Skip to main content
Log in

Thermodynamic Uncertainty Relations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Bohr and Heisenberg suggested that the thermodynamical quantities of temperature and energy are complementary in the same way as position and momentum in quantum mechanics. Roughly speaking their idea was that a definite temperature can be attributed to a system only if it is submerged in a heat bath, in which case energy fluctuations are unavoidable. On the other hand, a definite energy can be assigned only to systems in thermal isolation, thus excluding the simultaneous determination of its temperature. Rosenfeld extended this analogy with quantum mechanics and obtained a quantitative uncertainty relation in the form ΔU Δ(1/T) ≥ k, where k is Boltzmann's constant. The two “extreme” cases of this relation would then characterize this complementarity between isolation (U definite) and contact with a heat bath (T definite). Other formulations of the thermodynamical uncertainty relations were proposed by Mandelbrot (1956, 1989), Lindhard (1986), and Lavenda (1987, 1991). This work, however, has not led to a consensus in the literature. It is shown here that the uncertainty relation for temperature and energy in the version of Mandelbrot is indeed exactly analogous to modern formulations of the quantum mechanical uncertainty relations. However, his relation holds only for the canonical distribution, describing a system in contact with a heat bath. There is, therefore, no complementarily between this situation and a thermally isolated system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Bohr, Collected Works, J. Kalckar, ed. (North-Holland, Amsterdam, 1985), Vol. 6, pp. 316–330, 376-377.

    Google Scholar 

  2. A. Pais, Niels Bohr's Times in Physics, Philosophy, and Polity (Clarendon Press, Oxford, 1991).

    Google Scholar 

  3. B. Mandelbrot, IRE Trans. Inform. Theory IT-2, 190 (1956).

    Google Scholar 

  4. B. Mandelbrot, Ann. Math. Stat. 33, 1021 (1962).

    Google Scholar 

  5. B. Mandelbrot, J. Math. Phys. 5, 164 (1964).

    Google Scholar 

  6. L. Rosenfeld, in Ergodic Theories, P. Caldirola, ed. (Academic Press, New York, 1961), p. 1.

    Google Scholar 

  7. B. Lavenda, Int. J. Theor. Phys. 26, 1069 (1987).

    Google Scholar 

  8. B. Lavenda, Int. J. Theor. Phys. 27, 451 (1988).

    Google Scholar 

  9. B. Lavenda, J. Phys. Chem. Sol. 49, 685 (1988).

    Google Scholar 

  10. B. Lavenda, Statistical Physics: A Probabilistic Approach (Wiley, New York, 1991).

    Google Scholar 

  11. J. Lindhard, in The Lesson of Quantum Theory, J. de Boer, E. Dal, and O. Ulfbeck, eds. (North-Holland, Amsterdam, 1986).

    Google Scholar 

  12. F. Schlögl, J. Phys. Chem. Sol. 49, 679 (1988).

    Google Scholar 

  13. H. Feshbach, Phys. Today 40, 9 (1987).

    Google Scholar 

  14. Ch. Kittel, Phys. Today 41, 93 (1988).

    Google Scholar 

  15. B. Mandelbrot, Phys. Today 42, 71 (1989).

    Google Scholar 

  16. L..D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, London, 1959).

    Google Scholar 

  17. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982).

    Google Scholar 

  18. E. R. Caianiello, in Frontiers of Non-Equilibrium Statistical Physics, G. T. Moore and M. O. Scully, eds. (Plenum, New York, 1986), pp. 453–464.

    Google Scholar 

  19. S. L. Braunstein, in Symposium on the Foundations of Modern Physics 1993, P. Busch, P. Lahti, and P. Mittelstaedt, eds. (World Scientific, Singapore, 1993), p. 106.

    Google Scholar 

  20. A. I. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949).

    Google Scholar 

  21. A. Martin-Löf, Statistical Mechanics and the Foundations of Thermodynamics (Springer, Berlin, 1979).

    Google Scholar 

  22. H. Jeffreys, Theory of Probability ( Clarendon Press, Oxford, 1966), 3rd ed.

    Google Scholar 

  23. I. Hacking, Logic of Statistical Inference (Cambridge University Press, Cambridge, 1965).

    Google Scholar 

  24. T. Seidenfeld, Philosophical Problems of Statistical Inference, (Reidel, Dordrecht, 1979).

    Google Scholar 

  25. A.W. F. Edwards, Likelihood ( John Hopkins University Press, Baltimore, 1992).

    Google Scholar 

  26. See T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, Phys. Rev.Lett. 69(21), 3005 ( 1992).

    Google Scholar 

  27. W. K. Wootters, Phys. Rev. D 23, 357 (1981).

    Google Scholar 

  28. J. Hilgevoord and J. Uffink, Found. Phys. 21, 323 (1991).

    Google Scholar 

  29. J. Uffink, Am. J. Phys. 61, 935 (1993).

    Google Scholar 

  30. J.-M. Lévy-Leblond, Phys. Lett. A. 111, 353 (1985).

    Google Scholar 

  31. L. Mandelstam and I. Tamm, J. Phys. (USSR) 9, 249 (1945).

    Google Scholar 

  32. H. B. Prosper, Am. J. Phys. 61, 54 (1993).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uffink, J., van Lith, J. Thermodynamic Uncertainty Relations. Foundations of Physics 29, 655–692 (1999). https://doi.org/10.1023/A:1018811305766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018811305766

Keywords

Navigation