
The logic of multisets continued: The case of
disjunction

Athanassios Tzouvaras
Depart. of Mathematics, Univ. of Thessaloniki

540 06 Thessaloniki, Greece
E-mail:tzouvara@ccf.auth.gr

Abstract

We continue our work [5] on the logic of multisets (or on the mul-
tiset semantics of linear logic), by interpreting further the additive
disjunction ⊔. To this purpose we employ a more general class of
processes, called free, the axiomatization of which requires a new rule
(not compatible with the full LL), the cancellation rule. Disjunctive
multisets are modeled as finite sets of multisets. The ⊔-Horn fragment
of linear logic, with the cut rule slightly restricted, is sound with re-
spect to this semantics. Another rule, which is a slight modification
of cancellation, added to HF⊔ makes the system sound and complete.

1 Introduction

The relation between multisets and sets is roughly the relation between con-
crete, material objects (or “resources”) on the one hand and their abstract
properties on the other. Can this similarity/opposition be formulated in
terms of logic and how? The logic of abstract properties is well known.
Properties are true or false, they conjunct and disjunct, imply one another
and are negated. Material entities on the other hand seem to be able just
to exist. Yet a little more can be said. They also coexist or are incompati-
ble, and they transform to one another respecting certain preservation rules.
Thus we can talk about a “logic of material beings”, or “logic of resources”,

1

meaning by that certain general rules of existence and change. In [4] an ap-
proach of the logic of resources was presented through a variant of λ-calculus
applied to abstract objects which are postulated to behave like the ordinary
artificial objects. Later we realized that most of the properties of abstract
objects can be captured using the much simpler setup of multisets.

In [5] we identify resources with (finite) multisets and study their logic.
In order to make this paper self-contained, we survey briefly below the main
points of [5].

Let A be a nonempty set whose elements a, b, c, . . . are thought of as ure-
lements. A multiset over A is a function x : A → N (=the set of nonnegative
integers). x(a) is the multiplicity of a in x. As elements of x we consider
only those a for which x(a) ̸= 0. x is finite if it has finitely many elements.
Throughout x, y, z, . . . range over finite multisets (over some fixed set A).
A more explicit notation is x = [a1, a1, . . . , a2, a2, . . .] where ai occur with
repetitions and square brackets distinguish multisets from sets. The empty
multiset is denoted again by ∅.

Let U(A) be the set of all finite multisets over A. We may assume A ⊂
U(A) by identifying each a ∈ A with the multiset [a]. We endow U(A) with
the operation of additive union ⊎ defined by (x ⊎ y)(z) := x(z) + y(z), and
the “replacement relation (or operation)” U(A)×U(A) where the pair (x, y)
means :“replace x by y”. The replacement relation is the entire U(A)×U(A),
since, at this abstract level, there is no reason to exclude any multiset from
being able to replace any other one in any given procedure.

A general pattern of sequent
The entities we shall deal with in this paper fall into two categories:

Objects of several kinds (multisets, disjunctive multisets, formulas made of
atoms, conjunction and disjunction) and transformations of several kinds
(replacements of multisets, implications). Objects and transformations are
tied together and interact within a sequent. The general pattern of sequent
used throughout is

O, T ⊢ e, (1)

where O is a multiset of objects, T is a multiset of transformations and e
is either an object or a transformation. The meaning of (1) is: When the
transformations T apply to the objects O (viewed as resources), the outcome

2

is e. When O = [a1, . . . , an] and T = [t1, . . . , tm], (1) is written equivalently,

a1, . . . , an, t1, . . . , tm ⊢ e.

Then O, b, T ⊢ e has the same meaning as a1, . . . , an, b, T ⊢ e.

Sequents of multisets
In the case of multisets, (1) takes the form

µ, σ ⊢ w, or µ, σ ⊢ (y, w),

where µ = [x1, . . . , xn] is a multiset of multisets and σ = [(y1, z1), . . . , (yn, zn)]
is a multiset of replacements. The pair (µ, σ) is said to be a process. The
letter P denotes processes. Given σ = [(y1, z1), . . . , (yn, zn)], let

in(σ) = y1 ⊎ · · · ⊎ yn, out(σ) = z1 ⊎ · · · ⊎ zn.

The processes considered in [5] are the so-called staged ones: P = (µ, σ)
is staged if there is a an enumeration [(y1, z1), . . . , (yn, zn)] of σ such that for
every i < n,

yi+1 ⊆ ((⊎µ) ⊎ z1 ⊎ · · · ⊎ zi)− (y1 ⊎ · · · ⊎ yi),

where ⊎µ = x1 ⊎ · · · ⊎ xn. Putting

P (0) = ⊎µ and P (i+ 1) = P (i) ⊎ zi+1 − yi+1,

for i < n, the above condition is written yi+1 ⊆ P (i). The sequence
P (0), . . . , P (n) is called a stage sequence of P . We say that P yields w and
write P ⊢ w or µ, σ ⊢ w, if for some stage sequence P (i), i ≤ n, P (n) = w.
In this case P (n) is said to be the output of P and we denote it out(P), i.e.,
out(P) = P (n) = w. The notation P ⊢ w reads also “the sequent P ⊢ w
holds”. By definition µ, σ ⊢ (y, w) holds iff µ, y, σ ⊢ w does.

Sequents of formulas
The logic appropriate to axiomatize the behavior of sequents of multi-

sets is proved to be the Horn fragment of the multiplicative intuitionistic
linear logic (ILL) (see [1] for general background) without exponentials and
quantifiers (i.e., the {⊗,−◦,1}-fragment), denoted HF. The formulas of HF
are either of the form (a) p1 ⊗ · · · ⊗ pn, where pi are atomic propositions,

3

called simple products (or just products), or (b) X−◦Y , where X, Y are sim-
ple products, called implications. The variables X, Y,W,U . . . denote simple
products (although sometimes may range also over implications. See remark
1.1 below). In the case of formulas, a sequent (1) takes the form

Φ,Σ ⊢ W, or Φ,Σ ⊢ (Y −◦W),

where Φ is a multiset of products, Σ is a multiset of implications, and Y , W
are simple products. 1 denotes the empty product.

Interpretations
Let L be the language of the Horn fragment. An interpretation of L in

U(A) consists of a (usually injective) mapping ∗ : {p1, p2, . . .} → A which
extends to all formulas by putting:

a) (X ⊗ Y)∗ = X∗ ⊎ Y ∗,
b) Φ∗ = [X∗

1 , . . . , X
∗
n], if Φ = [X1, . . . , Xn],

c) (X −◦Y)∗ = (X∗, Y ∗),
d) Σ∗ = [(Y ∗

1 , Z
∗
1), . . . , (Y

∗
m, Z

∗
m)] if Σ = [Y1 −◦Z1, . . . , Ym −◦Zm],

e) 1∗ = ∅ (the empty multiset).

The interpretation ∗ extends naturally to sequents, turning sequents of
formulas into sequents of multisets. We say that the sequent Φ,Σ ⊢ W , is
true under ∗ if (Φ∗,Σ∗) is a staged process and Φ∗,Σ∗ ⊢ W ∗. The sequent
Φ,Σ ⊢ (Y −◦W) is true under ∗ if Φ, Y,Σ ⊢ W is so.

A rule S′

S
or S1 S2

S
is sound with respect to ∗, if the truth of the sequent(s)

S ′ (resp. S1, S2) implies the truth of S. Thus the pair (U(A),⊢) is a structure
interpreting sequents of HF.

The rules of HF are the following:

Ax :
X ⊢ X

, Cut :
Φ1,Σ1 ⊢ W W,Φ2,Σ2 ⊢ U

Φ1,Φ2,Σ1,Σ2 ⊢ U
,

L⊗ :
Φ, Y, Z,Σ ⊢ W

Φ, Y ⊗ Z,Σ ⊢ W
, R⊗ :

Φ1,Σ1 ⊢ W Φ2,Σ2 ⊢ U

Φ1,Φ2,Σ1,Σ2 ⊢ W ⊗ U
,

L−◦ :
Φ1,Σ1 ⊢ W U,Φ2,Σ2 ⊢ V

Φ1,Φ2,Σ1,Σ2, (W −◦U) ⊢ V
, R−◦ :

Φ, Y,Σ ⊢ W

Φ,Σ ⊢ (Y −◦W)
,

4

L1 :
Φ,Σ ⊢ W

Φ,1,Σ ⊢ W
, R1 : ⊢ 1.

Remark 1.1 i) Ax holds for any formula of HF. ii) In Cut the cut formula
can be also an implication. iii) On the other hand in L−◦, and R−◦, clearly
W,U must be products. Analogous remarks hold for the other rules. 2

Theorem 1.2 (Soundness and completeness of HF, [5]) i) Let S be a Horn
sequent provable in HF. Then for every non-empty set A, and for every in-
terpretation ∗ of formulas of L in U(A), S∗ is true in (U(A),⊢).

ii) Let S be a Horn sequent. If for some non-empty set A and some
injective interpretation ∗ of L in U(A), S∗ is true in (U(A),⊢), then S is
provable in HF.

(ii) of the above theorem deviates slightly from the ordinary formulations
of completeness theorems. It requires only some (instead of all) interpreta-
tion, but this must be injective. The precise technical reason why ∗ must
be injective in order from the truth of the multiset sequent Φ∗,Σ∗ ⊢ W ∗ to
conclude that the Horn sequent Φ,Σ ⊢ W is provable in HF, is explained
in Lemma 3.4 of [5]. The above theorem is Theorems 3.3 and 3.5 of [5].
Injectivity of ∗ is required also for the completeness results of this paper (e.g.
2.10).

The table below summarizes the correspondence between logical and on-
tological notions.

Logic Ontology
formulas (simple products) multisets

truth existence
proof process

(linear) conjunction additive union
(linear) implication replacement

rules of HF corresponding rules for multisets
disjunction ?
negation ?

Table

5

The place of negation in the above table will remain open, since negation
can hardly be conceived as an operation between objects, even if the latter
are confined to multisets. So the logic of objects throughout will be negation
free. On the other hand it is the purpose of this paper to enrich this logic with
disjunction in a satisfactory way. Namely we shall find a proper formalization
of disjunctive objects as a class of objects that extend the ordinary ones. In
order to do that we shall first replace the staged processes used above with a
certain weaker type of processes called free. In the next section we axiomatize
free processes.

2 Free processes.

It is clear from the definitions of the previous section that if P = (µ, σ) is a
staged process, then

in(P) ⊆ (⊎µ) ⊎ out(σ) and out(P) = (⊎µ) ⊎ out(σ)− in(σ),

in which case we write P ⊢ out(P). Can the last relations be used as alter-
native definitions of the staged sequence and the yielding relation ⊢? The
answer is negative. However they provide a strictly weaker notion of process
and yielding.

Definition 2.1 A process P = (µ, σ) is said to be free if

in(P) ⊆ (⊎µ) ⊎ out(σ).

In this case we set out(P) = (⊎µ) ⊎ out(σ) − in(σ) and say that P yields
out(P). We denote this by

P |∼ out(P).

Also for a process (µ, σ) and a replacement (y, w), we write µ, σ |∼ (y, w),
if (µ, y, σ) is free and µ, y, σ |∼ w.

Remark 2.2 i) As mentioned earlier every staged process is free but not
conversely. For instance the process (x, (y, y)), with y ̸⊆ x, is free (with
output x) but obviously cannot be staged.

ii) Roughly staged processes are wellfounded, in the sense that some initial
replacements must draw their inputs from independent resources, while the
free ones may contain genuine cycles. Free processes seem to be the most
general transformational procedures that can lead to an outcome. 2

6

The following simple and useful connection holds between staged and free
processes.

Lemma 2.3 Let µ, σ |∼ w. Then for every u ⊇ in(σ), µ, u, σ ⊢ u ⊎ w.

Proof. Since µ, σ |∼ w holds, w = (⊎µ) ⊎ out(σ) − in(σ). Let σ =
[(y1, z1), . . . , (yn, zn)] be an arbitrary enumeration of σ. Then u ⊇ in(σ) =
y1 ⊎ · · · ⊎ yn. Let P (0) = u ⊎ (⊎µ) and P (i + 1) = P (i) ⊎ zi+1 − yi+1.
Then clearly yi+1 ⊆ P (i), therefore P (i) is a staged sequence for the process
P = (µ, u, σ). Thus P is staged and

out(P) = P (n) = u ⊎ (⊎µ) ⊎ out(σ)− in(σ) = u ⊎ w.

This proves the claim. 2

Note that, having ∅ explicitly among our resources, an empty left or right
side in a sequent of multisets is different from having ∅ at that side. For
instance |∼ is not the same as ∅ |∼ ∅. The latter is obviously free and true.
On the other hand, since every free P must have an output, for no free P
can the sequent P |∼ hold true. Finally the interpretation of the rule R1 is
the (truth of the) sequent |∼ ∅ which does not make real sense, but we may
accept as holding by convention.

Theorem 2.4 (Soundness) The rules Ax, Cut, L⊗, R⊗, L−◦, R−◦, L1, R1

are sound in (U(A), |∼) under any interpretation.

Proof. The proof is straightforward though tedious, and left to the patient
reader. 2

However completeness of HF fails with respect to (U(A), |∼). For instance
it is easy to see that the sequent S:

X, (X ⊗ U)−◦(Y ⊗ U) ⊢ Y

is true in (U(A), |∼) under any injective interpretation, but, since there is
no rule allowing the elimination of ⊗ from the antecedent of a sequent, S is
unprovable in HF (and also in the full ILL).

7

In order to capture such derivations we need the following additional rule:

C⊗ :
Φ, Z,Σ ⊢ W ⊗ Z

Φ,Σ,⊢ W
.

We call C⊗ ⊗-cancellation (or just cancellation) rule and we set

CHF = HF + C⊗.

Remark 2.5 The rule C⊗ is a bit strange, as it does not satisfy the “subfor-
mula property”: Formulas occurring in the upper sequent are missing from
the lower one. The only other rule for which this happens is Cut, and this is
the reason why we want to be able to dispense with it (cut elimination). The
rules however are viewed here as general laws of material transformation, and
need not meet the special requirements of proof theory.

Lemma 2.6 If µ, σ, (y, z) |∼ w, then µ, z, σ |∼ w ⊎ y.

Proof. By definition µ, σ, (y, z) |∼ w iff

(⊎µ) ⊎ z ⊎ out(σ)− y ⊎ in(σ) = w,

or, equivalently,
(⊎µ) ⊎ z ⊎ out(σ)− in(σ) = w ⊎ y,

which says that µ, z, σ |∼ w ⊎ y. 2

Theorem 2.7 (Soundness of CHF) If Φ,Σ ⊢ W is provable in CHF, then for
every interpretation ∗, (Φ∗,Σ∗) is free and Φ∗,Σ∗ ⊢ W ∗ holds in (U(A), |∼).

Proof. We have seen in theorem 2.4 that the rules of HF are sound in
(U(A), |∼). The interpretation of C⊗ is, clearly, the ⊎-cancellation rule

C⊎ :
µ, z, σ |∼ w ⊎ z

µ, σ |∼ w
,

which is easy to verify. Moreover it is easy to see that for every rule of CHF,
if the sequents over the line have free interpretations, so do the sequent under
the line. Therefore every derivable sequent has free interpretation and is true.
2

8

Corollary 2.8 CHF is consistent.

Proof. As remarked earlier no sequent of the form x, σ |∼ can be true.
Therefore, by soundness, no sequent of the form X,Σ ⊢ is provable in CHF.
This suffices for CHF to be consistent. 2

A variant of C⊗ is the following (“strange” too) rule:

NL−◦ :
Φ, Z,Σ ⊢ W ⊗ Y

Φ,Σ, Y −◦Z ⊢ W
. (2)

(NL−◦ stands for “new left rule for −◦”, since it introduces −◦ on the left in
a new way.) We shall see that it is equivalent to C⊗ over HF.

Let R be a rule and T be a system of rules. The statement “the rule R is
derived in the system T” means that the system T is closed under the rule
R.

Lemma 2.9 The rule NL−◦ is derived in HF+C⊗ and the rule C⊗ is derived
in HF +NL−◦. Therefore NL−◦ and C⊗ are equivalent over HF.

Proof. i) We work in HF + C⊗. Let the upper sequent Φ, Z,Σ ⊢ W ⊗ Y
of the rule NL−◦ be given. Then:

Φ, Z,Σ ⊢ W ⊗ Y

Y ⊢ Y Z ⊢ Z
Y, (Y −◦Z) ⊢ Z

L−◦
W ⊢ W

W,Y, (Y −◦Z) ⊢ W ⊗ Z
R⊗

W ⊗ Y, (Y −◦Z) ⊢ W ⊗ Z
L⊗

Φ, Z,Σ, (Y −◦Z) ⊢ W ⊗ Z
Cut

Φ,Σ, (Y −◦Z) ⊢ W
C⊗.

ii) We work in HF + NL−◦. Let the upper sequent Φ, Z,Σ ⊢ W ⊗ Z of
C⊗ be given. Then:

Z ⊢ Z
⊢ (Z −◦Z)

R−◦
Φ, Z,Σ ⊢ W ⊗ Z

Φ,Σ, (Z −◦Z) ⊢ W
NL−◦

Φ,Σ ⊢ W
Cut. 2

Completeness of CHF with respect to free processes can be proved di-
rectly. However, in view of lemma 2.3, we shall reduce it to the completeness
of HF with respect to staged processes.

9

Theorem 2.10 (Completeness of CHF) If Φ,Σ ⊢ W is a sequent such that
for some injective ∗, (Φ∗,Σ∗) is free and Φ∗,Σ∗ |∼ W ∗ holds in (U(A), |∼),
then Φ,Σ ⊢ W is provable in CHF.

Proof. Let Φ,Σ ⊢ W be a sequent, such that the process (Φ∗,Σ∗) is free
and Φ∗,Σ∗ |∼ W ∗ holds for some injective ∗. We shall show that Φ,Σ ⊢ W is
provable in CHF. Let Σ∗ = [(Y ∗

1 , Z
∗
1), . . . , (Y

∗
n , Z

∗
n)] and let U = Y1⊗· · ·⊗Yn.

Then U∗ = Y ∗
1 ⊎ · · · ⊎ Y ∗

n and, by lemma 2.3, Φ∗, U∗,Σ∗ ⊢ W ∗ ⊎ U∗ is a
true staged process. By the completeness of HF (theorem 1.2), the sequent
Φ, U,Σ ⊢ W ⊗U is provable in HF. Applying the rule C⊗ to the last sequent,
we get Φ,Σ ⊢ W . Thus the latter is provable in CHF. 2

Contrary to Corollary 2.8, however, the rule C⊗ (and hence NL−◦) is not
compatible with the full system ILL. In this system we have, besides 1, also
its dual 0, as well as the additive constants ⊤ and ⊥ (notice that we follow
here the notation of [3] rather than the original one of [1]). As shown in
[1], p. 20, for every X, X ⊗ ⊥ ⊢⊣ ⊥. Hence from ⊥ ⊢ ⊥, we get in ILL
X ⊗⊥ ⊢ Y ⊗⊥ for all X,Y . Applying C⊗ to the last sequent we get X ⊢ Y
for any X, Y , hence also 1 ⊢ 0, from which and the axioms ⊢ 1 and 0 ⊢, the
contradiction ⊢ is derived.

3 Disjunctive objects and actualizations

In restaurant menus disjunctions occur either in the form “fish or steak”
(upon choice), or in the form “fruit of season”, which means “apple or cherry
or orange or...” (depending on season). In popular presentations of linear
logic the former kind of disjunction is construed as “multiplicative” (or in-
ternal or deterministic), while the latter is construed as additive (or external
or non-deterministic). Given, however, that multiplicatives should not be
idempotent, while the choice between “fish or fish” clearly entails “fish”, this
can hardly constitute a convincing example of a multiplicative disjunction
applied to objects. In fact such examples can be found only in the special Gi-
rard’s semantics (see [1]), where negation is available and thus multiplicative
disjunction is the dual of the multiplicative conjunction. In contrast, in the
negation-free realm of resources, no non-idempotent notion of disjunction is

10

conceivable, while, on the contrary, non-idempotent conjunction is defined
quite naturally.

On the other hand the “apple or cherry” pattern might be understood as
a new kind of potential object which, although distinct from both an apple
and a cherry, at some time “collapses” non-deterministically to either an
apple or a cherry (but not both). Returning to our multiset framework this
suggests one to extend the multiset universe with “potential multisets” x|y
for any two standard ones, and more generally, with objects x1| · · · |xn for
any x1, . . . , xn ∈ U(A). The main properties of | are:

i) x ̸= y ⇒ x|y ̸= x ∧ x|y ̸= y.
ii) x|y = y|x (commutativity).
iii) (x|y)|z = x|(y|z) (associativity).
iv) (x|x) = x (idempotence).
v) x ⊎ (y|z) = (x ⊎ y)|(x ⊎ z) (⊎-distribution).
(The operation | with analogous properties is used also in [4]. The oper-

ation ⊙ of the latter paper is the analogue of ⊗.) A simple way to represent
the objects x1| · · · |xn is by means of the ordinary sets {x1, . . . , xn} modulo
some identifications, namely {x} with x.

We extent U(A) to U(A){} setting U(A){} = U(A) ∪ Pω(U(A)), where
Pω(U(A)) is the set of finite subsets of U(A). We call the elements of U(A){}

disjunctive multisets or disjunctive objects.
For readability we let x, y, z range over elements of U(A) and α, β, γ over

elements of Pω(U(A)). Define the operation | on U(A){} as follows:

x|y = {x, y}, x|β = {x} ∪ β, α|β = α ∪ β.

It follows that, practically, x is identified with {x}. The empty subset of
U(A) is denoted {}. This is an element of U(A){}, representing the potential
object with no actualization (i.e., the “impossible”) and is not to be confused
with the multiset ∅.

The idea to represent disjunctive objects as subsets of the ground set
U(A) is essentially the same as the one used in power domains (see e.g. [2])
for representing disjunctive information but in a completely different setting.

The operation ⊎ of U(A) can be extended to U(A){} by setting

α ⊎ β = {x ⊎ y : x ∈ α, y ∈ β}. (3)

Obviously ⊎ remains commutative and associative. Note that α ⊎ {} = {}
for every α.

11

Lemma 3.1 α ⊎ (β|γ) = (α ⊎ β)|(α ⊎ γ).

Proof. α ⊎ (β|γ) = {x ⊎ y : x ∈ α, y ∈ β ∪ γ} =

{x ⊎ y : x ∈ α, y ∈ β} ∪ {x ⊎ y : x ∈ α, y ∈ γ} = (α ⊎ β) ∪ (α ⊎ γ) =

(α ⊎ β)|(α ⊎ γ). 2

A replacement in U(A){} is a pair (β, γ). Sequents in U(A){} have the
form

α1, . . . , αn, (β1, γ1) . . . , (βm, γm) |∼ δ,

where [α1, . . . , αn] is a multiset of disjunctive objects and [(β1, γ1) . . . , (βm, γm)]
is a a multiset of replacements. The left-hand side of a sequent is a process.

We saw above that each α is a set {x1, . . . , xk} of ordinary multisets, repre-
senting its possible actualizations. How then can we interpret a replacement
(β, γ)? One can reasonably say that (β, γ) is the set of all possible actu-
alizations of replacements arising out of all possible actualizations of α, β,
that is, (α, β) = {(x, y) : x ∈ α, y ∈ β}. Admitting that, we turn to the
crucial definition of the truth of the sequent say, α, (β, γ) |∼ δ. The idea is to
reduce the truth of the latter to that of sequents of multisets arising from the
various actualizations of α, β, γ, δ. This will inevitably involve quantification
over these potential objects.

In view of the fact that (β, γ) can be identified with the set {(y, z) : y ∈
α, z ∈ β}, one would claim that α, (β, γ) |∼ δ is true if every actualization
of α and every actualization of (β, γ) yield together some actualization of δ.
The latter is written

(∀x ∈ α)(∀(y, z) ∈ (β, γ)(∃w ∈ δ)[x, (y, z) |∼ w],

or, equivalently,

(∀x ∈ α)(∀y ∈ β)(∀z ∈ γ)(∃w ∈ δ)[x, (y, z) |∼ w]. (4)

The generalization of (4) for the sequent

α1, . . . , αn, (β1, γ1) . . . , (βm, γm) |∼ δ

is obvious. Definition (4) is said to be of type ∀, (∀,∀) ⊢ ∃.

12

One however will object that in the sequent α, (β, γ) |∼ δ, the roles of β, γ
are different. Namely, γ acts as an incoming resource, just like α, while β
acts as an outgoing resource, just like δ. For instance under the ∀, (∀,∀) ⊢ ∃
definition, the derivation

α |∼ β, γ |∼ δ

α, (β, γ) |∼ δ
, (5)

suggested by the rule L−◦, fails to be true, since the lower sequent requires ∀
over β, while the uppercase assumption provides only ∃.

Therefore in the sequent α, (β, γ) |∼ δ, γ and β should be quantified like
α and δ, i.e., by ∀ and ∃, respectively. Concerning the order of quantifiers,
the fact that the order of objects and replacements in a process is indifferent
suggests that so must be the order between the various ∀ and ∃, and this is
warranted only if we collect all ∀’s and all ∃’s in separate blocks. Therefore
an alternative truth definition of α, (β, γ) |∼ δ is

(∀x ∈ α)(∀z ∈ γ)(∃y ∈ β)(∃w ∈ δ)[x, (y, z) |∼ w]. (6)

Definition (6) is said to be of type ∀, (∃, ∀) ⊢ ∃.
The above truth definitions provide two distinct yielding relations |∼1,

|∼2 respectively. We shall see that |∼2 behaves better than |∼1.

Definition 3.2 Define

α, (β, γ) |∼1 δ ⇐⇒ (4), α, (β, γ) |∼2 δ ⇐⇒ (6).

Further define

α, (β, γ) |∼i (δ, ε) ⇐⇒ α, δ, (β, γ) |∼i ε.

The following is straightforward.

Lemma 3.3 i) |∼1, |∼2, coincide with |∼ when restricted to U(A).
ii) Let P be a process. If for every replacement (α, β) ∈ P , α ̸= ∅, then

for every δ, P |∼1 δ ⇒ P |∼2 δ.
iii) For P without replacements, P |∼1 δ ⇐⇒ P |∼2 δ. Moreover,

α |∼1 δ ⇐⇒ α |∼2 δ ⇐⇒ α ⊆ δ.

13

Lemma 3.4 For i = 1, 2

α1, . . . , αn, (β1, γ1), . . . , (βm, γm) |∼i δ

iff
α1 ⊎ · · · ⊎ αn, (β1 ⊎ · · · ⊎ βm, γ1 ⊎ · · · ⊎ γm) |∼i δ.

Proof. It suffices to verify the claim for n = m = 2, the general case being
similar. For the relation |∼2 the claim amounts to showing the equivalence

(∀x1 ∈ α1)(∀x2 ∈ α2)(∀z1 ∈ γ1)(∀z2 ∈ γ2)(∃y1 ∈ β1))(∃y2 ∈ β2)

(∃w ∈ δ)[x1, x2, (y1, z1), (y2, z2) |∼ w].

⇐⇒
(∀x ∈ α1 ⊎ α2)(∀z ∈ γ1 ⊎ γ2)(∃y ∈ β1 ⊎ β2)

(∃w ∈ δ)[x, (y, z) |∼ w].

Recall that α ⊎ β = {x ⊎ y : x ∈ α, y ∈ β}. Then:
⇒: Let x ∈ α1⊎α2 and z ∈ γ1⊎γ2. Then x = x1⊎x2 with x1 ∈ α1, x2 ∈ α2

and z = z1 ⊎ z2 with z1 ∈ γ1 and z2 ∈ γ2. By the assumption there are
y1 ∈ β1, y2 ∈ β2 and w ∈ δ such that x1, x2, (y1, z1), (y2, z2) |∼ w. Then
putting y = y1 ⊎ y2 we have x, (y, z) |∼ w, with y ∈ β1 ⊎ β2 as required.

⇐: Let x1 ∈ α1, x2 ∈ α2 and z1 ∈ γ1, z2 ∈ γ2. Then x1 ⊎x2 ∈ α1 ⊎α2 and
z1 ⊎ z2 ∈ γ1 ⊎ γ2. By the assumption there are y ∈ β1 ⊎ β2 and w ∈ δ such
that x1 ⊎ x2, (y, z1 ⊎ z2) |∼ w. But then y = y1 ⊎ y2 for some y1 ∈ β1, y2 ∈ β2,
hence the preceding sequent is true iff the sequent x1, x2, (y1, z1), (y2, z2) |∼ w
is true, with y1, y2 as required. This proves the claim for |∼2. The case of |∼1

is similar. 2

4 The ⊔-Horn Fragment

Let ⊔ be the additive disjunction of linear logic (notation of Troelstra [3]).
We extend the language L = {⊗,−◦,1} of the Horn fragment HF to L⊔ =
{⊗,−◦,⊔,1}. The ⊔-products of L⊔ are formulas defined by the following
recursion: X := p;1;Y ⊗ Z;Y ⊔ Z. The implications of L⊔ are formulas
X−◦Y where X, Y are ⊔-products. X,Y, U,W denote ⊔-products. Sequents

14

of L⊔ have the form Φ,Σ ⊢ W (we do not allow sequents of the form Φ,Σ ⊢
(Y −◦W)). The ⊔-rules are the following:

L⊔ :
Φ, X,Σ ⊢ W Φ, Y,Σ ⊢ W

Φ, X ⊔ Y,Σ ⊢ W
, R⊔ :

Φ,Σ ⊢ W

Φ,Σ ⊢ W ⊔ U
.

An interpretation of L⊔ in U(A){} is any injective mapping ∗ : {p1, p2, . . .} →
A which is defined as before for ⊗, −◦, 1, plus:

(X ⊔ Y)∗ = X∗|Y ∗ = X∗ ∪ Y ∗.
Again ∗ extends naturally to sequents in the obvious way turning them

into sequents of U(A){}.
Let HF⊔ = HF + L⊔ + R⊔. Call Restricted Cut, notation RCut, the cut

rule in which the cut formula is not an implication. Let HFr
⊔ be HF⊔ with

Cut replaced by RCut.

Theorem 4.1 (Soundness of HF⊔) i) The rules of HFr
⊔ are sound with re-

spect to |∼2. ii) The rules of HFr
⊔ except L−◦ are sound with respect to |∼1.

Proof. In view of lemma 3.4, we may assume that in the sequents below,
|Σ| = 1 and |Φ| = 1, or Φ = ∅, when Φ is simply a set of parameters, as e.g.
in L⊔.

i) RCut: Let X1,Σ1 ⊢ W and W,X2,Σ2 ⊢ U be the upper sequents of
the derivation with W being a non-implication, hence a ⊔-product. Let also
X∗

1 ,Σ
∗
1 |∼ W ∗ and W ∗, X∗

2 ,Σ
∗
2 |∼ U∗ be true. In view of lemma 3.4 above,

we may assume without loss of generality that Σ1,Σ2 are single element
multisets, say, Σ1 = [Y1 −◦Z1], Σ2 = [Y2 −◦Z2] Then

(∀x1 ∈ X∗
1)(∀z1 ∈ Z∗

1)(∃y1 ∈ Y ∗
1)(∃w ∈ W ∗)(x1, (y1, z1) |∼ w), (7)

and

(∀w ∈ W ∗)(∀x2 ∈ X∗
2)(∀z2 ∈ Z∗

2)(∃y2 ∈ Y ∗
2)(∃u ∈ U∗)(w, x2, (y2, z2) |∼ u).

(8)
By (7) and (8) and basic logic, we get

(∀x1 ∈ X∗
1)(∀x2 ∈ X∗

2)(∀z1 ∈ Z∗
1)(∀z2 ∈ Z∗

2)(∃y1 ∈ Y ∗
1)(∃y2 ∈ Y ∗

2)(∃w ∈ W ∗)

[x1, (y1, z1) |∼ w & w, x2, (y2, z2) |∼ u].

15

Now by Cut for standard sequents we get

(∀x1 ∈ X∗
1)(∀x2 ∈ X∗

2)(∀z1 ∈ Z∗
1)(∀z2 ∈ Z∗

2)(∃y1 ∈ Y ∗
1)(∃y2 ∈ Y ∗

2)

[x1, x2, (y1, z1)(y2, z2) |∼ u].

This shows that the sequent X∗
1 , X

∗
2 ,Σ

∗
1,Σ

∗
2 |∼2 U

∗ is true.
L⊗: This follows by lemma 3.4.
R⊗: SupposeX

∗
1 , (Y

∗
1 , Z

∗
1) |∼2 W

∗ andX∗
2 , (Y

∗
2 , Z

∗
2) |∼2 U

∗ are true. Then

(∀x1 ∈ X∗
1)(∀z1 ∈ Z∗

1)(∃y1 ∈ Y ∗
1)(∃w ∈ W ∗)[x1, (y1, z1) |∼ w], (9)

and
(∀x2 ∈ X∗

2)(∀z2 ∈ Z∗
1)(∃y2 ∈ Y ∗

2)(∃u ∈ U∗)[x2, (y2, z2) |∼ u]. (10)

Then (9), (10) and R⊗ for standard sequents imply

(∀x1 ∈ X∗
1)(∀x2 ∈ X∗

2)(∀z1 ∈ Z∗
1)(∀z2 ∈ Z∗

1)(∃y1 ∈ Y ∗
1)(∃y2 ∈ Y ∗

2)

(∃v ∈ W ∗ ⊎ U∗)[x1, x2, (y1, z1), (y2, z2) |∼ v].

Since W ∗ ⊎ U∗ = (W ⊗ U)∗, the above says that

X∗
1 , X

∗
2 , (Y

∗
1 , Z

∗
1), (Y

∗
2 , Z

∗
2) |∼2 (W ⊗ U)∗

is true.
L−◦: Suppose X∗

1 , (Y
∗
1 , Z

∗
1) |∼2 W ∗ and U∗, X∗

2 , (Y
∗
2 , Z

∗
2) |∼2 V ∗ are true.

Then

(∀x1 ∈ X∗
1)(∀z1 ∈ Z∗

1)(∃y1 ∈ Y ∗
1)(∃w ∈ W ∗)[x1, (y1, z1) |∼ w], (11)

and

(∀u ∈ U∗)(∀x2 ∈ X∗
2)(∀z2 ∈ Z∗

1)(∃y2 ∈ Y ∗
1)(∃v ∈ V ∗)[u, x2, (y2, z2) |∼ v].

(12)
From (11), (12) and basic logic we get

(∀x1 ∈ X∗
1)(∀x2 ∈ X∗

2)(∀z1 ∈ Z∗
1)(∀z2 ∈ Z∗

2)(∀u ∈ U∗)(∃y1 ∈ Y ∗
1)(∃y2 ∈ Y ∗

2)

(∃w ∈ W ∗)(∃v ∈ V ∗)[x1, (y1, z1) |∼ w & u, x2, (y2, z2) |∼ v].

16

By L−◦ for standard sequents, this implies

(∀x1 ∈ X∗
1)(∀x2 ∈ X∗

2)(∀z1 ∈ Z∗
1)(∀z2 ∈ Z∗

2)(∀u ∈ U∗)(∃y1 ∈ Y ∗
1)(∃y2 ∈ Y ∗

2)

(∃w ∈ W ∗)(∃v ∈ V ∗)[x1, x2, (y1, z1), (y2, z2), (w, u) |∼ v].

That means that

X∗
1 , X

∗
2 , (Y

∗
1 , Z

∗
1), (Y

∗
2 , Z

∗
2), (W

∗, U∗) |∼2 V
∗

is true.
R−◦ holds by definition.
L1: Let X

∗,Σ∗ |∼2 W
∗. To see that X∗,1∗,Σ∗ |∼2 W

∗, i.e., X∗, ∅,Σ∗ |∼2

W ∗, observe that this is equivalent to X∗ ⊎ ∅,Σ∗ |∼2 W
∗. Now observe that

α ⊎ ∅ = α ⊎ {∅} = {x ⊎ ∅ : x ∈ α} = α. So the conclusion is immediate.
(Note that the empty multiset ∅ is not to be confused with the empty subset
{} of U(A), which will be considered in the next section, and for which
α ⊎ {} = {}.)

L⊔: Suppose of X∗
1 , (Y

∗, Z∗) |∼2 W ∗ and X∗
2 , (Y

∗, Z∗) |∼2 W ∗ are true.
Then

(∀x1 ∈ X∗
1)(∀z ∈ Z∗)(∃y ∈ Y ∗)(∃w ∈ W ∗)[x1, (y, z) |∼ w]

and
(∀x2 ∈ X∗

2)(∀z ∈ Z∗)(∃y ∈ Y ∗)(∃w ∈ W ∗)[x2, (y, z) |∼ w].

The last two relations clearly imply

(∀x ∈ X∗
1 ∪X∗

2))(∀z ∈ Z∗)(∃y ∈ Y ∗)(∃w ∈ W ∗)[x, (y, z) |∼ w].

SinceX∗
1∪X∗

2 = (X1⊔X2)
∗, the latter means that (X1⊔X2)

∗, (Y ∗, Z∗) |∼2 W
∗

is true.
R⊔: Suppose X∗, (Y ∗, Z∗) |∼2 W

∗ is true. That is,

(∀x ∈ X∗)(∀z ∈ Z∗)(∃y ∈ Y ∗)(∃w ∈ W ∗)[x, (y, z) |∼ w].

Then for any formula U , and in view of the fact that W ∗ ⊆ W ∗ ∪ U∗, the
preceding relation obviously implies

(∀x ∈ X∗)(∀z ∈ Z∗)(∃y ∈ Y ∗)(∃w ∈ W ∗ ∪ U∗))[x, (y, z) |∼ w].

17

This means that X∗, (Y ∗, Z∗) |∼2 (W ⊔ U)∗ is true.
ii) We work similarly. That L−◦ fails under |∼1 has been already shown

(see (5)). It remains only to show that |∼1 satisfies unrestricted Cut, i.e.,
Cut even when the cut formula is an implication. Without loss of generality
it suffices to show the implication:

α |∼1 (β, γ) & (β, γ) |∼1 δ ⇒ α |∼1 δ.

Suppose the hypotheses of the implication hold. Now by definition 3.2,
α |∼1 (β, γ) is equivalent to α, β |∼1 γ, hence the hypotheses amount to

(∀x ∈ α)(∀y ∈ β)(∃z ∈ γ)[x, y ⊢ z]

and
(∀y ∈ β)(∀z ∈ γ)(∃w ∈ δ)[(y, z) ⊢ w].

From the preceding relations, given any x ∈ α, and choosing any y ∈ β, there
is, by the first of the above relations, a z ∈ γ such that x ⊎ y = z. By the
second relation, for these specific y, z there is w ∈ δ such that z − y = w.
The two equations imply x = w, hence (∀x ∈ α)(∃w ∈ δ)(x = w), or α |∼1 δ.
2

Remark 4.2 Unrestricted Cut is not valid in (U(A){}, |∼2). To see this it
suffices to find α, β, γ, δ in U(A){} such that

α |∼2 (β, γ) & (β, γ) |∼2 δ and α ̸|∼2 δ.

Now α |∼2 (β, γ) ⇐⇒ α, β |∼2 γ ⇐⇒ (by lemma 3.3 (iii)) α⊎ β ⊆ γ. Also
we easily see that (β, γ) |∼2 δ ⇐⇒ γ ⊆ β ⊎ δ. Therefore it suffices to find
α, β, γ, δ such that

α ⊎ β ⊆ γ, γ ⊆ β ⊎ δ and α ̸⊆ δ.

A fortiori it suffices to find α, β, δ such that

α ⊎ β ⊆ β ⊎ δ and α ̸⊆ δ.

The following example shows this:

18

Example. Let α = {[a, b], [2a, b]}, β = {[a, c, d], [c, d]}, δ = {[2a, b], [b]}.
Then α ̸⊆ δ, and yet

α ⊎ β = {[2a, b, c, d], [3a, b, c, d], [a, b, c, d]},

β ⊎ δ = {[3a, b, c, d], [a, b, c, d], [2a, b, c, d], [b, c, d]},
i.e., α ⊎ β ⊆ β ⊎ δ. 2

Remark 4.3 The rule C⊗ no longer holds in (U(A){}, |∼i). To see this con-
sider a sequent of the form α |∼i β (with σ = ∅). By 3.3, this amounts
to α ⊆ β. Therefore if C⊗ were valid in (U(A){}, |∼i), the implication
α ⊎ β ⊆ α ⊎ γ ⇒ β ⊆ γ should be valid for any α, β, γ. But the exam-
ple of the previous remark shows that this is false. 2

Because of the failure of C⊗, we consider instead the rule NL−◦ (see (2)).
We have seen (lemma 2.9) that C⊗ and NL−◦ are equivalent over HF. But
when working in HF⊔ the situation is a bit subtler. For instance, in contrast
to the previous remark, the following holds.

Lemma 4.4 NL−◦ holds with respect to |∼2 (but fails with respect to |∼1).

Proof. NL−◦ fails in (U(A){}, |∼1) for the same reasons that the rule L−◦
does so. Concerning its truth in (U(A){}, |∼2), we have to show that for all
X, Y, Z,W,Σ, and for every interpretation ∗, X∗,Σ∗, (Y ∗, Z∗) |∼2 W

∗ is true
iff X∗ ⊎ Z∗,Σ∗ |∼2 W ∗ ⊎ Y ∗ is true. Without loss of generality we can take
Σ = [Y1 −◦Z1], so we have to show that

α, (β1, γ1), (β, γ) |∼2 δ ⇐⇒ α ⊎ γ, (β1, γ1) |∼2 δ ⊎ β,

or equivalently,

(∀x ∈ α)(∀z1 ∈ γ1)(∀z ∈ γ)(∃y1 ∈ β1)(∃y ∈ β)(∃w ∈ δ)[x, (y1, z1), (y, z) |∼ w]

⇐⇒

(∀x ∈ α ⊎ γ)(∀z1 ∈ γ1)(∃y1 ∈ β1)(∃w ∈ δ ⊎ β)[x, (y1, z1) |∼ w].

Now it follows from the truth of free processes that

x, (y1, z1), (y, z) |∼ w ⇐⇒ x ⊎ z, (y1, z1) |∼ w ⊎ y,

19

so the left hand side of the preceding equivalence is written

(∀x ∈ α)(∀z1 ∈ γ1)(∀z ∈ γ)(∃y1 ∈ β1)(∃y ∈ β)(∃w ∈ δ)[x⊎z, (y1, z1) |∼ w⊎y],

and this is clearly equivalent to

(∀x ∈ α ⊎ γ)(∀z1 ∈ γ1)(∃y1 ∈ β1)(∃w ∈ δ ⊎ β)[x, (y1, z1) |∼ w]. 2

Let
NHFr

⊔ = HFr
⊔ +NL−◦.

Theorem 4.5 (Soundness and completeness of NHFr
⊔)

NHFr
⊔ is sound and complete with respect to (U(A){}, |∼2).

Proof. Soundness follows from theorem 4.1 and lemma 4.4.
Completeness. Let S be a sequent such that S∗ is true in (U(A){}, |∼2) for

some injective ∗. We shall show that S is provable in NHFr
⊔. For simplicity

suppose the antecedent of S is of the form X,Σ, i.e., Φ = [X]. (After all,
if Φ = [X1, . . . , Xn], then Φ can be provably replaced by the ⊔-product
X1 ⊗ · · · ⊗Xn.)

Case 1. The succedent of S is not an implication, i.e., S = (X,Σ ⊢
W), where W is a ⊔-product. We show that S is provable by induction
on |Σ|. Suppose first that |Σ| = 0, that is, S = (X ⊢ W). X,W are ⊔-
products, and X ⊗ (Y ⊔ Z) ⊢⊣ (X ⊗ Y) ⊔ (X ⊗ Z) are provable in HFr

⊔,
hence we may assume that X and W have the form X = X1 ⊔ · · · ⊔ Xn

and W = W1 ⊔ · · · ⊔ Wm, where Xi,Wj are simple products. Therefore
X∗ = {X∗

1 , . . . , X
∗
n} and W ∗ = {W ∗

1 , . . . ,W
∗
m}. By assumption X∗ |∼2 W ∗

is true. By lemma 3.3 (iii), X∗ ⊆ W ∗. By the latter and the fact that ∗ is
injective, {X1, . . . , Xn} ⊆ {W1, . . . ,Wm}. Thus by the rule R⊔ we easily see
that the sequent X ⊢ W is provable in NHFr

⊔.
Let now the claim hold for all sequents with |Σ| < n and consider a

sequent X,Σ ⊢ W with |Σ| = n, n > 0, such that X∗,Σ∗ |∼2 W ∗ is true
for some injective ∗. Let Σ = Σ1 ⊎ [Y −◦Z]. Then X∗,Σ∗

1, (Y
∗, Z∗) |∼2

W ∗. By the proof of 4.4, the latter implies X∗ ⊎ Z∗,Σ∗
1 |∼2 W ∗ ⊎ Y ∗, or

(X⊗Z)∗,Σ∗
1 |∼2 (W⊗Y)∗. By the induction hypothesis, X⊗Z,Σ1 ⊢ W⊗Y ,

or X,Z,Σ1 ⊢ W ⊗ Y . By the rule NL−◦, X,Σ1, Y −◦Z ⊢ W , or X,Σ ⊢ W .
Case 2. S is of the form X,Σ ⊢ U −◦W . Then S∗ is true means that

X∗,Σ∗ |∼2 (U∗,W ∗) is true, which by definition means that X∗, U∗,Σ∗ |
∼2 W ∗ is true. By case 1, X,U,Σ ⊢ W is provable in NHFr

⊔. Using R−◦,
X,Σ ⊢ U −◦W is provable in NHFr

⊔. 2

20

References

[1] J.-Y. Girard, Linear Logic, Theoret. Comput. Sci., 50 (1987), 1-102.

[2] R. Heckmann, Power domains and second-order predicates, Theoret.
Comput. Sci., vol. 111 (1993), 59-88.

[3] A.S.Troelstra, Lectures on Linear Logic CSLI Lecture Notes No 29,
(Center for the Study of Language and Information, Stanford University,
1992).

[4] A. Tzouvaras, Objects and their lambda calculus, Theoret. Comput.
Sci., vol. 258 (2001), 209-232.

[5] A. Tzouvaras, The linear logic of multisets, Logic J. of the IGPL, vol. 6
(1998), 901-916.

21

