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Abstract
A continuum is here a primitive notion intended to correspond

precisely to a path-connected subset of the usual euclidean space. In
contrast, however, to the traditional treatment, we treat here con-
tinua not as pointsets, but as irreducible entities equipped only with
a partial ordering ≤ interpreted as parthood. Our aim is to examine
what basic topological and geometric properties of continua can be
expressed in the language of ≤, and what principles we need in order
to prove elementary facts about them. Surprisingly enough ≤ suffices
to formulate the very heart of continuity (=jumpless and gapless tran-
sitions) in a general setting. Further, using a few principles about ≤
(together with the axioms of ZFC), we can define points, joins, meets
and infinite closeness. Most important, we can develop a dimension
theory based on notions like path, circle, line (=one-dimensional con-
tinuum), simple line and surface (=two-dimensional continuum), re-
covering thereby in a rigorous way Poincaré’s well-known intuitive idea
that dimension expresses the ways in which a continuum can be torn
apart. We outline a classification of lines according to the number of
circles and branching points they contain.

The ordering (C,≤) is a topped and bottomed, atomic, almost
dense and complete partial ordering, weaker than a lattice. Contin-
uous transformations from C to C are also defined in a natural way
and results about them are proved.
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The key notions on which the dimension theory is based are the
“minimal extensions of continua”, or “joins”, and the “splittings of
continua over subcontinua”.

0 Introduction.

Since the first decades of this century, there have been various attempts to
build geometry and topology on notions other than that of point. The subject
is often referred to as “geometry without points”, though this heading is a
bit misleading. In fact most of these alternative approaches originated with
Lesniewski’s mereology, i.e., the formal theory that treats the relation of part
to whole. Lesniewski himself “...suggested the problem of establishing the
foundations of geometry of solids, understanding by this term a system of
geometry destitute of such geometrical figures as points, lines, and surfaces,
and admitting as figures only solids.” (cf. Tarski (1926), p. 24). Responding
to this problem, Tarski (1926) proposed a foundation using as primitive the
notions of “sphere” and “proper part”. Through a chain of definitions he
arrives at the notion of “point” (“set of concentric spheres”), as well as at
the notion of “equidistance of two points from a third one”, from which all
concepts of euclidean geometry can be defined.

Tarski’s work had already been preceded by Huntington (1913), to which
Tarski refers. Huntington was the first to use the notion of sphere as primitive
for the foundation of three-dimensional point geometry.

Points in the above approach are not denied altogether, but only from
being a primitive notion; they are recovered as derivative entities. The sim-
plest way to recover points in every mereological theory based on a relation
≤ of parthood, is to postulate the existence of ≤-minimal nonvoid objects.
These are precisely the points of the theory.

In the same trend one should also mention Menger (1940) that surveys
various approaches to the foundation of topology not based on point as prim-
itive.

Another option, more consistent with the non-point tradition, is to drop
minimal objects altogether. This is for example the approach of Grzegorczyk
(1960), where an axiomatization of topology of “spatial bodies” is proposed
(the system T ) based on two primitive relations, proper parthood x ⊂ y and
separation x)(y. Here neither a void body nor minimal ones (points) are
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supposed to exist.
More recent addresses on the subject are Gerla (1985), Gerla (1990) and

Gerla (1995), in which the author proposes an approach to metric spaces
based on the primitives: solid, inclusion, and distance between solids. Points
in this work are just solids of diameter zero. The reader is also suggested to
consult the excellent bibliography contained in Buekenhout (1995).

In contrast to the aforementioned approaches, in the present paper the
objects of discource will be, intuitively, the “pieces of space” in which some-
thing can travel “continuously”, with no restriction on their shape, size or
metric properties. These objects, called here continua, are, of course, not
new; in classical topology they are described as path-connected subsets of
Rn. What is new is their treatment as primitive, irreducible entities, struc-
tured only under the relation of parthood ≤. Our aim is to examine the
expressive power of ≤ with respect to the behavior and classification of these
objects. Namely we wish to address the following questions:

(a) Which geometric/topological properties of continua can be, first, de-
fined, second, formulated as axioms and, third, proved as theorems by means
of the language L = {≤,0,1}?

(b) Can the basic features of continuity-connectedness of these entities be
grasped in terms of ≤?

(c) What about dimension? Can a satisfactory notion of dimension, dis-
tinguishing between points, lines, surfaces and so on, be defined in terms of
≤?

The results are encouraging. Some fundamental notions like “path”, “cir-
cle”, “continuity”, “simple line”, (i.e., line without loops or branches), as well
as “line”, in general, and “surface” can be defined by means of ≤. This means
that at least the treatment of continua of dimensions 0, 1 and 2 falls com-
pletely within the capacity of the language L = {≤}, the complexity of the
formulas being reasonably low. The other dimensions can also be treated,
but the definitions become rather involved, so we will not proceed further.
About 10 simple axioms suffice to capture a good deal of the non-metric
properties of continua (including Jordan’s theorem).

Some similarities can be detected in our axiomatic system with that of
Grzegorczyk, though his scope, which is concerned with capturing closeness
and continuity, is quite different. Since he uses a second primitive relation
(separeteness) and a fairly complicated principle (A4), we believe that our
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treatment is simpler.

The paper is organized as follows: In section 1 we set out a system of 8
axioms C0−C7 in the language L = {≤,0,1}, with the appropriate motiva-
tion, concerning notions like points, meets, joins, distributivity, completeness,
branching and adjacency.

In section 2 we consider the fundamental notion of “splitting continua”
by extracting subcontinua, and the corresponding “analysis over a set of sub-
continua ”. Concerning this notion and its relation to adjacency, two further
axioms are introduced, C8 and C9, that correspond to the main properties
of continuity, namely absence of jumps and absence of gaps, respectively.

Section 3 is the main one. Using tools from the previous sections, we
define notions of dimension theory, like path and line (1-dimensional con-
tinuum), and further a classification of lines according to their “genus” or
“splitting degree”. This sheds light on the notion of dimension itself as cap-
tured first by Poincaré, by giving a rigorous formulation to the inductive idea
that the dimension of x is n, if x can be split using finitely many subcontinua
of dimension n − 1. Various results are proved, among them a Jordan-type
theorem, most of them stating familiar facts, but which are proved only by
means of the order-theoretic principles.

In section 4 we consider continuous transformations of continua in par-
ticular lines. The main result is that any two lines without loops and with
the same end-conditions can be continuously transformed onto one another.

In section 5, finally, we define 2-dimensional continua, or surfaces, and
try to extend the dimension theory on them. The situation is much more
complicated and the results proved aim at showing that the definition is
sound. It is proved for instance that if we split a surface by a line, then the
pieces are surfaces again, and any two points on a surface can be joined by
an infinity of paths lying on it. A final axiom, C10, asserting the existence of
surfaces, is added.

1 Structures of Continua.

We shall describe the structure of continua in the language L = {≤,0,1},
where ≤ is a binary predicate and 0, 1 are constants. This language is
supposed to extend the usual language of set theory with equality. The
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lower-case variables x, y, z, . . . of L range over continua which, from a set-
theoretic point of view, are urelements. Besides we have upper-case variables
X, Y, Z, A,B, . . . ranging over pure sets or sets of continua. The meaning of
x ≤ y will be: “x is a part of y”. 0 denotes the void continuum and 1 denotes
the universal continuum, or the space.

We make light use of set-theoretic notation and terminology and this is
the standard one. N is the set of natural numbers and |X| is the cardinality of
X. X is always at most countable (i.e., countably infinite or finite). n,m, i, j
usually range over elements of N, but some of them appear also in other
notations. For instance m(·, ·, ·), j(·, ·, ·) will be predicates for the “meet”
and “join” respectively, l will denote a “line” etc. In any case the clarity of
the context will help us to avoid confusion.

Using ZFC for our metatheory, we shall formulate in L a finite set C
of principles called the “theory of continua”. Our intuition draws mainly
from the corresponding pointsets of R3 (or Rn if you prefer). The picture
we have in mind when referring to a continuum is that of a path-connected
subset of R3. Path-connectedness is the primary property of what we under-
stand here as continuum. At first sight it looks like an “observable” macro-
property. However, this is only an illusion. Path -connectedness stems from
the continuity of transition, and continuity, in the sense of Dedekind, is a
non-observable micro-property of how parts of a continuum “are glued to-
gether”. The axioms we shall provide about ≤ intend to capture primarily
these ideas.

By a structure of continua we understand a quadruple C = (C,≤,0,1)
satisfying the axioms below, which we introduce step by step with the ap-
propriate motivation. x < y will denote proper parthood. The same symbol,
however, will be used for the ordinary ordering of natural numbers. But since
the letters denoting continua do not overlap with those denoting numbers,
there is no danger of confusion.

Countability. The domain of discource C is assumed to be countably in-
finite. This is stated by the following

Axiom C0: |C| = ℵ0.

Therefore for any set X of continua occurring henceforth |X| ≤ ℵ0.
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The partial ordering. Parthood is a partial ordering. Moreover 0 is the
bottom element and 1 is the top element of this ordering.

Axiom C1: ≤ is a partial ordering and (∀x)(0 ≤ x ≤ 1).

Points. The structure C is atomic in the sense that every nonvoid contin-
uum contains minimal nonvoid continua called points. That is, x is a point
if x 6= 0 and (∀z)(z ≤ x ⇒ z = x ∨ z = 0). We use the letters p, q, r, . . . to
denote points.

Axiom C2: Every nonvoid continuum includes points. In symbols

(∀x 6= 0)(∃p)(p ≤ x).

Points will be also referred to as trivial continua.

Completeness. A set X of continua is said to be upward (downward)
directed if for any x, y ∈ X there is a z ∈ X such that x ≤ z and y ≤ z
(z ≤ x and z ≤ y). We will suppose that directed families have limits, called
suprema and infima, respectively.

Axiom C3 (Completeness): Every upward or downward directed set X
of continua has a supremum, denoted

∨
X, and an infimum

denoted
∧

X, respectively.

Meets and Joins. Continua are either disjoint (i.e., they meet at 0),
or they meet at various subcontinua whose (set-theoretic) union is not in
general a continuum. On the left column of figure 1 we see lines meeting at
points. On the right we cite the corresponding graph-theoretical pictures of
the situation inside the structure (C,≤,0).

Figure 1

Thus given x, y, as a rule they do not have an infimum. Nevertheless they
(should) have maximal common parts which we shall call meets. That is to

6



say, z is a meet of x, y if

z ≤ x & z ≤ y & (∀u)(u ≤ x & u ≤ y ⇒ z 6< u).

We abbreviate the preceding formula by

m(z, x, y).

Dually, given continua x, y, there is no supremum in general for x, y.
Instead there should always be minimal extensions for them, which we shall
call joins (see figure 2). The fact that z is a join of x, y is written formally

x ≤ z & y ≤ z & (∀u)(x ≤ u & y ≤ u ⇒ u 6< z)

and we abbreviate it by
j(z, x, y).

Figure 2

Fortunately, existence of meets and joins follows from C3 and Zorn’s
Lemma, so we do not have to introduce them through axioms.

Proposition 1.1 Let x, y be given. Then for every z ≤ x, y, there is a z′ ≥ z
such that m(z′, x, y). Similarly for every u ≥ x, y, there is a u′ ≤ u such that
j(u′, x, y).

Proof. Let z ≤ x, y and let X = {w : z ≤ w & w ≤ x, y}. Clearly,
m(z′, x, y) iff z′ is a maximal element of X. By Zorn’s Lemma, X has maximal
elements provided it is closed under limits of increasing chains. Let {wi : i ∈
I} ⊆ X be such a chain. By C3,

∨
i wi exists and is an element of X. This

proves the first claim. For the other one consider the set Y = {w : x, y ≤
w ≤ z} and simply apply Zorn’s Lemma to the set (Y,≥) to get minimal
elements. Any such u′ satisfies j(u′, x, y). 2

In general x, y may have a multitude of meets (as in figure 1). If it
happens that (∃!z)m(z, x, y) (as in figure 2(c)), i.e.,

(∃z)(∀u)(m(u, x, y) ⇒ u = z),
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then we write x ∧ y = z and say that z is the infimum of x, y. In par-
ticular if x ∧ y = 0, x, y are said to be disjoint. Thus x ∧ y 6= 0 means
(∃z)(m(z, x, y) & z 6= 0).

Similarly if (∃!z)j(z, x, y) (as in figures 2(b), 2(c)), we write x ∨ y = z
and say z is the supremum of x, y.

The corresponding infinitary (partial) operations are
∧

and
∨

respec-
tively, introduced in C3.

Another elementary fact is the following: Any two intersecting continua
x, y must form a unique new one. In our terminology, x, y must have a supre-
mum. This is stated below.

Axiom C4: Any two intersecting continua form a (unique) third one.

x ∧ y 6= 0 ⇒ (∃z)(z = x ∨ y).

As a consequence of C4, two continua may have a multitude of joins or a
multitude of meets but not both. This is illustrated in figure 3. (C,≤) may
contain subgraphs of the form (a) and (b) but not of the form (c).

Figure 3

Distributivity. In connection with completeness the question of distribu-
tivity of ∧, ∨ with respect to each other arises. Since, according to our ruling
intuition, whenever suprema and infima exist, they behave exactly as unions
and intersections respectively, we should accept distributivity if and when all
limits exist.

Axiom C5 (Distributivity):

x ∧ (
∨

i

ui) =
∨

i

(x ∧ ui) and x ∨ (
∧

i

ui) =
∧

i

(x ∨ ui),

provided all limits involved in the equations exist.

Notice that the existence of some limit does not guarantee the existence
of others, so the above equalities fail even in very simple finite cases as in
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figure 4 below. Here x ∧ y = p and z ∨ x, z ∨ y exists too but z ∨ p and
(z ∨x)∧ (z ∨ y) do not. Thus the equality z ∨ (x∧ y) = (z ∨x)∧ (z ∨ y) does
not make sense.

Figure 4

Proposition 1.2 Let {ui : i ∈ I} be directed upward (resp. downward) and
x be such that x∧ui = 0 (resp. x∨ui = 1) for all i ∈ I. Then x∧(

∨
i ui) = 0

(resp. x ∨ (
∧

i ui) = 1).

Proof.
∨

i ui exists by C3. Let x ∧ (
∨

i ui) 6= 0. By proposition 1.1, there
is a z 6= 0 such that m(z, x,

∨
i ui). Thus z ≤ x and z ≤ ∨

i ui. The last
relation implies z ∧ (

∨
i ui) = z. On the other hand, z ∧ ui = 0 since z ≤ x

and x ∧ ui = 0. Therefore, by C3,
∨

i(z ∧ ui) = 0. By C5, 0 =
∨

i(z ∧ ui) =
z ∧ (

∨
i ui) = z 6= 0, which is a contradiction. The dual case is similar. 2

Branching of Continua. If y < x, then x must include a part z disjoint
from y. Even stronger, If x is not a part of y, x must have a part omitting
y. This is postulated below.

Axiom C6 (Branching): x 6≤ y ⇒ (∃z)(z ≤ x & z 6= 0 & z ∧ y = 0).

Proposition 1.3 For any x, y the following hold:
(a) x ≤ y ⇐⇒ (∀z)(z ≤ x ⇒ z ≤ y) ⇐⇒ (∀p)(p ≤ x ⇒ p ≤ y).
(b) x = y ⇐⇒ (∀z)(z ≤ x ⇔ z ≤ y) ⇐⇒ (∀p)(p ≤ x ⇔ p ≤ y).

Proof. It suffices to show (a). Consider the first equivalence

x ≤ y ⇐⇒ (∀z)(z ≤ x ⇒ z ≤ y).

The ⇒-part of this is clear. For the converse let x 6≤ y. By C6, there is a
z ≤ x, z 6= 0 such that z ∧ y = 0. Hence z 6≤ y. Similarly we show the other
equivalence using C2. 2
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Let
Π(x) = {y : y ≤ x}, Π0(x) = {p : p ≤ x}

be the set of all parts and the set of points of x respectively. (Notice that
these sets are defined without the use of the powerset axiom.) Then the
equivalences of the preceding proposition can be rewritten as follows:

Proposition 1.4 (a) x ≤ y ⇐⇒ Π(x) ⊆ Π(y) ⇐⇒ Π0(x) ⊆ Π0(y).
(b) x = y ⇐⇒ Π(x) = Π(y) ⇐⇒ Π0(x) = Π0(y).
(c) For all x, x =

∨
Π(x) =

∨
Π0(x).

Proof. All claims are immediate consequences of proposition 1.3. 21

Adjacency. By Axiom C4, if x, y meet, then their union forms a new
continuum. The converse however is false: there are disjoint continua x, y
which also have a supremum. For example an open disc and its boundary
circle, or an open segment and its ends, or the continua of figure 2(b), are of
this kind. This situation leads to the following definition.

Definition 1.5 Two continua x, y are said to be adjacent, written Ad(x, y),
if x ∨ y exists. Otherwise we call them strongly disjoint.

1The origin of the present mereological treatment of continua can be traced to Tzou-
varas(1995) and (1993), where a formal theory of artifacts and their identity is presented.
According to this, every artifact is analyzed to a finite set of atomic parts (i.e., parts
not further decomposable), which is also denoted Π0(x), and if Π0(x) = Π0(y) then the
artifacts x, y are identical. It would perhaps be instructive to compare the role the set
Π0(x) of points plays in the construction of continuum x, with the role the set Π0(x) of
atomic parts plays in the construction of the artifact x.

If the atoms of the artifact x are not all copies of each other (a situation appearing
only in trivial toy constructions), then they fit among them in a unique way, that is
to say the particular structure x is already engraved on the atoms themselves. In this
sense x can be identified with the set Π0(x). For whenever the elements of Π0(x) are
given, x can be restored unabiguously. Given, for instance, all elementary parts forming
a washing machine, you can assemble from them a unique artifact, namely the specific
washing machine.

This is not the case, of course, with the atoms (=points) of a continuum. There is
no notion of fitness between any two of them. They are all just identical abstractions
satisfying the convention that we can’t lessen them any further. Given any totality of
points in separation, it makes no sense to try and guess which continuum they have been
parts of. Thus in no sensible way can we claim that they “form” the continuum.
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Clearly if x, y meet then they are adjacent (or, equivalently, if x, y are
strongly disjoint then they are disjoint). Adjacency is the analog of “infinite
closeness” or “nonseparation” of metric topology. For instance, the continua
[0, 1) and [1, 2) are adjacent, while [0, 1) and (1, 2) are strongly disjoint. The
latter are separated by the point {1}.
Proposition 1.6 (a) Let {xi : i ∈ I} be a family of continua. Then

∨
i xi

exists iff there is a y such that Π0(y) =
⋃

i Π0(xi). The dual holds for infima.
(b) In particular x, y are adjacent (i.e., x ∨ y exists) iff there is a z such

that Π0(z) = Π0(x) ∪ Π0(y). (Equivalently, x, y are strongly disjoint iff for
every z ≥ x, y, Π0(x) ∪ Π0(y) ⊂ Π0(z).)

Proof. (a) “⇒”. Suppose
∨

i xi exists and is equal to y. Then, clearly,⋃
i Π0(xi) ⊆ Π0(y). Let p /∈ ⋃

i Π0(xi). Then p ∧ xi = 0 for all i ∈ I. By
proposition 1.2, p ∧ (

∨
i xi) = p ∧ y = 0, hence p /∈ Π0(y).

“⇐”. Let Π0(y) =
⋃

i Π0(xi) for some y. It follows from 1.4 that y is an
upper bound for the family {xi : i ∈ I}. Consider another upper bound z
of xi. Then

⋃
i Π0(xi) ⊆ Π0(z), or Π0(y) ⊆ Π0(z). From 1.4 it follows that

y ≤ z. Thus y is the least upper bound of the family {xi : i ∈ I}, hence
y =

∨
i xi. 2

Proposition 1.7 Let X be a set of continua such that
∨

X = u exists. If
x ∈ X, x ≤ x′ and X ′ = X ∪ {x′} − {x}, then

∨
X ′ also exists and equals

u ∨ x′. In particular if Ad(x, y) and x ≤ x′, then Ad(x′, y).

Proof. Clearly u ∧ x′ 6= 0. It follows from C4 that u ∨ x′ exists. Using
proposition 1.6 we easily verify that this is the supremum of X ′. 2

Proposition 1.8 Let X be a set such that for some x0 ∈ X, Ad(x, x0) for
all x ∈ X. Then

∨
X exists.

Proof. For any two x, y ∈ X, x∨ x0 and y ∨ x0 exist, and since the latter
meet,

∨{x, y, x0} exists too. Inductively we can show that for every finite
{x1, . . . , xn} ⊆ X,

∨{x1, . . . , xn, x0} exists. Recall that X is countable by
C0, and let X = {x1, x2, . . .} be an enumeration of its elements. Let

X ′ = {∨{x1, . . . , xn, x0} : n ∈ N}.
Then X ′ is upward directed, so

∨
X ′ exists by C3. By 1.4,

∨
X ′ =

∨
X. 2
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Proposition 1.9 Let x, y meet and let z1, z2 be two distinct meets of them.
Then z1, z2 are strongly disjoint.

Proof. Suppose on the contrary they are adjacent. Then z1∨z2 exists and
clearly z1 ∨ z2 ≤ x, y. But this contradicts the fact that z1, z2 are maximal
common parts of x, y. 2

So far our axioms are compatible with the existence of nontrivial continua
having only finitely many points, e.g. an x such that x = p∨ q. Since this is
clearly incompatible with the intended meaning of continuum, we shall rule
it out. To this effect it suffices to admit the following (combined with the
subsequent Axioms C8 or C9):

Axiom C7: No two points are adjacent. In symbols

(∀p, q)(p 6= q ⇒ ¬Ad(p, q)).

C7 is the analog of the topological “separation principle” stating that for
any two points p 6= q there is a neighborhood V such that p ∈ V and q /∈ V ,
or q ∈ V and p /∈ V .

2 Splitting Continua over Subcontinua. Con-

tinuity.

Given x, y such that y 6≤ x, we will set

Π(y\x) = {z : z ≤ y & z ∧ x = 0}

(the set of parts of y disjoint from x). By Axiom C6, Π(y\x) is always
nonvoid.

Proposition 2.1 Every element of Π(y\x) is contained in a maximal ele-
ment of it.

Proof. By Zorn’s Lemma. Let z ∈ Π(y\x) and let {ui : i ∈ I} be a chain
of elements of Π(y\x) that extend z. By C3,

∨
i ui exists and it suffices for it
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to belong to Π(y\x), or x ∧ (
∨

i ui) = 0. Since x ∧ ui = 0 ∀i ∈ I, this follows
from Prop. 1.2. 2

Given y 6≤ x let

An(y\x) = {z : z is a maximal element of Π(y\x)}.
We shall call An(y\x) the analysis of y over x, and the elements of it the

components of y over x. If |An(y\x)| > 1, we say that y splits over x, or x
splits y.

Proposition 2.2 (a) The elements of An(y\x) are pairwise strongly dis-
joint.

(b) If x < y then
∨

(An(y\x) ∪ {x}) = y.

Proof. (a) is immediate from the maximality of the elements of An(y\x)
and (b) follows from Prop. 1.4. 2

More generally, given y and a set X ⊆ Π(y) of subcontinua of y, the set

Π(y\X) = {z ≤ y : z ∧ x = 0, ∀x ∈ X}
is either empty, or each one of its elements is contained in a maximal one.
The set

An(y\X) = {z : z is a maximal element of Π(y\X)}
is called the analysis of y over X. Clearly, the elements of An(y\X) are
pairwise strongly disjoint (p.s.d. henceforth). As before, if |An(y\X)| > 1
we say that y splits over X, or that X splits y.

For finitely many x1, . . . , xn the above sets will be written Π(y\x1, . . . , xn)
and An(y\x1, . . . , xn) respectively.

Path-connectedness now is just “continuity of transition”, and, roughly,

Continuity=Absence of Jumps+Absence of Gaps.

For linearly ordered sets the above equation is equivalent to

Continuity=Density+Completeness.
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(Typical examples of jumpless, gapless and both jumpless and gapless sets
are the sets of rationals, integers and reals, respectively.) Let’s see how these
notions could be expressed here and what axioms they need.

A) Absence of Jumps. When we say that we can pass from x to y without
a jump, we simply mean that x ∨ y exists, that is to say x, y are adjacent.
Equivalently, we need to “jump” in order to pass from x to y if they are
mutually incommunicado (in our terminology, strongly disjoint).

Suppose now we are given three p.s.d. x, y, z. Can
∨{x, y, z} exist? If it

does and u =
∨{x, y, z}, then x, y could be joined by a path inside u. But

since x, y are not adjacent, the continuous transition would be possible only
via z. That means that z would be adjacent to both x and y. Equivalently,
the limit

∨{x, y, z} exists only if one of the three is adjacent to each of the
other two. Thus absence of jumps imposes the condition:

If
∨{x, y, z} exists then one of the three is adjacent to the other two. (1)

Nevertheless (1) does not follow from C0 −C7. Consider for example the
situation of figure 5, (a) or (b), where x < u and An(u\x) = {y, z}.

Figure 5

Then we can easily find a graph-model satisfying C0 −C7, containing an
element u split into three p.s.d. parts x, y, z, i.e., u =

∨{x, y, z}, and such
that An(u\x) = {y, z}. (Of course no x ∨ y, x ∨ z, y ∨ z exists; specifically
u is a minimal extension (join) of all these pairs.) So the above requirement
(1) fails in this model and we have to introduce it as a new principle. In fact
(1) is a consequence of the following axiom: If we split a continuum y over a
subcontinuum x, then x must be adjacent to every component of An(y\x).
In fact x is the “gluing- together” continuum for the strongly disjoint com-
ponents. Thus we admit the following:

Axiom C8 (Absence of Jumps): (∀z ∈ An(y\x))Ad(x, z).
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We have seen that given any y and X ⊆ Π(y), the components of
An(y\X) are p.s.d. as maximal parts of Π(y\x). In fact they satisfy some-
thing stronger: If A is any subset of An(y\x) with more than one element,
then

∨
A does not exist. Indeed, if

∨
A = z exists, then x ∧ z = 0, contra-

dicting the fact that the elements of A are maximal disjoint from x. We shall
call a family of continua having this propery normal.

Definition 2.3 A set of continua X is said to be normal if no set A ⊆ X
with at least two elements has a supremum. A normalization of X is a set
X∗ such that:

a) X∗ is normal,
b) Every element of X is part of some element of X∗, and
c) Π0(X

∗) = Π0(X) (where Π0(X) =
⋃{Π0(x) : x ∈ X}).

Notice that normality is stronger than pairwise strong disjointedness. For
example every set of points is p.s.d., though its supremum may exist. How-
ever the following holds:

Proposition 2.4 Every finite p.s.d. set is normal.

Proof. By induction on |X| = n. Let n be the least number such that for
some X = {x1, . . . , xn}, X is p.s.d. and

∨{x1, . . . , xn} = u exists. Then the
set {x2, . . . , xn} is clearly normal, and therefore An(u\x1} = {x2, . . . , xn}.
By C8, we must have Ad(x1, xk) for every k = 2, . . . , n, contrary to the
assumption that X is p.s.d. 2

Proposition 2.5 For every nontrivial x,

|Π0(x)| = |Π(x)| = |Π(x)− Π0(x)| = ℵ0.

Proof. Suppose x 6= p and Π0(x) is finite. By C7, Π0(x) is p.s.d. and from
2.4 it follows that Π0(x) is normal. Hence

∨
Π0(x) does not exist, contary to

the fact, following from 1.4, that
∨

Π0(x) = x. Hence Π0(x) is infinite, and
from countability assumption C0 it follows |Π0(x)| = ℵ0. Now in order to
show the existence of infinitely many nontrivial parts of x, we make use of C6.
Take some p0 < x (use C2 for this purpose). By C6 there is an 0 6= x0 < x
such that x0∧p0 = 0. By C7, x0 can be taken to be nontrivial. Choose some
p1 < x0 and find similarly a nontrivial x1 < x0 omitting p1, etc. This way
we find an infinite sequence of nontrivial parts · · · < x2 < x1 < x0 < x. 2
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Proposition 2.6 (a) Every set X of continua has a unique normalization
X∗.

(b) For every X ⊆ Π(y), An(y\X) is a normal family. Specifically
An(y\X) is the normalization of Π(y\X), i.e.,

An(y\X) = Π(y\X)∗.

(c) If X ⊆ Π(y), then X∗ ⊆ Π(y) and Π(y\X) = Π(y\X∗). Conse-
quently, An(y\X) = An(y\X∗).

Proof. (a) Given the set X let

Y = {u : (∃A ⊆ X)(
∨

A exists and
∨

A = u)}.
Using Zorn’s Lemma we easily see that each element of Y is included in
a maximal element of Y . Let X∗ be the set of these maximal elements.
Clearly, Π0(X

∗) = Π0(X), every x ∈ X is extended by some x′ ∈ X∗ and,
by maximality, no set A ⊆ X∗ with |A| > 1 has a supremum. Thus X∗

is a normalization of X. Now uniqueness follows from the fact that each
normalization of X contains exactly the maximal suprema of subsets of X
whenever they exist.

(b) Immediate from the definitions of Π(y\X) and normality.
(c) If z ∈ Π(y\X∗), then z misses all suprema of elements of X, hence it

misses all elements of X. Thus Π(y\X∗) ⊆ Π(y\X). Conversely, if z misses
all elements of X and

∨
A exists for A ⊆ X, then, by 1.2, z ∧ (

∨
A) = 0.

Thus also Π(y\X) ⊆ Π(y\X∗). 2

Proposition 2.7 For normal X ⊆ Π(y), An(y\X) = Y ⇐⇒ An(y\Y ) =
X.

Proof. Suppose An(y\X) = Y . If x ∈ X, then x ∧ z = 0 ∀z ∈ Y ,
hence x ∈ Π(y\Y ). To show that every element of X is a maximal element
of Π(y\Y ), assume x ∈ X and x < x′ ∈ Π(y\Y ). Then Π0(x

′) ∩ Π0(Y ) =
∅, whereby Π0(x

′) ⊆ Π0(X). It follows that x′ is the supremum of some
subfamily A of X such that x ∈ A and |A| > 1 since x < x′. But this
contradicts the normality of X. This proves that X ⊆ An(y\Y ). Now since
the last families contain the same points and are both normal, one is the
normalization of the other, so, by 2.6(a), X = An(y\Y ). This shows that if

16



X is normal, then An(y\X) = Y ⇒ An(y\Y ) = X. The reverse implication
follows immediately from the latter and the fact that Y = An(y\X) is also
normal, according to 2.6(b). 2

Two normal families X,Y are said to be complementary if
∨

(X ∪ Y )
exists. In this case, if

∨
(X ∪Y ) = u, then An(u\X) = Y and An(u\Y ) = X

as follows from 2.7. For example, if An(y\x) = Y , the families Y and {x} are
complementary. If in particular An(u\x) = {y}, then the continua x, y are
said to be (relatively) complementary and we write x = u− y and y = u− x.

A natural question is this: Given two normal complementary families
X, Y , is each element of the one necessarily adjacent to some element of the
other? The answer is Yes if one of the families is finite, but No (in general)
if they are both infinite. (For X non-normal the answer is negative even if
Y = An(u\X) is a singleton. For instance take as u the interval (0, 2) and
as X the set of points of the interval (0, 1). Then An(u\X) = {[1, 2)} and
no point in X is adjacent to [1, 2).) First a key lemma.

Lemma 2.8 (a) Let X be normal and An(u\X) = Y = {y1, y2, . . .}. Let
also x ∈ X and B = {yi : Ad(x, yi)}. If

∨
(B ∪ {x}) = v, then

An(u\X − {x}) = (Y −B) ∪ {v}.

(b) In particular, if ¬Ad(x, yi) ∀yi ∈ Y (i.e., B = ∅),

An(u\X − {x}) = Y ∪ {x}.

Proof. It suffices to prove (a). That
∨

(B ∪ {x}) exists follows from 1.8.
By the fact that X is normal it follows easily that

Π(u\X − {x}) = Π(u\X) ∪ Π(x).

Therefore, by 2.6(a),

An(u\X − {x}) = Π(u\X − {x})∗ = (Π(u\X) ∪ Π(x))∗.

So in order to show that An(u\X−{x}) = (Y −B)∪{v}, it suffices to prove
that

(+) (Y −B) ∪ {v} = (Π(u\X) ∪ Π(x))∗.
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Now since the sets (Y − B) ∪ {v} and Π(u\X) ∪ Π(x) contain exactly the
same points, as we easily check, in order to prove (+) it suffices to show that
(Y −B)∪{v} is normal. Clearly Y −B is normal and assume to the contrary
that for some A ⊆ Y −B,

∨
(A∪{v}) = w exists. Then

∨
(A∪B∪{x}) = w.

But A∪B is normal as a subset of Y , hence An(w\x) = A∪B. Then, by C8,
Ad(x, yk) for all yk ∈ A, contrary to the fact that Ad(x, yi) holds precisely
for yi ∈ B and A ∩B = ∅. 2

Proposition 2.9 Let X = {x1, . . . , xn} be a finite normal subset of Π(u)
and let An(u\X) = Y . Then

(a) (∀y ∈ Y )(∃xi ∈ X)Ad(y, xi).
(b) (∀xi ∈ X)(∃y ∈ Y )Ad(y, xi).

Proof. (a) Suppose there is a y ∈ Y such that (∀xi)¬Ad(y, xi). Applying
lemma 2.8 to An(u\X) for x = x1, we get

An(u\x2, . . . , xn) = (Y −B1) ∪ {v1},
where B1 = {y ∈ Y : Ad(x1, y)} and v1 =

∨
(B1 ∪ {x1}), and y ∈ Y − B1.

Applying again 2.8, we find B2 and v2 such that

An(u\x3, . . . , xn) = (Y −B2) ∪ {v2},
and y ∈ Y −B2. Continuing this way we find Bn−1 and vn−1 such that

An(u\xn) = (Y −Bn−1) ∪ {vn−1},
and y ∈ Y − Bn−1. But then, by C8, Ad(y, xn), which contradicts the as-
sumption (∀xi)¬Ad(y, xi).

(b) Assume again the contrary and suppose x1, for example, is not adja-
cent to any element of Y . By 2.8(b), An(u\x2, . . . , xn) = Y ∪{x1}. But then
from (a) of this proposition it follows that Ad(x1, xi) for some i = 2, . . . , n.
This however contradicts the normality of X. 2

Finally we show that 2.9 does not necessarily hold when both X, Y are
infinite.

Proposition 2.10 For every nontrivial x, there is a partition of Π0(x) into
two normal complementary pointsets X and Y .
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Proof. By Prop. 2.5, we can write Π0(x) = {p1, p2, . . .} and Π(x) −
Π0(x) = {x1, x2, . . .}, for the set of points and the set of all nontrivial parts
of x, respectively. Then using choice we can easily find by induction two
sequences of points q1, q2, . . . and r1, r2, . . . such that:

(i) the sets {q1, q2, . . .}, {r1, r2, . . .} are disjoint, and
(ii) qi, ri < xi for all i ∈ N.

We set X = {q1, q2, . . .} and Y = Π0(x)−X. Clearly X, Y are complemen-
tary. To see that they are normal, just observe that for every y ≤ x, Π0(y)
is included neither in X nor in Y , hence y cannot be the limit of any subset
of X or Y . Thus no such subset has a limit. 2

Some other consequences of C8, combined with the rest axioms are ex-
amined below.

Proposition 2.11 Let Ad(x, y). Then for every z,

Ad(z, x ∨ y) ⇐⇒ Ad(z, x) or Ad(z, y).

Proof. “⇐” follows from Prop. 1.7. For the converse suppose Ad(z, x∨y)
and let u = z∨ (x∨y). Assume ¬Ad(z, x). Then the family {x, z} is normal,
hence An(u\y) = {x, z}. By C8, Ad(z, y). 2

Proposition 2.12 Let x, y, z be disjoint continua. Then
∨{x, y, z} exists iff

one of x, y, z is adjacent to the other two.

Proof. Suppose one of them, say x, is adjacent to y, z. Then x∨y and x∨z
exist. Since the last two continua meet, it follows from C6 that (x∨y)∨(x∨z)
exists too, and clearly this is

∨{x, y, z}.
Conversely, suppose none of the three is adjacent to the remaining two,

while
∨{x, y, z} = u exists. Equivalently, there is one of them, say x, such

that ¬Ad(x, y) and ¬Ad(x, z). Since x, y, z are disjoint and {x, y} is normal,
we have An(u\z) = {x, y}. By C8, Ad(x, z), which contradicts ¬Ad(x, z). 2

Proposition 2.13 Let X be a normal family and y be a continuum. Then
X ∪ {y} is normal iff (∀x ∈ X)¬Ad(x, y).
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Proof. “⇒” is clear. For the converse suppose X ∪ {y} is not normal.
We have to show that there is an x ∈ X such that Ad(x, y). From the
hypothesis there is an A ⊆ X such that

∨
(A ∪ {y}) = u exists. A is normal

too. If y meets some element of A the claim follows. Otherwise it is clear
that An(u\y) = A. By C8, y is adjacent to every element of A and we are
done. 2

Lemma 2.14 Let x < u, y < u and ¬Ad(x, y). Then there is some z ∈
An(u\x, y) such that Ad(x, z) and Ad(y, z).

Proof. Let An(u\x, y) = Z. Then from Lemma 2.8 we get An(u\x) =
(Z − B) ∪ {v}, where B = {z ∈ Z : Ad(y, z)} and v =

∨
(B ∪ {y}). It

suffices to show that for some z ∈ B, Ad(x, z). By C8, Ad(x, v), hence∨
(B ∪ {x, y}) = w exists. Assume ¬Ad(x, z) ∀z ∈ B. Then by 2.13 B ∪ {x}

would be normal. Therefore An(w\y) = B ∪ {x}. But C8 implies Ad(x, y),
which contradicts the hypothesis. 2

Corollary 2.15 Let x, y be strongly disjoint and let u be a join of them.
Then there is a unique z such that u = x ∨ y ∨ z, z ∧ x = z ∧ y = 0 and
Ad(z, x), Ad(z, y).

Proof. Let x, y, u be as stated. From Lemma 2.14, there is a z ∈
An(u\x, y) such that Ad(x, z) and Ad(y, z). Therefore x ∨ y ∨ z exists and
is contained in u. Since u is a minimal extension of x, y, An(u\x, y) = {z},
and thus u = x ∨ y ∨ z. 2

This unique z asserted by the last corollary, that corresponds to the join
u of x, y, is said to be a connection of x, y (see figure 6).

Figure 6

Every join can be represented uniquely in this form. Clearly, x, y are
adjacent iff the only connection between them is 0.
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B) Absence of Gaps. Recall that absence of gaps in the real line is es-
tablished by means of Dedekind’s continuity principle which is formulated
in terms of “cuts”, i.e., splittings of the line into two nonempty disjoint seg-
ments A,B such that all elements of A precede all elements of B. Dedekind’s
principle then says that continuity is rendered possible always via some point
that “glues” A and B together, and belongs either to A as a last element or
to B as a first one. Whenever such a gluing point is missing, as is the case
e.g. with cuts in the rational line, the partition is a “gap” and continuity
fails. By extracting even a single point from the real line we create a gap at
this place and continuity breaks down.

We can express this idea here very simply by postulating that whenever
x, y are adjacent, then there is always a point of one of them which is adjacent
to the other.

Axiom C9 (Absence of gaps):

Ad(x, y) ⇒ (∃p ≤ x)Ad(p, y) or (∃q ≤ y)Ad(q, x).

Informally we shall often refer to the points p asserted by the axiom as
“gluing points” between two adjacent continua. C8 and C9 express the two
complementary aspects of continuity. Whereas C8 is of a macroscopic, global
character, having visible consequences on the behavior of continua, C9 is a
rather local principle, of microscopic character, referring to the invisible fine
structure of the joins.

If x, y meet, C9 holds trivially, so it gives real information only in the
case that x, y are adjacent and disjoint. Recall that such x, y are said to be
relatively complementary (r.c.). Let x, y be r.c. and x∨y = u. A point p < x
such that Ad(p, y) is said to be boundary with respect to y, and we set

BPy(x) = {p < x : Ad(p, y)}.

C9 says that if x, y are adjacent, then either BPy(x) 6= ∅ or BPx(y) 6= ∅. If
BPy(x) = ∅, x is said to be open with respect to y. Further, if BPy(x) 6= ∅
then the boundary of x with respect to y is the normalization of the set
BPy(x), i.e., the set of maximal continua formed by the boundary points.
We denote this by By(x), i.e.,

By(x) = BPy(x)∗.
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If now x ∨ y exists, y ≤ z and x, z are r.c., then BPy(x) ⊆ BPz(x), and the
boundary continua in By(x) are parts of those in Bz(x).

At the presence of the space 1 (greatest continuum), it is natural to call
the analysis An(1\x) (absolute) complementary normal family of x. The
simplest kind of continua are those for which |An(1\x)| = 1.

Definition 2.16 A continuum such that |An(1\x)| = 1 is called a simplex.

Intuitively, a simplex is a continuum without “holes”. For any simplex x
(and only for them) there exists a unique y such that x∨y = 1 and x∧y = 0.
We call this y the complement of x and we denote it −x. In this case we
denote B(x) the boundary of x with respect to −x.

3 Towards Dimension: Lines.

The notion of dimension underlies the whole of geometric intuition, but it
acquires a clear meaning only when it is defined through rather advanced
algebraic or analytic tools. Without these tools we are unable to tell precisely
what the difference between, say, an orbit and a surface is.

To go back to the origin of the idea, let us recall that dimension expresses,
roughly, the “degrees of freedom” that an agent has within a space. If the
space is a continuum and the agent is a point inside it moving across, then
the degrees of freedom are the distinct “paths” that the agent can follow
starting from any given position. The notion of path is fundamental as it
represents the elementary means of transition within a continuum. The path
itself is also a “thin” continuum with the property that if we remove any of
its points except the end-ones, the path splits, hence the motion along it is
disrupted.

To start an intuitive classification of continua, notice, first, that a single
point includes no paths at all, therefore it has zero degrees of freedom. Next,
a line is a continuum in which a moving point is allowed to go forth and back
only, or at most finitely many directions if we consider lines with branching
points. Alternatively, this can be put as follows: If we remove one point from
each of the paths available, then the whole continuum splits and the motion
along it becomes impossible. Thus we can define lines as those continua that
split over finitely many points. Then we may go on inductively and define a
surface as a continuum that splits over a finite number of lines, and so on.
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Since we have defined quite precisely splittings of continua over subcontinua,
this may provide a rigorous inductive definition of dimension without the
help of any analytic or algebraic tools.

The idea set forth above is indeed very old. In the introduction of
Hurewicz et al. (1948) we read the following quotations from Poincaré:

“...If to divide a continuum C, cuts which form one or several continua of
one dimension suffice, we shall say that C is a continuum of two dimensions;
if cuts which form one or several continua of at most two dimensions suffice,
we shall say that C is a continuum of three dimensions; and so on.

“...This is just the idea given above: to divide space, cuts that are called
surfaces are necessary; to divide surfaces, cuts that are called lines are neces-
sary; to divide lines, cuts that are called points are necessary; we can go no
further and a point can not be divided, a point not being a continuum. Then
lines, which can be divided by cuts which are not continua, will be continua
of one dimension; surfaces, which can be divided by continuous cuts of one
dimension, will be called continua of two dimensions; and finally space, which
can be divided by continuous cuts of two dimensions, will be a continuum of
three dimensions” (A. Poincaré, Revue de Métaphysique et de Morale, 1912,
p. 486).

The fact is that Poincaré’s idea is vague. As W. Hurewicz and H. Wallman
say “...Poincaré was concerned only with putting forth an intuitive concept
of dimension and not an exact mathematical formulation” (Hurewicz et al.
(1948), p. 4). For example he does not specify how many and which points
are allowed to be used in order to divide a one-dimensional continuum. In
the present treatment, such questions can be given precise answers. The
fundamental notions in this approach will be (a) the notion of path and (b)
the notion of splitting continua by means of subcontinua. Now a path can be
defined simply as a join (i.e., a minimal extension) of two distinct points.

Definition 3.1 Given any two points p, q, any join x of them will be called
a (simple) closed path between p, q. The connection c such that x = p∨ c∨ q
will ce called the corresponding open path between them. The points p, q
are the ends of the paths in question. Semi-open paths are defined in the
obvious way. Two paths joining p, q and q, r are said to be consecutive if the
corresponding open paths are disjoint.
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Proposition 3.2 Let x be a path (open or closed) with ends p, q. Then for
any point r 6= p, q of x, An(x\r) contains exactly two components which are
(open or semi-open) paths again with ends p, r and r, q.

Proof. It suffices to argue for x closed. Consider the analysis An(x\r). If
it contained a single element z, then x = z ∨ r and since r 6= p, q, z would be
an extension of p, q strictly smaller than x. This contradicts the minimality
of x as a join. Now let An(x\r) contain more than two components, among
them, say z1, z2, z3. Then p < zi and q < zj for some i, j ∈ {1, 2, 3}. Suppose
without loss of generality that p < z1 and q < z2. z1, z2 are strongly disjoint
and from C8 it follows that Ad(r, z1) and Ad(r, z2). Thus r ∨ z1 ∨ z2 exists
and contains p, q. This is strictly contained in x, which is a contradiction
again. Therefore |An(x\r)| = 2.

Let An(x\r) = {x1, x2}. Clearly p < x1 ⇐⇒ q < x2 (otherwise the first
contradiction would reappear). Thus, if p < x1, x̄1 = x1 ∨ r is an extension
of p, r. We also easily see that it is a minimal one, i.e., a join. Otherwise
there would be a strictly smaller extension y < x̄1 of p, r and y∨x2 would be
an extension of p, q properly contained in x. Thus x1 is a path and similarly
for x2. 2

Corollary 3.3 (a) Let x be a path with ends p, q. For every n ∈ N, any n
points p1, . . . , pn of x, distinct from p, q and from one another, split x into
precisely n + 1 consecutive subpaths.

(b) If x is a path and p, q < x, then the subpath of x with ends p, q is the
only path joining p, q which is contained in x.

Proof. (a) By induction on n. For n = 1 the claim follows from 3.2.
Suppose it holds for n − 1 points and consider n points p1, . . . , pn. By the
hypothesis, the points p1, . . . , pn−1 split x into the paths x1, . . . , xn. Then
clearly pn belongs to some xi and is distinct from its ends. By 3.2 again, pn

splits xi into two paths x0
i and x1

i , and x1, . . . , x
0
i , x

1
i , . . . , xn is the required

division.
(b) This is obvious from the minimality of x as a join. 2

Recall from the preceding section that if x, y are strongly disjoint, then
any join u of them can be uniquely written as u = x ∨ y ∨ z, where z is the
connection of x, y, which is disjoint from x, y and adjacent to both of them.
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Proposition 3.4 Let x, y be strongly disjoint continua and z be a connection
of them. Then z is a path.

Proof. Since Ad(x, z), by C9, there is a point p such that either p < x
and Ad(p, z), or p < z and Ad(p, x). And similarly there is a q such that
either q < y and Ad(q, z), or q < z and Ad(q, y). These points p, q can be
attached to x, y repectively, so z is obviously the open path joining them. 2

We can also prove the following Jordan-type theorem:

Proposition 3.5 (Jordan-Type). Let x, y be relatively complementary con-
tinua x, y (i.e., disjoint and adjacent) with u = x ∨ y, and let p < x and
q < y. Then each path c joining p and q inside u, passes through some
boundary point of either x or y. Conversely, for every boundary point r of x
or y there is path joining p, q inside u and passing through r.

Proof. Let c be a path inside u, with ends p, q, and consider the analyses
An(c\x), An(c\y). It is routine to check that each one of them contains a
single element c1, c2 respectively (which are subpaths of c), and c = c1 ∨ c2.
Then by C9, c1, c2 have some boundary point r lying either in c1 or in c2. If
r < c1 then clearly r < x and r ∈ BPy(x). Otherwise r ∈ BPx(y).

For the converse, let r ∈ BPy(x). Consider a path s inside x with ends
p, r. Then remove r from x and attach it to y. Let y′ = y ∨ r. y′ is a
continuum disjoint from x− r. Take inside y′ a path t joining r and q. Then,
clearly, c = s ∨ t is a path inside u as required. 2

Recall that a simplex (definition 2.16) is any continuum x which does not
split the space 1, hence it has a complement −x. For a simplex x, 3.5 yields:

Corollary 3.6 (Jordan’s Theorem) Let x be any nonvoid simplex and let
p < x and q < −x. Then any path joining p and q crosses the boundary
between x and −x.

Proposition 3.7 (a) Every nontrivial part of a path is a path.
(b) If c, d are paths, d is closed and c < d then the end-points of c are

contained in d.
(c) If two paths meet, then each meet is either a single point or a path.
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Proof. (a) Let c be a path with ends p, q and x < c be nontrivial. We
claim that An(c\x) contains at most two components. Indeed, if it contains
three, z1, z2, z3, and p < z1, q < z2, then, by C8, Ad(x, z1) and Ad(z, x2),
hence x∨z1∨z2 would be an extension of p, q smaller than c, contrary to the
minimality of c as a join of p, q. Thus An(c\x) has either one or two elements,
according to whether x contains some of the ends of c or not. From this we
easily conclude that x is a path.

(b) Let c < d. Taking again An(d\c), we see as in (a) that An(d\c)
contains one or two components which are paths or points. Then we easily
conclude using C9 and the closedness of d that the boundary points of c
belong to d.

(c) Immediate from (a) (see figure 7(a)). 2

Proposition 3.8 (a) Let c be a path and r be a point not in c. Then r
cannot be adjacent to c unless r is an end-point.

(b) If the paths c, d are disjoint and adjacent, then they are adjacent by
the help of at most four points, namely their end-points.

Proof. (a) It suffices to assume c closed, c = [p, q], with end-points p, q,
and to show that if r 6< [p, q], r cannot be adjacent to c. Suppose the
contrary, and let c ∨ r exists, where c ∧ r = 0. Then there are closed paths
[p, r] and [r, q] inside c∨r joining p, q with r respectively. Obviously the semi-
open paths [p, r) and (r, q] are parts of c, hence subpaths of it. Moreover,
[p, r)∨(r, q] = c, therefore [p, r), (r, q] have a common end-point r′ < c. Since
r, r′ are distinct points of c ∨ r, they are joined by a nontrivial path [r, r′]
inside c ∨ r. Then the open path (r, r′) is nonvoid and (r, r′) < c. But since
c is a closed path, it follows from Prop. 3.7(b) that the end-points of (r, r′)
must also belong to c, hence r < c, which contradicts the hypothesis.

(b) It suffices to show that the paths c, d can be adjacent only via their
end-points, as in figure 7(b).

Figure 7

Assume on the contrary that c, d with end-points p, q and r, s respectively,
are adjacent via some point t < c distinct from r, s. Then Ad(t, d) and
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t 6< [r, s]. But this is impossible by (a). 2

We proceed now to define one-dimensional continua. We shall use for
them the general name lines.

Definition 3.9 A line is any nontrivial continuum satisfying the following
two conditions:

(a) For any p < x there is a finite number of disjoint paths in x having p
as an end-point, and

(b) Any two points p, q < x are joined with finitely many simple paths in
x.

The number of disjoint paths in x having p as an end-point will be called
the rank of p in x and will be denoted rank(p; x). If there is a greatest
number of paths n, joining any two points of x, this will be called the genus
of x and will be denoted gen(x). If no such n exists we write gen(x) = ∞.
That is to say,

gen(x) =

{
max{number of paths between p, q : p, q < x},
∞ otherwise.

(By the “number of paths” in the above definition we mean the number
of “independent paths”, i.e., we do not count a path c which is a part of
the supremum

∨
i ci of others.) The above is a fairly general notion of line

intended to capture a large variety of 1-dimensional continua. Of course one
might also consider lines with infinitely many branches at a point, or with an
infinity of paths joining two points. Such continua tend to fill whole areas,
forming thus an intermediate kind of entities, between lines and surfaces,
and we will not include them in our consideration. But even the definition
3.9 is liberal enough to leave room for vague entities, lying between lines and
surfaces. For example according to 3.9, the so called “comb space”

E =
⋃{[0, 1]× {1/n} : n ≥ 1} ∪ ([0, 1]× {0})

(see Munkress (1975)), as well as the “dense comb”

D =
⋃{[0, 1]× {r} : r ∈ Q+}

(see figure 8 below), should be classified as lines, since they have no loops,
i.e., gen(E) = gen(D) = 1, and rank(p; E), rank(p; D) ≤ 3.

27



Figure 8

The continuum E is more on the side of lines rather, while D is more on
the side of surfaces. If we wish to exclude them from the range of normal
lines, it suffices to add a third requirement in the above definition saying:

(c) For any path [p, q] of x, the number of branching points of [p, q] is
finite.

A line satisfying in addition (c) has indeed a particularly simple form: It
is a graph, made of points and non-crossing edges (see definition 3.15 and the
remark following it).

Our main concern here, however, will be about what we shall call simple
lines. These correspond to the familiar loopless curves of analysis. First let
us introduce the helpful notion of splitting degree.

Definition 3.10 Let x be a line. A point p is an end-point of x, if x ∨ p
exists and there is no closed path [q1, q2] < x such that p < (q1, q2). The
end-point may or may not belong to x.

Recall that x splits over X ⊆ Π(x) if |An(x\X)| > 1.

Proposition 3.11 If p is an end-point of a line x, then x does not split over
p.

Proof. Suppose x splits over p < x, and let y1, y2 ∈ An(x\p). Then
Ad(p, y1), Ad(p, y2) and y1, y2 are nontrivial. Hence y1 ∨ p ∨ y2 = u exists.
If we choose points q1 < y1 and q2 < y2 then by, 3.5, there is a path [q1, q2]
inside u passing through p. Therefore p < (q1, q2), which means that p is not
an end-point. 2

Definition 3.12 The splitting degree of x with respect to points (or simply
the splitting degree), denoted by sd(x), is the least number n such that for
any n non-end-points p1, . . . , pn < x, x splits over {p1, . . . , pn}. If no such n
exists, sd(x) = ∞. That is,

sd(x) =

{
min{n : (∀p1 · · · pn < x)(pi non-end ⇒ |An(x\p1, . . . , pn)| > 1)},
∞ otherwise.
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The vast majority of continua that we currently call lines have a finite
splitting degree. Roughly, the latter counts the number of loops of the line
(or self-crosses). For instance a loopless curve x has sd(x) = 1, i.e., every
point of x splits x, unless it is an end-point (see figure 9(a)). To split a line
containing a single loop we need at most two points (figure 9(b)), while to
tear apart a line forming 4 loops we neeed at most 5 points (figure 9(c)).
(“At most 5” means that any 5 points split the line, though there may exist
less points at special places that also tear it apart.)

Figure 9

The splitting degree is an equivalent description of the genus of a line.
Before showing this let us define a special kind of line.

Definition 3.13 A continuum x is a (simple) circle if it is the supremum of
two paths [p, q]1, [p, q]2 having common end-points and disjoint interiors.

The proof of the following is easy and we leave it to the reader.

Proposition 3.14 (a) A simple circle has no end-points.
(b) If c is any circle and p 6= q < c, then An(c\p, q) has exactly two

components which are open disjoint paths with end-points p, q.
(c) If p < c, then An(c\p) has a unique component, such that any two of

its points are joined by a unique path.

Because of (c) above, we can think of a circle as a path [p, p], with iden-
tical end-points (though this does not make sense according to the original
definition of a path as a minimal extension).

Definition 3.15 A graph is a line consisting of a (possibly infinite) set of
paths or circles [pi, pj] (that is, we allow pi = pj), meeting at most at their
ends, i.e., (pi, pj) ∧ (pk, pl) = 0. The ends pi’s are the nodes of the graph,
while the paths are the edges.
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Remark. It is worth noticing that if we adopt the definition of a line 3.9
with the additional constraint (c) introduced earlier, then it is not hard to
show that every line is a graph. Indeed, in this case, for every point p there
is a set of points immediately joined with p, as a consequence of the finitely
many branching points of each path.

Proposition 3.16 Given any line x, and any finite set of points {pi : i ≤
n} ⊆ Π0(x), there is a finite graph in x containing all paths and circles
joining any two points pi, pj. This is denoted 〈pi : i ≤ n〉x.

Proof. Let

y =
∨{c < x : c is a path joining some pair of pi’s}.

By the condition of finiteness for the number of paths in a line joining two
points, the number of paths in y is finite. Considering all the meets of these
paths and all the disjoint open subpaths between them, we easily get a graph
with edges the aforementioned subpaths and with nodes their crossing points.
2

Proposition 3.17 (a) Suppose any two points of the line x are joined with
at most n distinct paths. Then sd(x) ≤ n = gen(x).

(b) Conversely, if sd(x) = n, then any p, q < x are connected by at most
n paths. That is to say, gen(x) ≤ sd(x).

(c) Therefore gen(x) = sd(x)

Proof. (a) Suppose the hypothesis n = gen(x) holds and let p1, . . . , pn be
n non-end-points of x. It suffices to show that {p1, . . . , pn} splits x. Consider
the subgraph of x, y = 〈p1, . . . , pn〉x, formed by the totality of paths in x
joining any two of the pi’s. Choose two points q, r distinct from all pi’s and
lying in two distinct paths of y. Then any path between q, r in y contains
some pi. Let P be the set of paths connecting q, r in x. Clearly |P | ≤ n.

Case 1. Suppose that each path c ∈ P contains some point pi. By remov-
ing all pi’s, x splits into at least two components containing p, q. Indeed, if
x would not split there would be, according to 3.5, a path in x joining them.
But every such path has been split, by 3.2, after removing a point pi from
each one of them.
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Case 2. Suppose case 1 fails, i.e., some path in P contains none of the
pi’s. Then we have at most n − 1 paths in the graph y joining q, r, and n
points on them. We show the following:

Claim. If there are k paths between q and r in y and n > k points pi on
them, then for some path c and some pair pi, pj on it, the open path (pi, pj)
on c is disjoint from all the other paths of y.

If this happens, then clearly, x splits over pi, pj, because the open path
(pi, pj) is a component of An(x\pi, pj).

Proof of the claim. By induction on the number of paths k. For k = 1
and n > 1 the claim is obvious. Suppose it holds for k paths and any n > k,
and assume we have k + 1 paths between q, r and n > k + 1 points on them.
Clearly, there are two distinct points pi, pj on some path c. If the open path
(pi, pj) meets no other path of y we are done. Suppose there is a path c′

meeting (pi, pj). Clearly we can assume that no other point of the pk’s lies
in (pi, pj). In view of 3.16, c′ is formed in the graph y by a finite number
of edges. Remove some suitable edge from this path, as well as one of the
nodes pi, pj, and get the graph y′. This removal diminishes the total number
of paths between q, r. Thus we have k′ < k paths with n′ > k′ points on
it. By the induction hypothesis, there are two points pk, pl such that (pk, pl)
crosses no other path in y′. Then obviously (pk, pl) doesn’t cross any other
path of y either, and the claim and (a) are proved.

(b) The converse is easy. Suppose sd(x) = n, while gen(x) = m, i.e.,
there are points p, q in x with m independent paths c1, . . . , cm between them.
By (a), m ≥ n. To prove equality, assume m > n. Then we can find points
pi < ci, for each i = 1, . . . , m such that pi 6< cj for i 6= j. Then, any n of these
points obviously do not split x, since p, q are still bridged by the remaining
m− n paths. This contradicts the fact that sd(x) = n.

(c) It follows from (a) and (b) above that gen(x) = sd(x) if one of these
is finite. On the othet hand, for every n, gen(x) > n iff sd(x) > n, thus
gen(x) = ∞ iff sd(x) = ∞. 2

It follows from the preceding result that we can use the genus and the
splitting degree of a line interchangeably. If sd(x) = 1, then x is a loopless
tree-like line, where the rank of a point p determines the number of branches
at that point. For instance it follows from 3.3 and 3.14 immediately that
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Proposition 3.18 (a) For any path x, sd(x) = 1 and rank(p; x) ≤ 2.
(b) For any circle x, sd(x) = 2 and rank(p; x) = 1.

The genus of a line and the rank of its points are not quite independent
properties. For example, a tree-like line may have points of arbitrarily high
rank, though it is always of genus 1. But if the rank is low, so is necessarily
the genus. We say that x branches at p if rank(p; x) ≥ 3. If x does not
branch at a point, i.e., rank(p; x) ≤ 2 for every p < x, then, intuitively,
either x is a circle, or there is a single path between any two points of x
(otherwise we should have branching somewhere). This intuitive guess can
be proved.

Proposition 3.19 Let x be a line such that rank(p; x) ≤ 2. Then either x
is a circle, or gen(x) = 1.

Proof. Suppose rank(p; x) ≤ 2 for every p < x and that x is not a circle.
Let also p < x be a non-end-point. Since gen(x) = sd(x), it suffices to show
that x splits over p. Since p is not an end-point, there is a path [q, r] < x
such that p < (q, r). Suppose x does not split over p, that is, An(x\p) = {y},
where y = (q, p)∨ z ∨ (p, r). Then either z is a path with ends q, r or not. In
the first case x is obviously a circle as a supremum of two disjoint paths with
common end-points. In the other case z contains q, r without being a path
between them. Therefore there is an open path c joining q, r and strictly
contained in z. Consider An(z\c) which contains some nontrivial component
w such that q < w. Let c′ be a path inside w with end-point q. Now inside
x there are at least three distinct paths in x with end-point q, namely (q, p),
c and c′. This contradicts the hypothesis. 2.

As follows from the preceding result, if rank(p; x) ≤ 2 for every p < x,
the line takes the simplest possible form.

Definition 3.20 A line is said to be simple if rank(p; x) ≤ 2 for every point
p < x. If x is simple and not a circle, it will be said to be a curve.

Notice that the notion of a curve is only slightly more general than that
of a path. Obviously every path is a curve as follows from corollary 3.3(b).
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The only difference is that a path is determined by end-points, whereas a
curve need not have end-points. It may be “open” - for instance in the case
(if any) that it happens to be a maximal one (as a line).

Since for a curve x sd(x) = 1, if p, q < x, there exists a unique closed path
in x joining p, q, and this is denoted [p, q]x. Besides we have the corresponding
open and semi-open paths (p, q)x, [p, q)x, (p, q]x. Notice that the order of p, q
in this notation is immaterial, that is [p, q]x and [q, p]x mean the same thing.

Proposition 3.21 (a) Every nontrivial part y of a curve x is a curve, and
for any p, q < y, [p, q]y = [p, q]x.

(b) If two lines x, y meet, then each of their meets is either a point or a
common subline.

(c) If c is a circle and p < c, then An(c\p) contains just one curve.

Proof. (a) Let x be a curve and y ≤ x be nontrivial. Then for any
p < y, clearly, rank(p; y) ≤ rank(p; x) ≤ 2, hence rank(p; y) ≤ 2. In order
for y to be a curve it suffices that sd(y) = 1. But as easily checked, y < x
implies sd(y) ≤ sd(x). So, since sd(x) = 1, sd(y) = 1 too. Now for any
p, q < y, there is a single path in y and a single path in x joining p, q, whence
[p, q]y = [p, q]x.

(b) Immediate from (a).
(c) It follows from 3.14. 2

A simple line x is said to be maximal if there is no simple line properly
extending x. Maximality can be also relativized to any particular continuum
that contains x.

Proposition 3.22 (a) Every circle is a maximal simple line.
(b) If (xi), i ∈ N, is a chain of simple lines, the

∨
i xi is a simple line.

(c) Every simple line on a continuum y can be extended to a maximal one
on y.

Proof. (a) Let x be a circle and let y be a line such that x < y. It suffices
to show that y is not simple. By an argument similar to 3.8 (a), we can show
that if p 6< x, then ¬Ad(x, p). Therefore there is a nontrivial component
z ∈ An(y\x). Then Ad(z, x) by C8, and, by C9, either Ad(p, x) for some
p < z, or Ad(p, z) for some p < x. The former is impossible as we said
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previously (by the argument of 3.8(a)). Thus Ad(p, z) for a p < x. Since p is
not an end-point of x (in fact x has no end-points), there is a path (q, r) < x
containing p. Choose also a point s in z. Then in y the paths (p, q), (p, r),
(p, s) are disjoint and start at p. Hence rank(p; y) ≥ 3. This shows that y is
not a simple line.

(b) Let x =
∨

i xi. Since xi < xj for i < j, the lines xi are not maximal,
hence they are curves by (a), and for any p < xi, obviously rank(p; xi) =
rank(p; x) ≤ 2. This proves the claim.

(c) Immediate from (b) and Zorn’s Lemma. 2

Proposition 3.23 If x is a non-maximal curve, then there is at least one
end-point for x.

Proof. Suppose x is not maximal and let y be a simple line properly
extending it. We can easily see that An(y\x) cannot contain more than two
components since they must be disjoint subcurves of y. Let z ∈ An(y\x).
Then either for some p < x Ad(p, z), or for some q < z Ad(q, x) (by C8, C9).
In both cases it is not hard to see that p or q is an end-point of x. 2.

The converse of 3.23 does not hold necessarily. There may exist maximal
curves with end-points belonging to them. Suppose for example that 1 is the
2-dimensional ordinary plane and consider on it the double spiral of figure
10 converging to the points P (0, 0) and Q(2, 0) (the points P, Q included).
Obviously the spiral is a maximal curve with two end-points.

Figure 10

4 Continuous Transformations.

A function f : X → Y , X,Y ⊆ C, is said to be continuous, if it preserves
all joins and meets whenever they exist, i.e., if

∨
A (resp.

∧
A) exists, then∨

f ′′A (resp.
∧

f ′′A) exists too and f(
∨

A) =
∨

f ′′A (resp. f(
∧

A) =
∧

f ′′A).
Clearly, every continuous function is monotonic, i.e.,

x ≤ y ⇒ f(x) ≤ f(y),
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for all x, y ∈ X.
We intend to consider transformations of continua under continuous map-

pings. Now if we restrict ourselves to the above condition only, then every
continuum x can be mapped continuously to any other y, provided we put
f(p) = y, ∀p ∈ X. To avoid such a triviality, it is reasonable to define that
f continuously transforms x onto y if

(a) f is continuous, and
(b) f maps Π(x) onto Π(y).

Such an f is called a continuous transformation (c.t.). f is said to be non-
degenerate if the range of f is not a point. It follows immediately from the
definitions that

Proposition 4.1 Let f be a c.t. Then
(a) Ad(x, y) ⇒ Ad(f(x), f(y)), and
(b) f sends points to points.

Proposition 4.2 Every nondegenerate c.t. sends paths to paths and simple
lines to simple lines. However it may transform a curve to a circle and
vice-versa.

Proof. Let [p, q]x be a path on x. We show that f([p, q]x) = y is a
path connecting f(p), f(q). Indeed, clearly, y is an extension of the points
f(p), f(q). If it were not a minimal extension, then there would be a z < y
containing f(p), f(q). By the definition of c.t., there would be a u < [p, q]x

containing p, q such that f(u) = z. This contradicts the minimality of the
join [p, q]x.

Now it is an easy task to show that a c.t. does not raise the rank of a
point, i.e., for any x and any p < x,

rank(f(p); f(x)) ≤ rank(p; x).

From this we immediately infer that if x is a simple line, so is f(x). Con-
cerning the last claim we can easily imagine a path being continuously trans-
formed to a circle by identifying its ends. Similarly, a circle can be trans-
formed to a path by cutting it into two disjoint co-ended paths and shrinking
them to a single one. However, a precise proof of the existence of such trans-
formations will be given in 4.6 below. 2
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Disjoint paths or curves with common end-points are said to be consecu-
tive. By definition 3.20 and proposition 3.21, any n distinct points of a curve,
none of which is an end-point, split the curve into n+1 segments zi, i ≤ n+1,
such that zi and zi−1 are consecutive. This way a notion of consecutivity is
assigned to the splitting points themselves, hence a linear ordering ≺ of the
n points is induced in the obvious way. This ordering is essentially unique if
we do not distinguish between ≺ and its inverse Â.

Let x be a curve and let p, q, r be three points of x. A notion of between-
ness for p, q, r with respect to x is defined as follows: q is said to be between
p and r on x, in symbols Bx(p, q, r), if q < (p, r)x.

Proposition 4.3 Let x be a curve and let three distinct points be on x. Then
one and only one of them lies between the others.

Proof. We can assume without loss of generality that none of the p, q, r
is an end-point. By 3.3, x is divided into four segments z1, z2, z3, z4 such
that zi, zi+1 are consecutive for i ≤ 3, and they induce by their ordering,
an ordering ≺ of p, q, r. Suppose q ≺ r ≺ p. Then it is easy to verify that
Bx(q, r, p). If we consider the inverse Â of ≺, the relation of betweenness
is preserved. The uniqueness of this ordering implies the uniqueness of the
point lying between the other two. 2

Given any curve x, it follows from 1.4 that x contains an infinity of points.
From our basic countability hypothesis, the points can be written q0, q1, . . ..
If x contains end-points, we let q0, q1 be these ends. Assigning a conventional
ordering ≺ to q0, q1, say q0 ≺ q1, we can extend ≺ to a linear ordering on
the whole set Π(x) inductively as follows: Suppose ≺ is already defined on
{q0, . . . , qn}. These points split the line into n + 2 (or n + 1 if q0 is an
end-point) consecutive paths, according to 3.3, whose ends are ordered with
respect to ≺ as follows:

qi0 ≺ qi1 ≺ · · · ≺ qin ,

where the sequence (ik), k = 0, . . . , n, is a permutation of 0, . . . , n. Given
qn+1, we put qn+1 ≺ qik , for k ≤ n, if qn+1 lies in some path “to the right” of
qik , and qik ≺ qn+1 otherwise. Since there are no adjacent points, the above
ordering will be necessarily dense, thus we have shown the following:
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Proposition 4.4 The points of every curve admit a unique (up to inversion)
dense countable linear ordering with or without end-points.

Let us denote by ≺x this unique linear ordering of the points of the curve
x. By the preceding result, for any curve x, the set (Π(x),≺x) is order-
isomorphic either to an open interval, or to a closed interval, or to a semi-
open interval of the set of rationals. Accordingly, x can be written either
as x = [p, q], or x =

⋃
n[pn, qn], or x =

⋃
n[p, qn], or x =

⋃
n[pn, q], where

(pn), (qn), n ∈ N, are sequences of points of x such that for all n ∈ N,

pn+1 ≺x pn and qn ≺x qn+1.

Given the curves x, y, a mapping f : Π0(x) → Π0(y), onto, which pre-
serves the orderings ≺x and ≺y, is said to be a similarity between x and
y.

Proposition 4.5 Given a similarity f between x, y, for every u ≤ x, the
supremum

∨
f ′′Π0(u) exists and is a subline of y. Moreover, if we put

f̄(u) =
∨

f ′′Π0(u),

then f̄ is a c.t. of x onto y.

Proof. Let u ≤ x be nontrivial. By corollary 3.3, u is a subline of x,
hence it has one of the above mentioned forms being either closed or open
etc. It suffices to consider the case where u is a closed path u = [p, q]x; the
treatment of the other cases is reduced to that. Now let v = [f(p), f(q)]y.
Suppose p ≺x q. Then for every point r < (p, q)x, p ≺x r ≺x q, thus
f(p) ≺y f(r) ≺y f(q), whence f ′′Π0(u) ⊆ Π0(v). Moreover it is easy to check
that f ′′Π0(u) = Π0(v). It follows that

∨
f ′′Π0(u) =

∨
Π0(v) = v.

Clearly f̄ maps Π(x) onto Π(y). To check continuity, let Z ⊆ Π(x) be
such that

∨
Z = u exists and let us verify that

∨
f̄ ′′Z = f̄(u). By 1.10, it

suffices to show that Π0(
∨

f̄ ′′Z) = Π0(f̄(u)). But Π0(f̄(u)) = f ′′Π0(u), as
follows from the definition of f̄ . Thus it suffices to see that

Π0(
∨

f̄ ′′Z) = f ′′Π0(u) = {f(p) : p < u}.
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But this is fairly obvious from the fact that
∨

Z = u and the definition of f̄ .
2

Let us say that two curves have the same end-conditions if they both have
either two or one or no end-points.

Proposition 4.6 (a) Any two curves x, y with the same end-conditions are
continuously transformed onto one another.

(b) Similarly for any two circles.
(c) For any circle x and any curve y with at least one end-point, there is

a continuous f such that f(y) = x. If y has two end-points, also g(x) = y
for some continuous g.

(d) If however f is continuous and 1-1, then f maps curves to curves and
circles to circles.

Proof. (a) If x, y are both curves with the same end-conditions, then
clearly there is a similarity f between (Π0(x),≺x) and (Π0(y),≺y). By 4.5,
this can be extended to a continuous mapping f̄ from x to y.

(b) If x, y are two circles, we just cut each one of them into a pair of dis-
joint paths [p, q]1, (p, q)2 and [r, s]1, (r, s)2 respectively, and then we transform
continuously [p, q]1 to [r, s]1 and (p, q)2 to (r, s)2 according to (a).

(c) If x is a circle and y is [p, q] or [p, q), we cut x at the point r and map
either [p, q] to [r, r] or [p, q) to [r, r). In the case that y = [p, q], we cut the
circle at two points r, s and map the two co-ended paths continuously onto
[p, q].

(d) Obvious from the fact that in this case distinct end-points are mapped
to distinct end-points. 2

5 Hints about Surfaces.

We do not intend to provide here an analytic trearment of surfaces to the
extend we did it for lines. We shall rather provide some clue-definitions and
hints, along the general guide-lines exposed above.

Lines are to 2-dimensional continua, roughly, what points are to 1 -
dimensional ones: They can be used to tear surfaces apart. But the analogy
is far from strict. For instance there is a vast variety of lines with distinct
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behaviors, while all points behave the same. Also a line can be split to an
infinity of sublines, whereas this is false for points, etc. Therefore we should
not expect the treatment of surfaces to be a mot à mot translation of the
corresponding treatment of lines.

Another reason for this asymmetry is that there is no clear analog of the
elementary notion of “path”, which has been the key notion in the study
of lines. The 2- dimensional counterpart of path would be “region”, but we
have no simple definition for this. (Recall that the path was defined as a
minimal extension of two points; however a minimal extension of two paths
is not a surface area but a line.)

Instead of working by analogy, we can try to define surfaces as the kind
of continua properly interpolated between lines and solids. To be specific
we shall isolate two principles, a “separation” and a “non-separation” one,
which distinguish surfaces from solids on the one hand, and lines on the other,
respectively. These principles are formulated in terms of splittings. Never-
theless, since “separation” will be used repeatedly below, we shall isolate it
in advance. It amounts to slightly more than splitting.

Definition 5.1 Let x, x1, x2 < y. We say that x separates x1, x2 in y, if
there are z1, z2 ∈ An(y\x) such that x1 < z1 and x2 < z2.

Clearly, if x separates some pair of continua in y, then x splits y. But for
a given pair x1, x2 < y, x may split y without separating x1, x2. The simplest
case is the separation of points. We come now to the principles.

1. Separation Principle (or: Surfaces are no solids). Whenever on a sur-
face x we have a line l and a point p such that ¬Ad(l, p), we should be able
to separate them by cutting the surface with a simple line (i.e., a circle or a
curve) into two pieces, one containing the line and one containing the point.
In our terminology introduced in 5.1, l, p should be separated by a simple
line. More strictly the following holds:

(Sep) For every line l < x and every point p < x such that ¬Ad(l, p),
there is a simple line c < x separating l and p.

This principle is supposed to capture the fact that a surface, though richer
than a line, is not a solid.
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2. Non-Separation Principle (or: Surfaces are no lines). Suppose now
we have a path [p, q] on the surface x and suppose we cut x along the open
path (p, q). What will happen? It is possible for x to split as we can easily
see by an example (see figure 11 below), but this splitting does not separate
p, q, i.e., p, q belong to the same component of An(x\(p, q)). If p, q were
separated by the extraction of (p, q), that would mean that every transition
from p to q across x is made possible only through the path (p, q), or that
there is no path between p, q disjoint from (p, q). This is quite an unnatural
fact for a surface. Similarly, if p, q are points of a circle c lying on x and we
remove the two open paths joining them along c, we cannot expect that p, q
will separate, even if x is going to split.

Figure 11

To generalize this fact we simply have to consider any finite number of
open paths joining p, q and postulate that p, q are not separated by the ex-
traction of all of them. This principle is formulated as follows:

(Non-Sep) For every p, q < x and every finite number of open paths
l1, . . . , ln of x joining p, q, the latter are not separated
after the extraction of l1, . . . , ln, i.e., p, q belong to the
same component of An(x\l1, . . . , ln).

If a continuum x violates Non-Sep, then there exist two points p, q <
x which communicate via only finitely many paths, hence the piece of x
“extending between p and q” is just a line. Therefore we can think of the
principle as capturing the fact that no part of the surface degenerates to a
line. Thus we propose the following definition of a surface:

Definition 5.2 A surface is any nontrivial continuum x satisfying the prin-
ciples Sep and Non-Sep.

In view of the Jordan-type result 3.5, Sep can also be stated equivalently
as follows:

40



(Sep′) For any line l < x and any p < x such that ¬Ad(l, p), there
is a simple line c < x such that any path joining p with any
point q of l meets c.

It is by no means provable from the axioms introduced so far that sur-
faces exist. For instance it is perfectly possible for the space 1 to be just
a line. But even if our space is not a line, this simply means (according to
definition 3.9) that either there exists a point p from which infinitely many
disjoint paths start, or there are two points p, q joined by infinitely many
paths. Neither of these facts imply the existence of a surface. Therefore
what we need to postulate first is the following:

C10: Surfaces exist.

Let us make sure that:

Proposition 5.3 No line is a surface.

Proof. Let x be a line and p, q < x. By definition there are finitely many
open paths connecting p, q. Therefore, removing them all, p, q are separated
in x. This means that x violates Non-Sep. 2

Proposition 5.4 Let x be a surface. For any line l < x, every component
y ∈ An(x\l) is again a surface. The same is true for y ∨ l.

Proof. Let y ∈ An(x\l). We have to show that y satisfies Sep and Non-
Sep. The last claim follows then easily.

Sep: Let m, p < y be a line and a point respectively such that ¬Ad(p,m).
Applying Sep to x we find a simple line c < x separating m, p in x. Let
c′ = c ∧ y. Clearly, c′ is a simple line in y and it suffices to verify that c′

separates m, p in y. Indeed, assume the contary. This means that m, p are
connected in y by a path that omits c′. But then this path omits also c in x,
which contradicts the fact that c separates m, p in x.

Non-Sep: Let p, q < y and let mi, i ≤ k, be k open paths in y joining p, q.
Suppose p, q separate in y after removing the paths mi. This means that
every path in y joining p, q crosses some mi. All the remaining paths joining
p, q in x obviously cross l. Call X the set of all paths which join p, q and
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cross l, and let X = {cn : n ∈ N} be an enumeration of X. For each n, it is
easy to see that there is a maximal subpath dn < cn∧y, such that p < dn and
dn ∧ l = 0, as well as a maximal subpath en < cn ∧ y such that q < en and
en∧ l = 0. Also, dn, en have end-points pn, qn on l. If the set {dn, en : n ∈ N}
is infinite, we can easily choose (using choice) suitable points rn < y, n ∈ N,
either on (p, pn) or on (q, qn), and find via them an infinity of distinct paths
(p, rn] ∨ [rn, q) inside y. This however would contradict the hypothesis that
y contains only the paths mi joining p, q. Therefore the set {dn, en : n ∈ N}
is finite, and so is also the set {pn, qn : n ∈ N} of the points where the paths
meet l. Each such pair of points pi, pj determines a path [pi, qj] on l as well
as a path oij = (p, pi) ∨ [pi, qj] ∨ (qj, q) joining p, q along some part of l. If
we now remove mi, as well as the finitely many open paths oij, from x it is
clear that p, q will be separated in x. This contradicts the hypothesis about
x and proves the claim. 2

Proposition 5.5 (a) Any two points of a surface are joined by infinitely
many disjoint paths.

(b) From any two points on a surface there passes a circle.

Proof. Both claims are immediate consequences of Non-Sep. 2

If l is a line on a surface x and x does not split over l, we say that l is a
boundary line of x. For instance, if x splits over l, then for each y ∈ An(x\l),
y∨ l is a surface having l as a boundary line. Suppose c is a circle on x and x
splits into two parts x1, x2 over c. Then, intuitively, two, one or none of the
x1, x2 are “bounded” surfaces (as in (a), (b) and (c), respectively of figure
12). We would like to call a bounded such piece a “region”.

Figure 12

But with the means available so far, capturing boundedness seems infea-
sible. This is because we cannot distinguish among the decompositions (a),
(b), (c) above. This inability is closely connected with the inability to tell
what “inside” and “outside” of a circle means. For instance this is impossi-
ble to tell in the cases (a) and (c) of the figure 12, even when we are given
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the usual metric of the space. The notions of “inside” and “outside” are
attributed only to splittings in which the two parts x1, x2, first, are measured
in some way and, second, their measures are found to be “very unequal”,
e.g. one having finite and the other infinite measure. Then the “inside” part
is just the one with the small measure. Without such an asymmetry of the
parts, the inside-outside distinction loses its sense.
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