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Abstract

The powerset operator, P, is an operator which (1) sends sets to
sets,(2) is defined by a positive formula and (3) raises the cardinality
of its argument, i.e., |P(x)| > |x|. As a consequence of (3), P has a
proper class as least fixed point (the universe itself). In this paper we
address the questions: (a) How does P contribute to the generation of
the class of all positive operators? (b) Are there other operators with
the above properties, “independent” of P?

Concerning (a) we show that every positive operator is a combi-
nation of the identity, powerset, and almost constant operators. This
enables one to define what a P-independent operator is. Concerning
(b) we show that every P-independent bounded positive operator is
not P-like.
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1 Introduction

The powerset operation is at the same time the strength and the
weakness of set theory: The strength because it is the main tool for
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building the set universe (if there is such a thing), and the weakness
because of its relative character. There are a great many different
powersets of a given set (depending on the model in which the set is
located), with none of them being any better or worse with respect to
the others. Specifically many people doubt e.g. a) if there is such a
thing as “the universe of sets”, b) if there is such a thing as “the set
of real numbers”, c) if the Continuum Hypothesis (CH) is a definite
mathematical statement. For example in Feferman [2], p. 405, we
read:

My own view – as is widely known – is that the Contin-
uum Hypothesis is what I have called an “inherently vague”
statement, and that the continuum itself, or equivalently
the powerset of the natural numbers, is not a definite math-
ematical object. Rather, it’s a conception we have of the
totality of “arbitrary” subsets of the set of natural num-
bers, a conception that is clear enough for us to ascribe
many evident properties to that supposed object (such as
the impredicative comprehension axiom scheme) but which
cannot be sharpened in any way to determine or fix that
object itself.

Let L = {∈} be the language of set theory augmented with class
(i.e. second-order) variables denoted by upper case letters X,Y, S etc.
As usually lower case variables range over sets. In this paper we treat
the powerset P as an operator, i.e., as a definable mapping from classes
to classes. In general a (unary) operator with parameters is produced
by a second-order formula φ(v, c, S) of the language of set theory,
where S is a class variable, v is a set variable and c = (c1, . . . , cn) is
a tuple of set parameters. φ(v, c, S) gives rise to the operator Γφ(c)

defined by
Γφ(c)(X) = {x : φ(x, c,X)}. (1)

In general Γφ(c) sends classes to classes but, mainly, we shall be inter-
ested in those φ such that for every set a, Γφ(c)(a) is a set. Such an
operator will be called set-theoretic, or a set-operator.

An operator Γφ(c) is said to be monotone if X ⊆ Y ⇒ Γφ(c)(X) ⊆
Γφ(c)(Y ). In order for Γφ(c) to be monotone it suffices for φ to be
positive in S. φ is positive in S if it is constructed from formulas
not containing S and atomic formulas u ∈ S using only the logical
operations ∧, ∨, ∃ and ∀. (See e.g. [3].)
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Remark 1.1 Most of the time we shall be dealing with mappings
Γφ(c)(a) where Γφ(c) is a set-theoretic positive operator and a is a set.
So why appeal to formulas φ(v, c, S) with a class variable S? The
reason is that in the definition of positive formulas we want the only
atomic formula containing S to be of the form u ∈ S. If instead of
S we had a set variable s, then we should allow positive formulas
containing, besides u ∈ s, the atomic formulas u = s and s ∈ u. This
on the one hand may contradict the fact that Γφ(c) is set theoretic
(e.g. if s ∈ u is allowed) and on the other it makes lemma 1.2 below
false.

The following canonical form for positive formulas will be heavily
used throughout this paper.

Lemma 1.2 (Moschovakis) Let φ(v, c, S) be a positive formula of L.
Then there is a quantifier-free and S-free formula θ(v, c, w, u), where
w = (w1, . . . , wm), and a string of quantifiers Q = (Q1, . . . , Qm) such
that, for every x and every class X 6= V ,

φ(x, c,X) ⇐⇒ (Qw)(∀u)(θ(x, c, w, u) ∨ u ∈ X).

Proof. See [3], pp. 57-58. a

By 1.2 we may assume that every positive formula has the form

φ(v, c, S) := (Qw)(∀u)(θ(v, c, w, u) ∨ u ∈ S). (2)

We shall refer to (2) as the canonical form of φ. The string of quan-
tifiers Q in the above form measures the complexity of φ.

The letters Γ, ∆ etc. will range over positive operators. Positivity
is a syntactic property, hence absolute for the various fragments of
ZF. So let us set

O = {Γ : Γ is positive operator of the language of set theory}.

The main operation in O is composition, but there are also certain
natural finitary operations under which O is closed. Given Γ1, . . . ,Γn,
let Γ1 ∪ · · · ∪ Γn, Γ1 ∩ · · · ∩ Γn, be the operators defined by

(Γ1 ∪ · · · ∪ Γn)(X) = Γ1(X) ∪ · · · ∪ Γn(X),

(Γ1 ∩ · · · ∩ Γn)(X) = Γ1(X) ∩ · · · ∩ Γn(X).
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Clearly if Γ1, . . . ,Γn are positive then so are Γ1 ∪ · · · ∪ Γn and Γ1 ∩
· · · ∩ Γn.

Given any family G of positive operators, let

〈G〉

denote the smallest class containing the elements of G and closed under
composition and finite unions and meets.

There are various infinitary versions of ∪ and ∩. First we have
those induced by formulas with parameters φ(c). For any specific c,
we have the operator Γφ(c), so they induce the operators

⋃
c∈V Γφ(c),⋂

c∈V Γφ(c) defined by

⋃

c∈V

Γφ(c)(X) = {x : (∃c)(x ∈ Γφ(c)(X)},

⋂

c∈V

Γφ(c)(X) = {x : (∀c)(x ∈ Γφ(c)(X)}.

Such infinitary
⋃

and
⋂

are called uniform, as they come from a single
formula. Given a family G let

〈G〉unif

denote the smallest family containing G and closed under composition,
finitary ∪,∩ and uniform

⋃
,
⋂

. Obviously, uniform
⋃

,
⋂

correspond
to unbounded quantifiers and

〈G〉 ⊆ 〈G〉unif

In the last section we shall consider also some other kinds of infinitary⋃
,
⋂

.
In the class of all operators the constant or almost constant ones

naturally play a significant role.

Definition 1.3 Γ is said to be almost constant if there is a set size
family of classes {Ai : i ≤ µ}, µ a cardinal number, such that for
every set x, Γ(x) = Ai, for some i ≤ µ. If Γ(x) = A for all x, Γ is said
to be constant and is denoted CA. The class of all almost constant
operators is denoted by C.
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Remark 1.4 Note that in the above definition we require Γ to be
almost constant on sets only and not on all classes. And the latter
is not implied by the former. For example the operator Γ(X) = {x :
(∀y)(x ∈ y ⇒ y ∈ X)} is constant on sets, namely, Γ(a) = ∅ for every
set a, but not on proper classes. The two notions, however, coincide
for “set-continuous” operators (see [1]). Γ is said to be set-continuous
if for every class X, Γ(X) =

⋃{Γ(x) : x ⊆ X}. Most of the common
positive operators, like P, are set-continuous. It is easy to check that
if Γ is set-continuous, and almost constant on sets, then it is almost
constant on all classes.

We come now to the powerset operator. The main characteristics
of P are the following:

(1) It is set-theoretic (this of course being a consequence of the
powerset axiom).

(2) It is positive.
(3) |x| < |P(x)|, for every set x.
An immediate consequence of (3) is
(4) The least fixed point of P is a proper class (the universe itself,

if we work in ZFC1).
Of the above properties (3) is obviously the crucial one. We can

easily find set-theoretic positive operators, “independent” of P, satis-
fying (1), (2) and (4). For example the operator of the induction that
generates the class of ordinals is of this kind. But (3) seems to be
inherently connected with P.

Definition 1.5 An operator Γφ(c) ∈ O is said to be P-like if it satis-
fies properties (1)-(3) above.

The questions we address in this paper are the following:

(a) What is the role of P in the creation of the class of all positive
operators?

(b) Are there other P-like operators “independent” of P?
In section 2 we answer question (a): Every positive operator is

a combination of the identity operator Id, the powerset, and almost

1If we work in ZFC minus foundation, the least fixed point of P is Vwf , the class of
well-founded sets.

5



constant operators. This enables one to give a strict definition of P-
independent operators. In section 3 we consider and partially answer
question (b): Every P-independent bounded operator Γ (i.e., defined
by a bounded positive formula), is not P-like.

2 Generating the class of positive op-

erators

In this section we shall prove the following:

Theorem 2.1 The class of all positive operators is generated from
P, Id and almost constant operators by composition and finitary and
uniformly infinite unions and intersections. That is

O = 〈P, Id, C〉unif .

We consider first the operators Γφ(c) for φ(v, c, S) with canonical
form (Qw)(∀u)(θ(v, c, w, u) ∨ u ∈ S), where Q = ∅.

Proposition 2.2 Let φ(v, c, S) = (∀u)(θ(v, c, u) ∨ u ∈ S), where c =
(c1, . . . , cn), n ≥ 0 is a tuple of parameters, and θ is a disjunction of
atomic and negated atomic formulas. Then Γφ(c) = CB ∪∆, where B
is a constant class and ∆ = P, or ∆ = Id, or ∆ ∈ C.

Proof. The proof is by examining several cases. There are seven
main cases which we designate by the letters A through G. In some
of them subcases are also considered, designated by letters (a), (b)
etc., and even subcases of them of the form (a1), (a2) etc. Cases A-
G arise from a syntactic analysis of θ above. Case A is somewhat
trivial. The nontrivial cases B-G are produced by five properties (of
the metalanguage) concerning θ, P1 − P5 in the following way, which
obviously makes A-G form a partition of truth:

B: P1,
C: ¬P1 & P2,
D: ¬P1 & ¬P2 & P3,
E: ¬P1 & ¬P2 & ¬P3 & P4,
F: ¬P1 & ¬P2 & ¬P3 & ¬P4 & P5,
G: ¬P1 & ¬P2 & ¬P3 & ¬P4 & ¬P5.
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(A): u does not occur in θ.
Then for every set a, Γφ(c)(a) = {x : (∀u)(θ(x, c) ∨ u ∈ a} =

{x : θ(x, c) ∨ (∀u)(u ∈ a)} = {x : θ(x, c)} = A, which is a constant
class. Hence Γφ(c) = CA. So the claim holds. (This case includes the
particular cases where θ = > or ⊥.)

From now on we assume that u occurs in θ and θ 6⇔ >,⊥. By
assumption θ = σ1 ∨ · · · ∨ σk, where each σi is atomic or negated
atomic. We refer to σi as literals. Let W = {v, u, c1, . . . , cn} be the
set of variables and constants of θ. We let the letters α, β range over
elements of W . For any α, β ∈ W , let F (α, β) be the set of literals
containing α, β. Namely

F (α, β) = {α ∈ β, β ∈ α, α = β, α /∈ β, β /∈ α, α 6= β}.

Each σi belongs to some F (α, β). Without loss of generality we may
assume that no σi is in some F (α, α). This is because the formulas of
F (α, α) are either valid in ZF (α = α, α /∈ α) or contradictory (α 6= α,
α ∈ α). If some σi is valid then θ ⇔ > and we are reduced to case
A above. If some σi is contradictory, we may drop it. If all σi are
contradictory, then θ ⇔ ⊥, and we go back to case A again.

So let σi ∈ F (α, β) for α 6= β. Further let θ = θ1 ∨ θ2 where θ1 is
the disjunction of literals containing u and θ2 the disjunction of the
rest. Then

Γφ(c)(a) = {x : θ2(x, c) ∨ (∀u)(θ1(x, c, u) ∨ u ∈ a)} =

{x : θ2(x, c)} ∪ {x : (∀u)(θ1(x, c, u) ∨ u ∈ a)} =

B ∪ {x : (∀u)(θ1(x, c, u) ∨ u ∈ a)},
where B is a constant class depending on c. So Γφ(c) = CB ∪∆, where

∆(X) = {x : (∀u)(θ1(x, c, u) ∨ u ∈ X)}

and u occurs in every literal of θ1. So from now on without loss of
generality we may assume that θ = θ1 and ∆ = Γφ(c).

Since u occurs in every literal of θ, each σi has one of the forms:
u ∈ α, α ∈ u, u = α, u /∈ α, α /∈ u, u 6= α, where α ∈ {v, c1, . . . , cn}.
Define for every set a, the classes

−a = {u : u /∈ a}, â = {u : a ∈ u}, −â = {u : a /∈ u}.
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Then the formulas

u /∈ α, α ∈ u, α /∈ u, u = α, u 6= α

above are written, respectively,

u ∈ −α, u ∈ α̂, u ∈ −α̂, u ∈ {α}, u ∈ −{α}.

Let Θ1(v, u) be the set of literals of θ containing only v and u and
Θ2(u, c) be the set of the rest. Then θ = θ1 ∨ θ2 where θ1 =

∨
Θ1 and

θ2 =
∨

Θ2, and, in view of the above translation,

Θ1 ⊆ {u ∈ v, u ∈ −v, u ∈ v̂, u ∈ −v̂, u ∈ {v}, u ∈ −{v}}. (3)

To write out Θ2 let us use distinct letters for constants appearing
in distinct types of literals. Namely the letters b, d, e, f, g, h, with
subscripts, are used for constants occurring in the following formulas
respectively:

u ∈ b, u ∈ −d, u ∈ ê, u ∈ −f̂ , u ∈ {g}, u ∈ −{h}.

Then

Θ2 ⊆ {u ∈ bi, u ∈ −dj , u ∈ êk, u ∈ −f̂l, u ∈ {gm}, u ∈ −{hp}}, (4)

where i, j, k, l, m, p range over certain finite sets. Using just classes
instead of formulas, (3) and (4) are written

Θ′
1(v) ⊆ {v,−v, v̂,−v̂, {v},−{v}}, (5)

Θ′
2(b, d, e, f , g, h) ⊆ {bi, −dj , êk, −f̂l, {gm}, −{hp}}. (6)

In this notation we easily see that

Γφ(c)(X) = {x :
⋃

Θ′
1(x) ∪

⋃
Θ′

2(b, d, e, f , g, h) ∪X = V },

or, in more detail,

Γφ(c)(X) = {x :
⋃

Θ′
1(x) ∪ (

⋃

i

bi) ∪ (
⋃

j

−dj) ∪ (
⋃

k

êk) ∪ (
⋃

l

−f̂l)∪

(
⋃
m

{gm}) ∪ (
⋃
p

−{hp}) ∪X = V }. (7)
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The finite sequences b, d, e, f , g, h need not be all disjoint and some
of them may be empty. However, due to the fact that θ 6⇔ >, we do
have

b 6= d, e 6= f, g 6= h, d 6= f. (8)

(d 6= f , because for every d, −d ∪ −d̂ = V .)
If we set A =

⋃
Θ′

2(b, d, e, f , g, h), A is a constant class independent
of X (and depending only on c). So

Γφ(c)(X) = {x :
⋃

Θ′
1(x) ∪A ∪X = V }. (9)

Now we have to examine various cases concerning the forms of
Θ′

1(x) and Θ′
2(b, d, e, f , g, h). Since θ is not a tautology, Θ′

1 does not
contain complementary classes, e.g. v̂ and −v̂.

(B): Θ′
1(v) contains −{v}.

Observe that the following hold for every set x:
(i) −{x} ∪ x = −{x}.
(ii) −{x} ∪ −x = V
(iii) −{x} ∪ x̂ = −{x}.
(iv) −{x} ∪ −x̂ = V .
We consider the subcases (a) and (b) below.
(a) Suppose Θ′

1(v) contains also −v or −v̂. Then, by the relations
(ii) and (vi) above, (9) yields for every X 6= V

Γφ(c)(X) ⊇ {x : −{x} ∪ −x ∪A ∪X = V } = V

or
Γφ(c)(X) ⊇ {x : −{x} ∪ −x̂ ∪A ∪X = V } = V.

Therefore Γφ(c) = CV .
(b) Suppose Θ′

1(v) contains neither −v nor −v̂. So it may contain
only v and v̂. By (i) and (iii) above, (9) becomes

Γφ(c)(X) = {x : −{x} ∪A ∪X = V } = {x : x ∈ A ∪X} = A ∪X,

hence Γφ(c) = CA ∪ Id. In particular, if φ contains no parameters,
then Γφ(c) = Id.

(C): Θ′
1(v) does not contain −{v} and Θ′

2 contains a class −{hp}.
Then Θ′

1(v) ⊆ {v,−v, v̂,−v̂, {v}} and h 6= ∅. We shall show that
Γφ(c) is almost constant.
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If Θ′
2 contains at least two distinct such classes, −{hp}, −{hq},

then Γφ(c)(∅) ⊇ {x : −{hp} ∪ −{hq} = V } = V . The same happens if
Θ′

1(v) contains both v and −v or both v̂ and −v̂. We consider three
subcases (a), (b) and (c) which present no essential difference in their
treatment.

(a) Suppose Θ′
1(v) contains −v. Observe that for every x,

(v) −x ∪ x̂ = −x,
(vi) −x ∪ {x} = −x.
So we may assume that Θ′

1(v) ⊆ {−v,−v̂}. From the following
proof it will be clear that nothing is lost if we assume that Θ′

1(v) =
{−v,−v̂}. Then

Γφ(c)(X) = {x : −x ∪ −x̂ ∪A ∪ −{hp} ∪X = V },

where A is a constant class defined by the other possible parameters
of φ. Thus

Γφ(c)(X) = {x : hp ∈ A ∪X ∪ −x ∪ −x̂}.

If hp ∈ A ∪ X, Γφ(c)(X) = V , otherwise Γφ(c)(X) = {x : hp ∈ −x ∪
−x̂} = −ĥp ∪−hp. It follows that for every X 6= V , Γφ(c)(X) = V , or
Γφ(c)(X) = ĥp ∪ −hp, and therefore Γφ(c) is almost constant.

(b) Suppose Θ′
1(v) contains v. Suppose without loss of generality

that Θ′
1(v) = {v, v̂, {v}} (the case Θ′

1(v) = {v,−v̂, {v}} is similar).
Then

Γφ(c)(X) = {x : x ∪ x̂ ∪ {x} ∪A ∪ −{hp} ∪X = V } =

{x : hp ∈ A ∪X ∪ x ∪ x̂ ∪ {x}}.
Again if hp ∈ A ∪ X, then Γφ(c)(X) = V . Otherwise Γφ(c)(X) =
hp ∪ ĥp ∪ {hp}, i.e., Γφ(c) is almost constant.

(c) Suppose Θ′
1(v) contains neither −v nor v. Then Θ′

1(v) ⊆
{v̂,−v̂, {v}}. The treatment of all these possible subcases is as of
the previous ones and leads to the conclusion that Γφ(c) is almost
constant.

(D): Θ′
1(v) does not contain −{v} and Θ′

2 does not contain any
class −{hp} and Θ′

1(v) contains −v.
It follows from (v) and (vi) that we may assume that Θ′

1(v) ⊆
{−v,−v̂}.
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(a) Suppose Θ′
1(v) = {−v}. Then

Γφ(c)(X) = {x : −x ∪A ∪X = V } = {x : x ⊆ A ∪X} = P(A ∪X).

Therefore Γφ(c) = P(CA ∪ Id). In particular, for A = ∅, Γφ(c) = P.
(b) Suppose Θ′

1(v) = {−v̂}. Then

Γφ(c)(X) ⊇ {x : −x̂ ∪A ∪X = V } = {x : x̂ ⊆ A ∪X}.
We have to examine the form of A. In general we have

Γφ(c)(X) = {x : x̂ ⊆ (
⋃

i

bi)∪(
⋃

j

−dj)∪(
⋃

k

êk)∪(
⋃

l

−f̂l)∪(
⋃
m

{gm})∪X}.

(10)
(b1) Suppose d 6= ∅. Observe that for all x and di,
(vii) x̂ ⊆ −d1 ∪ · · · ∪ −dj ⇐⇒ d1 ∩ · · · ∩ dj ⊆ −x̂ ⇐⇒ x /∈⋃

(d1 ∩ · · · ∩ dj).
Therefore, by (vii),

Γφ(c)(∅) ⊇ {x : x̂ ⊆
⋃

j

−dj} = {x : x /∈
⋃

(d1 ∩ · · · ∩ dj)} =

−
⋃

(d1 ∩ · · · ∩ dj).

Now
⋃

(d1∩· · ·∩dj) is a set, and for every X 6= V , Γφ(c)(X) ⊇ Γφ(c)(∅),
or −Γφ(c)(X) ⊆ ⋃

(d1 ∩ · · · ∩ dj). So the family {Γφ(c)(X) : X ⊆ V } is
set size, hence Γφ(c) is almost constant.

(b2) Suppose d = ∅. Then (10) becomes

Γφ(c)(X) = {x : x̂ ⊆ (
⋃

i

bi)∪ (
⋃

k

êk)∪ (
⋃

l

−f̂l)∪ (
⋃
m

{gm})∪X}. (11)

Claim 1. For every set a, x̂ ⊆ (
⋃

i bi)∪(
⋃

k êk)∪(
⋃

l−f̂l)∪(
⋃

m{gm})∪
a ⇐⇒ x ∈ {e1, . . . , ek}.

Proof. The direction “⇐” is obvious. For the converse, suppose
x /∈ {e1, . . . , ek}. Then pick a set y such that

(i) x ∈ y, (ii) {e1, . . . , ek}∩y = ∅. (iii) {f1, . . . , fl} ⊆ y, and (iv) y /∈
(
⋃

i bi)∪ (
⋃

m{gm})∪a. Note that (ii) and (iii) are compatible because
of the assumption (8). Then by (i), y ∈ x̂, by (ii), y /∈ ⋃

k êk and by
(iii) y /∈ ⋃

l−f̂l. Hence y /∈ (
⋃

i bi)∪ (
⋃

k êk)∪ (
⋃

l−f̂l)∪ (
⋃

m{gm})∪a.
Therefore x̂ 6⊆ (

⋃
i bi)∪ (

⋃
k êk)∪ (

⋃
l−f̂l)∪ (

⋃
m{gm})∪a. This proves

the claim.

11



It follows from Claim 1 that for every set a,

Γφ(c)(a) = {x : x̂ ⊆ (
⋃

i

bi) ∪ (
⋃

k

êk) ∪ (
⋃

l

−f̂l) ∪ (
⋃
m

{gm}) ∪ a} =

{x : x ∈ {e1, . . . , ek}} = {e1, . . . , ek}.
Hence Γφ(c) is constant.

(c) Finally suppose Θ′
1(v) = {−v,−v̂}. Then

Γφ(c)(X) ⊇ {x : −x ∪ −x̂ = V } = V,

hence Γφ(c) = CV , i.e., Γφ(c) is constant.

(E) : Θ′
1(v) does not contain −{v} and Θ′

2 does not contain any
class −{hp} and Θ′

1(v) does not contain −v and Θ′
1(v) contains −v̂.

Then Θ′
1(v) ⊆ {v,−v̂, {v}}. Observe that

(vii) −x̂ ∪ {x} = −x̂ and
(viii) −x̂ ∪ x = −x̂.
By (vii) and (viii) we may assume that Θ′

1(v) = {−v̂}.
But this is a minor modification of case C (b).

(F): Θ′
1(v) does not contain −{v} and Θ′

2 does not contain any
class −{hp} and Θ′

1(v) does not contain −v and Θ′
1(v) does not

contain −v̂ and d = ∅.
Then Θ′

1(v) ⊆ {v, v̂, {v}}.
(a) Suppose Θ′

1(v) contains v̂. Then

Γφ(c)(X) = {x : x∪{x}∪x̂∪(
⋃

i

bi)∪(
⋃

k

êk)∪(
⋃

l

−f̂l)∪(
⋃
m

{gm})∪X = V }.

Claim 2. For every set a, Γφ(c)(a) = {f1, . . . , fl}. Hence Γφ(c) is
constant.

Proof. Obviously {f1, . . . , fl} ⊆ Γφ(c)(a). For the converse let y /∈
{f1, . . . , fl}. Towards reaching a contradiction, assume y ∈ Γφ(c)(a).
By the above expression of Γφ(c)(a), clearly, ŷ ∪ (

⋃
k êk) ∪ (

⋃
l−f̂l)

would be a coset, or equivalently, −ŷ ∩ (
⋂

k−êk) ∩ (
⋂

l f̂l) would be a
set. But

u ∈ −ŷ ∩ (
⋂

k

−êk) ⇐⇒ {y, e1, . . . , ek} ∩ u = ∅

and
u ∈

⋂

l

f̂l ⇐⇒ {f1, . . . , fl} ⊆ u.

12



By (8) and the fact that y /∈ {f1, . . . , fl}, {y, e1, . . . , ek}∩{f1, . . . , fl} =
∅. So there are class many u in −ŷ∩(

⋃
k−êk)∩(

⋂
l f̂l), a contradiction.

(b) Suppose Θ′
1(v) does not contain v̂. Then Θ′

1(v) ⊆ {v, {v}}. So

Γφ(c)(X) = {x : x∪{x}∪(
⋃

i

bi)∪(
⋃

k

êk)∪(
⋃

l

−f̂l)∪(
⋃
m

{gm})∪X = V }.

If we set
A = (

⋃

i

bi) ∪ (
⋃

k

êk) ∪ (
⋃

l

−f̂l) ∪ (
⋃
m

{gm}),

then clearly A is not a coset. Therefore for every set a, Γφ(c)(a) = {x :
x ∪ {x} ∪A ∪ a = V } = ∅. Hence Γφ(c) is constant.

(G): Θ′
1(v) does not contain −{v} and Θ′

2 does not contain any
class −{hp} and Θ′

1(v) does not contain −v and Θ′
1(v) does not

contain −v̂ and d 6= ∅.
(a) Suppose first that Θ′

1(v) contains v̂. Assume for simplicity
that d consists of a single parameter d (the case of many d’s is quite
similar). Then for every set a,

Γφ(c)(a) = {x : x ∪ x̂ ∪ {x} ∪B ∪ −d ∪ a = V },

where B is the constant class defined from the rest of the parameters.
The above is written

Γφ(c)(a) = {x : d ∩ −B ∩ −a ⊆ x ∪ x̂ ∪ {x}}.

If d∩−B∩−a = ∅, then clearly Γφ(c)(a) = V . So assume d∩−B∩−a 6=
∅. Now observe that

X ⊆ x ∪ x̂ ∪ {x} ⇐⇒ (∀y)(y ∈ X → y ∈ x ∨ x ∈ y ∨ x = y) ⇐⇒

(∀y)(y ∈ X ∧ y /∈ x ∧ y 6= x → x ∈ y) ⇐⇒ x ∈
⋂

(X − (x ∪ {x})).
Therefore

Γφ(c)(a) = {x : x ∈
⋂

(d∩−B∩−a−(x∪{x}))} =
⋂

(d−(B∪a∪x∪{x})).
(12)

We have the following subcases:
(a1) d ⊆ B ∪ a. Then for every x, d − (B ∪ a ∪ x ∪ {x}) = ∅

hence
⋂

(d − (B ∪ a ∪ x ∪ {x})) =
⋂ ∅ = V . Therefore, by (12),

Γφ(c)(a) = {x : x ∈ V } = V .

13



(a2) d 6⊆ B ∪ a. Then, for x /∈ d∪P(d), d− (B ∪ a∪ x∪ {x}) 6= ∅,
hence for such x,

⋂
(d−(B∪a∪x∪{x})) ⊆ ⋃

d. By (12), Γφ(c)(a) ⊆ ⋃
d.

If for some x, d ⊆ B∪a∪x∪{x}, then clearly x ∈ d∪P(d). Therefore
in any case Γφ(c)(a) ⊆ (

⋃
d)∪d∪P(d). Thus Γφ(c) is almost constant.

(b) Now suppose that Θ′
1(v) does not contain v̂, i.e., Θ′

1(v) ⊆
{v, {v}}. Then as in the previous case, for every set a,

Γφ(c)(a) = {x : x∪{x}∪B∪−d∪a = V } = {x : d−(B∪a) ⊆ x∪{x}}.

Recall that d is a constant set and B a constant class. So when a ranges
over all sets, d− (B ∪ a) ranges over some subsets of d. Therefore for
a ∈ V , the classes {x : d − (B ∪ a) ⊆ x ∪ {x}} are set many, hence
Γφ(c) is almost constant.

We have exhausted all possible cases, so the proof is complete. a

Proposition 2.3 Let φ(v, c, S) ⇔ (∀u)(θ(v, c, u) ∨ u ∈ S). Then
Γφ(c) = Γ1 ∩ · · · ∩ Γk, where for each i, Γi = P, or Γi = Id, or Γi is
almost constant. Therefore Γφ(c) ∈ 〈P, Id, C〉.

Proof. Let θ =
∧

i≤k θi be the conjunctive normal form of θ. Then
each θi is a disjunction of atomic or negated atomic formulas. More-
over we have

φ(v, c, S) ⇔ (∀u)(θ ∨ u ∈ S) ⇔ (∀u)(
∧

i≤k

θi ∨ u ∈ S) ⇔

(∀u)
∧

i≤k

(θi ∨ u ∈ S) ⇔
∧

i≤k

[(∀u)(θi ∨ u ∈ S)].

Therefore, if φi(v, c, S) := (∀u)(θi(v, c, u)∨u ∈ S), then for all X 6= V ,
Γφ(c)(X) =

⋂
i≤k Γφi

(X). By proposition 2.2, each Γφi
is the join of

a constant with either P, or Id, or an almost constant. So the claim
follows. a

Proof of Theorem 2.1. Obviously 〈P, Id, C〉unif ⊆ O. For the
converse observe that if φ(v, c, S) = (∃w)ψ(v, c, w, S), then

Γφ(c)(X) = {x : φ(x, c,X)} = {x : (∃d)ψ(x, c, d, X)} =

{x : (∃d)[x ∈ Γψ(c,d)(X)]} =
⋃

d∈V

Γψ(c,d)(X),
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that is, Γφ(c) =
⋃

d∈V Γψ(c,d). Similarly if φ(v, c, S) = (∀w)ψ(v, c, w, S),
then Γφ(c) =

⋂
d Γψ(c,d). Let Γφ(c) ∈ O and let the canonical form of

φ(v, c, S) be

(Q1w1) · · · (Qmwm)(∀u)(θ(v, c, w, u) ∨ u ∈ S).

It follows that if ψ(c, d, S) = (∀u)(θ(v, c, d, u) ∨ u ∈ S) then

Γφ(c) = U1
d1∈V · · ·Um

dm∈V Γψ(c,d),

where U i =
⋃

if Qi = ∃ and U i =
⋂

if Qi = ∀. By proposition 2.3,
Γψ(c,d) ∈ 〈P, Id, C〉, therefore Γφ(c) ∈ 〈P, Id, C〉unif . a

3 P-independence and P-likeness

Theorem 2.1 enables us to give a strict definition of “P-independent”
operator. Since every positive operator is in 〈P, Id, C〉unif , the follow-
ing definition is natural:

Definition 3.1 A positive operator Γ is said to be P-independent if

Γ ∈ 〈Id, C〉unif .

In this section we shall address the question: Are there P-independent
P-like positive operators? The question, in its full generality, is still
open to us but we strongly guess that the answer is negative. So we
state it in the form of a conjecture.

Conjecture Every P-independent positive operator is not P-like.

The main difficulty in handling the above question is the fact that
if Γφ(c), c ∈ V , is a uniform family and each Γφ(c) is almost constant,
then

⋂
c∈V Γφ(c) and

⋃
c∈V Γφ(c) need not be almost constant (see the

example after lemma 3.4). In short one does not have control on
the behavior of the infinitary operations

⋂
and

⋃
. So instead of the

general forms of the latter we shall consider their bounded versions,
which correspond to bounded quantifiers, i.e., to bounded formulas of
set theory.

Definition 3.2 An operator Γ is said to be bounded if it is defined
by a bounded formula, i.e., a formula in which every quantifier is of
the form ∀x ∈ y, ∃x ∈ y.
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Given a formula φ(c) and a set a, the operators
⋃

c∈a Γφ(c) and⋂
c∈a Γφ(c) are said to be produced by bounded uniform

⋃
and

⋂
.

Let Ob denote the class of bounded positive operators. Given a
class of operators G, let

〈G〉bunif

denote the smallest class of operators containing G, closed under com-
position, finitary ∪, ∩ and bounded uniform

⋃
and

⋂
.

The following is a “bounded version” of Moschovakis’ lemma 1.2.

Lemma 3.3 Let φ(v, c, S) be a positive bounded formula of L. Then
there is a quantifier-free and S-free formula θ(v, c, w, u), where w =
(w1, . . . , wm), and a string of bounded quantifiers Q = (Q1, . . . , Qm)
such that, for every x and every class X 6= V ,

φ(x, c,X) ⇐⇒ (Qw)(∀u)(θ(x, c, w, u) ∨ u ∈ X).

Proof. The proof follows by inspection of the proof of the general
result 1.2. a

An immediate consequence of 3.3 and the proof of theorem 2.1 is
the following:

Lemma 3.4 Ob = 〈P, Id, C〉bunif .

Note that simple positive operators, like the union operator ∪, do
not belong to Ob. For instance ∪X = {x : (∃y)(y ∈ X ∧ x ∈ y)} =⋃

c∈V Cc(X), where for every set c, Cc is the almost constant operator
defined by: Cc(X) = c if c ∈ X and Cc(X) = ∅ otherwise. This is
because, despite its intuitive simplicity, ∪ has a defining formula with
canonical form in which the prefix Q is non-empty, namely Q = ∃.

Finally, given a class of operators G, let

〈G〉set
denote the smallest class containing G, and closed under composition,
and the following condition: If I is a set and Γi, i ∈ I is a subfamily
of G indexed by I, then

⋃
i∈I Γi,

⋂
i∈I Γi are in 〈G〉set. Obviously for

every G,
〈G〉 ⊆ 〈G〉bunif ⊆ 〈G〉set.
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Lemma 3.5 If Γ ∈ 〈Id, C〉set, then Γ can be expressed in the following
disjunctive normal form,

Γ =
⋃

i∈I

⋂

j∈Ji

Γij ,

where I and Ji for each i ∈ I are sets, and Γij = Id or Γij ∈ C.

Proof. By induction on the length of the words of the algebraic
structure 〈Id, C〉set.

(a) For Γ = Id or Γ ∈ C this is obvious.
(b) Let Γ = Γ1 ◦ Γ2 and suppose the claim is true for Γ1,Γ2.

Let Γ1 =
⋃

i∈I

⋂
j∈Ji

Γij . Then Γ = Γ1 ◦ Γ2 =
⋃

i∈I

⋂
j∈Ji

(Γij ◦ Γ2). If
Γij ∈ C, then clearly Γij ◦Γ2 ∈ C. If Γij = Id, then Γij ◦Γ2 = Γ2, which
has also a disjunctive normal form, hence, by the usual distributive
laws for

⋃
and

⋂
, Γ1 ◦Γ2 can be expressed in the above normal form.

(c) If Γ =
⋃

i∈I Γi or Γ =
⋂

i∈I Γi, where Γi have normal forms,
then Γ can easily be written in normal form (using the distributive
law in the case of

⋂
). This completes the proof. a

Lemma 3.6 Let Γ ∈ 〈Id, C〉set. Then either Γ is non-set-theoretic,
or for some x, |Γ(x)| ≤ |x|.

Proof. Let Γ ∈ 〈Id, C〉set. By lemma 3.5, Γ =
⋃

i∈I

⋂
j∈Ji

Γij , where
Γij = Id or Γij ∈ C. For every i ∈ I, let Γi =

⋂
j∈Ji

Γij . So Γ =
⋃

i∈I Γi

and we call Γi clauses. Let Γ∗i =
⋂

j∈Ji,Γij 6=Id Γij . Obviously, Γ∗i = Γi

if the clause Γi is Id-free, i.e., if for every j ∈ Ji, Γij 6= Id.
We distinguish the following cases:
(a) For some i0, Γi0 is Id-free and non-set-theoretic. Then Γ∗i0 =

Γi0 and Γ∗i0(x) is a proper class X, for some x. Thus Γ(x) =
⋃

i Γi(x) ⊇
Γi0(x) = X; hence Γ is non-set-theoretic.

(b) Let (a) be false, i.e, for every i, Γi either contains Id or is
set-theoretic. Let I ′ = {i ∈ I : Γi is Id-free} and let ∆ =

⋃
i∈I′ Γi. By

assumption for every i ∈ I ′, Γi is set-theoretic and Γi ∈ C; therefore
∆ ∈ C, and is set-theoretic. So there is a set s such that ∆(x) ⊆ s for
every set x. Moreover Γ = (

⋃
i∈I−I′ Γi)∪∆, where for every i ∈ I− I ′,

Γi(x) = Γ∗i (x) ∩ x. Thus for every x

Γ(x) = (
⋃

i∈I−I′
(Γ∗i (x) ∩ x)) ∪∆(x).
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Since |Γ∗i (x)∩x| ≤ |x|, it follows from the last equation that for every
x, |Γ(x)| ≤ |x|+ |s|. So taking an infinite x such that |x| ≥ |s|, we get
|Γ(x)| ≤ |x|. Hence Γ is non-cardinality-increasing. This completes
the proof. a

Theorem 3.7 Every P-independent positive bounded operator is not
P-like.

Proof. Let Γ be positive, bounded and P-independent. Then by
lemma 3.4, Γ ∈ 〈Id, C〉bunif . Hence Γ ∈ 〈Id, C〉set. By lemma 3.6, either
Γ is non-set-theoretic, or for some x, |Γ(x)| ≤ |x|. Therefore Γ is not
P-like. a

By the preceding theorem, P is, essentially, the only bounded oper-
ator satisfying properties (1)-(3). This looks a little bit strange, and it
might reasonably suggest that P doesn’t satisfy all (1)-(3) either. But
of the properties (1)-(3) only (1) is disputable (the others being simple
mathematical facts), since it is just an axiom of ZF independent from
the other ones. Thus P might reasonably be non-set-theoretic, which
means that the powerset axiom could be false.

Let ZF− P be the theory ZF minus the powerset axiom. Work-
ing in ZF− P provides another natural notion of P-independence.
Namely if Γ is a set-operator in the sense of ZF− P, i.e., ZF− P `
∀x∃y(Γ(x) = y)), then one feels that Γ cannot be related to P. The
question is: Are the two notions of P-independence related? What we
know is the following straightforward consequence of lemma 3.5:

Proposition 3.8 If Γ is positive and set-theoretic then our first no-
tion of P-independence implies the last one, i.e.,

Γ ∈ 〈Id, C〉bunif ⇒ ZF− P ` ∀x∃y(Γ(x) = y).

Open Problems. 1) Is 3.8 true with 〈Id, C〉unif in place of 〈Id, C〉bunif?
2) Is the converse of 3.8, as well as of Problem 1, true?
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