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Abstract. In this article, logical concepts are de�ned using the internal
syntactic and semantic structure of language. For a �rst-order language, it
has been shown that its logical constants are connectives and a certain type
of quanti�ers for which the universal and existential quanti�ers form a func-
tionally complete set of quanti�ers. Neither equality nor cardinal quanti�ers
belong to the logical constants of a �rst-order language.
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Starting with Tarski's de�nition of the concept of logical consequence
from 1936 [Tar83] and the de�nition of the concept of logical constant from
1966 [TC86], the examination of logical concepts is dominated by an ap-
proach in which logical concepts are concepts that are in some way invariant
to language interpretations.1 There are di�erences in how the concept of
invariance is formulated. See, e.g., [Bon14] for an overview and defence of
such an approach in the case of the concept of logical constant. Of course,
there are other approaches,2 but this approach is dominant and here I will
call it the received view. The received view, no matter how it was formulated,
is based on the ontology of all possible interpretations, an insu�ciently clear
metaphysical concept. In mathematical logic, interpretations are usually re-
alized in the world of sets - sets, relations, and functions are the values of the

1The basics of this approach can already be found in Bolzano from 1837 [RG14].
2See, e.g., [Mac17] for an overview in the case of the concept of logical constant.
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interpretations. However, the set theory based on ZFC axioms does not have
a clear intuitive basis that would tell us what is and what is not.3 There-
fore, interpretations in set theory are also insu�ciently clear. Ultimately,
these interpretations are translations of the language which interpretations
we examine into the language of sets. In this translation, for example, the
logical constants of the translated language are described by the same logical
constants of the language of sets, which does not contribute to their better
understanding. Thus, in my opinion, the received view, due to the use of
vague metaphysical assumptions, is unacceptable.

This article is based on an understanding of logical concepts that is op-
posite to the received view. If we were to call the understanding of logical
concepts in the received view an external understanding then this would be
an internal understanding of logical concepts. The analysis of logical con-
cepts that will be conducted here is based on the assumption that logic is
always the logic of a language, how we apply the language, and how its parts
are syntactically and semantically connected. The logic of a language is just
the inner organization of the language together with external assumptions of
its use. In this article, the analysis will be done for �rst-order languages. The
exterior assumptions of an interpreted �rst-order language are: (i) the lan-
guage has its own domain of interpretation � a collection of objects that the
language speaks of, (ii) every constant denotes an object, and every variable
in a given valuation denotes an object, (iii) every function symbol symbol-
izes a function which applied to objects gives an object, (iv) every predicate
symbol symbolizes a predicate which applied to objects gives a truth value,
True or False. The only important thing for the logic of the language is that
these assumptions are part of the speci�cation of the language, not whether
they are ful�lled. Thus, external assumption of the language use have no
ontological weight here. The inner organization of a �rst-order language is
determined by the rules of the construction of more complex language forms
from simpler ones, starting with names, variables and function symbols for
building terms, and with atomic sentences for building sentences. In these
constructions we use special symbols which identify the type of the construc-
tion. With each construction, and thus the symbol of the construction, a
semantic rule is associated that determines the semantic value of the con-
structed whole using the semantic values of the parts of the construction.4

3See, e.g., [�ul13].
4In a given interpretation and a given valuation of variables, the semantic value of a
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The symbol of a language construction will be termed logical symbol or logical
constant if the associated semantic rule is an internal language rule: the rule
does not refer to the reality the language speaks of, except possibly referring
to external assumptions of the language use. It may be objected that this de-
scription of the concept of logical symbol is not clear enough. But ambiguity
is also present in the received view where the description of logical constants
encompasses all interpretations of a language. However, while in the re-
ceived view further re�nement of the term �all interpretations� necessarily
involves metaphysical assumptions, it will be shown below that the descrip-
tion proposed here is self-su�cient and clear enough to give us the answer in
a concrete situation whether the symbol of a construction is a logical symbol
or not. Since this is an internal language approach in determining logical
symbols � an approach that, in addition to external assumptions about the
language use, does not include the reality of which the language speaks � it
is automatically topic-neutral. Everything de�ned in it as a logical term will
be a logical term in the received view approach. Thus the received view gives
only the necessary conditions for logical symbols.

Description of logical concepts in terms of language is present in the
literature in various forms. However, as far as I know, it has neither been
given su�cient importance nor has it been pronounced precisely enough.
For example, in the review article [Sha06] on logical consequence, giving
various criteria for the notion of logical consequence, Shapiro also mentions
the following criterion:

Φ is a logical consequence of Γ if the truth of the members of Γ
guarantees the truth of Φ in virtue of the meanings of the logical
terminology.

However, what �the meaning of logical terminology� means is not speci�ed.
Likewise, Quine in [Qui86], page 48, among other criteria, gives the following
criterion for logical consequence:

One closed sentence logically implies another when, on the as-
sumption that the one is true, the structures of the two sentences

term is the object described by the term and the semantic value of a sentence is its truth
value.
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assure that the other is true. The crucial restriction here is that
no supporting supplementary assumption or information be in-
voked as to the truth of additional sentences. Logical implication
rests wholly on how the truth functions, quanti�ers, and vari-
ables stack up. It rests wholly on what we may call, in a word,
the logical structure of the two sentences.

Although Quine is known for precision, this description is also not precise
enough nor is it further speci�ed. That Quine's approach is di�erent from
the approach in this article can also be seen below from the consequences
derived. In contrast to the above and other similar descriptions known to
me, in this paper the semantic extensional rules of the �rst-order language
constructions are precisely speci�ed. They give a clear criterion whether a
construction symbol is a logical symbol or not, whether a sentence is a logical
truth and whether a sentence follows logically from a set of sentences. An
analysis of logical symbols of a �rst-order language follows.

Connectives of a �rst-order language give us one way to combine simpler
sentences into more complex ones. Every connective, regardless of whether it
is abstracted from a corresponding natural connective or not, is determined
by a Boolean function f : {True,False}n −→ {True,False}, where n is
non-negative integer. This function describes how the truth value of the sen-
tence composed by this connective depends on the truth values of sentences
from which it is composed. Since Boolean functions are internal semantic
functions of the language, functions independent of the reality the language
speaks of, these connectives are logical symbols of the language. Of course,
the well-known results on functionally complete sets of logical connectives
show that in a �rst-order language we should not have connectives other
than standard ones, for example, ∧, ∨, ¬, → and ↔. All other connectives
can be de�ned using these.

Qualitatively di�erent way of combining sentences to more complex sen-
tences is by combining with quanti�ers �for all� and �exists�, which are sym-
bolized by symbols ∀ and ∃. How to characterize this type of combination?
Are there other quanti�ers of this type? Can we express all of them by quan-
ti�ers ∀ and ∃ which are abstracted from natural language? The approach
conducted here is inspired by the description of the universal quanti�er in
[GB93], page 40.

Let's take, for example, the quanti�er ∀. From a sentence S(v), where
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v is a variable, not necessarily free in the sentence, by the symbol ∀ the
more complex sentence ∀v S(v) is built. In a given interpretation of the
language and in a given valuation of all variables except v, the truth value of
the sentence S(v) depends on the valuation of the variable v. To determine
the truth value of ∀v S(v), we must determine the truth values of S(v) for
all valuations of v. We can get three sets of truth values: {True} (for all
valuations of x the sentence S(v) is true), {False} (for all valuations of v
the sentence S(v) is false) and {True,False} (for some valuations of v the
sentence S(v) is true and for some valuations it is false). In the �rst case
the sentence ∀v S(v) is true, in other cases it is false. So, the quanti�er ∀
is determined by the function that maps non-empty sets of truth values to
truth values. The quanti�er ∃ is of the same type: it is determined by the
function that maps all sets which contain True to True, and {False} maps
to False. Every such function that maps non-empty set of truth values to
truth values determines an extensional construction. These functions will
be termed quanti�er functions. The corresponding syntactical symbol of the
construction will be termed logical quanti�er. Just as logical connectives are
logical symbols because they are determined by internal functions that map
truth values to truth values, so logical quanti�ers are logical symbols because
they are determined by internal functions that map sets of truth values to
truth values. It will be shown below that these are the only logical quanti�ers
of a �rst-order language, which will justify the name given to them: �logical
quanti�er�.5

Since there are 23 = 8 functions from the set of non-empty sets of truth
values to the set of truth values, there are 8 logical quanti�ers. However, they
do not need to be introduced by special constructs in a �rst-order language
because all the others can be de�ned using ∀ and ∃. De�nitions are given in
the following table (⊤ is the label for True, ⊥ is the label for False):

5In this paper, only type <1> quanti�ers will be analysed (see, e.g., [Wes19]).
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It means that the set {∀,∃} is a functionally complete set of logical quanti�ers
of a �rst-order language. Because ∀v S(v) is logically equivalent to ¬∃v¬ S(v)
and ∃v S(v) is logically equivalent to ¬∀v¬ S(v), sets {∀} and {∃} are
also functionally complete sets of logical quanti�ers of a �rst-order language.
Analogous to the results for connectives, this result shows that in a �rst-order
language we should not have other logical quanti�ers besides the standard
ones, ∀ and ∃.

Is equality (the symbol =) a logical symbol of a �rst-order language?
Let t1 and t2 be terms. Using the symbol = the atomic sentence t1 = t2
is built. The corresponding semantic construction is as follows: in a given
interpretation and a given valuation of variables, the sentence t1 = t2 is true
i� t1 and t2 denote the same object. This is a construction that maps the
semantic values of these two terms � denoted objects � to the truth value
of the corresponding atomic sentence. However, this construction delves
deeper into reality than the external assumption of the language which only
says that each term denotes an object. To determine whether terms denote
the same object, we must look at the reality that language speaks of. For
example, the key to the Superman story is the claim that Superman = Clark
Kent. To determine whether this is true or not, logic does not help us but we
have to look into the comics reality. Or Frege's example: �The morning star
= The evening star�. We know which objects are denoted by these terms,
but logic is not enough to determine that it is the same object � we need
astronomical observations. Determination of the truth value of the sentence
t1 = t2 using the semantic values of the terms t1 and t2 involves reality
beyond external assumptions about of the language use. Hence, equality is
not a logical symbol. The reason why the logicalness of equality is the subject
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of dispute6 may lie in the fact that, unlike, for example, the comparison of
numbers, we can state certain logical truths about equality. This is because
the description of the symbol of equality includes language in one part � it
mentions the denotations of terms. For example, the external assumption of
the language use is that in a given valuation, each variable denotes a speci�c
object. So x and x will denote the same object. Therefore ∀x x = x is a
logical truth.

Since equality is not a logical symbol, quanti�ers described by equality
are also not logical symbols. Such is, for example, the quanti�er �there is one
and only one� (the symbol ∃!):

∃!v S(v) ↔ ∃xS(x) ∧ ∀y∀z(S(y) ∧ S(z) → y = z)

We can also see in a direct way that such a quanti�er is not a logical symbol
� by examining the semantic rule of the associated language construction
S(v) 7→ ∃!v S(v). In a given interpretation and valuation of all variables
except v, the sentence ∃!v S(v) is true i� the sentence S(v) is true in exactly
one valuation of v. We can describe this construction by a function that
maps multisets composed of truth values to truth values.7 If the multiplicity
of True is equal to 1, the function gives the value True, otherwise it gives
the value False. This function, like the Boolean and quanti�er functions,
is an internal semantic function, a function that connects semantic values
independently of the reality the language speaks of. However, the overall
semantic rule of this construction includes the reality because the argument
of the function, a multiset, cannot be formed without distinguishing objects
from the reality. How many times a truth value has occurred cannot be deter-
mined without distinguishing valuations of v, that is, without determining
when a valuation yields the same object and when it does not. And this
requires, as with equality, knowledge of the reality the language speaks of,
knowledge which goes beyond the external assumptions of the language use.
This argument is easy to generalize. All cardinal quanti�ers are not logical
quanti�ers, because the semantics of the language construction determined

6Quine's doubts and pro et contra arguments about the logical status of equality can
be seen in [Qui86], pages 61�64.

7A multiset composed of truth values is a function from the set {True,False} into the
set of non-negative integers. The value of a multiset on a given truth value is called its
multiplicity.
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by such a quanti�er is described by the same type of function as for ∃! � by a
function that maps multisets composed of truth values to truth values. With
all these quanti�ers, in a given interpretation and valuation of variables, the
identi�cation of the multiset on which the function acts includes reality in
the same way as with ∃!. So these quanti�ers are not logical symbols.

According to the standard recieved view that is clearly presented in
[She12], logical constants are constants that are invariant to bijections be-
tween domains. They include all cardinal quanti�ers, including in�nite car-
dinals, which state how many objects satisfy a formula. In response to such
a broad concept of logical constant, in which the distinction between math-
ematics and logic is lost, the articles [Fef99] and [Bon08] have emerged that
widen the conditions of invariance, thus narrowing the concept of logical
constant. In the criterion of invariance, Feferman replaces the notion of bi-
jection with the notion of surjection, and this substitution leads precisely to
the logical constants of �rst-order languages established here.

Like the concept of logical symbol, so the concepts of logical truth and
logical consequence have a basis in the internal structure of a language. Log-
ical truth is a sentence of a language that is true not in terms of what reality
is but in terms of what kind of language we use to describe reality � it is truth
determined by the internal semantic structure of the language. Eg. ¬A ∨A
is a logical truth, because its truth is determined by the internal structure
of the language, in this case the semantics of the connectives ¬ and ∨. Also,
that from a set of sentences {A1,A2, . . .} logically follows a sentence B, means
that starting from the truth of the sentences A1,A2, . . . the internal semantic
structure of language, not the reality the language speaks of, determines the
truth of B. Thus, for example, the semantics of the conjunction ∧ determines
that B logically follows from A ∧ B. Of course, these are simple examples,
and this internal language description of logical truth and logical consequence
itself is not entirely accurate. But, as with the concept of logical symbol, in
concrete and simpler situations it clearly determines whether a sentence is a
logical truth, that is, whether a sentence logically follows from a set of sen-
tences. This is, however, a good enough basis to develop a formal calculus of
logical truths and logical consequence. For a �rst-order language, it is easy
to show by a modi�cation of Quine's argument [Qui86], Chapter 4, that this
language concept of logical consequence can be described by a formal �rst-
order logic calculus that is complete in terms of the received view. However,
this proof includes Tarski's concept of logical consequence that refers to all

8



interpretations of the language. But a proof can be carried out without it.
Namely, from the language concept of logical consequence, examining the
rules of which a standard complete formal calculus is composed, it is easy to
get that from the formal derivability A1,A2, . . . ⊢ B follows A1,A2, . . . |= B,
in the sense of the language concept of logical consequence. The reversal can
be shown by contraposition: it should be shown that from A1,A2, . . . ⊬ B
follows A1,A2, . . . ⊭ B. For a standard complete formal calculus, the condi-
tion A1,A2, . . . ⊬ B is equivalent to the condition of formal consistency of the
set {A1,A2, . . . ,¬B}. Likewise, for such systems, for example for the system
of classical natural deduction, Henkin-type proof of completeness [Hen49] is
valid. That proof gives an interpretation which is composed of the language
symbols, an interpretation that has no ontological weight, and in which the
statements A1,A2, . . . are true and B is false. According to the language
concept of logical consequence, this means that A1,A2, . . . ⊭ B is valid. This
completes the proof. From this result, that in the case of �rst-order logic, the
language concept of logical consequence can be described by some standard
formal calculus, it follows that it coincides extensionally with the received
view concept of logical consequence. Since logical truth can be described by
logical consequence, it also follows from this result that logical truth can be
described by some standard formal system of �rst-order logic.
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