZF. For in-
stance (v ∈ u ∧ u = v) ⇔ ⊥, (u ∈ v ∨ v /∈ u) ⇔ v /∈ u, etc. The
complete checking of all cases τ ∨ σ and τ ∧ σ, for τ ∈ Σ∗ and σ ∈ Σ
is left to the patient reader. This completes the proof of the Claim.

In view of the Claim it remains to examine the operators Γφ for
formulas φ = (∀u)(θ(v, u)∨u ∈ S), where θ ∈ {ηi,¬ηi : i ≤ 3}∪{>,⊥}.
θ = >,⊥ have already been considered above. So we consider the
remaining formulas:

Case 7. θ = η0. Then Γφ(a) = {x : (∀u)(u /∈ x ∧ x /∈ u ∧ x 6=
u ⇒ u ∈ a)} = {x : −x ∩ −x̂ ∩ −{x} ⊆ a}. But clearly for every x,
−x ∩ −x̂ ∩ −{x} is a proper class. Hence Γφ(a) = ∅, i.e., Γφ = C∅.

Case 8. θ = ¬η0. Then Γφ(∅) = {x : (∀u)(u ∈ x ∨ x ∈ u ∨ x =
u ⇒ u ∈ a)} = {x : x ∪ x̂ ∪ {x} ⊆ a} = ∅. Thus Γφ = C∅.

Case 9. θ = η1. Then Γφ(a) = {x : −x ∩ −x̂ ⊆ a} = ∅. So
Γφ = C∅.

Case 10. θ = ¬η1. Then Γφ(a) = {x : x ∪ x̂ ⊆ a} = ∅. Thus
Γφ = C∅.

Case 11. θ = η2. Then Γφ(a) = {x : −x ∩ −{x} ⊆ a} = ∅. So
Γφ = C∅.

Case 12. θ = ¬η2. Then for every X, Γφ(X) = {x : x ∪ {x} ⊆
X} = P(X) ∪X. Thus Γφ = P ∪ Id.

Case 13. θ = η3. Then Γφ(a) = {x : −x̂ ∩ −{x} ⊆ a} = ∅. So
Γφ = C∅.

Case 14. θ = ¬η3. Then for every a, Γφ(a) = {x : x̂∪{x} ⊆ a} = ∅.
Thus Γφ = ∅.
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Inspecting all case (1)-(14) we see that Γφ is either C∅, or P or Id
or P ∪ Id. It follows that the claim holds. a

We come now to φ(v, S) = (Qw)(∀u)(θ(v, w, u) ∨ u ∈ S) with
Q = ∀. For simplicity we shall write ∀w instead of ∀w and similarly
for ∃.

Proposition 2.3 Let φ(v, S) ⇔ (∀w)(∀u)(θ(v, w, u) ∨ u ∈ S), where
Q = ∀ and θ is a disjunction of atomic or negated atomic formula.
Then either Iφ = ∅, or Γφ is big, or Γφ = Pk(Id ∪ CVl

) for some
k, l ∈ N, where Vl = P l(∅) (the l-segment of the universe).

Proof. Fix a φ(v, S) ⇔ (∀w)(∀u)(θ(v, w, u) ∨ u ∈ S) with

θ(v, w, u) = σ1(v, w, u) ∨ · · · ∨ σm(v, w, u),

where each σi is atomic or negated atomic. Then for every X,

Γφ(X) = {x : (∀w)(∀u)[¬θ(x, w, u) ⇒ u ∈ X]} =

{x : (∀u)[(∃w)¬θ(x,w, u) ⇒ u ∈ X]} =

{x : (∀u)[(∃w)(¬σ1 ∧ · · · ∧ ¬σm) ⇒ u ∈ X]}.
In particular

Γφ(∅) = {x : (∀w)(∀u)(σ1 ∨ · · · ∨ σm)}. (3)

We examine several cases, subcases, subsubcases etc. We call them
all “cases” and enumerate them by sequences of numbers. To facilitate
the reader we indicate each case by → if it is a subcase of the previous
one, and ↓ if it is of equal depth as the previous one. The chart of
cases and subcases is as follows:

Case 1.
↓ Case 2.

→ Case 2.1.
↓ Case 2.2.
↓ Case 2.3.
→ Case 2.3.1.

→ Case 2.3.1.1.
↓ Case 2.3.1.2.

→ Case 2.3.1.2.1.
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↓ Case 2.3.1.2.2.
← Case 2.3.2.

Case 1: θ(v, w, u) ⇔ >.
Then (∀v)(∀w)(∀u)(θ(v, w, u) is true, therefore

Γφ(∅) = {x : (∀w)(∀u)(θ(x,w, u)} = V.

So Γφ is big.
↓ Case 2: θ(v, w, u) 6⇔ >.
Then ¬θ(v, w, u) ⇔ ¬σ1(v, w, u) ∧ · · · ∧ ¬σm(v, w, u) is satisfi-

able. Let Σ = {¬σ1, . . . ,¬σm}. Each element of Σ is again an
atomic or negated atomic formula. Call graph of Σ the directed
graph G(Σ) defined as follows: The set of nodes of G(Σ) is the set
W = {v, w1, . . . , wn, u} of variables occurring in the formulas of Σ
with the following provision: Let α, β ∈ W . If α = β is a formula of
Σ, then the nodes of G(Σ) corresponding to these variables coincide.
α → β is an edge of G(Σ) if there are α1, . . . , αk, β1, . . . , βl such that

{α = α1, α1 = α2, . . . , αk−1 = αk}∪

{β = β1, β1 = β2, . . . , βl−1 = βl} ∪ {βl ∈ αk} ⊆ Σ.

In view of this and the fact that the cases considered below concern
the various forms of the graph G(Σ), for the rest of the proof we may
ignore equalities and their negations, i.e., we may assume that σi are
only formulas of the form αi ∈ αjand αi /∈ αj . Further, for every node
α, let the restrictions of α be the set

r(α) = {β : (α /∈ β) ∈ Σ ∨ (β /∈ α) ∈ Σ ∨ (α 6= β) ∈ Σ}.

Observe that, since ¬σ1 ∧ · · · ∧ ¬σm is satisfiable, so is Σ. Conse-
quently G(Σ) contains no cycles, so each path in G(Σ) has a ter-
minal node. A decoration of G(Σ) is a mapping d : W → V such
that (a) if α → β is in G(Σ), then d(β) ∈ d(α), and (b) if α /∈ β,
β /∈ α, α 6= β are in r(α), then d(α) /∈ d(β), d(β) /∈ d(α) and
d(α) 6= d(β), respectively. It follows immediately that if d is a dec-
oration of G(Σ), then d(v), d(w1), . . . , d(wn), d(u) make true all ¬σi,
hence ¬θ(d(v), d(w1), . . . , d(wn), d(u)) is true. Also since ¬θ is satisfi-
able, there is already a decoration for G(Σ).

→ Case 2.1: v is a terminal node of G(Σ).
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(Equivalently, there are α1, . . . , αl ∈ W such that {v ∈ α1, α1 ∈
α2, . . . , αl−1 ∈ αl} ⊆ Σ. Or, equivalently, θ contains a subformula of
the form v /∈ α1 ∨ α1 /∈ α2 ∨ · · · ∨ αl−1 /∈ αl.)

Claim 1. For every x there is a decoration d of G(Σ) such that
d(v) = x. Consequently, (∀v)(∃w)(∃u)¬θ(v, w, u) is true. Hence, by
(3),

Γφ(∅) = {x : (∀w)(∀u)θ(x,w, u)} = ∅.
So Iφ = ∅.

Proof. Define a rank for the elements of W as follows: First set
rank(α) = ∞, if α is an isolated node of G(Σ). Every non-isolated
node belongs to some path. So let rank(α) = 0 if α is a terminal node,
and rank(α) = n + 1 if there is β such that α → β belongs to G(Σ)
and rank(β) = n. Let Wi = {α : rank(α) = i}, for i = 1, . . . , t,∞, be
the levels of W .

We define d on Wi by induction on i. By assumption v ∈ W0. Let
αj , j ≤ p, be an enumeration of W0 with α0 = v. Set d(v) = x and
suppose d(αk) are defined for k < j. Then set d(αj) to be any set y
which respects the restrictions of αj with respect to the so far defined
sets d(αk), k < j. That is, if αk ∈ d(αj) and αj /∈ αk, αk /∈ αj or
αj 6= αk, then we choose y so that y /∈ d(αk), d(αk) /∈ y or y 6= d(αk).
Obviously this choice is always possible.

Suppose we have defined d for the elements of Wi, let αj , j ≤ p, be
an enumeration of Wi+1 and suppose d(αk) are defined for k < j. Let
β1, . . . , βs be the children nodes of αj . Clearly d(β1), . . ., d(βs) are
defined. So it suffices to set d(aj) = y such that {d(β1), . . . , d(βs)} ⊆ y
and y respect also its restrictions with respect to the so far defined
sets. Such a choice of y is again always possible.

Finally, for any two γ1, γ2 ∈ W∞, some of the following are in Σ:
γ1 /∈ γ2, γ2 /∈ γ1, γ1 6= γ2, γi /∈ α, α /∈ γi, γi 6= α, where α ∈ Wi, i ≤ t.
Since d(α) are already been defined, it suffices to check that any finite
number of formulas of the form γ1 /∈ γ2, γ2 /∈ γ1, γ1 6= γ2, γi /∈ d(α),
d(α) /∈ γi, γi 6= d(α) is satisfiable. But this is obvious due to the size
of co-sets. This completes the proof of the Claim 1.

↓ Case 2.2: v is an isolated node of G(Σ).
(Equivalently, for every α ∈ W , θ does not contain as a subformula

neither v /∈ α, nor α /∈ v.)
Inspecting the proof of case 2.1 we easily deduce that if v is isolated

and we set d(v) = x, then we can extend d on the whole W . Thus
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again (∀v)(∃w)(∃u)¬θ(v, w, u) is true, and therefore Γφ(∅) = ∅ = Iφ,
i.e., the least fixed point is a set.

↓ Case 2.3: v is neither a terminal nor an isolated node of G(Σ).
In this case G(Σ) contains paths of the form v → α1 → α2 →

· · · → αr with r ≥ 1. Let G(v) be the subgraph of G(Σ) consisting
of the paths starting at the node v. This is a rooted graph with root
v. For every set x, let E(x) be the ∈-graph of x, i.e., the directed
graph whose nodes are the elements of TC(x) ∪ {x} and edges y → z
whenever z ∈ y. E(x) is also rooted. Write G(v) ¹ E(x) if E(x)
contains a subgraph with the same root x, isomorphic to G(v).

Claim 2. If for a set x, G(v) 6¹ E(x), then (∀w)(∀u)θ(x,w, u).
Therefore x ∈ Γφ(∅).

Proof. Clearly, if there is a decoration d of G(Σ) with d(v) = x,
then necessarily E(x) must contain a subgraph isomorphic to G(v)
with the same root. So if G(v) 6¹ E(x), then there is no decoration d
of G(Σ) such that d(v) = x. Therefore ¬(∃w)(∃u)¬θ(x,w, u). Hence
(∀w)(∀u)θ(x,w, u). This completes the proof of Claim 2.

→ Case 2.3.1: G(v) is non-branching, i.e., it consists of a single
path v → α1 → α2 → · · · → αr with r ≥ 1.

→ Case 2.3.1.1: u /∈ {α1, . . . , αr}.
Then we may assume that αi = wi and

¬θ ⇔ (wr ∈ wr−1) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ v) ∧ δ(u, v, w),

where δ(u, v, w) is a conjunction of negated atoms. If some conjunct
of δ is implied by (wr ∈ wr−1) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ v), we can
ignore it. So we may assume that every conjunct of δ is not implied
by the last formula. Therefore they will be of the form:

wi /∈ wj , for i > j + 1,
u /∈ wi, for i < r − 1,
u /∈ x,
wi /∈ v, for i > 1.

Thus in general

δ = (u /∈ wi) ∧ (u /∈ x) ∧ (wj /∈ wk) ∧ (wl /∈ v).

Then

Γφ(∅) = {x : (∀w)(∀u)[wr /∈ wr−1 ∨ · · · ∨ w2 /∈ w1 ∨ w1 /∈ x ∨
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(u ∈ wi) ∨ (u ∈ x) ∨ (wj ∈ wk) ∨ (wl ∈ x)]}.
Let x ∈ Γφ(∅). Then

(∀w)(∀u)[wr ∈ wr−1 ∧ · · · ∧ w2 ∈ w1 ∧ w1 ∈ x ⇒

(u ∈ wi) ∨ (u ∈ x) ∨ (wj ∈ wk) ∨ (wl ∈ x)]}.
Let w′ = w − {wj , wl}. Then the above is written equivalently,

(∀w′)(∀wj /∈ wk)(∀wl /∈ x)(∀u)[wr ∈ wr−1 ∧· · ·∧ w2 ∈ w1 ∧ w1 ∈ x ⇒

(u ∈ wi) ∨ (u ∈ x)]}.
A moment’s inspection shows that this formula is false, because for
each value a of wi, the set a ∪ x must contain class many elements.
Therefore for every x, x /∈ Γφ(∅), i.e., Γφ(∅) = ∅. It follows that the
least fixed point of Γφ is ∅.

↓ Case 2.3.1.2: u ∈ {α1, . . . , αr}.
If r = 1, then α1 = u and w = ∅, hence also ∀ = ∅, which

contradicts our assumption that ∀ 6= ∅.
So r > 1 and let u = αk. We may assume that αj = wj for j < k

and αj = wj−1 for j > k. Thus ¬θ is written

¬θ ⇔ (wr ∈ wr−1) ∧ · · · ∧ (wk+1 ∈ u) ∧

(u ∈ wk) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ v) ∧ δ(v, w, u),

where δ(v, w, u) is as above.
→ Case 2.3.1.2.1: Suppose that the implication

(wr ∈ wr−1) ∧ · · · ∧ (wk+1 ∈ u) ∧

(u ∈ wk) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ v) ⇒ δ(v, w, u)

is logically valid. Then

(∃w)¬θ(x,w, u) ⇔ (∃w)[(wr ∈ wr−1) ∧ · · · ∧ (wk+1 ∈ u) ∧

(u ∈ wk) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ v)].

Because of separation of variables the r.h.s. of the above is written:

(∃w)[(wr ∈ wr−1) ∧ · · · ∧ (wk+1 ∈ u)] ∧
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(∃w)[(u ∈ wk) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ v)].

Obviously (∃w)[(u ∈ wk) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ x)] is the
analytic form of the formula u ∈ ∪kx where ∪kx is the k-th iterate of
the union operator ∪. On the other hand (∃w)[(wr ∈ wr−1) ∧ · · · ∧
(wk+1 ∈ u)] means rank(u) ≥ r−k−1, where rank(u) is the ordinary
rank of the cumulative hierarchy, or equivalently, u /∈ Vr−k−1. So

(∃w)¬θ(x,w, u) ⇐⇒ u ∈ ∪kx ∧ u /∈ Vr−k−1 ⇐⇒ u ∈ (∪kx−Vr−k−1).

Observe that for any X,Y , ∪X ⊆ Y ⇔ X ⊆ P(Y ). And, inductively,
for every k, ∪kX ⊆ Y ⇔ X ⊆ Pk(Y ). Also X−Y ⊆ Z ⇔ X ⊆ Y ∪Z.
So

Γφ(X) = {x : (∪kx− Vr−k−1) ⊆ X} =

{x : ∪kx ⊆ (X ∪ Vr−k−1)} = {x : x ⊆ Pk(X ∪ Vr−k−1)}.
Therefore Γφ(X) = Pk+1(X ∪ Vr−k−1), i.e., Γφ = Pk+1(I ∪ CVr−k−1

).
↓ Case 2.3.1.2.2: Suppose that the implication

(wr ∈ wr−1) ∧ · · · ∧ (wk+1 ∈ u) ∧

(u ∈ wk) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ v) ⇒ δ(v, w, u)

is not logically valid. We shall prove the following:

Claim 3. In this case On ⊆ Γφ(∅), hence Γφ(∅) is a proper class.
So Γφ is big.

Proof. Recall that in general u = αk. For simplicity we shall
assume that u = αr. The adaptation of the proof for u = αk is
easy. Inspecting the proof of the previous case, just observe that the
difference consists in having x ⊆ P(X) instead of x ⊆ P(X ∪Vr−k−1).
The difference does not affect the truth of our claim. So let

¬θ = (u ∈ wr−1) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ v) ∧ δ,

and
(u ∈ wr−1) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ v) ⇒ δ

is not logically valid. By the last assumption, at least one of the
conjuncts of δ is not logically implied by (u ∈ wr−1) ∧ · · · ∧ (w2 ∈
w1) ∧ (w1 ∈ v). As above δ will contain some conjunct of the following
kinds:

12



(a) wi /∈ wj , for r > i > j + 1 ≥ 2,
(b) u /∈ wi, for r − 1 > i,
(c) u /∈ x,
(d) wi /∈ x, for r > i > 1.

We shall examine these subcases one by one.

Case (a): Let δ contain wi /∈ wj , for some r > i > j + 1 ≥ 2. Let

θ′(x,w, u) = (u /∈ wr−1) ∨ · · · ∨ (w2 /∈ w1) ∨ (w1 /∈ x) ∨ (wi ∈ wj),

and
φ′(x, S) = (∀w)(∀u)(θ′(x,w, u) ∨ u ∈ S).

Since φ′(x, S) ⇒ φ(x, S), Γφ′(X) ⊆ Γφ(X) for every X, it suffices to
prove that On ⊆ Γφ′(∅).

We have

Γφ′(X) = {x : (∀u)[(∃w)¬θ′(x,w, u) ⇒ u ∈ X]},

and

¬θ′(v, w, u) = (u ∈ wr−1) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ v) ∧ (wi /∈ wj).

For any x, r, and r > i > j + 1 ≥ 2, define the following conditional
iterated union:

∪r−1
i,j x = {u : (∃w)[(u ∈ wr−1) ∧· · ·∧ (w2 ∈ w1) ∧ (w1 ∈ x) ∧ (wi /∈ wj)]}.

Then Γφ′(X) is written

Γφ′(X) = {x : ∪r−1
i,j x ⊆ X}. (4)

Now we have

u ∈ ∪r−1
i,j x ⇔ (∃w)[(u ∈ wr−1) ∧· · ·∧ (w2 ∈ w1) ∧ (w1 ∈ x) ∧ (wi /∈ wj)] ⇔

(∃t)(∃s)[u ∈ ∪r−i−1t ∧ t ∈ (∪i−js− s) ∧ s ∈ ∪jx].

So for all X and x,

∪r−1
i,j x ⊆ X ⇐⇒ (∀s ∈ ∪jx)(∀t ∈ ∪i−js− s)[∪r−i−1t ⊆ X)].

Therefore in view of (4),
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x ∈ Γφ′(X) ⇐⇒ (∀s ∈ ∪jx)(∀t ∈ ∪i−js− s)[∪r−i−1t ⊆ X)]. (5)

The last equivalence for X = ∅ yields

x ∈ Γφ′(∅) ⇐⇒ (∀s ∈ ∪jx)(∀t ∈ ∪i−js− s)[∪r−i−1t ⊆ ∅)].

For any x ∈ On, clearly ∪jx = x and for every s ∈ x, s is an ordinal
again, so ∪i−js = s, i.e., ∪i−js− s = ∅. Therefore the right-hand side
of the preceding equivalence is vacuously true for every x ∈ On, so
On ⊆ Γφ′(∅). This completes the proof of the case (a).

Case (b): Let δ contain u /∈ wi, for r − 1 > i. Then

¬θ′(x,w, u) = (u ∈ wr−1) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ x) ∧ (u /∈ wi)

and
Γφ′(X) = {x : (∀u)[(∃w)¬θ′(x,w, u) ⇒ u ∈ X]}.

For any x, r, and r − 1 > i, define the following conditional iterated
union:

∪r−1
i x = {u : (∃w)[(u ∈ wr−1) ∧· · ·∧ (w2 ∈ w1) ∧ (w1 ∈ x) ∧ (u /∈ wi)]}.

Then Γφ′(X) is written

Γφ′(X) = {x : ∪r−1
i x ⊆ X}. (6)

Now

u ∈ ∪r−1
i x ⇔ (∃w)[(u ∈ wr−1) ∧· · ·∧ (w2 ∈ w1) ∧ (w1 ∈ x) ∧ (u /∈ wi)] ⇔

(∃s)[u ∈ ∪r−i−1s− s ∧ s ∈ ∪ix],

hence
u ∈ ∪r−1

i x ⇔ (∃s)[u ∈ ∪r−i−1s− s ∧ s ∈ ∪ix],

From the last equivalence and (6) we have for any x and X,

x ∈ Γφ′(X) ⇐⇒ (∀s ∈ ∪ix)(∪r−i−1s− s ⊆ X).

For X = ∅ the preceding relation gives

x ∈ Γφ′(∅) ⇐⇒ (∀s ∈ ∪ix)(∪r−i−1s− s ⊆ ∅).
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As in the previous case we easily see that right-hand side of this equiv-
alence is true for every x ∈ On. Therefore On ⊆ Γφ′(∅).

Case (c): Let δ contain u /∈ x. Then

¬θ′(x,w, u) = (u ∈ wr−1) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ x) ∧ (u /∈ x)

and
Γφ′(X) = {x : (∀u)[(∃w)¬θ′(x,w, u) ⇒ u ∈ X]}.

Then clearly

(∃w)[(u ∈ wr−1) ∧· · ·∧ (w2 ∈ w1) ∧ (w1 ∈ x) ∧ (u /∈ x)] ⇐⇒ u ∈ ∪r−1x−x.

So for every class X,

x ∈ Γφ′(X) ⇐⇒ ∪r−1x− x ⊆ X.

In particular
x ∈ Γφ′(∅) ⇐⇒ ∪r−1x− x ⊆ ∅,

which holds for every x ∈ On. Therefore On ⊆ Γφ′(∅).
Case (d): Let δ contain wi /∈ x, for r > i > 1. Then

¬θ′(x,w, u) = (u ∈ wr−1) ∧ · · · ∧ (w2 ∈ w1) ∧ (w1 ∈ x) ∧ (wi /∈ x)

and
Γφ′(X) = {x : (∀u)[(∃w)¬θ′(x,w, u) ⇒ u ∈ X]}.

Let us set

∆r−1
i = {u : (∃w)[(u ∈ wr−1) ∧· · ·∧ (w2 ∈ w1) ∧ (w1 ∈ x) ∧ (wi /∈ x).

Then Γφ′(X) is written

Γφ′(X) = {x : ∆r−1
i x ⊆ X}. (7)

Now as before it is easy to see that

∆r−1
i =

⋃
{∪r−i−1s : s ∈ ∪ix− x}.

Hence for every class X,

∆r−1
i ⊆ X ⇐⇒ ∪r−i−1s ⊆ X, ∀s ∈ ∪ix− x.
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Thus

x ∈ Γφ′(X) ⇐⇒ (∀s ∈ ∪ix− x)(∪r−i−1s ⊆ X).

For X = ∅ we get

x ∈ Γφ′(∅) ⇐⇒ (∀s ∈ ∪ix− x)(∪r−i−1s ⊆ ∅).

For x ∈ On, ∪ix−x = ∅. So the right- hand side of the last equivalence
is vacuously true, hence On ⊆ Γφ′(∅).

This completes the proof of case (d) and the proof of Claim 3.

← Case 2.3.2: Suppose G(v) is branching.
Without loss of generality, assume that v is a branching node.

(The adaptation of the argument for any other branching node is
easy.) Now it is easy to see that there are class many sets x such that
G(v) 6¹ E(x). Indeed, for any x = {y}, G(v) 6¹ E(x) since the node x
of E(x) is non-branching. If X = {x : G(v) 6¹ E(x)}, then by Claim
2, X ⊆ Γφ(∅), hence Γφ(∅) is a proper class. Therefore Γφ is big.

This completes the checking of all possible cases and the proof. a

Proof of Theorem 2.3. Let θ =
∧

i≤k θi be the conjunctive normal
form of θ. Then each θi is a disjunction of atomic or negated atomic
formulas. Moreover we have

φ(v, S) ⇔ (∀w)(∀u)(θ ∨ u ∈ S) ⇔ (∀w)(∀u)(
∧

i≤k

θi ∨ u ∈ S) ⇔

(∀w)(∀u)
∧

i≤k

(θi ∨ u ∈ S) ⇔
∧

i≤k

[(∀w)(∀u)(θi ∨ u ∈ S].

Therefore, if φi(x, S) := (∀w)(∀u)(θi(v, w, u) ∨ u ∈ S), then for all X,
Γφ(X) =

⋂
i≤k Γφi

(X). If ∀ = ∅, then, by proposition 2.2, each Γφi
is

CA or P, or Id, or P ∪ Id, hence it is of the form Pk(Cr ∪ Id) ∪ Id.
Suppose ∀ 6= ∅. Then the distinct cases for each Γφi are the fol-

lowing: 1, 2.1, 2.2, 2.3.1.1, 2.3.1.2.1, 2.3.1.2.2, 2.3.2. If some of the θi

belongs to the case 1 of proposition 2.3, i.e., θi ⇔ >, we just ignore
it. If some of the θi belongs to the case 2.1 or 2.2 or 2.3.1.1, then
Γφi

(∅) = ∅, hence also Γφ(∅) = ∅ and so Iφ = ∅.
It remains to examine the cases 2.3.1.2.1, 2.3.1.2.2, and 2.3.2. If

Γφi
is as in case 2.3.1.2.1, then Γφi

(X) = Pk(X ∪ Vr) for some k, r,
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i.e., Γφi = Pk(I ∪ CVr), which is an instance of the general form of
the theorem. If Γφi is as in case 2.3.1.2.2, then On ⊆ Γφi(∅). Finally
if Γφi is as in case 2.3.2, then Gθi(v) is a branching graph. In such a
case, there are l, p, s (some of them may be 0) such that

Γφ = Pk1(Id∪CVr1
)∩· · ·∩Pkl(Id∪CVrl

)∩(Γ1∩· · ·∩Γp)∩(∆1∩· · ·∩∆s),

where for each i ≤ p On ⊆ Γi(∅), and for each j ≤ s, ∆j is induced
by a disjunction θj , for which Gθj (v) is a branching graph.

Let Γ = Γ1 ∩ · · · ∩ Γp. Since On ⊆ Γi(∅) for every i ≤ p, it follows
that On ⊆ Γ(∅), hence Γ is big.

Further, since Gθj (v), for j ≤ s, are branching graphs, we easily
see as in case 2.3.2, that there is a proper class X such that for every
x ∈ X, Gθj (v) 6¹ E(x). In view of Claim 2 of proposition 2.3, X ⊆
∆j(∅) for all j. If we set ∆ = ∆1 ∩ · · · ∩∆s, then X ⊆ ∆(∅), hence ∆
is big. Therefore

Γφ = Pk1(Id ∪ CVr1
) ∩ · · · ∩ Pkl(Id ∪ CVrl

) ∩ Γ ∩∆,

where Γ, ∆ are big. This completes the proof of the theorem. a
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