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Abstract. From large cardinals we obtain the consistency of the existence of

a singular cardinal κ of cofinality ω at which the Singular Cardinals Hypothesis
fails, there is a bad scale at κ and κ++ has the tree property. In particular

this model has no special κ+-trees.

1. Introduction

We prove the following result.

Theorem 1.1. If κ is supercompact and λ > κ is weakly compact, then there is a
forcing extension in which κ is a singular strong limit cardinal of cofinality ω, SCH
fails at κ, there is a bad scale at κ and the tree property holds at κ++.

To begin we recall some basic definitions.

Definition 1.2. Let κ and λ be cardinals with κ regular.

(1) A κ-tree is a tree of height κ with levels of size less than κ.
(2) A cofinal branch through a tree T is a linearly ordered subset of T whose

order type is the height of T .
(3) A κ-Aronszajn tree is a κ-tree with no cofinal branch.
(4) κ has the tree property if and only if there are no κ-Aronszajn trees.
(5) A λ+-tree T is special if and only if there is a function f : T → λ such that

if x and y are comparable in the tree, then f(x) 6= f(y).

Definition 1.3. For a singular cardinal η, the Singular Cardinal Hypothesis (SCH)
at η is the assertion that if η is strong limit, then 2η = η+.

The tree property is well studied. There are many classical results and there
has also been some recent research. We review the classical results. The tree
property at ℵ0 is precisely König’s Lemma [7]. Aronszajn [9] constructed an ℵ1-
Aronszajn tree. Generalizing Aronszajn’s construction Specker [17] proved that if
κ<κ = κ, then there is a special κ+-tree. In particular CH implies that there is a
special ω2-tree. Mitchell [13] proved that relative to ZFC the tree property at ω2 is
equiconsistent with the existence of a weakly compact cardinal. Variations of the
forcing from Mitchell’s result play a central role in further forcing results about the
tree property.
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An old question asks whether it is consistent that every regular cardinal greater
that ℵ1 can have the tree property. One of the main obstacles is arranging the tree
property at the successors of a singular cardinal. Shelah [11] proved that if ν is a
singular limit of supercompact cardinals, then ν+ has the tree property. The main
result of [11] shows that assuming the existence of a little more than a huge cardinal,
it is relatively consistent that ℵω+1 has the tree property. Recently Sinapova [16]
showed that one can obtain the tree property at ℵω+1 from just ω supercompact
cardinals using a very different construction from Magidor and Shelah.

For this paper we are motivated by trying to arrange the tree property at both
the successor and double successor of a singular cardinal. For a general singular κ
there are two relevant partial results. First, Cummings and Foreman [3] have shown
from a supercompact cardinal with a weakly compact cardinal above, it is relatively
consistent that there is a singular cardinal of cofinality ω whose double successor
has the tree property. Second, using a forcing of Gitik and Sharon [5], Neeman [14]
proved that starting from ω supercompact cardinals it is consistent that there is
a singular cardinal of cofinality ω at which SCH fails and whose successor has the
tree property. Making the singular cardinal into a small cardinal like ℵω or ℵω2 is
difficult. Recently, Sinapova [15] was able to define a version of the Gitik-Sharon
forcing to obtain the analog of Neeman’s result [14] where κ = ℵω2 . The result for
κ = ℵω is open.

Our forcing is a combination of the Gitik-Sharon [5] forcing and the forcing from
the result of Cummings and Foreman [3]. The forcing from [3] is a variant of a
forcing due to Mitchell [13]. In the model for Theorem 1.1, we prove that there is a
bad scale at κ. A bad scale at κ is a PCF theoretic object whose existence implies
κ+ /∈ I[κ+] which in turn implies the failure of weak square, �∗κ. By a theorem of
Jensen [6] weak square is equivalent to the existence of a special Aronszajn tree.
So in particular the model for Theorem 1.1 has no special κ+-trees. For an account
of scales and their use in singular cardinal combinatorics we refer the interested
reader to [2].

There is a natural model related to the model for Theorem 1.1 which is a can-
didate for the full tree property at κ+. We are kept from this further result by
difficulties involved in reproducing the argument of Neeman [14]. To illustrate this
our presentation of the forcing will take an increasing sequence of regular cardinals
〈κn | n < ω〉 as a parameter. If we take κn = κ+n for all n < ω as in [5], then
we obtain the model for Theorem 1.1. If we instead let each κn be a supercom-
pact cardinal as in [14], then we obtain a model that is a candidate for the full
tree property at κ+. We will also prove that there are no special κ+-trees in the
model obtained from letting the κn’s be supercompact. We include this argument,
because it is different from the argument given in the proof of Theorem 1.1.

The paper is organized as follows. In Section 2 we formulate a branch lemma,
which will be used in the proof of Theorem 1.1 and has independent interest. We
also recall another classical branch lemma needed in the proof below. In Section 3
we prove some preliminary lemmas, which allows us to define the main forcing. In
Section 4 we define the main forcing and prove some of its properties. In Section
5 we prove that regardless of the choice of the sequence 〈κn | n < ω〉, the tree
property holds at κ++ in the extension. In Section 6 we give the two different
models which both have no special κ+-trees.
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2. Branch lemmas

A branch lemma is a statement of the form ‘Forcing of type X cannot add a
branch through a tree of type Y’. Branch lemmas form a key component in our
arguments that the tree property holds in the generic extension. Often we will
need to do extra forcing to see that a tree has a branch and we will apply branch
lemmas to see that the extra forcing could not have added the branch. There are
two basic branch lemmas in the literature. One of the lemmas argues on the basis
of chain condition and the other on the basis of closure. The original lemma used
to show that forcing with good chain condition cannot add a branch through a
branchless tree is due to Kunen and Tall [8].

Lemma 2.1. Suppose that T is a branchless tree of height κ and P is κ-Knaster,
then forcing with P cannot add a branch through T .

The proof is very specific to Knasterness and requires that the degree of Knaster-
ness be the same as the height of the tree. The assumption that T be branchless
also seems like it should be able to be eliminated. We will generalize Lemma 2.1,
but first we need a definition.

Definition 2.2. Let κ be a regular cardinal. P has the κ-approximation property
if for every ordinal µ and for every P-name ẋ for a subset of µ, if for every z ∈
Pκ(µ)V , 
P ẋ ∩ z ∈ V , then 
P ẋ ∈ V .

Note that if P has the κ-approximation property, then P cannot add a branch
through a tree of height κ. Suppose T is a tree of height κ. We may assume that
the underlying set of T is an ordinal µ. Any name for a cofinal branch ḃ is a name
for a subset of µ. We claim that all of the less than κ sized pieces of ḃ are in V .
Suppose z ∈ Pκ(µ)V . Then since κ is regular and z has size less than κ, there is a
level of the tree α so that all nodes in z are below level α. We choose a condition
in P, which decides the value of ḃ at level α. This determines ḃ ∩ z, so it must be
in V . Therefore by the κ-approximation property, 
P ḃ ∈ V . Before we prove our
generalization, we need the following proposition.

Proposition 2.3. Suppose that P is a poset and ẋ is a P-name for a subset of some
cardinal µ. Assume that for all z ∈ Pκ(µ), 
P ẋ ∩ z ∈ V , but 
P ẋ /∈ V . Then for
all p ∈ P and all y ∈ Pκ(µ), there are p1, p2 ≤ p and z ⊇ y such that p1, p2 decide
the value of ẋ ∩ z and they decide different values.

Proof. Suppose that the conclusion fails. Then we have p and y so that for any
two extensions of p and any z ⊇ y of size less than κ if these extensions decide the
value of ẋ ∩ z, then they give the same value. It follows that p forces ẋ ∈ V . �

The following was obtained by reflecting on arguments of Mitchell [13].

Lemma 2.4. Let κ be a regular cardinal. Suppose that P is a poset and P × P is
κ-cc, then P has the κ-approximation property.

Proof. Suppose that the lemma is false. Then we have a poset P and a name ẋ,
which fails to be approximated. We work by recursion to construct an antichain
of size κ in P × P. In particular, we construct 〈(p0α, p1α) | α < κ〉 and a function
f : κ→ Pκ(µ). Assume that we have constructed (p0α, p

1
α) for α < β and f � β for

some β < κ. Let y =
⋃
f“β which is in Pκ(µ). Choose pβ ∈ P which decides the

value of ẋ ∩ y to be xβ . Apply Proposition 2.3 to pβ and y to obtain conditions
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p0β , p
1
β and f(β) ∈ Pκ(µ) such that p0β , p

1
β decide different values for ẋ∩f(β). Record

the values that each condition decides as x0β , x
1
β . This completes the construction.

We claim that {(p0α, p1α) | α < κ} is an antichain of size κ. Suppose that we
had α < β such that (p0α, p

1
α), (p0β , p

1
β) are compatible. Then xkβ ∩ f(α) = xkα for

k = 0, 1. Note that x0β ∩ f(α) = x1β ∩ f(α) = xβ ∩ f(α) by the choice of xβ . This

implies that x0α = x1α a contradiction. �

We will need this stronger lemma to prove that the tree property holds in our
model. We will also need the following lemma which is used in [3] and [1]. We refer
the interested reader to either paper for a proof.

Lemma 2.5 (Silver). Suppose that τ, η are cardinals with 2τ ≥ η. If Q is τ+-closed,
then forcing with Q cannot add a branch through an η-tree.

3. Preliminaries to the main forcing

We give some definitions and results which allow us to define the main forcing.
For the remainder of the paper we work in a ground model V of GCH where κ
is a supercompact cardinal which is indestructible under κ-directed closed forcing
[10]. For ease of argument we are going to assume that λ > κ is measurable with
U∗ a normal measure on λ. Weakening the result to use only weak compactness
is straightforward. Let 〈κn | n < ω〉 be an increasing sequence of regular cardinals
less than λ with κ = κ0. Let ν be the supremum of the κn’s. Since ν will be
collapsed and ν+ will be preserved, we let µ = ν+.

Let A = Add(κ, λ). In V A, κ is still supercompact. We let U be a supercom-
pactness measure on Pκ(µ) and for each n < ω let Un be the projection of U on
to Pκ(κn). The measures Un concentrate on the sets Xn of x ∈ Pκ(κn) such that
x ∩ κ is an inaccessible cardinal. We define P the diagonal Prikry forcing in the
model V A using the measures Un.

Definition 3.1. A condition in P is a sequence

p = 〈x0, x1, . . . xn−1, An, An+1, . . . 〉
where

(1) for all i < n, xi ∈ Xi,
(2) for all i < n− 1, xi ⊆ xi+1 ∩ κi and o. t.(xi) < κ ∩ xi+1 and
(3) for all i ≥ n, Ai ∈ Ui and Ai ⊆ Xi.

We call n the length of p and denote it `(p). Given another condition

q = 〈y0, . . . ym−1, Bm, Bm+1, . . . 〉
we define p ≤ q if and only if n ≥ m, for all i < m, yi = xi, for all i with m ≤ i < n,
xi ∈ Bi, and for all i ≥ n Ai ⊆ Bi.

Using the measurability of λ we are going to show that there are many places
where the measure U (and hence each Un) reflects. For α < λ let Aα be Add(κ, α).

Let U̇ be an A-name for U . Following the set up of [3] we have the following lemma.

Lemma 3.2. There is a set B ⊆ λ of Mahlo cardinals with B ∈ V such that

(1) if g is A-generic over V , then for all α ∈ B, ig(U̇) ∩ V [g � α] ∈ V [g � α]
and

(2) B ∈ U∗.
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Proof. Let β < λ. For each canonical Aβ-name Ẋ for a subset of Pκ(µ) choose

a maximal antichain of conditions in A deciding the statement “Ẋ ∈ U̇”. By the
κ+-cc of A and the inaccessibility of λ, the supremum of the domains of conditions
in A appearing in any of the above antichains is less than λ. Let F (β) < λ be
greater than this supremum. The set of limit points of F is club. Let B be the set
of Mahlo limit points of F . B is as required for the lemma. �

Let g be A-generic over V . For each α ∈ B, let Uα =def ig(U̇) ∩ V [g � α]. It is
clear that Uα is a supercompactness measure on Pκ(µ) in V [g � α]. For α ∈ B we
define Pα in V [g � α] to be the Diagonal Prikry forcing obtained from Uα in the
same way we defined P from U . We call the associated measures Uαn . Next we note
that a Prikry sequence for P gives a Prikry sequence for Pα. This follows from a
characterization of genericity for Prikry forcing due to Mathias [12]. The version
needed here is that ~x is P-generic if and only if for all sequences of measure one
sets 〈A(n) | n < ω〉, ~x(n) ∈ A(n) for all sufficiently large n. From this it is easy to
see that an A ∗ P-generic object induces a Aα ∗ Pα-generic object for each α ∈ B.
In particular, we just restrict the A-generic object and use the same Prikry generic
sequence. It follows that RO(Aα ∗ Pα) is isomorphic to a complete subalgebra of
RO(A ∗ P) where RO(−) denotes the regular open algebra. Our work with the
above posets will rely on the notion of a projection.

Definition 3.3. Let P and Q be posets. A map π : P→ Q is a projection if

(1) π(1P) = 1Q,
(2) for all p, p′ ∈ P, p′ ≤ p implies that π(p′) ≤ π(p) and
(3) for all p ∈ P and q ≤ π(p), there is p′ ≤ p such that π(p′) ≤ q.

Definition 3.4. Suppose that π : P → Q is a projection. Then in V Q define
P/Q = {p ∈ P | π(p) ∈ ĠQ} ordered as a suborder of P. If G is Q-generic, then we
may write P/G for P/Q as computed in V [G].

Fact 3.5. In the context of Definition 3.4, P is isomorphic to a dense subset of
Q ∗ P/Q.

We now continue with facts about A ∗ P and related posets.

Lemma 3.6. For all α ∈ B there is a projection πα : A ∗ P→ RO(Aα ∗ Pα).

Proof. This follows from general considerations about the regular open algebras of
posets. First we use the map that takes A ∗P densely into its regular open algebra.
Then viewing RO(Aα ∗ Pα) as its isomorphic copy inside RO(A ∗ P), we take the
meet over all conditions in RO(Aα ∗ Pα) that are above a given condition in the
range of the first map. It is easy to see that the composition of the above two maps
gives a projection. �

Note that the projection we get here did not rely on special properties of λ so
by a similar argument we have the following lemma.

Lemma 3.7. For every α, β ∈ B with α < β, there is a projection πα,β : Aβ ∗Pβ →
RO(Aα ∗ Pα)

Remark 3.8. In the previous two lemmas we used the fact that there are projections
from RO(A ∗ P) to RO(Aβ ∗ Pβ) and from RO(Aβ ∗ Pβ) to RO(Aα ∗ Pα) which we
denote σβ and σα,β respectively. We also note that σα,β ◦ πβ = πα,β.



6 SPENCER UNGER

Though we will eventually need something stronger, we have the following.

Lemma 3.9. A ∗ P is µ-cc.

Proof. A is κ+-cc and 
A P is µ-cc, so it follows that A ∗ P is µ-cc. �

It is easy to see that this proof applies to Aα ∗ Pα for α ∈ B. Before moving on
to the definition of the main forcing we record some facts about the extension by
A ∗ P. The proofs of properties of P which lead to the following lemma are easy
adaptations of the proofs in [5].

Lemma 3.10. V A∗P satisfies

(1) κ is singular strong limit of cofinality ω,
(2) κ+ = (ν+)V = µ and
(3) 2κ = λ.

4. The main forcing

We are now ready to define the final poset, which we call R. Conditions are
triples (a, p, f) such that (a, p) is a condition in A ∗ P and f is a function with the
following properties:

(1) dom(f) ⊆ B and |dom(f)| ≤ ν.
(2) For all α ∈ dom(f), f(α) is an Aα ∗ Pα-name for a condition in the forcing

Add(µ, 1)V Aα∗Pα .

The ordering is defined by (a, p, f) ≤ (a1, p1, f1) if and only if

(1) (a, p) ≤ (a1, p1) in A ∗ P,
(2) dom(f1) ⊆ dom(f) and
(3) for all α ∈ dom(f1), πα(a, p) 
 f(α) ≤ f1(α) in Add(µ, 1)V Aα∗Pα .

We also define a certain restriction of R.

Definition 4.1. For β ∈ B, let R � β be the poset defined as follows. Conditions
are triples (a, p, f) such that (a, p) ∈ Aβ ∗ Pβ and f is a function as before, but its
domain is a subset of B∩β. Let (a, p, f) ≤ (a1, p1, f1) if and only if (a, p) ≤ (a1, p1),
dom(f) ⊇ dom(f1), and for all α ∈ dom(f1), πα,β(a, p) 
 f(α) ≤ f1(α).

It is easy to see that a generic for R induces a generic for R � β. Our forcing has
many of the same properties the forcing from [3].

4.1. Basic Properties of R.

Lemma 4.2. R is λ-Knaster and for all β ∈ B, R � β is β-Knaster.

Proof. This is a standard ∆-system argument combined with the fact that any two
Prikry conditions with the same stem are compatible. �

We have the standard projections as in [1] or [3].

Lemma 4.3. There are projections

R→ A ∗ P and

R→ RO(Aα ∗ Pα) ∗Add(µ, 1)V Aα∗Pα

for α ∈ B given by

(a, p, f) 7→ (a, p) and

(a, p, f) 7→ (πα(a, p), f(α))
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respectively.

Using the first projection we see that 2κ ≥ λ and using the second projection
we see that each α ∈ B is collapsed to have size µ in the extension by R. As in
the Cummings-Foreman paper, we have that the extension by R is contained in an
extension by (A ∗ P)×Q where Q is µ-closed.

Definition 4.4. Let Q be the set of third coordinates from R together with the
ordering f1 ≤ f2 if and only if dom(f1) ⊇ dom(f2) and for all α ∈ dom(f2),

Aα∗Pα

f1(α) ≤ f2(α).

Lemma 4.5. Q is µ-closed and the identity map is a projection from (A ∗ P)×Q
to R.

The proof is a straightforward adaptation of Lemma 2.8 of [1].
For suitable choice of generics we have V A∗P ⊆ V R ⊆ V (A∗P)×Q. Using these

facts we can prove the following lemma.

Lemma 4.6. V R satisfies

(1) κ is singular strong limit of cofinality ω,
(2) ν is collapsed to have size κ and µ is preserved and
(3) 2κ = κ++ = λ.

Proof. By Lemma 4.5, every < µ sequence from V R is in V A∗P. It follows that κ is
singular strong limit of cofinality ω in V R. It also follows that µ is preserved since if
it were collapsed then it would have been collapsed by A∗P. Since R projects on to
A ∗ P, we have that ν is collapsed to have size κ and 2κ ≥ λ. We have that 2κ = λ,
since 2κ = λ in V A∗P and every κ sequence from V R is in this model. Finally, each
β ∈ B is collapsed to have cofinality µ by Lemma 4.3 and λ is preserved by Lemma
4.2. �

4.2. Complex Properties of R. In this subsection we prove that in V R�β the
forcing R/R � β is equivalent to a forcing with a definition similar to R. This will
provide a key component in our proof that the tree property holds at κ++ in the
extension.

First we make note of a slightly different, but equivalent (in the sense of forcing)
definition of R and its restrictions. Note that instead of the condition (a, p) ∈ A∗P
in the first two coordinates of R, we could have just taken a condition in RO(A∗P).
The projections needed in the definition of the ordering are just the projections
σβ from Remark 3.8. If we call this new poset R′, it is easy to see that R is a
dense subset of R′. Similarly we define R′ � β as above by replacing Aβ ∗ Pβ with
RO(Aβ ∗ Pβ) in the definition of R � β.

Having defined these auxiliary posets it is easy to see that the map from R to
R′ � β given by (a, p, f) 7→ (πβ(a, p), f � β) is a projection. In V R�β we will define
a poset R∗ which is equivalent to the poset R/R′ � β and which resembles R. To
define the ordering we will need suitable projections from (A ∗ P)/(Aβ ∗ Pβ) to
RO(Aγ ∗ Pγ)/(Aβ ∗ Pβ) for γ > β in B. These projections will be given by the
following proposition. (The posets P,Q and R in the following proposition have no
relation to the posets we’ve defined above.)

Proposition 4.7. Let P,Q and R be posets and assume that there are projections
π : P→ Q and σ : Q→ R. If G is R-generic, then in V [G] π � P/G is a projection
from P/G to Q/G.



8 SPENCER UNGER

Proof. Clearly the restriction of π is order preserving and sends the top element of
P/G to the top element of Q/G. For the moment we work in V . Let p ∈ P and
q ≤ π(p). Let D be the set of r ∈ R such that there is p′ ∈ P with

(1) p′ ≤ p,
(2) π(p′) ≤ q and
(3) σ(π(p′)) = r.

We claim that D is dense in R below σ(q). Suppose that r ≤ σ(q) since σ is a
projection there is q′ ≤ q such that σ(q′) ≤ r. Since π is a projection there is a
p′ ≤ p such that π(p′) ≤ q′. Clearly σ(π(p′)) ∈ D. Suppose that p ∈ P/G and
q ≤ π(p) is in Q/G. Then since σ(q) ∈ G, D ∩G 6= ∅ where D is defined as above.
Let p′ witness that some r ∈ D ∩ G. Then p′ ∈ P/G, p′ ≤ p and π(p′) ≤ q as
required. �

Working in V R�β , we define the forcing R∗ as follows. We let (a, p, f) ∈ R∗ if and
only if (a, p) ∈ (A ∗ P)/(Aβ ∗ Pβ) and f is a partial function with domain a subset
of B of size < µ such that for each γ ∈ B, f(γ) is an (Aγ ∗ Pγ)/(Aβ ∗ Pβ)-name for
a condition in Add(µ, 1). The ordering is defined in a similar way to that for R,
but for each γ using the restriction of πγ to (A ∗ P)/(Aβ ∗ Pβ). These restrictions
are projections by the previous proposition applied with πγ in place of π and σβ,γ
(from Remark 3.8) in place of σ.

We can now state the main technical lemma of this section.

Lemma 4.8. There is a map i from R to R′ � β ∗ Ṙ∗ such that x ≤ y if and only
if i(x) ≤ i(y) and the range of i is dense.

The proof is very similar to the proof of Lemma 2.12 in [1]. As with R we can
show that R∗ is the projection of a product (see Definition 4.4 and Lemma 4.5).

Lemma 4.9. In V R�β, there is a µ-closed forcing Q∗ such that the identity map is
a projection from (A ∗ P)/(Aβ ∗ Pβ)×Q∗ to R∗.

The proof is straightforward.

5. The tree property at κ++

The proof in this section is somewhat different from the proof in the paper of
Cummings and Foreman [3]. We rely on the same analysis in terms of projections,
but the forcings involved are no longer as nice. Our task is further complicated by
a mistake on the very last page the Cummings and Foreman paper. In particular
they attempt to prove that the quotient forcing in their paper corresponding to
(A ∗ P)/(Aβ ∗ Pβ) in our paper has the Knaster property. The key point in the
argument is to show that conditions which witness the compatibility of conditions
in A ∗ P are forced in to the quotient. A careful read of the paper shows that
Cummings and Foreman have not done enough work to show that such conditions
are forced in to the quotient. To fix this problem we provide a further analysis of
the quotient forcing. Our task is made a little easier, since in light of Lemma 2.4
we only need to show that the quotient squared has chain condition. The proof
given below adapts easily to give the proof the analogous fact about the forcing in
the Cummings and Foreman paper.

Lemma 5.1. The tree property holds at κ++ in V R.
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Let j : V →M be the ultrapower by the normal measure U∗. We want to lift j
to an elementary embedding j : V [G]→M [H] where G is V -generic for R and H is
V -generic for j(R). For all r ∈ R, j(r) = r. Recall that B is in the normal measure
on λ, so λ ∈ j(B). So we have j(R) �λ = R. We choose H which is V -generic for
j(R) and let G be the induced generic object for R. It follows that in V [H] we may
lift the embedding. For a contradiction we assume that T is a κ++-Aronszajn tree
in V [G].

Lemma 5.2. There is a β ∈ B such that V [G � β] models that T � β is an
β-Aronszajn tree

Proof. Let j be as above. By hypothesis V [G] models T is an Aronszajn tree. We
may assume that the underlying set of T is λ. It follows that j(T ) � λ = T . T has an
R-name which can be coded as a subset of λ and hence T ∈M [G]. Since M [G] is a
submodel of V [G], T is an Aronszajn tree in M [G]. Recall that M [G] = M [H � λ].
Putting all of this together we have M [H] |= “There is a β ∈ π(B) such that
M [H � β] |= j(T ) � β is a β-Aronszajn tree.” So by elementarity we have the
lemma. �

Clearly there is a branch through T � β in V R as T has height κ++. We are
going to show that the quotient forcing R/R �β could not have added the branch,
a contradiction. By Lemmas 4.8 and 4.9 it will suffice to show that forcing with
Q∗ × (A ∗ P)/(Aβ ∗ Pβ) over the model V [G � β] could not have added a branch
through T � β. Note that the hypotheses of Lemma 2.5 hold in V [G � β] about
T � β and Q∗. It follows that T � β is still branchless in V [G � β]Q

∗
. Moreover

in this model β has been collapsed to have cofinality µ = κ+. We replace T � β
with its restriction to a cofinal set of levels of order type µ. To finish the proof we
would like to show that ((A ∗P)/(Aβ ∗Pβ))2 is µ-cc in V [G � β]Q

∗
in order to apply

Lemma 2.4. It will be enough to show the following.

Lemma 5.3. In V Aβ∗Pβ , ((A ∗ P)/(Aβ ∗ Pβ))2 has the µ-cc

Corollary 5.4. ((A ∗ P)/(Aβ ∗ Pβ))2 has the µ-cc in V [G � β]Q
∗

Proof of Corollary 5.4 from Lemma 5.3. For ease of notation let T denote the quo-
tient. By Easton’s Lemma it is enough to show that T2 has µ-cc in V R�β . By
Lemma 5.3 we have that Aβ ∗ Pβ ∗ T2 is µ-cc in V . By Easton’s Lemma we have

that Aβ ∗ Pβ ∗ T2 has µ-cc in V Q�β . It follows that T2 has µ-cc in V Q�β×(Aβ∗Pβ)

which finishes the proof. �

Before proceeding with the proof of the Lemma 5.3 we prove preliminary facts.
First we need a proposition which is an adaptation of a claim in the proof of Lemma
7.1 of [3].

Proposition 5.5. Let (b, (t, Ḃ)) ∈ Aβ ∗ Pβ and (a, (s, Ȧ)) ∈ A ∗ P. (b, (t, Ḃ)) 

(a, (s, Ȧ)) /∈ (A ∗ P)/(Aβ ∗ Pβ) if and only if one of the following holds

(1) a � β, b are incompatible in Aβ.
(2) a � β, b are compatible, s � t and t � s.
(3) a � β, b are compatible, s ≤ t and a∪b 
 there is n such that `(s) ≤ n < `(t)

and t(n) /∈ Ȧ(n).
(4) a � β, b are compatible, t ≤ s and a � β ∪ b 
 there is n such that `(t) ≤

n < `(s) and s(n) /∈ Ḃ(n).
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The proof is exactly the same as in [3]. So we have characterized when a condition
in Aβ ∗Pβ forces a condition in A∗P out of the quotient. We will also need sufficient
conditions for something to forced in to the quotient.

Proposition 5.6. If (b, (t, Ḃ)) ∈ Aβ ∗ Pβ and (a, (s, Ȧ)) ∈ A ∗ P and

(1) t extends s,
(2) b ≤ a � β and

(3) a ∪ b 
 “For all n with `(s) ≤ n < `(t), t(n) ∈ Ȧ(n)”,

then there is an Aβ-name for a sequence of measure one sets Ċ such that (b, (t, Ḃ∩
Ċ)) 
 (a, (s, Ȧ)) ∈ (A ∗ P)/(Aβ ∗ Pβ).

Note that here Ḃ∩ Ċ is a compact way of writing the canonical Aβ-name for the

pointwise intersection of the sequences of measure one sets Ḃ and Ċ.

Proof. We start with a claim that will establish the existence of certain measure
one sets.

Claim. For each k < ω, b forces that the set {~x | `(~x) = k, s _ ~x is a stem and

a 1V
Aβ

A/Aβ
there is n < k, ~x(n) /∈ Ȧ(`(s) + n)} contains a set of the form

∏
n<k Cn

where for all n < k, Cn ∈ Uβ`(s)+n
Suppose that the claim fails. Then by a version of Rowbottom’s theorem there

are a k < ω and a b′ ≤ b which forces that the complement of the above set contains
a product of measure one sets Cn for n < k. If we force with A below b′ ∪ a, then
we see that

∏
n<k Cn ∩

∏
k<nA`(s)+n is empty, which is impossible since each of

the sets involved is measure one for one of the measures Ui.

Claim. If Ċ is an Aβ-name for a sequence of measure one sets which witnesses

the previous claim for all k < ω, then Ċ is as required for the proposition.

Suppose that the claim fails. There is (b′, (t′, Ḃ′)) ≤ (b, (t, Ḃ ∩ Ċ)) such that

(b′, (t′, Ḃ′)) forces that (a, (s, Ȧ)) /∈ (A∗P)/(Aβ ∗Pβ). Working through the clauses
of Proposition 5.5 we see that (1),(2) and (4) all fail. So by clause (3), we must

have that b′ ∪ a forces that there is an i such that t′(i) /∈ Ȧ(i). By assumption (3)
of the current proposition, we must have that such i is greater than or equal to `(t).
We set ~x to be the unique sequence satisfying t _ ~x = t′. By the previous claim we
have that b′ forces that a does not force that there is an n such that ~x(n) /∈ Ȧ`(s)+n.

It follows that a∪ b′ does not force that there is an n such that ~x(n) /∈ Ȧ(`(s) +n).
This contradicts clause (3) of Proposition 5.5. �

Proposition 5.7. If (b, (t, Ḃ)) ∈ Aβ ∗Pβ and ṙ is an Aβ ∗Pβ-name for a condition

in (A∗P)/(Aβ ∗Pβ), then we can extend (b, (t, Ḃ)) to (b′, (t′, Ḃ′)) deciding the value

of ṙ = (a, (s, Ȧ)) so that there is a′ ≤ a such that (b′, (t′, Ḃ′)) and (a′, (s, Ȧ)) satisfy
the hypotheses of Proposition 5.6.

Proof. Extending to (b, (t, Ḃ)) to (b′, (t′, Ḃ′)) which decides the value of ṙ, we may
assume that the stem t′ extends the stem s and b′ ≤ a � β. Now by Proposition 5.5,
we must have that clause (3) fails and so there is a′ ≤ b′ ∪ a such that a′ forces for

all n with `(s) ≤ n < `(t′), t′(n) ∈ Ȧ(n). Extending b′ if necessary we may assume
that b′ ≤ a′ � β. �
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Remark 5.8. It is not hard to see that we could have obtained the conclusion of
the previous proposition simultaneously for two conditions ṙ0 and ṙ1 using the same
condition (b′, (t′, Ḃ′)).

Our final preliminary fact is about the chain condition of A ∗ P in V .

Proposition 5.9. In V , (A ∗ P)2 × (Aβ ∗ Pβ) is µ-cc

The proof is straight forward. Conditions with the same stem are compatible
and κ+ of the A parts can be formed in to a ∆-system. We are now ready to prove
that the quotient squared has chain condition.

Proof of Lemma 5.3. Suppose that (ṙ0α, ṙ
1
α) for α < µ is an Aβ ∗ Pβ-name for an

antichain in ((A ∗ P)/(Aβ ∗ Pβ))2. Let (b, (t, Ḃ)) ∈ Aβ ∗ Pβ . By Remark 5.8, for

each α < µ we choose (bα, (tα, Ḃα)) deciding the value of ṙ0α, ṙ
1
αto be (a0α, (s

0
α, Ȧ

0
α))

and (a1α, (s
1
α, Ȧ

1
α)) with extensions āiα ≤ aiα for i ∈ 2. By the proof of Proposition

5.9 we may assume that there are α < α′ < µ such that siα = siα′ for i ∈ 2 and
each of bα ∪ bα′ and āiα ∪ āiα′ for i ∈ 2 are conditions in A. For i ∈ 2 we now have

the hypotheses of Proposition 5.6 for the conditions (bα ∪ bα′ , (t, Ḃα ∩ Ḃα′)) and

(āiα∪ āiα′ , (si, Ȧiα∩ Ȧiα′)) where t = tα = tα′ and si = siα = siα′ . It follows that there

is a direct extension of (bα ∪ bα′ , (t, Ḃα ∩ Ḃα′)), which forces the compatibility of
the conditions with index α and α′. �

This finishes the proof of Lemma 5.3 and with it the proof of Lemma 5.1

6. No special κ+-trees

In this section we give two proofs that there are no special κ+-trees. The first
proof applies to the version of R where we follow Gitik and Sharon and take κn =
κ+n. The second proof applies to the version of R where we follow Neeman and let
the κn’s be an increasing sequence of supercompact cardinals.

6.1. R with Gitik-Sharon. For this section we assume that κn = κ+n and so
ν = κ+ω. We show the following:

Theorem 6.1. In V R there is a bad scale on κ+.

Proof. By arguments from [4] there is a bad scale ~f at κ in V A∗P which is witnessed
by a stationary set S ⊆ κ+ω+1 from V . Using Lemma 4.5 and Easton’s Lemma, we

see that V A∗P and V R have the same < κ-sequences. It follows that ~f is still a scale

in V R and every bad point of ~f in V A∗P remains bad in V R. It remains to see that
the set S is still stationary in V R. It is enough to show that it is still stationary
in the outer model V Q×(A∗P). Since Q is κ+ω+1-closed in V , S is stationary in V Q.
By Easton’s Lemma, A ∗ P is κ+ω+1-cc in V Q. The result follows. �

Remark 6.2. It should be noted that with a some extra work this argument applies
for other choices of the κn’s. A referee pointed out that arguments from [5] obtain
the failure of approachability at κ for all choices of the κn’s with no extra work
required.
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6.2. R with Neeman. For this section we assume that 〈κn | n < ω〉 is an in-
creasing sequence of supercompact cardinals. Further we assume that each κn is
indestructible under κn-directed closed forcing. Under the above assumptions we
prove the following theorem.

Lemma 6.3. In the extension V R there are no special κ+-trees

Proof. It will be enough to show that the tree property holds at κ+ in an extension
by A ∗ P×Q and that µ is preserved in this extension. If we had a special κ+-tree
in V R, then it would still be a special κ+-tree in V (A∗P)×Q, which is impossible.
Recall that in the extension we have collapsed cardinals and µ has become κ+. By
Lemma 4.5, we know that µ = κ+ is preserved in V (A∗P)×Q. It remains to show
that the tree property holds in this model.

Recall that the term forcing Q was defined in the ground model and is µ-closed.
So we consider the extension in question as an extension by Q and then by A ∗ P.
We want to show that in V Q, A∗P is Neeman’s forcing for some choice of measures
and each of the κn’s is still supercompact.

Lemma 6.4. Q is µ-directed closed.

Proof. Let {fα : α < η} be a set of conditions in Q for some η < µ such that for
any pair α0, α1 < η there is a γ < η such that fγ ≤ fα0 , fα1 . Define f to be a
function such that dom(f) =

⋃
α<η dom(fα). The domain of f has size less than

µ, because µ is regular. For each β ∈ dom(f), let f(β) be a name for the union of
fα(β) over all α < η. We claim that for each β ∈ dom(f), f(β) names a condition
in Add(µ, 1)V Aβ∗Pβ . Suppose that the claim fails. Then there is a β ∈ dom(f),
ρ < µ, and condition (a, p) ∈ Aβ ∗ Pβ such that (a, p) 
 (ρ, 0), (ρ, 1) ∈ f(β). By
the definition of f , there are α0, α1 < η, such that (a, p) 
 fα0(β)(ρ) = 0 and
fα1

(β)(ρ) = 1. But this is impossible, because fα0
and fα1

are compatible in the
ordering of Q. �

It follows that each U̇n is still an A-name for an appropriate measure and that
each of the κn’s is still supercompact since we made each of the κn’s indestructible
under κn-directed closed forcing. This finishes the proof since in V Q we have all of
the conditions that we need to work the argument from [14]. �
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