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Cognitive overload or underload results in a decrease in human performance which
may result in fatal incidents while driving. We envision that driver assistive systems
which adapt their functionality to the driver’s cognitive state could be a promising
approach to reduce road accidents due to human errors. This research attempts to
predict variations of cognitive working memory load levels in a natural driving scenario
with multiple parallel tasks and to reveal predictive brain areas. We used a modified
version of the n-back task to induce five different working memory load levels (from
0-back up to 4-back) forcing the participants to continuously update, memorize, and
recall the previous ‘n’ speed sequences and adjust their speed accordingly while they
drove for approximately 60 min on a highway with concurrent traffic in a virtual reality
driving simulator. We measured brain activation using multichannel whole head, high
density functional near-infrared spectroscopy (fNIRS) and predicted working memory
load level from the fNIRS data by combining multivariate lasso regression and cross-
validation. This allowed us to predict variations in working memory load in a continuous
time-resolved manner with mean Pearson correlations between induced and predicted
working memory load over 15 participants of 0.61 [standard error (SE) 0.04] and a
maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead
reduced the mean correlation to 0.38 (SE 0.04), indicating additional information gained
through whole head coverage. Moreover, working memory load predictions derived
from peripheral heart rate parameters achieved much lower correlations (mean 0.21,
SE 0.1). Importantly, whole head fNIRS sampling revealed increasing brain activation
in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing
working memory load levels suggesting that these areas are specifically involved in
workload-related processing.
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INTRODUCTION

Operating a car imposes high cognitive demands on the driver
because information from the traffic signs, in-vehicle displays,
and other traffic participants has to be integrated into a
coherent situation representation. This representation needs
to be dynamically updated with new information thus being
especially challenging for the driver’s working memory (De
Waard, 1996; da Silva et al., 2014). This means that the current
level of workload of the driver is largely defined by the current
working memory demands. Therefore, being able to reliably
measure the momentary working memory load of the driver
would be a major step into the direction of designing automation
systems that are adaptive to the driver’s cognitive workload.
Parasuraman and colleagues (Parasuraman, 1987; Byrne and
Parasuraman, 1996; Kaber et al., 2001) coined the term ‘adaptive
automation’ for systems that aim to adapt the level of automation
and support of assistance functions to the current state of the
operator and thus to keep him or her at an optimal level of
engagement and cognitive workload. This idea is very elegant on
the conceptual level and its potential has been shown in several
lab studies (Kaber and Riley, 1999; Parasuraman et al., 2009;
Prinzel et al., 2016). However, up to the present day, reliably
detecting different levels of cognitive workload is challenging
especially in realistic scenarios such as driving.

Human working memory is a limited capacity system that
can hold a limited number of information chunks at a time
(Miller, 1956; Baddeley, 2003). This number varies between
individuals and tasks. In the field of cognitive psychology
and neuroscience, the well-accepted n-back task is used as a
benchmark to experimentally manipulate working memory levels
(Kirchner, 1958). It is thought that there is a monotonous
increase of working memory load with increasing n, the
number of items to be memorized, until the individual working
memory capacity is reached. Increased working memory load
comes along with increased error rates and increases in
physiological arousal and changes of the sympathetic influence
on the heart (Backs and Seljos, 1994; Gramann and Schandry,
2009). Several studies attempted to assess changes in working
memory load in realistic situations from peripheral physiological
parameters such as heart rate, heart rate variability or skin
conductance level (Solovey et al., 2014; Gable et al., 2015).
However, relying on peripheral physiology has the disadvantage
that changes in arousal are not specific to working memory
load, but are also integral to emotions such as anger or joy
(Sander et al., 2005) and related to physical activity or fatigue
(De Waard, 1996). In order to disentangle different types
of workload (Wortelen et al., 2016) from emotional states,
and to obtain more specific assessments of cognitive states,
multidimensional brain activation measurements could be a
promising complement.

Neuroimaging studies suggest that the pre-frontal brain
areas are involved in processes necessary for working memory
(D’Esposito et al., 1999; Spitzer et al., 2014). A promising
approach to assess working memory load in realistic
environments is to measure brain activation of the operator with
functional near-infrared spectroscopy (fNIRS). “FNIRS utilizes

light in the infrared range to measure brain activity via relative
hemoglobin concentration changes (Villringer et al., 1993).”

There have been a few previous studies where both fNIRS and
electroencephalography (EEG) brain activation measurements
have been used to assess and discriminate working memory
load levels in humans. Sassoroli et al. (2008) classified three
different working memory load levels in a simple lab setting using
two channels placed on the left and right side of the forehead.
Hirshfield et al. (2009) combined EEG and fNIRS modalities
to explore user’s mental workload. They elicited three different
workload levels by increasing the number of objects to be tracked
and classified these workload levels independently for fNIRS and
EEG and report higher classification accuracies on fNIRS data
compared to EEG data. Frey et al. (2016) provided a framework
for EEG-based evaluation of user experience by continuously
estimating mental workload, attention and interaction errors in
a controlled virtual environment.

Some studies in the aviation domain have used fNIRS to
measure working memory load levels in air traffic control (ATC)
operators, unmanned vehicle operators and pilots. For instance,
Ayaz et al. (2012) used the sixteen optodes fNIR 100 system
over the forehead and found effects of type of communication
and three different levels of working memory load on prefrontal
oxygenated-hemoglobin (HbO) levels in ATC operators in a
flight simulator. Gateau et al. (2015) used the sixteen fNIRS-
optodes configuration with coverage over the pre-frontal areas
to implement an online fNIRS-based system that discriminated
two levels of a pilot’s instantaneous working memory load in a
flight simulator. Harrison et al. (2014) reported increasing mean
oxygenation levels in a single channel placed over left pre-frontal
cortex in ATC operators managing increasing air traffic density.

In the driving domain, both EEG and fNIRS have been used to
measure the workload levels of drivers. Lei and Roetting (2011)
estimated driver workload from EEG spectrum modulation while
participants performed a combination of lane-change and a
working memory tasks in a driving simulator. They found
an 8–12 Hz (alpha) oscillatory power decrease and a 4–8 Hz
(theta) power increase with increasing workload. Tsunashima
and Yanagisawa (2009) compared fNIRS data from the pre-
frontal areas while participants drove in a driving simulator with
and without adaptive cruise control (ACC) and reported that
participants showed less frontal lobe activations while driving
with ACC. Yoshino et al. (2013) used fNIRS during driving on an
actual expressway and reported significant changes in HbO levels
around the frontal eye field during speed changes as compared to
driving with constant speed.

Most of the workload-related studies were able to discriminate
only two or three levels of working memory load in realistic
scenarios. For adaptive automation, however, continuous
quantification of working memory load is desired. Moreover, due
to the limited spatial sampling, these studies provided limited
information about other than pre-frontal brain areas predictive
of working memory load in realistic tasks.

The current study uses whole head, high density fNIRS in
combination with a modified version of the n-back working
memory task to continuously quantify the current level of
working memory load in a realistic driving task with varying
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demands and traffic conditions. We measured brain activation
using 78-channel fNIRS throughout the entire driving time and
used multivariate analyses approaches to predict the current
working memory load level on a continuous scale. The close
to whole head fNIRS sampling that we employed should allow
us to extend current knowledge of brain motives predictive
of working memory obtained in fNIRS studies which focused
solely on pre-frontal activation patterns. We also recorded task-
related behavior, driving behavior, and peripheral physiology to
simultaneously assess working memory load with measures other
than fNIRS recordings. Our hypothesis is that neural activation
patterns in the pre-frontal and parietal areas will be the relevant
features for estimating the level of working memory load since
previous laboratory studies have shown that these areas are
known to be involved in working memory-related processing
(LaBar et al., 1999; Wagner et al., 2005; Postle, 2006; Koenigs
et al., 2009; Salazar et al., 2012; Lara and Wallis, 2015; Ekman
et al., 2016).

MATERIALS AND METHODS

Design
While driving in the driving simulator, participants accomplished
a speed regulation version of the digit-span/n-back tasks that
was integrated into the driving task in order to induce working
memory load. The conducted version of the task had five
difficulty levels (n= 0, 1, 2, 3, 4).

Participants
Nineteen volunteers (17 males) aged 19–32 years
(Mean ± SD = 25.2 ± 3.7) participated in this study. All

participants possessed a valid German driving license and
gave written informed consent to participate prior to the
experiment in accordance with the Declaration of Helsinki. The
experimental procedure was in line with the guidelines of the
German Aerospace Research Center and approved by the Ethics
Committee of the Carl von Ossietzky University, Oldenburg.
Participants received a financial reimbursement of 10€ per hour.

Experimental Set-up
The experiment was implemented in the virtual reality (VR) lab
(Figure 1) with 360◦ full view at the German Aerospace Research
Center (Fischer et al., 2014). Participants sat in a realistic
vehicle mock-up and controlled the mock-up car in the driving
simulation (Virtual Test Drive, Vires Simulationstechnologie,
Bad Aibling, Germany) via a standard interface with throttle,
brake pedal, steering wheel, and indicators. The track was a
round course (64 km in total) consisting of a slightly curvy 3-
lane-highway with standard lane widths. The simulation included
concurrent traffic with density that varied over time.

The simulator equipment provided access to driving-related
variables (movements of steering wheel, throttle and brake pedal
as well as lane keeping behavior). Participants’ electrocardiogram
(ECG) was recorded with a wearable physiological measurement
system (HealthLab by SpaceBit, Eberswalde, Germany).
Behavioral (task- and driving-related) and ECG data were used
to assess the potential influence of n-back level on the driving
behavior and peripheral physiology.

Participants’ brain activity was measured using fNIRS. “FNIRS
uses low-energy optical radiation in the near infrared range
to measure absorption changes in the sub-surface tissues and
obtain local concentration changes of oxy-hemoglobin (HbO)
and deoxy-hemoglobin (HbR) as correlates of functional brain

FIGURE 1 | Virtual Reality lab driving simulator at German Aerospace Center – photograph of experimental setup. The participant is driving along the
highway in this experiment. The fNIRS system and the computer are positioned in the backseat of the car behind the participant (not seen in this photograph).
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FIGURE 2 | Functional near-infrared spectroscopy probe placement. (A) Topologic layout of the emitters (red), detectors (green) and the fNIRS channels
(purple) on a standard 10–20 EEG system. Figure reproduced from NIRStar software with permission from NIRx Medical Technologies, LLC, USA. (B) FNIRS
channels (labeled in yellow) superimposed onto the head model depicting coverage over the frontal and parietal and temporo-occipital areas. Figure generated using
nirsLAB toolbox1.

activity using modified Beer-Lambert law (Villringer et al., 1993;
Sassaroli and Fantini, 2004).” We used two NIRScout (NIRX
Medical Technologies) systems in tandem to acquire fNIRS
signals. The system uses two wavelengths of 760 and 850 nm
and outputs relative concentration changes of HbO and HbR.
Thirty-two optical emitters and detectors each were used to
obtain full coverage of the frontal, parietal and temporo-occipital
cortices. In order to avoid crosstalk between the two systems,
we arranged the optodes such that one system covered the
frontal areas and the other system covered parietal and temporo-
occipital areas. This arrangement left a gap approximately along
the somatomotor cortices to separate the systems. We had
78 channels (combinations of emitters and receivers) in total
(Figure 2A) for measuring HbO and HbR over nearly the whole
head (Figure 2B). The average distance between an emitter and
detector was approximately 3.5 cm. The sampling frequency of
the tandem system was 1.955Hz.

Experimental Paradigm
The working memory load manipulation was integrated into
the driving via a speed regulation task. This manipulation was
achieved using a combination of a digit-span and the n-back
tasks to induce five different n-back levels (n = 0, 1, 2, 3, 4).
In a classical n-back task, a stream of stimuli, e.g., numbers
are presented. The participants need to compare the currently
presented number with the number that occurred n steps back
and provide a response (e.g., button press, mouse click) if
both numbers are the same. In our modified n-back task, the
participants had to continuously update, memorize and recall the
previous n numbers, which were represented as speed signs and
adjust their speed to the speed sign that occurred n steps back.

1https://www.nitrc.org/projects/fnirs_downstate

The speed signs were distributed such that participants passed a
new speed sign roughly every 20 s (i.e., the length of each trial).

We first performed a training session where the participants
drove the driving simulator over each of the five different
n-back levels twice. The training session lasted for 20 min.
In the experimental session, participants then drove with ten
speed signs for each n-back level. Each new speed sign was
considered as a single trial. Each n-back level was repeated twice,
thus resulting in 100 trials in total (2 repetitions × 5 n-back
levels × 10 trials) which lasted approximately 30 min and had a
pseudorandomized order of the n-back levels with the constraint
that the same n-back level was never driven twice in a row. The
order of the n-back levels was balanced across participants. In
addition, the speed signs varied from 60 to 140 km/h (in steps
of 10 km/h) and presented in random order to avoid sequencing
effects. At the beginning of a new n-back condition, a message
was displayed for 5 s on the VR-screen to inform the participant
about the n-back level to accomplish next. The example in
Figure 3A illustrates the nature of the task. In this example,
the participant is about to pass the 80 km/h speed sign and the
previous four speed signs were 140, 120, 100, and 160 km/h,
respectively. Figure 3B shows the speed that the participant is
supposed to drive and the speed sequence to be remembered for
the corresponding n-back task.

For a 0-back task, as soon as participant encounters the
80 km/h speed sign, (s)he has to adjust and maintain the speed
close to 80 km/h. For a 1-back task, the participant had to drive
at the speed indicated by the previous speed sign (hence the
name 1-back), here 140 km/h, and remember 80 km/h which
(s)he would drive at the next speed sign. For a 4-back task,
the participant had to drive at the speed that occurred four
speed signs previously, here 160 km/h, and remember the four
element speed sequence, e.g., 100, 120, 140, and 80 km/h. This
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FIGURE 3 | Example of n-back experimental paradigm to manipulate cognitive workload. (A) Consider a scenario where the participant is about to pass the
80km/h speed sign and the previous four speed signs were as shown in the schematic. (B) For the corresponding n-back task, participants had to memorize the last
n speed signs and drive at the nth speed sign which occurred previously.

way, the participants had to update, memorize and recall a
sequence of n speed signs and adjust their speed accordingly.
Participants were allowed to take 3 s before and after passing a
new speed sign to adjust their speed to the correct speed which
was ±5 km/h around the target speed. After this interval, they
were prompted by a visual message on the screen to stay in the
correct speed range each time they drove more than 5 km/h above
or below the target speed. The message remained on the screen as
long as the participant drove outside the requested speed range.
However, using this message to find the correct speed instead
of remembering it would have led to very low performance as
different speed signs appeared approximately every 20 s and we
used 9 different target speeds which the participant was never
explicitly told. The 17 s remaining after the warning message
first appeared was too short to systematically scan the potential
range of speeds and we found no indication of such a strategy
in any of our participants. Because the task was performed with
concurrent traffic, participants also had to consider the current
traffic situation throughout the task which included lane changes.

For any n-back task, the participant needs to first pass through
n successive speed signs before regulating the speed. For this
reason, when a new n-back task begins, the participant was
instructed to drive at the speed shown by the first speed sign.

Data Analysis
Behavioral and Peripheral Physiological Parameters
We employed linear mixed effects analysis (West et al., 2014)
to test linear relationships between the n-back condition

(fixed effect), and driving behavior or physiological parameters,
respectively. We entered intercepts for participants, trial number
and target speed (i.e., the speed supposed to be driven in that
trial) as random effects in the model. P-values were obtained
by likelihood ratio tests (χ2-tests) of the full model with the
effect in question against the model without the effect in question
(West et al., 2014). We report the slope of the fixed effect of
the model (n-back level) for each of the respective dependent
variable as an unstandardized effect size and r as a standardized
effect size. For the calculation of r, we used the Satterthwaite
approximation [R package lmerTest (Bates et al., 2015)] to obtain
the degrees of freedom (df) and t-values and the well-known
relation r = sqrt(t2/(t2

+df).
The driving behavior parameters included the proportion

of time the participants drove in the correct speed range,
the reaction time for the speed adjustments, brake, throttle
and steering variance and the average deviation from the lane
center (phases before and after lane change were omitted for
determining the deviation from the lane center). The proportion
of time in the correct speed range was the time during which
participants drove at the target speed (±5 km/h tolerance) in
relation to the total time for that trial (excluding the transition
time of 3 s after the speed sign). The reaction time was calculated
as the time that participants needed to reach the target speed
(±5 km/h tolerance). It was measured from the moment when
they passed the speed sign, with the constraint that they continue
to drive at the target speed during the course of the trial. Reaction
time was only calculated on correct trials.
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For the driving and the n-back-task-related parameters, data
right before and after passing the speed sign (±3 s) were not
taken into account. Trials with extreme values (i.e., more than
three standard deviations from the mean per participant) were
removed from analysis. For the analysis of the correctness of the
speed range, the reaction time, and the average deviation from
the lane center, we removed less than 1% of the trials using this
criterion. For throttle and steering variance, we removed less than
2% of the trials. For the analysis of brake variance, 12.4% of the
trials were eliminated.

We calculated the heart rate and the Root Mean Square
of Successive Differences (RMSSD) as a measure of heart rate
variability from the ECG data to assess potential influence of
n-back level on peripheral physiology. Heart rate and RMSSD
were calculated per trial (i.e., over a time period of roughly
20 s). Trials with extreme values (i.e., more than three standard
deviations away from the mean per participant) were removed
from analysis. With this criterion, we removed 10.1% of the
data for the heart rate and less than 1% for the RMSSD
data.

Working Memory Capacity
In order to assess potential differences in the working memory
capacities between participants, we used the Working Memory
Capacity (WMC) test battery developed by Lewandowsky et al.
(2010) to calculate scores for each participant. The test battery
consists of four working memory tasks viz. sentence-span task,
operation-span task, spatial short term memory task and memory
updating task. We performed only the memory updating task
as it closely resembles the working memory load manipulation
induced by our experimental paradigm. The memory updating
task was to remember an initial set of digits which was
presented in a separate frame on the screen, and to continuously
update these digits through simple arithmetic operations. Each
correct trial was awarded 1 point. On average, our participants
scored 38.4 [standard deviation (STD) 10.7] points out of 60
possible points. One participant scored less than two standard
deviations than the mean score and was excluded from further
analysis.

FNIRS Data Processing
Figure 4 provides an overview of the fNIRS data analysis pipeline.

FNIRS Data Pre-processing
The raw data recorded from fNIRS is not just influenced by
brain activity but also due to other systemic physiological artifacts
(cardiac artifacts, respiration rate, Meyer waves) and movement
artifacts causing the signal to be noisy. An overview of the fNIRS
artifacts can be found in Cooper et al. (2012). The raw data
was pre-processed using the nirsLAB analysis package (Xu et al.,
2014). We use a low-pass filter (finite impulse response with least-
square error minimization) with a cut-off frequency of 0.1 Hz to
reduce these artifacts. We used the Gratzer Spectrum to obtain
the molar extinction coefficients of HbO and HbR corresponding
to wavelengths of 760 and 850 nm, respectively (Prahl, 1999). The
corresponding molar extinction coefficients are ε760 = [1486.59
3843.71] and ε850 = [2526.39 1798.64] M−1∗cm−1 (nirsLAB,
NIRx Medical Technologies). The differential path length factor
takes into account the increased distance the light path travels
from the emitter to the detector because of scattering and
absorption effects. The differential path length factors for HbO
and HbR were 7.25 and 6.38, respectively (Essenpreis et al.,
1993). We then applied the modified Beer Lambert’s law to
convert the data from voltage (µV) to relative concentration
change (mmol/l) (Sassaroli and Fantini, 2004). For the Beer-
Lambert law calculation, the source-detector distance for all
channels was less than 4 cm. The exact source-detector distance
for each NIRS channel was computed by nirsLAB according to
the corresponding distances between emitter and detector pairs
on the NIRS cap. nirsLAB has a built-in function to measure the
signal-to-noise ratio (SNR) for each NIRS channel by calculating
the coefficient of variation (CV) for unfiltered raw data (Schmitz
et al., 2005; Schneider et al., 2011):

CV =
(

σ

µ

)
∗ 100%

Here, σ and µ are the standard deviation and the mean of
the data of each NIRS channel over the entire duration of the
experiment. Channels with a CV greater than 20% were rejected
from further analysis. On average, 64 channels were retained per
participant (STD 7).

The trials were extracted based on the time-stamps associated
with the labels corresponding to each n-back condition. During
the analysis, we removed trials where the participants couldn’t

FIGURE 4 | Overview of the analysis pipeline for fNIRS data.
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achieve the target speed (∼8% over all participants). This was
done because for trials with errors, we weren’t sure if the
participant was continuing to focus on the task or if he was unable
to cope up with the cognitive demands of the task and had already
given up at an earlier stage.

FNIRS Data Post-processing
Principal component analysis
We used the method of Principal Component Analysis (PCA) on
the pre-processed fNIRS data in order to reduce the amount of
noise in the data to increase the SNR. This method performed
an orthogonal transformation of the fNIRS data into a set of
linearly uncorrelated variables, i.e., ‘principal components’ (PCs)
such that the first principal component (PC) accounted for the
largest variance in the data, and each successive PC explained
the largest possible variance in the data but was orthogonal
to the preceding PC. If we assume noise to have a Gaussian
distribution, then each of the PCs will also contain identically
distributed Gaussian noise. However, since most of the total
variance will be concentrated in the first few PCs compared to
the same noise variance, the first few PCs achieve a higher SNR.
The latter PCs will mostly be dominated by noise and these
components were removed from the analysis before transforming
the PCs back into the original space, i.e., the time-series fNIRS
data.

The instantaneous time-series fNIRS HbR data was first split
into test and training data. The selection of PCs for each
participant was carried out in cross-validation loop nested into
the training phase of the cross-validation loop used to test
generalization of the multivariate lasso regression model (see
next section). On average, the first 25 PCs were selected over 15
participants (STD 11).

Multivariate cross-validated prediction of working memory
load level
We used multivariate lasso regression (Hastie et al., 2009)
implemented in the Glmnet toolbox2 to find channel-wise
weights for instantaneous fNIRS HbR data to predict the working
memory load level.

The λ parameter which determines the overall intensity of
regularization was optimized internally by Glmnet in the training
phase of the cross-validation of the lasso regression model.

We used a standard nested cross validation procedure
(Hastie et al., 2009) to train the model and test generalization
performance. Each loop implemented a 10-fold cross-validation.
The outer cross-validation loop tested the generalization of the
regression model with the optimized hyperparameters (number
of PCs and λ). The hyperparameters were optimized in an inner
cross-validation loop which was implemented in the training
phase. Cross-validation avoids overfitting of the data to the model
and provides an estimate of how well a decoding approach would
predict new data in an online analysis (Reichert et al., 2014).

We used the same method to estimate the predictions of
working memory load levels from the trial-wise heart rate and
RMSSD values.

2http://web.stanford.edu/~hastie/glmnet_matlab/

Univariate correlation analysis
Multivariate decoding models can be hard to interpret regarding
the specific brain areas which are sensitive to working memory
load-related changes (Reichert et al., 2014; Weichwald et al.,
2015). In order to simplify the interpretation of brain activation
measurements, we regressed the HbR fNIRS measurements on
the current n-back working memory load levels for each channel
separately and calculated univariate Pearson’s correlations (ruvr)
from the regression for each participant. Pearson’s correlations
quantify the strength of the relation between induced working
memory load and measured brain activation.

For generalization of the individual correlation maps to our
population sample, we calculated weighted average correlation
maps across all participants (ravg). Therefore, the single-subject
Pearson’s correlations (ruvr) for each fNIRS channel were
weighted with the participant’s Pearson’s correlation (rmvr) from
the multivariate regression analysis:

ravg (i) =

i,n∑
i,n = 1

ruvr(i) rmvr(n)

n∑
1

rmvr(n)

In the above equation, n is the total number of participants and i
is the total number of fNIRS channels.

RESULTS

Participants
Data from three participants were excluded due to a large number
(>50%) of noisy channels in the fNIRS and one because of
low performance in the WMC test. Thus, data from fifteen
participants are reported in the following fNIRS analyses. Due to
failure of the data acquisition of the behavioral and the heart rate
parameters, three additional participants had to be excluded from
the analyses of behavioral and peripheral physiological data.

Behavioral and Peripheral Physiological
Results
Table 1 lists the mean values and standard deviations of the
behavioral and heart rate parameters for the twelve participants
included in these analyses.

Considering driving behavior, we find significant effects of the
n-back condition on the time participants drove at the correct
speed (χ2

= 12.02, p < 0.001, approximated r = −0.75, decrease
per n-back level [slope]: 6.6%, SE = 1.5%), the reaction time
(χ2
= 4.25, p < 0.05, r = 0.47, increase per n-back level: 0.23 s,

SE= 0.10) and the brake variance (χ2
= 7.44, p< 0.01, r = 0.58,

increase per n-back level: 0.08, SE= 0.04). The time during which
the participants drove at the correct time decreased, while the
time they needed to reach the correct speed and the variability
of the brake pedal position increased with increasing working
memory load. The n-back condition had no significant effect
on throttle variance (χ2

= 2.90, p = 0.09, r = −0.21, decrease
per n-back level: 0.01, SE = 0.01), steering variance (χ2

= 2.01,
p= 0.16, r =−0.29, decrease per n-back level: 0.8∗10−5 radians,
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TABLE 1 | Descriptive statistics (mean values and standard deviation) of the task-related, driving behavior, and physiological parameters in the five
n-back conditions.

0-back 1-back 2-back 3-back 4-back

Task-related Time in correct range (in %) 92.3 (0.04) 86.0 (0.09) 75.8 (0.18) 69.9 (2.54) 71.0 (18.6)

Reaction time (in seconds) 1.35 (0.61) 1.63 (0.65) 1.84 (0.69) 2.05 (1.26) 2.04 (1.16)

Driving behavior Brake variance (in a.u.) 0.12 (0.14) 0.11 (0.14) 0.11 (0.63) 0.44 (0.59) 0.51 (0.68)

Throttle variance (in a.u.) 0.26 (0.08) 0.30 (0.09) 0.28 (0.08) 0.24 (0.11) 0.23 (0.11)

Steering variance (in 10−4 radians) 0.69 (0.10) 1.28 (0.16) 0.42 (0.09) 1.31 (0.19) 0.59 (0.18)

Deviation from lane center (in meters) −0.17 (0.11) −0.22 (0.12) −0.27 (0.15) −0.24 (0.11) −0.30 (0.11)

Physiology Heart rate (in bpm) 73.8 (12.2) 75.2 (12.3) 75.8 (12.7) 76.3 (13.4) 77.7 (13.6)

RMSSD (in milliseconds) 39.5 (17.0) 38.2 (18.2) 36.1 (16.1) 35.5 (16.1) 35.2 (17.8)

a.u. = arbitrary units.

SE= 0.5∗10−5 radians) and lateral deviation (χ2
= 0.05, p< 0.83,

r = −0.07, decrease per n-back level: 0.007 m, SE = 0.03 m).
These results indicate that working memory load can have an
effect on safety relevant driving behaviors.

Working memory load level had a significant effect on heart
rate (χ2

= 9.22, p < 0.001, r = 0.64, increase per n-back level:
0.89 bpm, SE = 0.25 bpm) and heart rate variability (RMSSD:
χ2
= 3.89, p< 0.05, r=−0.59, decrease per n-back level: 1.24 ms,

SE = 0.57 ms). Heart rate increased and heart rate variability
decreased with increasing n-back level.

In order to compare working memory load predictions
between brain and peripheral physiology data, we predicted the
n-back levels from the trial-wise data for heart rate and heart rate
variability using the lasso regression model on a two dimensional
feature space. The mean Pearson’s correlation was 0.21 (SE= 0.1)
across all participants. Note that unlike the LMM, the lasso
prediction is 10-fold cross validated (i.e., it tests generalization
to new data) and does not include random effects.

FNIRS Results
The fNIRS results of this study are focused primarily on the
HbR signal as some studies have shown that HbR signals are
less influenced by systemic physiological artifacts like cardiac
pulsation, respiration or Mayer wave fluctuations (Obrig et al.,
2000; Zhang et al., 2005, 2009; Huppert et al., 2009). Some studies
have also reported that HbR tends to show higher correlation
with the BOLD response when compared to HbO (MacIntosh
et al., 2003; Huppert et al., 2006; Schroeter et al., 2006; Foy et al.,
2016).

Multivariate Prediction of Working
Memory Load
Figure 5 depicts the time course of working memory load
induced by the n-back task (orange curve) together with the
working memory load predicted by the fNIRS multivariate
regression model (blue curve) for participant 3. This participant
showed the highest correlation between the predicted and
induced working memory load level. The Pearson’s correlation
between the two curves is almost 0.8. It can be seen from
Figure 5 that the predicted working memory load nicely follows
the induced working memory load and could be used to
predict variations in cognitive working memory load levels.

There are intervals when the model seems to over- or under-
estimate the working memory load level. This may be due to
the incomplete model which currently neglects the workload
imposed by the concurrent driving task in the changing traffic
situations. In spite of this, we are able to achieve satisfactory
predictions. The mean Pearson’s correlation and the standard
error across all participants were 0.61 and 0.04, respectively.
Table 2 lists the individual Pearson’s correlations (rmvr) for the
fifteen participants for the whole head coverage. All multivariate
correlations were determined in a 10-fold cross-validation to
evaluate generalization to new data the model had not ‘seen’
before to approximate an online analysis.

To demonstrate the advantage of whole head fNIRS
recordings over recordings restricted to the forehead (Ayaz
et al., 2012; Harrison et al., 2014; Gateau et al., 2015), we
re-ran our analysis using only the 12 frontal channels over
the forehead region. The spatial distribution of these channels
extended from locations F5 up to F6 laterally and two rows
inferior toward the nasion [AF7 up to AF8 including AFz and
Fpz (see Figure 2A)] corresponding to the International 10–
20 system. In this case, the mean Pearson’s correlation over all
participants drops to 0.38 (SE 0.04). A Wilcoxon Signed-Rank test
indicated that Pearson’s correlations obtained from whole head
measurements were significantly higher compared to only the
frontal channels (Z = 3.39, p < 0.001) indicating that recordings
restricted to the forehead are likely to miss informative brain
activation.

Localization of Predictive Brain Areas
The next analysis was to characterize the pattern of brain
areas that conveys information about the current level of
working memory load. As the multivariate fNIRS regression
model linearly combines multiple channels to predict current
working memory load, one approach would be to interpret the
weights of these decoding models. However, decoding model
weights are hard to interpret for various reasons (Reichert
et al., 2014; Weichwald et al., 2015). Therefore, we performed
a univariate regression analyses separately for each channel.
Univariate single channel analysis typically does not reach the
predictive power of the full multivariate model but it can
reveal how much predictive power a channel can in principle
contribute to the full model. Figure 6 depicts the average
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FIGURE 5 | Ten-fold cross-validated prediction of working memory load from HbR fNIRS measurements using multivariate regression analysis for an
example participant (participant 3) over one session.

FIGURE 6 | Mean correlation map showing working memory load related brain areas from HbR-fNIRS. Positive Pearson correlations indicate linear
increase in brain activity with increasing working memory load. Data are overlaid on a standard template brain.

TABLE 2 | Multivariate Pearson’s correlations (rmvr) obtained from all participants after 10-fold cross-validated working memory load prediction from
HbR fNIRS data using multivariate regression (p < 0.01 for all participants).

Participant number P1 P2 P3 P4 P5 P6 P9 P10 P11 P13 P14 P15 P16 P17 P19

rmvr 0.7 0.69 0.8 0.54 0.58 0.32 0.54 0.72 0.31 0.57 0.61 0.77 0.75 0.72 0.59

weighted correlation maps obtained from univariate HbR fNIRS
regressions.

The results from this group level analysis showed that
highest correlations of brain activation for working memory
load are found bilaterally in the inferior frontal areas (ravg∼0.3),
potentially reflecting activation changes in the ventral and dorsal
pre-frontal cortices which have been previously implicated in
working memory (Courtney, 2004; D’Esposito and Postle, 2015).
Additional informative channels can be seen bilaterally in the
temporo-occipital areas although the average linear trend is not
as strong there as it is in the frontal areas.

While the group level analysis is good for generalization across
participants, it might not be ideal for identifying neural networks
due to the averaging of the brain activations on a channel
level across participants. For this, it is necessary to analyze the
results on a single-subject level. Figure 7 shows the correlation
map representing working memory load-related brain areas after
performing a channel-wise linear regression of HbR fNIRS data
over the n-back tasks for two participants (participants 3 and 4).

The brain activation patterns shown in Figure 7 closely
resemble that of the group level analysis as shown in Figure 6. It
can be seen that brain activation covaries with working memory
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FIGURE 7 | Correlation map obtained by regressing HbR for each fNIRS channel over n-back working memory load level for (A) participant 3 and (B)
participant 4 on a standard brain template.

load in the bilateral inferior frontal areas and the bilateral
temporo-occipital areas. Additionally, we also observe some
predictive activation in the inferior parietal areas. A correlation
coefficient of ruvr∼0.4–0.6 in the left lateral frontal areas is
statistically significant (p < 0.05) and shows a strong correlation
between working memory load and brain activation level.

DISCUSSION

The aim of this research was to investigate if fNIRS-based brain
activation measurements could be used to predict variations
in cognitive workload levels in realistic driving simulation.
To our knowledge, this study is the first to measure whole
head, high density fNIRS in a driving simulator to characterize
brain motives predictive of working memory load over a wide
range of task complexities from very easy to overload. Our
results indicate that whole head fNIRS in combination with
multivariate regression can continuously predict momentary
working memory load, across multiple levels although driving
demands varied independently. We find that the bilateral inferior
frontal areas and the bilateral temporo-occipital areas predict
working memory load level in our n-back speed adjustment task.
Other physiological and behavioral measures produced more
complex prediction patterns, if any.

Using fNIRS HbR brain activation as the main physiological
measurement of workload, we demonstrate that it is possible to
continuously predict variations in working memory load over five
different levels of an n-back task in a naturalistic driving scenario
where participants performed multiple concurrent tasks over a
long period of time. Our approach of using multivariate lasso
regression in combination with cross-validation was tailored to
explore the usefulness of multichannel whole head fNIRS for
time-resolved characterization of workload levels. Multivariate

modeling allowed us to predict working memory load variations
in a continuous time-resolved fashion with relatively high
accuracy. The cross-validation approach allowed us to estimate
generalization of the regression model to new data which would
be necessary in online tracking (Reichert et al., 2014), e.g., for
adaptive assistive systems.

Most of the previous fNIRS related workload studies in the
transportation domain (Kojima et al., 2005; Tomioka et al., 2009;
Ayaz et al., 2012; Gateau et al., 2015; Foy et al., 2016; Sibi et al.,
2016) focused only on frontal brain activations, primarily due
to the ease in preparing the optodes around the forehead. On
comparing the multivariate predictions from the whole head
measurements with only the 12 frontal channels around the
forehead, the mean Pearson correlation dropped by 37.7%. These
results were statistically significant indicating that whole head
measurements capture additional predictive brain activation.

The close to whole head fNIRS sampling allowed us to
characterize the brain areas predictive of working memory
load level. Because weights of regularized multivariate decoding
models can be hard to interpret (Reichert et al., 2014; Weichwald
et al., 2015), we used univariate linear regression to determine
for each channel separately if it can predict the current working
memory load level. These analyses revealed multiple predictive
brain areas. The group level analysis showed that the bilateral
frontal and the bilateral temporo-occipital areas had the highest
predictive power. In these areas, brain metabolism increased with
increasing working memory load. The single-subject analysis
revealed parietal activation patterns over only seven participants.
This was also the reason why they did not show up in the group
level analysis as they are lost due to averaging.

The pattern of predictive brain areas we found is in
concordance with the notion that the bilateral inferior frontal
areas, potentially including activation changes in the ventral
and dorsal pre-frontal cortices (VLPFC and DLPFC) which
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have known to be involved in the maintenance, manipulation
and coordination of information (Postle, 2006; Lara and Wallis,
2015). The DLPFC is thought to be a major anatomical correlate
of the central executive that plays a key role in working memory
processing (Baddeley, 2003). However, to confirm the exact
localization in the brain, structural MRI scans of the optode
positions need to be performed on the individual brain which was
not possible during the course of our experiment. The bilateral
temporo-occipital areas might be more domain-specific which
have been shown to be involved in lexico-semantic and visual
working memory (Slotnick, 2010; Ardila et al., 2015; Barriga-
Paulino et al., 2015). Importantly, our results indicate that whole
head fNIRS is capable of revealing a functionally specific and
spatially distributed motive of brain areas capable of predicting
working memory load independent of multiple concurrently
varying cognitive task demands. This specificity is necessary for
assessing working memory load in real world conditions where
operators are typically engaged in more than one task at a time.

Multiple behavioral and peripheral physiological parameters
were, on average, significantly affected by the n-back level. We
found that participants drove for a longer time at the incorrect
speed and needed more time to reach the designated speed with
increasing workload. Moreover, participants were more variable
in their braking behavior, showed an elevated heart rate and
lowered heart rate variability when the workload increased. These
results are in agreement with previous studies (Zeitlin, 1995;
Buld et al., 2014) who reported covariation of braking variance
with increasing workload and with studies (Solovey et al., 2014;
Gable et al., 2015) who reported that cognitive workload increases
arousal resulting in varying sympathetic influence on the heart
as reflected in heart rate increase and decreased heart rate
variability. It should be noted that while the braking variance
showed a statistically significant effect with varying n-back tasks,
it is not a continuous measure. The braking behavior can easily
vary depending on the external traffic situation and thus, cannot
be used to reliably predict driver workload.

Although peripheral physiological measurements like heart
rate or heart rate variability can be measured with relatively
little effort, potentially continuously even during driving, these
measures are relatively unspecific and may also occur due to
changes in emotions or physical activity (e.g., fatigue) (De
Waard, 1996; Sander et al., 2005). Moreover, low dimensional
measures such as heart rate and its variability cannot resolve
multidimensional cognitive processes. Spatially resolved brain
activation measurements can be more specific to cognitive
processes as they are recorded at the location where these
processes are unfolding. Moreover, spatially resolved brain
activation measurements are multidimensional which is
necessary to discriminate and selectively assess loads on different
types of cognitive and affective processes. However, future
studies should test if peripheral physiological measurements can
augment brain activation measurements for working memory
load prediction.

Some studies report that HbO has a better SNR and is
better correlated with the BOLD response as compared to HbR
(Strangman et al., 2002; Yamamoto and Kato, 2002; Cui et al.,
2011; Noah et al., 2015). In this study, the HbO signal showed

some non-stationarities over the entire course of the experiment.
A slow variable drift of the HbO signal was visible over a
significant number of channels which hampered its analysis in
the particular implementation of our experimental paradigm.
Classic block paradigms are designed to include a period of
rest before the presentation of stimuli so that there is sufficient
time for the hemoglobin concentration changes to settle back to
baseline levels. However, our paradigm was designed to mimic
realistic slow and continuous workload variations and therefore
each n-back level was immediately followed by the next. The
HbR signal seemed less influenced by these non-stationarities and
hence, the fNIRS results of this study focused only on the HbR
signal.

Most fNIRS studies consider cardiac activations as a
physiological artifact and try to reduce the influence of the cardiac
activity on the fNIRS signal. However, a few studies have shown
that heart rate and the heart rate variability can be used as an
indicator of mental workload (Kamath and Fallen, 1993; Miyake,
2001; Hjortskov et al., 2004; Durantin et al., 2014). In our study,
we tried to predict the working memory load levels from the
trial-wise data for heart rate and heart rate variability using the
lasso regression model. However, the prediction rates were clearly
inferior to those obtained with both frontal only and whole head
fNIRS data. In the future, we plan to combine data from both
fNIRS and ECG data-streams and provide this as an input to the
model. We expect that the integration of this data will provide
additional independent information to the model which might
enable us in achieving better prediction rates.

We expect that the results obtained in this study can be
further improved by improving the analysis techniques. Here,
we used a linear model for the predicting working memory load
levels. However, Wortelen et al. (2016) implementing working
memory modeling in the cognitive architecture for safety critical
task simulation (CASCaS) (Lüdtke et al., 2009), and testing the
model on the same paradigm as we have used here, predict a
compressive non-linearity for increasing workload levels. One
reason for this compression could be that working memory is
capacity limited (Miller, 1956; Baddeley, 2003) and therefore
increases in task induced working memory load will lead to
smaller increases in working memory load levels at high workload
levels. Hence, the HbR levels should saturate for workload
induction levels that reach or exceed the capacity limit or may
even invert when the participant disengages due to overload.
Consequently, we concentrated our analysis here on correct
trials to mitigate the effect of the expected dissociation between
experimentally induced (i.e., expected) and actual workload level
at high loads. Future studies may consider using regression
models with a non-linear link function to further improve
memory workload prediction. Moreover, our existing regression
model is incomplete since it includes only the working memory
load imposed by the n-back task but neglects the workload
imposed by other concurrent driving tasks in the changing
traffic situations. In the future, we plan to augment our existing
model by integrating the influence of the traffic dynamics
into the workload model to get much better prediction rates.
Furthermore, Herff et al. (2014) integrated fNIRS data over
different time windows and showed an increase in the prediction
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accuracy with increasing temporal integration windows. In our
study, we only integrated information spatially over multiple
channels to improve the workload predictions. We would expect
our model to achieve much better predictions in the future by
integrating information in both temporal and spatial domains.

The results of this study are of interest for the application in
vehicles in an adaptive assistance or automation system. Future
partial autonomous cars may well ask the human to drive the
car in certain situations, for example when the automation is
at its system limits or in order to prevent loss of skill for the
driver. In the latter case, a real-time onboard driver workload
monitoring system could help to time such take-over requests
or adaptively remove the degree of support in phases of low
workload. Although one may argue that the cognitive workload
while driving may not be as high as the 4-back task in our
experiment, there are many factors (e.g., road layout, traffic
density, or speed) that influence task difficulty and impose load
on the driver’s cognitive resources (Fuller, 2005; Fastenmeier
and Gstalter, 2007). Thus, being able to identify differences
from low to high cognitive workload will help to understand
the momentary capability of the driver and to provide tailored
assistance.

CONCLUSION

Our study demonstrates that whole head fNIRS is a valuable
neuroimaging modality to assess the driver’s cognitive

workload level in realistic scenarios with concurrently
executed tasks. Such an approach could pave the way
for a driver assistance system that can adapt its current
level of engagement or automation to the driver’s state
and by that, increase the safety of highly automated
vehicles.
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