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“The air”, you said in language fine,
Which scientific thought expresses,
“The air— which with a megadyne
On each square centimetre presses—
The air, and may I add the ocean,
Are nought but molecules in motion.”

Atoms, you told me were discrete,
Than you they could not be discreter,
Who know how many Millions meet
Within a cubic millimetre.

They clash together as they fly,

But you! — you cannot tell me why. 2

The foundations of statistical and thermal physics is not a field that has been
able to attract the attention of philosophers of physics in large crowds. On the
contrary, there seems to be widespread consensus that philosophically exciting
problems in physics are found only in quantum theory and, to a lesser extent,
in the theory of relativity. To anyone accustomed to the idea that classical
physics is basically a finished, clear-cut and philosophically unproblematic body
of knowledge it may come as a surprise how many serious problems this field has
in store and how unexploited this rich field has remained until now. A book on
the subject by the well-known philosopher of physics Lawrence Sklar is therefore
most welcome. The state of neglect in which the subject finds itself is perhaps
no better illustrated than by the fact that a large section in the opening chapter
of the book is devoted merely to a summary of the famous survey article by
Paul and Tatiana Ehrenfest of 1911 on the statistical approach in mechanics.
This work has in all the intervening years lost little of its urgency; nor has it
been rendered superfluous in the sense that the many problems it raises have
been solved by modern developments.

This is not to say, however, that nothing worthwhile has appeared in the
intervening years. Oliver Penrose’s survey paper of 1979 on the foundations of
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statistical mechanics counts about 500 entries in its list of references. However,
most of the effort that physicists have devoted to the subject has resulted in
the development of different schools, each with its own programme and tech-
nical apparatus. Unlike quantum theory or relativity, there is in this field no
common mathematical backbone that is accepted by most of the participants.
Critical study of the foundations of thermodynamics and statistical mechanics
has instead been dominated by mathematicians and others with a keen eye for
exactness and logical clarity. The names of Zermelo, Poincaré, Tatiana Ehren-
fest and Truesdell spring to mind. The contributions along these lines have
often been devastating: an astonishing part of what is usually presented un-
der the name of statistical mechanics and thermodynamics is mathematically
untenable, unproved or in confusion. As early as 1878 Kelvin complained that
the modern student of thermodynamics is somewhat liberally perplexed with
“questions unanswerable by theory or experiment, and propositions which es-
cape the merit of being false by having no assignable meaning” (Kelvin, 1878,
§2). Khinchin, in his book of 1949 described the attempts to derive the Boltz-
mann relation § = klog W as “an aggregate of logical and mathematical errors
superimposed on a general confusion in the definition of the basic quantities”
(Khinchin, 1949, p. 142); and not long ago the mathematician Arnold opened
an article by simply stating that “every mathematician knows it is impossible
to understand an elementary book on thermodynamics.” (Arnold, 1990, p. 163)
There are, of course, physicists who would be tempted to say the same about
some books on mathematics.

On the other side of the spectrum are the more visionary and freely spec-
ulative works of Eddington, Prigogine, Eigen and Roger Penrose, applying the
concepts of statistical mechanics in the construction of an encompassing picture
of the universe. Further important contributions have come from the historians
of physics. In particular the careful analyses of Brush, Klein and Kuhn have
provided much insight in the original views of Maxwell and Boltzmann. Each of
these types of approaches to the foundations of statistical and thermal physics
have their own merits and natural limits. It is, I believe, in the midfield of
physics, mathematics and history of science that the knowledge and skills of a
philosopher would be extremely useful, amalgamating the insights from these
disciplines by conceptual analysis to provide clarification of the fundamental
issues.

I am not sure whether the present book is intended in this way. Sklar’s
stated aim is to bring an elementary, organized and comprehensive survey of
the philosophical and physical issues in “this confused field, a field desperately
in need of all the understanding that can be thrown upon it.” (p. 6-7.) But he
also has some disclaimers. He considers his ambition amply fulfilled if the book
will stimulate others to apply ‘the talents of conceptual clarification’ to these
issues. His own answers, he stresses, should be regarded as mere tentative sug-
gestions. These reservations are, in part, only natural, given that the field lacks
a tradition of philosophical analysis on which one can build. But I must also
say that I regret this self-imposed restraint by the author. Indeed, sometimes
it seems that his attitude is closer to that of a reporter than a philosopher, and
I wish that some problems in the book were analyzed in greater depth or more



systematically.

Now of course this is not a fair criticism to make. The untrodden jungle will
not be mowed overnight into a neat country garden, and one cannot blame the
pioneer for preparing a provisional path only or for exploring a direction that
eventually leads to a dead end. Moreover, the range of subjects that is covered
in this book is truly amazing. Where else can one find a book which takes us
from the KAM theorem to the mind-body problem, from Big-Bang cosmologies
to the Gibbs-Duhem inequality, from causation and counterfactuals to chaos,
while easily passing the cosmological argument, the spin-echo experiment and
the Wheeler-Feynman theory of radiation on the way?

Thus, although my review will be somewhat critical, this should not hide
my admiration for the author’s feat in writing the book. Still, I take it to be
the task of a reviewer to point out cases where the book remains unsatisfactory
or where another direction might be more promising. Naturally, I too will have
to restrict myself, and I will concentrate on what seems to me to be the core
of the, indeed, comprehensive book: the foundations of statistical mechanics,
both equilibrium and non-equilibrium, and their relation to thermodynamics.
Thus, the more general and open-ended chapters on cosmology, the direction
of time and statistical explanation will remain untouched.

1 Thermodynamics

The book starts with an ‘historical sketch’ introducing the theory of thermody-
namics and the works of Maxwell, Boltzmann and Gibbs on kinetic gas theory
and statistical mechanics. This introduction, as the author warns us, is ex-
tremely abbreviated and selective. Indeed, the text is mainly a summary, very
condensed and not always accurate. In the case of statistical mechanics, the
omission of detail and analysis is made good by three later chapters compris-
ing almost 150 pages of further study. But not so for thermodynamics. This
theory gets no more than the cursory description offered in the brief sketch of
this chapter. For a book that describes itself as being devoted to the pair of
theories of thermodynamics and statistical mechanics, this uneven division of
attention is remarkable.

Sklar describes thermodynamics as resting on a ‘principle of conservation’
and a ‘principle of irreversibility’, the latter being summarized in the famous
Second Law. The meaning of irreversibility or the relationship between the
various forms of the second law is not examined. This is a pity, because even
here the situation is by far not as transparent as one would want.

Let me only note here that the thermodynamical usage of the term ‘irre-
versible’ can have several distinct meanings, which may differ from what is
usually understood by that term in a mechanics context. For example, one
tradition, going back to Clausius, calls a process irreversible if the initial state
of a system cannot be restored except by interactions with other systems which
then suffer compensating changes. Applying this same criterion to mechanics,
it seems obvious that most mechanical motions would also be irreversible since
they can only be reversed by means of collisions with other bodies which receive



a compensating recoil. Others, Born for example, defines the term such that
‘irreversible’ is synonymous to ‘non-quasistatic’ (Born, 1921. A process is called
quasi-static if it is carried out so slowly that the system remains arbitrarily close
to equilibrium at all stages of the process.) It is therefore not obvious, at least
to me, that a principle of irreversibility in thermodynamics implies or expresses
a temporal asymmetry, or is in conflict with the reversibility of mechanics, as
Sklar assumes.

Now, obviously, the reason for the absence of a serious analysis of this
subject is simply that the author did not intend to write on the foundations of
thermodynamics, but of statistical mechanics alone. Still, I feel this absence is
unfortunate, since so much of the conceptual problems in statistical mechanics
derive from its supposed relationship to thermodynamics. It is no coincidence
that the term ‘second law’ is the most-often cited item in the index of this book,
with ‘time-asymmetry’ coming in second place.

A second remark concerns the sometimes peculiar style of this book. What
should one make of a sentence like this:

“Overall, the theory is extended into a universally comprehensive scheme
in which the exchange of energy between that which is macroscopically

overt and that which is transmuted into internal energy of microscopic
constituents becomes formalizable in the thermodynamic scheme.” (p. 22)

It is not just that I find the formulation ugly (e.g. because of the double use of
‘scheme’) and unnecessarily vague, depicting an exchange between two nonde-
script ‘thats’. It puzzles me how an agent which is apparently able to receive
energy can be transmuted into a form of energy as a result of this exchange. I
wonder how many readers will recognize this bit of alchemy for what is intended,
namely a characterization of the Gibbsian theory of equilibrium thermodynam-
ics.
Furthermore I should say that passages as these:

“[...] one would have to give a proof to the effect that if the intercompo-

nent interaction is sufficiently well behaved, then in the thermodynamical

limit of the number of components and size of the system going to infinity

but with density held constant the use of law of large number theorems

will allow us to prove that for the type of functions derived from the en-

semble that we use to calculate observed macroscopic parameter values,

the probability distribution for the parameter values calculated for an in-

dividual system in the ensemble will in fact cluster overwhelmingly around

the mean value that we calculate from the ensemble.” (p.202)

are not a joy to read. No doubt, formulations like this, in which a mathematical
goal is described in words, are inspired by the desire to write an elementary and
non-technical text. But I fear that in many cases the result is in fact accessible
only to those who are able to reconstruct the intended meaning because they
already know the technical details.

2 Probability and explanation

The next two chapters of the book are devoted to the interpretation of proba-
bility and the philosophy of explanation, in particular of statistical explanation.



These chapters form a unit in itself. They are meant to equip the reader with
the necessary philosophical tools to address the foundations of statistical me-
chanics in chapters 5 up to 7.

On the whole, this seems to be well-done, as far as I can tell. My only
objection here concerns the representation of the frequency interpretation of
probability. This is the view that interprets the probability of the outcome of
an experiment as the limiting frequency with which this outcome occurs in an
infinite series of repetitions of the experiment. Sklar presents this view as an
attempt to obtain a definition of probability by using the laws of large num-
bers (in either the weak or strong version). Puzzles, objections and ‘disturbing
thoughts’ are brought forward regarding the frequency and other interpreta-
tions, mostly bearing precisely on their supposed dependence on the laws of
large numbers. At one point it is even said that a certain interpretational
aspect “can’t be quite right” simply because it is not implied by “even the
strongest laws of large numbers” (p. 102).

But that is a misrepresentation of the goal of interpretation, and of the fre-
quency view in particular. The terms ‘weak’ and ‘strong laws of large numbers’
designate the purely mathematical theorems derived by Jacob Bernoulli and
by Borel and Cantelli respectively. Now it is, I believe, a philosophical truism
that the interpretation of a mathematical formalism cannot be derived from
the formalism itself. Thus the laws of large numbers, surely, do not mediate
or guarantee the frequentist interpretation. And in fact, the main proponent
of the frequency view, Richard von Mises, made it very clear that in his view
the idea that stable relative frequencies obtain in mass phenomena, converging
to a limit when their number is increased, is a ‘brute fact’, which one can only
derive or motivate by an appeal to experience (Von Mises, 1981). The point has
been stressed recently in particular by Van Lambalgen (Van Lambalgen, 1987).
Thus, to criticize the view for saying things not said by the laws of large num-
bers is, in my opinion, to turn the whole issue on its head. An interpretation
of probability does not have the task of returning to us only those conclusions
that are already implied by the theorems of the theory. We would have more
cause for complaint if it did.

This does not mean, of course, that the frequency interpretation is entirely
free of genuine problems. But here some of the objections and conundrums
raised in the chapter are apparent only, rather than inherent in the subject.

3 Equilibrium and rationalization

Now we come to the real core of the book, the foundations of statistical mechan-
ics proper. Sklar presents an admirable up-to-date overview of the developments
and results in modern statistical mechanics. He divides the topic in equilibrium
and non-equilibrium theory, a division that I found very congenial, although it
means that the discussion from specific points of views (e.g. ergodic theory, or
the subjectivist approach of Jaynes) becomes split over the different chapters.

The first question to ask here is what we want from a study of the foun-
dations of statistical mechanics, in this case the theory of equilibrium. For



Sklar, the answer is rationalization. Rationalization is definitely the buzz-word
throughout this entire book. Still, I am not quite sure what it means. It is of-
ten put on the same footing as ‘explanation’, ‘justification’ or ‘understanding’,
and seems to differ from a mere question of interpretation, as in the previous
chapter on probability. Specific problems in need of rationalization are: “why
the recipe [for the description of equilibrium| works so well as it does?” (p. 158)
or also: “why equilibrium is the way it is” (p. 179).

It is not clear to me what kind of answer is expected to settle the quest for
rationalization. It would have been helpful if Sklar had mentioned an example
of a fully rationalized theory so as to give us a better grasp of what it is that
we lack in statistical mechanics in comparison to other theories in physics. Do
we understand any better e.g. why the Schrodinger equation works so well as
it does? Do we know why gravity is the way it is?

However this may be, it is clear that Sklar is not prepared to be satisfied
by just any answer to the above questions. In a case where a proposed answer
rests on a further assumption, the next question is raised: “just ezactly how does
[this assumption] function to rationalize, justify or explain its use?” (p. 159.)
This is asking quite a lot, perhaps a bit too much, from any physical theory.
Personally, I think it would already be a formidable task to obtain a logically
coherent formulation of the theory, before embarking on this ambitious program
of rationalization.

In any case, a fruitful discussion of the question why equilibrium is the way
it is, presupposes an answer to the question of what equilibrium is, i.e. how the
concept is represented in the theory of statistical mechanics. Sklar limits his
discussion to the micro-canonical ensemble. In this case one assumes that all
macroscopic quantities can be represented as functions on phase space. Further,
one assumes a probability distribution which is derived from the restriction of
the standard Lebesgue measure on phase space to a fixed energy hypersurface.
Then, the usual thermodynamical relations between the macroscopic quantities
should be recovered for the expectation values of the corresponding phase func-
tions. This is the recipe of equilibrium theory that Sklar wishes to rationalize.
It does not settle yet, however, what is meant by the term ‘equilibrium’, or by
‘equilibrium state’, ‘equilibrium condition’ etc.

I regret that Sklar has not put this question at the start of his exposition,
because there are two quite different conceptions associated with these terms
and we have to switch repeatedly between them in the book. One is the idea of
Boltzmann that equilibrium refers to a particular subset in phase space, in which
the velocity distribution takes (approximately) the Maxwell-Boltzmann form.
Here, one can always tell from the momentary microscopic state of a system
whether or not it is in equilibrium. In the course of time, the system may
fluctuate in and out of the equilibrium set, although, as Boltzmann indicated,
this should be very unlikely for a macroscopic system.

The second view is the one used by Gibbs. Here equilibrium is associated
with a particular probability distribution over phase space. Thus the term char-
acterizes an ensemble, and since one particular system can be a member of
many ensembles one can, strictly speaking, no longer say whether an individ-
ual system is in equilibrium or not. Further, the state of any system in the



equilibrium ensemble may fluctuate wildly in the course of time. But now this
does not mean that the ensemble leaves equilibrium. Thus, while Boltzmann
takes over the idea from thermodynamics that equilibrium is a property of an
individual system, but relinquishes the idea that it is stationary in time, Gibbs
retains time-independence but gives up the notion that it is a property of a
system.

Sklar never confuses the two meanings, but he often switches between them
without warning or leaves it undecided what he means. Thus on p. 177 the
Boltzmann view is adopted and one speaks of an equilibrium microstate of a,
system; 3 pages later we are told that the only appropriate application of the
term ‘equilibrium’ is to an ensemble. The first clear statement of the distinction,
however, has to wait until p. 350 in chapter 9, too late to be of help in the
analysis of equilibrium theory.

Another complaint is against the recurring mention of equilibrium as being
an ‘attractor’ state. It is well-known, and Sklar mentions it, that the latter
term from the modern study of dynamical systems applies only to dissipative
systems, i.e. to systems whose mechanical energy leaks away in the form of
heat. Given the historical background of statistical mechanics, as the theory
whose aim it is to understand heat as a form of mechanical energy, a dissipative
system is probably the last sort of system that one would wish to use for a
statistical mechanical description of thermal equilibrium.

4 Ergodicity

The main candidate rationalizer for equilibrium theory is ergodic theory. Sklar
takes us through the many meanings of the term, and the maze of criteria and
escape-clauses in the results obtained in ergodic theory, and the pitfalls in what
they might mean. He also relates how difficult it has been to actually prove
that one of the criteria of ergodicity actually holds in any realistic mathematical
model of a physical system. In the main, his treatment is clear, able and careful.

One point, however, should be corrected. It concerns the statement that
a system of two or more hard spheres is provably ergodic (i.e. metrically in-
decomposable), a proof that Sklar presents as the climax of thirty years of
mathematical effort.

It is well-known that Sinai announced this result in the early 60s, and al-
though the proof was not published, many subsequent writers believed him on
his word. But, as far as I am aware, the proof has not appeared yet, and in a
recent article on the question Sinai himself states that his announcement has
been ‘premature’; and claims only that his result holds for a system consisting
of two spheres (Sinai and Chernov, 1987). But that is hardly a realistic gas
model. The climax, thus, is still to come.

Has the rationalization of equilibrium by ergodic theory been a successful
one? Sklar’s attitude, throughout the book, is one of utmost caution. He often
warns the reader that we cannot be assured of the validity of the assumptions
necessary to obtain what we want. And in the cases where the validity of
such assumptions is unproblematic, we may still be unable to obtain from them



all that we would want. Even in the rare cases where we do seem to obtain
completely what we want, Sklar still has an argument waiting to show that
after all we may not truly like what we first wanted.

One of the many problems on which Sklar’s discussion zooms in is the
measure zero problem. Most, if not all of the ‘nice’ theorems that one obtains
from ergodic theory hold for all states of a dynamical system except for a set of
measure zero. This would establish these results rather firmly, if only one could
show that measure zero sets are non-existent, ignorably small, or in some other
way exceptional. The first option is clearly wrong, but the others are hard to
substantiate. It is well-known that if one compares ‘smallness in measure’ with
other natural criteria by which one can judge the ‘size’ of sets, e.g. by their
cardinality, dimension or categoricity, the comparisons do not match. Sets of
measure zero can be surprisingly large by many other standards. Sklar discusses
the subject quite well and warns us to be satisfied only when we can

“fully justify our claim that we have grounds, over and above purely pos-
tulational ones, for assuming that we have a right to take as zero the
real probability that a system in the world could be in the deviant set [of
measure zero|.”

Again, although the measure zero problem is a very real one, I fear that Sklar
is asking too much. Multi-layered justifications like these, in which one shows
that we can claim that we have grounds to assume that we have the right to
make an assertion are nowhere to be had in physical science.

Still, in spite of his extreme caution, Sklar comes to a favorable judgment
on the role of ergodicity in the rationalization of the statistical mechanics of
equilibrium. “Ergodicity, where it can be demonstrated, does certainly pro-
vide us with something of a deep conceptual significance.” (p. 178) and “If
the system is ergodic, we can, at least to a degree, back up the Boltzmannian
picture with an argument that this picture is in some sense a correct represen-
tation of the facts about the system.” Hence: “there will be no harm in saying
that an explanation of some kind of why equilibrium is the way it is has been
provided.” (p. 180)

My own judgment here is somewhat less optimistic. Surely, the most obvious
example of an ergodic system (in all of the many meanings of that term) is the
one-dimensional ideal harmonic oscillator. But that system does not show any
equilibrium behaviour at all. On the other hand, the ‘Boltzmannian picture’ of
an equilibrium state corresponding to an overwhelmingly large subset in state
space was derived for an ideal gas, consisting of non-interacting particles. But
that is a clear example of a system that we know to be not ergodic. Thus,
equilibrium and ergodicity are not so easily connected. Sklar in fact also points
out that something else, not implied by ergodicity, is to be added to save the
explanation. This is the ‘Khinchin program’ on the thermodynamical limit.
Unfortunately, the results in this program still depend on the assumption that
the total energy is the sum of 1-particle energies. This, as Sklar stresses, is
something one would like to get rid off. What he does not note, however, is
that the assumption as it stands clearly entails that all the 1-particle energies
are integrals of the equations of motion, and thus violates ergodicity, instead of



helping it.

5 Non-equilibrium

The next two chapters concern non-equilibrium statistical mechanics. Here
again I have great admiration for the breadth that Sklar covers. A discussion is
given of the approach known as the BBKGY-hierarchy, of Lanford’s approach to
obtaining a rigorous derivation of the Boltzmann equation, the ‘master equa-
tion’ approach, extension of ergodic theory into the hierarchy of conditions
known as C-systems, K-systems etc., as well as of many others. And similar
to the previous discussion, the question is whether these approaches allow us
“to understand why non-equilibrium systems behave as they do”. In most ap-
proaches to non-equilibrium theory the evolution of an ensemble is described
by an equation similar to the Boltzmann equation. Thus, if we start with an
ensemble in an initial non-equilibrium state (probability distribution), it will
approach the equilibrium state in the course of time.

The main theme of the chapters is that these equations are obtained with
the help of some ‘rerandomization posit’. That is, the evolution is not derived
from the underlying dynamical laws of mechanics alone, but from a modern
variant of the molecular chaos hypothesis. The hypothesis takes various guises
in the various approaches: either one continually replaces the distribution by
a coarse-grained one, or one replaces an n-particle correlation function by a
product of lower correlation functions, etc. The main problem is that these
rerandomizations or averaging processes are added by hand, and not related
to the dynamical evolution of the systems. Here, the original goal of basing
the theory on mechanics seems to be forsaken. Sklar rightly compares these
transitions to the projection postulate of quantum theory, another theory which
harbours two different types of evolution for the same system.

The approach of Lanford is essentially different from the others in the sense
that it aims at proving the approximate validity of the Boltzmann equation
from the underlying dynamics alone and an appropriate limit on the number of
particles and their density. This work, which can also be seen as an investigation
of the consistency of the two types of evolution has however only obtained results
for an amazingly short period of time.

I would like to point out one source of confusion in the chapter. The so-called
‘one-particle distribution functions’ employed by Bogolyubov and Lanford are
denoted by the same symbol fi, and sometimes referred to as if they were
the same object, whereas the two are in fact very different. Bogolyubov’s fi
is a probability distribution which is obtained from the original probability
distribution f over all the coordinates of phase space by marginalization to the
coordinates of a single particle, say the first:

filpr,q1) = /f(pla---pn;QIa---Qn)dPQ---dpn dgs ... dgy

Of course, one needs to assume permutation invariance of f, or else average
over the 1-particle distribution functions for all other particles, in order that it



may represent any particle, instead of the first only. The 1-particle function f;
used by Lanford, on the other hand, is obtained from the microstate of a gas by
counting how many of its particles have their positions and momenta in an in-
finitesimal parallelopiped box in the p-space. Thusifx = (p1,...,pPn;q1,- -+, qn)
is the momentary state of the system and II;, for j = 1,...,n, is the coordinate
function on phase space defined by IL;(p1,...,Pniq1,---,qn) = (pj,q;) and if A
is the infinitesimal box of size d®*p d®q around the point (p, q) in p-space, then

filp,q) d*pd’q = %#{j : I(z) € A}

where # denotes the number of elements in a set. Lanford examines the be-
haviour of this function as n — oo in the Boltzmann-Grad limit. Notice that
this function describes a distribution of particles, not of probability. The Lan-
ford fi depends on the exact state x of a single, individual system, and is thus
itself a stochastic variable on phase space. The Bogolyubov f; by contrast is
a probability distribution which (partially) characterizes the ensemble, not an
individual system.

6 The reduction of thermodynamics

We now come to an issue which probably has the longest tradition in the study
of the foundations of statistical mechanics, the claim that thermodynamics
can be reduced to statistical mechanics. Again, Sklar takes a reserved and
cautious attitude on the problem, warning us that the situation is fraught with
subtleties and unclarities. Yet it seems that for the most part he does agree
with the claim, since he concludes: “We can summarize the situation by saying
that statistical mechanics successfully reduces thermodynamics by replacing the
structural constraints on the world imposed by the latter theory [...] with a
structural constraint on probabilities of the initial systems characterized at the
microlevel.” (p. 368)

Let us first consider the notion of reduction itself. Reduction is a particular
relationship between two theories. Sklar presents two views on that relationship,
the positivist and the identificationary view. The former holds that reduction
relies on ‘bridge laws’ that connect the concepts of the two theories. This
view Sklar discards because it would trivialize the problem. One could simply
postulate the bridge law that theory 77 holds just in case theory 75 holds in
order to successfully reduce any theory T to any theory To whatsoever. The
contrasting view on reduction focuses on the ontology, on the realm of really
existing entities described by the theories. Here one would say that a theory
is reduced to another if all entities it describes can be identified with entities
from the other’s domain. The virtue of this latter account of reduction above
the positivist view is, according to Sklar, that it explains. To say, e.g., that a
light wave corresponds to an electromagnetical wave by means of a bridge law is
merely to state a regularity. But on the ontological view one can do more: the
question ‘why are light waves always accompanied by electromagnetical waves?’
receives an answer: it is because they are identical.

10



I think that the above rejection of the positivist view on reduction is a bit
rash. I am not qualified to speak on behalf of the positivists, but it would
seem to me that what Sklar calls ‘bridge laws’ should be compared to a kind
of dictionary. They establish links between the elementary terms or concepts
of the two theories which enable one to deduce (or approximately deduce) the
propositions of the reduced theory from those of the reducing theory. They do
not operate directly on the level of the theories as a whole and simply postulate
the deducability of one theory to the other. The fear that one could trivially
reduce any theory to any other by means of suitably chosen bridge laws is as
plausible to me as that one could translate the Pickwick Papers into Madame
Bowvary by an appropriate editing of the English-French dictionary.

Perhaps it is Sklar’s preference for the ontological rather than a semantical
view on reduction that steers his intuition in another direction than my own.
But I find his judgment on the question whether thermodynamical concepts are
reducible to those of statistical mechanics often completely opposite to mine.
He considers the topic of reduction in some detail for four thermodynamical
notions: heat, pressure, temperature and entropy. I discuss, for brevity, heat
and temperature only.

Can the notion of heat be successfully reduced to a concept in statistical
mechanics? Sklar regards this case as the least problematic one: we are directed
unequivocally to the view that heat is associated with a portion of the energy
of the system (p. 349). To me, this misses the point. It is, of course, nice
that heat can be identified, ontologically speaking, with a form of energy (or,
perhaps, rather with a form of energy ezchange). This means we need not refer
to an independently existing entity, such as caloric, phlogiston, etc. But that
does not reduce the concept of heat; it does not take away that one still needs
to make a distinction between the particular form of energy ‘formerly known
as heat’ versus other forms of energy (exchange).

Perhaps the point is made clearer by going back to pure thermodynam-
ics, in the formulation of that theory given by Carathéodory. Indeed, one of
Carathéodory’s main goals was to eliminate the concept of heat as a fundamen-
tal notion from thermodynamics, precisely because he believed that it could be
defined in terms of energy. And his formulation of the theory, at first sight,
succeeds in doing so very well. However, as noted by Hornix (1970), one now
finds that the notion of ‘adiabatic’ is indispensable and refuses to be defined
in other terms. What we are left with is that, in some guise or another, the
distinction between the two kinds of energy transfer, whether we call them work
versus heat, or a transfer through adiabatic versus non-adiabatic walls, or, as is
also sometimes done, as exchange by mechanical versus non-mechanical means,
is essential to the fundamental structure of thermodynamics. But how does one
reduce this distinction to statistical mechanics?

In fact, it was already noted long ago by Maxwell that according to the
molecular view there cannot be a real distinction between heat and work, their
only difference being that in “the communication of energy that we call heat”
the motion of the molecules is irregular or confused, whereas in the case of
work their motion is ordered (Maxwell, 1878a). But then, Maxwell reminded
us, the distinction between confusion and order “is not a property of material
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things in themselves but only in relation to the mind which perceives them”
(Maxwell, 1878b). Now one need not agree, perhaps, with this last point. Sta-
tistical mechanics has more at its disposal than the concepts of mechanics and
the molecular view alone, and one can reasonably expect that the distinction
between heat and work can be framed in a mind-independent way with the
help of the concepts of probability theory. Still I will not surprise the reader by
saying that in this field one cannot safely believe anything until one can see it
done. It is precisely the sort of analysis one would hope to find in a book like
this.

In any case, the mere statement that heat can be identified with a form
of energy does not settle its successful reduction to statistical mechanics. One
should at least be able also to specify which form, using the terms of the reducing
theory only. Note, for comparison, how different the above situation is from
the case of the reduction of optics to electromagnetism. There one can specify
exactly which part of the spectrum of electromagnetic waves corresponds to
visible light.

A second concept of thermodynamics for which Sklar discusses the alleged
reduction to statistical mechanics is that of temperature. He mentions how
puzzling it is that people still say that temperature is nothing but the mean
kinetic energy of a gas, as if it was as straightforward as that (p. 340).

The main point against this all too simple reduction is that temperature in
statistical mechanics is introduced as a parameter in the canonical distribution,
not as a function on phase space. Thus, it must be seen as a property of the
ensemble, and not of any particular system. Still, leaving this important point
aside, Sklar judges the reductive association of the thermodynamical notion
of temperature to a statistical-mechanical one to be successful. The case is
illustrated by showing that a more general use of the temperature concept is
allowed within statistical mechanics than would be possible inside thermody-
namics. This use is shown in “a good example of concept extension” (p. 353),
a typical byproduct of a successful reduction.

The example is the well-known case of ‘negative absolute temperatures’ that
can be attributed to a system of magnetic dipoles in an external magnetic field.
The crucial point is that the energy of such a system has a maximum value
which is reached when all dipoles are aligned antiparallel to the external field.
In this state the entropy is minimal. Thus, if one starts with that state and takes
energy out of the system by means of a quasistatic process, its entropy increases,
so that, using T := (0E/0S)v, its temperature T will be negative. Sklar
argues that this is an application for which the original concept of temperature
in thermodynamics was never intended, and made possible only through its
reduction to statistical mechanics.

Again, my own judgment here is also antiparallel. Let me first recall that
thermodynamics is characterized by an overall effort to remain completely neu-
tral on questions of the microscopic constitution of the material systems it
describes. Thus, there is no obstacle whatsoever to its application to magnets
rather than gases. (Applications which indeed go back at least a century.) Fur-
ther, it may be true that the founding fathers of thermodynamics never dreamt
of systems with negative absolute temperatures. But that is not relevant to the
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issue. The fact remains that the principles on which thermodynamics rests rely
only on the idea of ‘equal temperatures’ (in the zeroth law) and on the ordering
of temperatures (in Clausius’ version of the second law, where the distinction
between ‘hot’ versus ‘cold’ is introduced). There is no law that says that the
ordering of equilibrium states by means of temperature must acknowledge end
points: i.e. there is no law forbidding negative temperatures. Thus, the entire
thermodynamical formalism can be applied to the current example without any
problem.? And indeed, the first mention of negative absolute temperatures that
I know of is by Tatiana Ehrenfest in 1925, who discusses them as a theoretical
possibility allowed by the usual axioms of orthodox thermodynamics.

Quite in contrast with this, it is for the reducing theory, the kinetic approach
that wishes to relate temperature with the intensity of ‘intestine motion’ of a
body, that the example comes as a surprise. If temperature is, as so many
people believe, nothing but the mean kinetic energy of the molecules, then how
could it possibly become negative? Also the more advanced theory of classical
statistical mechanics does not deal with the example quite so easily.

A theoretical description of the system of dipoles would employ a Hamilto-
nian containing a magnetic energy term only:

N —
H=-Y B-ji,
=1

where B is the external magnetic field and ji; denotes the dipole moment of
particle 7. (One could add a term to allow for mutual interactions between the
dipoles, to obtain a more interesting system.) Notice especially that there is
no kinetic term which is quadratic in the canonical momenta. This, of course,
is responsible for the essential property that the energy of the system has an
upper bound. However, it also means that, at first sight, one is at a loss to
specify the phase space for this system, with its canonical coordinates. Thus,
it is not immediately clear how one can implement the Hamilton equations,
Liouville’s theorem, and all the further mathematical structure on which the
results of classical statistical mechanics and ergodic theory depend.
Fortunately it is possible to recover these results, by adopting a phase space
which is radically different from the usual one. One can take the magnetic
orientations of the individual dipoles themselves as furnishing the coordinates of
a microstate. The phase space is then taken to be an N-fold Cartesian product
of unit spheres. The role of the ‘canonical coordinates’ is taken over by ¢; and
cos 0;, where ¢; and 6 are the spherical angles of the dipole vector (or ‘classical
spin’) fij, and the Hamilton equations for the above Hamiltonian lead to the
precession of the moments with the Larmor frequency. It is remarkable that the
possibility of this description in statistical mechanics has been discovered rather
recently, and how different it is from the usual assumption of a Euclidean phase
space, an assumption which is often the very first mentioned in expositions

3The only obstacle to the application is that negative temperatures could not be measured
with a gas thermometer. But that is not a very serious objection. In fact, one of the main and
often emphasized advantages of the concept of absolute temperature introduced by Kelvin is
precisely that it liberates the concept of temperature from a particular choice of thermometer.
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of statistical mechanics. I wonder whether Hamilton or Gibbs ever dreamt of
applying mechanics on a spherical phase space.

Another approach to a successful statistical description of the system is, of
course, obtained in quantum theory. But that move upsets the structure of the
theory even further.

Thus I would argue here, that while the example is encompassed effortlessly
by thermodynamics, it is describable by statistical mechanics only after hard
work and a non-trivial extension of the theory. If concept extension is the
true mark of a successful theory reduction one is tempted to conclude, some-
what perversely, that thermodynamics is not successfully reduced to orthodox
statistical mechanics at all, but rather vice versa.

7 Conclusion

Summing up, I would like to repeat my admiration for the book. It delivers
what it promises: a wide-ranging overview of many aspects in the foundations
of statistical mechanics, far wider than I was able to discuss. I do not always
find Sklar’s approach to these topics the most fortunate, neither do I always
agree with the conclusions he reaches. But that is only natural in a field as
open and uncultivated as this one. There is obviously still a lot of work to be
done before the foundations of this part of classical physics reaches the level of
maturity that the debate on the foundations of quantum physics has reached
already long ago; i.e. a general agreement on what the disagreement in the field
is about. I wholeheartedly join Sklar in his hope that his book will inspire more
philosophers of science to subject the field to critical conceptual analysis.
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