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Abstract. In this paper we discuss the new Tweety puzzle. The original Tweety puzzle
was addressed by approaches in non-monotonic logic, which aim to adequately represent the
Tweety case, namely that Tweety is a penguin and, thus, an exceptional bird, which cannot
fly, although in general birds can fly. The new Tweety puzzle is intended as a challenge for
probabilistic theories of epistemic states. In the first part of the paper we argue against monistic
Bayesians, who assume that epistemic states can at any given time be adequately described by
a single subjective probability function. We show that monistic Bayesians cannot provide an
adequate solution to the new Tweety puzzle, because this requires one to refer to a frequency-
based probability function. We conclude that monistic Bayesianism cannot be a fully adequate
theory of epistemic states. In the second part we describe an empirical study, which provides
support for the thesis that monistic Bayesianism is also inadequate as a descriptive theory of
cognitive states. In the final part of the paper we criticize Bayesian approaches in cognitive
science, insofar as their monistic tendency cannot adequately address the new Tweety puzzle.
We, further, argue against monistic Bayesianism in cognitive science by means of a case study.
In this case study we show that Oaksford and Chater’s (2007, 2008) model of conditional
inference – contrary to the authors’ theoretical position – has to refer also to a frequency-based
probability function.

Keywords: New Tweety puzzle, probability, frequency, probabilism, monistic Bayesianism,
objective Bayesianism, Bayesian rationality, Oaksford and Chater, conditional inference, MP-
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1. Introduction

Uncertainty seems to be an inherent feature of all human affairs, both in
every-day life and scientific inquiry. It is, hence, not surprising that proba-
bilistic approaches have found widespread application as a normative frame-
work in epistemology (cf. Earman, 1992; Howson & Urbach, 2006) and in
cognitive science (Chater, Tenenbaum, & Yuille, 2006a; Oaksford & Chater,
2007; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). Prominent ap-
proaches in epistemology and cognitive science are subjective Bayesian ac-
counts. These approaches share that they employ subjective interpretations of
probabilities (Talbott, 2008; Bovens & Hartmann, 2003). A subjective inter-
pretation renders probabilities as agent-relative degrees of belief in proposi-
tions, such as the degree of belief of the next coin toss (‘a’) landing heads
(‘Ha’), abbreviated as ‘P(Ha)’. This interpretation of probabilities contrasts
with objective frequency-based interpretations, such as the limit of the (rel-
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ative) frequency of a dice landing heads p(Hx) in a sequence of tossings
(where ‘Hx’ stands for ‘x lands heads’ and ‘x’ is an individual variable).
Thus, we use ‘P’ for a degree of belief function and ‘p’ for a frequency-based
probability function.

With ‘Bayesianism’ we refer in the following always to subjective Bayesi-
anism. Monistic Bayesianism is a brand of subjective Bayesianism, which
takes subjective probabilities as the only fundamental probabilistic notion.
Monistic Bayesianism has been defended, for example, by de Finetti (1973;
Gillies, 2000, 70ff). Hájek (2012, in §3.3.4) calls this position ‘orthodox
Bayesianism’. Besides subjective Bayesianism there exists also the less well-
known position of objective Bayesianism, which defends the notion of in-
tersubjectively rational (and in this sense “objective”) degrees of belief (cf.
Williamson, 2010). Since all objective Bayesians accept – besides intersub-
jective probabilities – subjective (agent-relative) degrees of belief, objective
Bayesians are not monistic but dualistic Bayesians.

In this paper we will criticize monistic Bayesianism. We do not criti-
cize the use of subjective probabilities in general. We accept that any fully
adequate probabilistic approach in epistemology and cognitive science has
to employ subjective probabilities. We, hence, do not argue in favor of an
alternative monistic account to Bayesianism, such as either frequentistic ap-
proaches (which take limiting frequencies as fundamental) or a purely qual-
itative approach, for example Kripke models or ranking functions. We rather
argue that monistic Bayesianism is inadequate, inasmuch as both subjective
probabilities and relative frequencies have to be taken as primitive notions for
any descriptively and normatively adequate theory of epistemic states.

1.1. The Tweety Puzzle and Theories of Epistemic States

At the heart of our argument lies the new Tweety puzzle. The basic idea
behind the puzzle goes back to a well-known exception structure from the
non-monotonic reasoning literature (Brewka, 1991, p. 2f):

Generic Form: Singular Form:
(Ag) Birds can fly. (As) If Tweety is a bird, it can fly.
(Bg) Penguins cannot fly. (Bs) If Tweety is a penguin, it cannot fly.
(C) Tweety is a bird and a penguin.

(Ag), (Bg), and (C) represent the generic formulation of the Tweety case and
(As), (Bs), and (C) its singular formulation. If we – in what follows – refer to
(A)-(C) without qualification in terms of the generic vs. the singular version,
we mean that our claim in this context applies to both versions of the new
Tweety puzzle.

Ordinary language conditionals often express uncertain conditionals that
admit exceptions. This is the case in the Tweety example: It is an exception
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structure inasmuch as Tweety is an exceptional bird, which cannot fly (since
it is a penguin), although birds can (in general) fly. Since penguins are birds
(i.e., “penguin” is more specific than “bird”), the unambiguous conclusion is
that Tweety cannot fly.1 We call it the “new” Tweety puzzle, since it is not
– unlike its original formulation – meant as a challenge to default reasoning,
but as a challenge to probabilistic theories of epistemic states.

To explain the new Tweety puzzle, we will, first describe, the standard
account of (A)-(C) in terms of classical (propositional or predicate) logic.
The problem of classical logic is that it renders (A)-(C) jointly inconsistent,
despite the fact that, intuitively, (A)-(C) are conjointly consistent. Classical
logic does so for both the generic and the singular version of (A)-(C), as can
be seen from the following formalization:

Generic Form: Singular Form:
(A1g) ∀x(Bx→ Fx) (A1s) Bt → Ft
(B1g) ∀x(Px→ ¬Fx) (B1s) Pt → ¬Ft
(C1) Bt&Pt

Here ‘Bx’, ‘Px’, ‘Fx’ and ‘t’ abbreviate ‘x is a bird’, ‘x is a penguin’, ‘x
can fly’, and ‘Tweety’, respectively. ‘∀’, ‘→’, ‘&’ and ‘¬’ are the universal
quantifier, the material implication, the conjunction and the negation operator,
respectively. The contradiction arises in the generic case, since (A1g) and
(C1) imply Ft, while (B1g) and (C1) give us¬Ft. Analogously, in the singular
case (A1s) and (C1) on the one hand and (B1s) and (C1) on the other hand
imply Ft and ¬Ft, respectively.

Bayesians (whether monistic or not) as well as proponents of non-mono-
tonic logics agree that classical logic is not an appropriate means to represent
(A)-(C). At the core of the classical logic representation of the Tweety case
lies the following problem: The classical logic formalization presupposes that
(A) and (B) do not allow exceptions, while (A) and (B), as applied in everyday
and scientific discourse, seem to contradict this assumption.

Probabilistic representations of (A)-(C) are more flexible, because they
allow for exceptions, and inasmuch do not necessarily render (A)-(C) in-
consistent. In fact, one motivation for probabilistic approaches to modeling
epistemic states – besides making it possible to model degrees of beliefs
rather than categorical beliefs – is the fact that probability theory allows us in
principle to represent exceptions (cf. Pearl, 1988, p. 2). This is also seen as

1 We do not have to add the specificity information ‘penguins are birds’ as a further premise
in order to make our point. There is a second type of exception structure, namely the Nixon di-
amond case, which goes as follows: (A) Quakers are pacifists, (B) republicans are not pacifists
and (C) Nixon is both a Quaker and a republican (Brewka, 1991, p. 14). The Nixon diamond
case lacks specificity, and, so, no unambiguous conclusion can be drawn concerning Nixon’s
pacifism. We could make our point equally well with the Nixon diamond case (see Schurz,
2011, §2.).
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a clear plus of probabilistic approaches in cognitive science (e.g., Griffiths et
al., 2010, p. 360).

We will see that monistic Bayesianism does not fare significantly bet-
ter than classical logic with respect to (w.r.t.) the Tweety case: Monistic
Bayesians suffer from the same fate as proponents of a classical logic anal-
ysis, inasmuch as there is no probabilistically consistent representation of
(A)-(C) in terms of a single subjective probability function. The monistic
Bayesian’s conundrum is, thus, the following:

(I) For any theory of epistemic states to be fully adequate, the theory must,
be able to represent Tweety type beliefs as consistent.

(II) Monistic Bayesianism, however, cannot do that.

In this paper we will focus on point (II). One might also be tempted to regard
point (I) as implausible. However, to deny that a fully adequate theory of
epistemic states should be able to represent Tweety type cases implies that
any pair of exception-admitting and instantiated conditionals or generics of
type (A) and (B) are insignificant, at least from the viewpoint of a theory of
beliefs. This assumption is hardly plausible, since it conflicts strongly with
the fact that normic laws, as expressed by uncertain conditionals or generics,
are abundant in everyday life and the sciences (cf. Schurz, 2001, p. 476f). So,
the inability to represent Tweety type cases would reduce the applicability of
any theory of epistemic states to a great extent, since we hardly accept or
believe normic laws unless they are non-instantiated or non-conflicting with
other normic laws.

1.2. Structure of Our Paper

We will follow Schurz (2011) in our use of the Tweety case against monistic
Bayesianism. We will extend Schurz’s argumentation in the following ways.
We draw out in more detail, in which way monistic Bayesian approaches fail
to solve the new Tweety puzzle. We will describe parts of the results of an
empirical study that is briefly reported in Schurz (2011). We shall, further-
more, investigate in how far monistic type Bayesian approaches are tenable
in cognitive science. We do so by discussing the new Tweety puzzle in the
context of these approaches and supplement our argument by means of a case
study of Oaksford and Chater’s (2007, 2008) model of conditional inference.
The latter part extends Schurz’s argument against monistic Bayesianism.

The structure of the paper is as follows. In section 2 we discuss why the
new Tweety puzzle cannot be handled adequately by monistic Bayesian ap-
proaches and why our findings imply that monistic Bayesianism cannot be a
fully adequate theory of doxastic states. We will furthermore, describe two
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possible solutions to the new Tweety puzzle, based on Schurz’s (2011) ac-
count. In these solutions both a subjective and a frequency-based probability
function are used to account for agents’ doxastic states.

In section 3 we present the results of a questionnaire study, in which we
investigated whether cases such as (A)-(C) are perceived as probabilistically
contradictory or not. This study serves two purposes. First, we investigated
by these means whether our intuitions regarding the probabilistic consistency
of (A)-(C) is not only specific to philosophers like us, but shared (at least)
by other Western people. Second, the data allowed us to test – based on our
argument in section 2 – whether subjects use only a subjective probability
function to represent Tweety type cases or, in addition, also a frequency-based
one.

Finally, we will discuss in section 4 two points. First, we criticize monistic
type Bayesian approaches in cognitive science. We, then, focus on Oaksford
and Chater’s (2007, 2008) model of conditional inference. This serves as a
case study for monistic Bayesian approaches in cognitive sciences, insofar as
we aim to show that Oaksford and Chater’s model of conditional inference
(2007, 2008) – contrary to the authors’ theoretical position – implicitly refers
to frequencies and must do so. Our criticism of Oaksford and Chater (2007,
2008), hence, provides additional support for our thesis that a fully adequate
(probabilistic) theory of epistemic states must refer to both a degrees of belief
function and a frequency-based probability function.

Hawthorne (2005) and Schurz (2011) put forth a further argument against
monistic Bayesianism. Their argument is based on the requirement that like-
lihoods have to be specified objectively, independent from actual degrees of
belief. We will, however, not discuss the latter argument here.

2. The New Tweety Puzzle

2.1. Probabilism andMonistic Bayesianism

Before we describe the new Tweety puzzle, let us specify in more detail,
what we mean by probabilism (including “weak” or “dualistic” Bayesian-
ism) in contrast to monistic Bayesianism. Probabilism is a certain type of
Bayesianism, which has the following core thesis:

1. Rational beliefs come in degrees, and rational degrees of belief obey the
standard probability axioms (e.g., Joyce, 1998; Hájek, 2008).

In the context of conditionals, probabilism is usually associated with the
following additional thesis:

2. At least in many cases, uncertain conditionals or generics should be un-
derstood as assertions of high conditional probabilities (Adams, 1975;
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McGee, 1989; Bennett, 2003; psychology: Evans, Handley, & Over, 2003;
Oberauer & Wilhelm, 2003).

While generics, such as (Ag) and (Bg), have the linguistic form ‘As are Bs’,
conditionals have the linguistic structure ‘if . . . then’. Despite this fact, it
is almost universally assumed that we can paraphrase generics in terms of
generic conditionals, i.e., ‘if . . . then’ structures; the classical logic approach
and the Bayesian and probabilist approaches do not differ herein and we will
not deviate from this assumption either.

We employ a more cautious formulation of thesis 2 of probabilism, for
the following two reasons. First, thesis 2 is not a core tenet of probabilism,
but expresses a widely held expansion of probabilism w.r.t. uncertain condi-
tionals. Second, we do not claim that all uncertain conditionals express high
conditional probabilities, but only that many of them do, and that in particular
the conditionals (A), and (B) in the Tweety case are to be understood in that
way; this is sufficient for making our point against monistic Bayesianism.
Leslie, for example, has objected to a universal formulation of thesis 2 (cf.
Schurz, 2005; Nickel, 2009) that some generics such as ‘Mosquitos carry the
West Nile Virus’ do not seem to imply that the majority of mosquitos carries
that virus (Leslie, 2007, p. 376; 2008, p. 7). She rather argues that this generic
is true, even if only a small percentage of mosquitos actually carry the disease.
However, Leslie (2007, 2008) does not argue that no generics satisfy thesis 2.
She only aims to show that some important subclass of generics does not have
that property. It is, however, hard to argue that (A) and (B) violate thesis 2.
The statements ‘Birds can fly’ and ‘Penguins cannot fly’ are not prone to an
interpretation in line with the above mosquito case. The conditional or generic
(Ag) [(Bg)] is true (and/or assertible), if the great majority of birds [penguins]
can [cannot] fly. It is not true (and/or assertible), if only a minority of birds
[penguins] can [cannot] fly. Leslie seems to accept this assumption at least for
some generics (Leslie, 2008, p. 1). Moreover, there are reasons to suppose that
such important classes of generics exist, which satisfy condition 2. Schurz
(2005, p. 39; 2012), for example, argues that evolutionary systems gener-
ate high probabilities or frequencies associated with conditionals or generics
based on their regulatory features. So, given that evolutionary systems are
almost omnipresent in our environment, it seems plausible to assume that
there are at least some important classes of generics, which satisfy thesis 2.

Note also that thesis 2 does not imply the Adams-Stalnaker thesis, namely
that the probability of a conditional P(A ⇒ B) equals its conditional prob-
ability P(B | A) for P(A) > 0. Here ‘A ⇒ B’ and ‘P(B | A)’ stand for the
conditional ‘if A, then B’ and for the ‘conditional probability of B given A’,
respectively. This is relevant in this context, since Lewis (1976) famously
showed that the Adams-Stalnaker thesis implies that P(A ⇒ B) is equal to
P(B) for P(A) > 0, which would be hard to swallow in any case. Thesis 2,
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however, is a minimal requirement, that only assumes that the truth, respec-
tively acceptibility or assertibility, of a conditional A ⇒ B implies that its
associated conditional probability P(B | A) is high. Therefore, our represen-
tation of generics and conditionals on the basis of thesis 2 is not affected by
Lewis’ (1976) triviality result.

“Monistic” Bayesianism. Monistic (or “strong”) Bayesianism strengthens
probabilism, as defined above, inasmuch as it satisfies besides theses 1 and 2
also the following additional assumption:

3. Rational probabilistic reasoning is based on only one probability func-
tion: one’s actual degrees of belief.

Note that in the new Tweety puzzle it is assumed that (A)-(C) describe a
subject’s beliefs in a synchronic fashion, i.e. beliefs at the same point in
time. So, according to monistic Bayesianism a belief in (A)-(C) should be
describable by a single, actual probability function. Hence, a representation
of (A)-(C) by means of more than one probability function in a diachronic
way – for example, by means of conditionalization – would not do, since this
does not make sure that (A)-(C) can be accepted or believed at the same time.

2.2. The New Tweety Puzzle andMonistic Bayesianism

Let us now focus on probabilistic representations of the Tweety case. Again
we distinguish between a singular and a generic representation:

Generic Form: Singular Form:
(A2g) p(Fx | Bx) is high (A2s) P(Ft | Bt) is high
(B2g) p(¬Fx | Px) is high (B2s) P(¬Ft | Pt) is high

(C2) P(Pt&Bt) is high

Here, ‘Fx’, ‘Bx’, ‘Py’ and ‘t’ abbreviate ‘x can fly’, ‘x is a bird’, ‘x is a
penguin’ and ‘Tweety’, respectively. Note that in the Bayesian reconstruction
also the factual (non-conditional) premise (C) has to be explicated in terms of
a degree of belief, which may well be equal to 1 in this case. (A2g) and (B2g)
are interpreted as assertions of high relative frequencies, whereas (A2s), (B2s)
and (C2) refer to conditional degrees of belief in the respective proposition.
Note that the generic reconstruction involves two probability functions (p
and P). The singular construction involves only one probability function (P)
– at least prima facie. So, the weak (dualistic) Bayesian might choose either
one representation for (A) and (B) – the generic or else the singular ver-
sion – whereas a monistic Bayesian has to choose a singular formalization.
This is due to the fact that a monistic Bayesian uses only a single subjec-
tive probability function, which cannot provide an adequate reconstruction
of generic probabilities. The reason for this is a logical one: Generic (or
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frequency-based) probabilities always refer to a repeatable kind of event,
or to a property, that is expressed by an open formula (Fx), where the free
variables (e.g., x) are bound by the probability operator. So, p(Fx | Bx) is the
frequency (limit) of flying animals among all birds in the domain. Subjective
probabilities, on the other hand, always refer to a particular event, state of
affairs, or proposition, by being the object of a belief that is expressed by a
closed formula, i.e. a sentence. Only a proposition, but not a property can be
the object of a graded belief. I can believe (to a high degree) that ‘this bird
can fly’, that ‘all birds can fly’, or that ‘most birds can fly’, but not that ‘x can
fly, given x is a bird’, because the latter statement is an open formula, which
leaves open what the content of this belief really is.

A monistic Bayesian could try to defend his position in several ways. For
example, she might suggest that the generic conditionals should be recon-
structed as high degrees of belief in “general propositions”. There are two
ways to implement this suggestion, both of which are unsatisfactory. The first
way would be to reconstruct ‘(most) Bs are Fs’ as (a) ‘the degree of belief in
the strictly universal proposition ‘all Bs are Fs’ is high’. This reconstruction
is inadequate, because its content differs strongly from the generic (b) ‘(most)
Bs are Fs’. While (a) implies that one believes to a high degree that there are
no exceptions, (b) does not entail this at all. (On the contrary people asserting
(b) usually assume that there are exceptions). The second way would be to
reconstruct ‘(most) Bs are Fs’ as (c) ‘the degree of belief in ‘most Bs are
Fs’ is high’. This reconstruction is not inadequate, but it does not help the
monistic Bayesian out of her problem. For this reconstruction merely repeats
the generic probability statement within the scope of a 2nd order probabil-
ity statement. So this reconstruction involves still two notions of probability,
generic (at the 1st order level) and subjective (at the 2nd order level).

A further move for the monistic Bayesian would be to understand a high
degree of belief in ‘x can fly, given x is a bird’ as a quantification over sub-
jective probability statements, saying that for all x one has a high degree
belief in ‘x can fly, given x is a bird’, or formally ∀x(P(Fx | Bx) = high).
But this would be inadequate, because we assume that the agent is familiar
at least with some birds, for example penguins, for which she believes that
they cannot fly (cf. Bacchus, 1990, p. 134, on this point). Finally, if one
suggests the reconstruction of ‘most Bs are Fs’ as ‘For most x, P(Fx | Bx) =

high’, then one reintroduces frequency-based probabilities at the 2nd level
(apart from further inadequacies). In conclusion, there seems to be no way a
monistic Bayesian could reduce generic probabilities to subjective probabili-
ties without either changing their semantical content or reintroducing generic
probabilities in some way or other.

We now turn to the singular form of the Tweety puzzle. The monistic
Bayesian will typically express the singular form in a propositional logic
framework as follows:
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(A3) P(F | B) is high
(B3) P(¬F | P) is high
(C3) P(B&P) is high

The problem for monistic Bayesians is that we cannot represent the belief
in (A)-(C) consistently in a monistic Bayesian framework, with probability
higher than .71. To show this, let us, first, ask, what the highest admissible
value of r is, such that P(F | B) ≥ r, P(¬F | P) ≥ r, and P(B&P) ≥ r. Due
to the Kolmogorov axioms of probability theory the following observations
hold:

1. P(F) ≥ P(F&B) = P(F | B)P(B) ≥ P(F | B)P(B&P)
2. P(¬F) ≥ P(¬F&P) = P(¬F | P)P(P) ≥ P(¬F | P)P(B&P)

Note that P(F) + P(¬F) = 1. By 1 and 2 the following holds:

3. 1 = P(F)+P(¬F) ≥ P(F | B)P(B&P)+P(¬F | P)P(B&P) ≥ r ·r+r ·r ⇒
r2 ≤ 1/2⇒ r ≤ 1/

√
2 ≈ .71.

The calculations show that we cannot assign a higher probability value to
P(F | B), P(¬F | P), and P(B&P) than .71 on the basis of the Kolmogorov
axioms. In conclusion, Bayesians render Tweety type cases as probabilis-
tically inconsistent. For the monistic Bayesian has to represent the Tweety
case in one way or another by probability assignments of the form (A3)-
(C3). For values higher than 1/

√
2, however, she can only do that on pains of

probabilistic inconsistency.
One might object that 1/

√
2 is a quite high value. However, the conditional

probabilities involved in exception structures of everyday experience, such as
the Tweety case, are assumed to be much higher than 1/

√
2, typically close

to 1; and nevertheless these exception structures are intuitively regarded as
consistent. So, this defense against the new Tweety puzzle does not work.

Moreover, one can construct more complex exception structures, so-called
multiple exceptions situations, in which the upper limit of the conditional
probabilities in a monistic reconstruction sinks to arbitrary low values. As-
sume O1, . . . ,On to be a partition of possible outcomes of an experiment,
for example a competition with n contestants (named by natural numbers
1, . . . , n). Each Oi says that contestant i wins. Let E1, . . . , En be a set of pieces
of evidence concerning the probable winner of the competition, where each Ei
says that contestant i and only contestant i has a certain property, which makes
it highly probable that i wins. Assume that for each i, P(Oi | Ei) is high and
that P(E1& . . .&En) is high, where ‘high’ means ‘a probability value ≥ r’.
Then, it is easy to prove that if one assumes the same probability function for
conditional and factual probabilities, r cannot be greater than 1/

√
n.2

2 Proof:
∑

1≤i≤n P(Oi) = 1. But for each i holds that P(Oi) ≥ P(Oi | Ei) · P(Ei) ≥ P(Oi | Ei) ·
P(E1& . . .&En) = r2. So, P(Oi) ≥ r2. Hence n · r2 ≤ 1, r2 ≤ 1

n , which implies our claim.
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At this point of our argument, the monistic Bayesian has the following
defense: She will deny that the singular and the generic formulations are
treated on par. In the singular case, she argues, in which we deal with only
one probability function, the evidence that Tweety is a penguin lowers our
conditional degree of belief that Tweety can fly, given it is a bird. Indeed,
this must be true for every coherent degree of belief function, because the
following must hold for the agent’s degrees of belief at a time point t when she
has received evidence that Tweety is both a bird and a penguin: Pt(Ft | Bt) =

Pt(Ft | Bt&Pt), provided the agent’s evidence at time t contains ‘Pt’, i.e.,
P(Pt) = 1; moreover, because of strict specificity (i.e., P(Bt | Pt) = 1), it
follows that Pt(Ft | Bt) = Pt(Ft | Bt&Pt) = Pt(Ft | Pt) = low.

So, the monistic Bayesian has a solution to the new Tweety puzzle. Ac-
cordingly, we do not argue that monistic Bayesianism is an incoherent posi-
tion. However, the monistic Bayesian’s solution to the Tweety puzzle seems
to be intuitively inadequate. It is counter-intuitive that the probability that
a given individual can fly conditional on being a bird is changed by new
evidence about this individual – at least if this conditional probability intends
to reflect the strength of the connection between the two properties “Bird”
and “CanFly”, which are instantiated by Tweety. That this reconstruction is
counter-intuitive is not only our philosophical intuition, but is supported by
the empirical study that is presented in the next section.

Moreover, a monistic Bayesian reconstruction that sets the conditional
probability Pt(Ft | Bt) to a low value hides important information, namely that
there are two opposing conditionals relevant to the consequent (this problem
becomes even more unpleasant in the Nixon diamond example; see foot-
note 1 and Schurz, 2011, §2). That a monistic Bayesian reconstruction hides
conflicting probabilistic information is a further argument against monistic
Bayesianism. We conclude that an adequate probabilistic reconstruction of
the singular conditionals should not interpret (As) and (Bs) as actual sub-
jective degrees of belief, but as objective single case probabilities. How this
works is explained in section 2.3.

Let us, now, summarize our argument against monistic Bayesianism. We
saw that monistic Bayesians are forced to represent Tweety type cases in
terms of probability assignments of the form (A3)-(C3), on the basis of thesis
2. Assignments of this form make (A)-(C) jointly probabilistically inconsis-
tent. On the other hand, exception structures, such as the Tweety case, are
important in everyday life and science and must, thus, be representable by any
fully adequate theory of epistemic states. So, monistic Bayesianism cannot be

Note that to prove our generalized new Tweety puzzle it would be even sufficient to assume,
instead of P(E1&...&En) ≥ r, that P(Ei) ≥ r holds for all i (in the binary case that P(Pt) ≥ r
and P(Bt) ≥ r). An empirical investigation of the latter version of the new Tweety puzzle is in
progress.
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a fully adequate theory of epistemic states, at least not in the way, in which
we defined this position.

2.3. Two Possible Solutions to the New Tweety Puzzle

Do weak Bayesians run into the same problem regarding the new Tweety
puzzle as the monistic Bayesians? The answer is ‘no’. Two intuitively ade-
quate solutions are available to the weak Bayesian. First and most straightfor-
wardly, the weak Bayesian may use the generic probabilistic reconstruction.
No inconsistency for the Tweety case arises, since two different probability
functions can be used, a frequency-based probability function representing
(A) and (B) and a second probability function representing actual degrees of
beliefs to describe (C) relative to one’s background beliefs.

In the first solution the weak Bayesian does not make literal sense of the
singular version of the Tweety puzzle. He would have to argue that singular
conditional probabilities are merely an “elliptic” way of speaking, in which
one is implicitly referring to the existence of underlying generic conditional
probabilities. The second solution takes the singular version of the Tweety
puzzle literally: It makes the “elliptic” way of speaking explicit by means of
the statistical principal principle, which transfers a frequency-based (statisti-
cal) probability to the single case. This principle is one of the most important
connection principles between objective and subjective probabilities.3

The probabilities that one obtains by transferring statistical probabilities
to single cases are (in their standard interpretation) still epistemic, but ‘objec-
tive’ in the sense of being intersubjective; they must, therefore, be different
from actual probabilities (this has been pointed out by many authors; cf.
Hawthorne, 2005; Schurz, 2011, §3). In what follows we denote these inter-
subjective epistemic probabilities by means of Po (with ‘o’ for ‘objective’):

Statistical Principal Principle Po(Ga | Fa) = p(Gx | Fx).4

The interpretation of “objective” single case probabilities in terms of sub-
jective degrees of belief is established in terms of Pearl’s interpretation of
these as hypothetical degrees of beliefs (Pearl, 1988, p. 475), or in terms
of Carnap’s related subjective prior probabilities or “credibilities” (Carnap,
1971, 21-23). The central idea is that Po(Ga | Fa) equals the rational degree

3 Strevens (2004, p. 370) calls this principle the ‘probability coordination principle’. The
name ‘principal principle’ has been coined by Lewis (1980); he suggested this principle not
for statistical probabilities, but for objective single case chances.

4 In the logically general case, instead of Fa one has a closed formula A(a1, . . . , an), which
contains exactly the distinct individual constants a1, . . . , an, and in place of Ga we have a
formula B, whose individual constants are among a1, . . . , an. Similarly, in place of Fx one
has A(x1, . . . , xn) (each ai, for 1 ≤ i ≤ n, is replaced by a distinct individual variable xi), and
likewise for Gx.
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12 Unterhuber & Schurz

of belief in Ga that one would have if all that one knew was Fa and the
relevant frequentistic probability estimate p(Gx | Fx). The actual degrees of
belief (given by P) are connected with these frequency-based hypothetical
degrees of beliefs (provided by p) by the principle of total evidence that
goes back to Carnap (1962, p. 211) and Reichenbach (1949, §72; he named it
‘narrowest reference class’):

Principle of Total Evidence P(Ga) = Po(Ga | Fa), provided Fa contains
all evidence that is relevant to the conditional probability of Ga.5

The class of birds and the class of penguins that are birds are identical. It fol-
lows that p(Fx | Bx&Px) = p(Fx | Px). So, by the principle of total evidence
P(¬Ft) equals p(¬Fx | Bx&Px), which is in turn equal to p(¬Fx | Px). Thus,
we draw the conclusion that Tweety cannot fly.

3. Empirical Study

3.1. Introduction

In the following section we will describe an empirical questionnaire study,
which we conducted to support our argument against monistic Bayesianism.
Our aim was to find out whether subjects regard assertions of the type (A)-
(C) from section 1, understood as assertions of high probability, as jointly
consistent or not. If human beings judge such probabilistic Tweety type state-
ments as jointly consistent, this provides evidence for our claim that monistic
Bayesianism is not a fully adequate theory of cognitive belief states because
it renders Tweety type statements as jointly inconsistent. If subjects, how-
ever, find those type of statements conjointly contradictory, this indicates
that monistic Bayesianism adequately describes Tweety type cases from a
cognitive viewpoint.

We will restrict ourselves here to those parts of the study that directly
bear on Tweety type cases. We do not report rating tasks concerning the
Nixon diamond case (items 6 and 8 from appendix A; see also footnote 1)
and omit soundness ratings, where the sets of statements of each consistency
rating described later served only as premises. We exclude these results here,
since their discussion would increase the complexity of our argumentation to
a high degree. We, however, saw in section 2 that Tweety type cases are quite
sufficient to successfully criticize a monistic Bayesian position.

5 In a complete Carnapian reconstruction of the total evidence principle, one assumes a
prior degree of belief function Po that one has before acquiring any evidence whatsoever, and
considers Po(Ga | Fa) = r as an abbreviation of P0(Ga | Fa & p(Gx | Fx) = r).

Tweety_Rev_abg.tex; 20/05/2012; 14:37; p.12



The New Tweety Puzzle 13

The two target items pertaining to the Tweety case were the following sets
of assertions of high probability, formulated in a singular or in a generic way:

TwGen a) Tigers are most probably dangerous.
b) 3 months old tigers are most probably not dangerous.
c) This animal is most probably a 3 months old tiger.

TwSp a) This animal is most probably dangerous, given it is a lion.
b) This animal is most probably not dangerous, given it is a one-

month-old lion.
c) This animal is most probably a one-month-old lion.

The expressions ‘TwGen’ and ‘TwSing’ stand for ‘Tweety type case generic
formulation’ and ‘Tweety type case singular formulation’, respectively. TwGen
employs a formulation of a) and b) in terms of generics, while TwSp used
only propositions pertaining to the same animal (‘this animal’). Note that all
items were presented in German. It was indicated in the instructions that the
German expression translated as ‘most probably’ pertained to probabilities of
90% or higher. This qualification was included to make certain that subjects
understood the probabilistic statements in TwGen and TwSp as being clearly
higher than .71, the point value, above which the Tweety type case cannot be
described by a single probability function (see section 2).

Subjects were, then, asked to rate for each item whether assertions a), b),
and c) are jointly contradictory or not in order to test the assumptions of
monistic Bayesianism. Recall from section 2 that monistic Bayesians assume
that beliefs must be represented by a single subjective probability function,
which describes the agent’s actual degrees of belief. Our instructions indicate
that the probability of all assertions a), b), and c) have to have probability .9 or
higher. So, if subjects rate a)+b)+c) as non-contradictory, monistic Bayesian-
ism must be empirically inadequate, since according to it a)+b)+c) are jointly
contradictory, provided a), b), and c) have a probability of .71 or higher.
However, if subjects regard a)+b)+c) as contradictory, this would provide
support for monistic Bayesianism, insomuch as the representation of human
beings’ beliefs would agree with the monistic Bayesian’s tenets.

Moreover, if subjects regard a)+b)+c) as non-contradictory, by our argu-
mentation in section 2 this presents evidence that human agents do use two
types of probability functions to represent their probabilistic beliefs rather
than one type of probability function, as the monistic Bayesians assume.
If, however, subjects rate both TwGen and TwSp as non-contradictory, this
would provide additional evidence for the solutions described in Section 2.3
and against monistic Bayesians, insofar as even in a singular formulation of
the Tweety case, subjects were to use two types of probability function rather
than one. Our hypothesis is, thus, the following:
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14 Unterhuber & Schurz

HYPOTHESIS 1. A clear majority rates the Tweety case as being non-contra-
dictory, both in the generic and the singular formulation (i.e., TwGen and
TwSp, respectively).

One might object that the empirical study is only decisive for or against
monistic Bayesianism, if human beings are able to draw correct inferences
with probabilities. In the heuristics and biases literature (e.g., Tversky &
Kahneman, 1983) it is often argued that naïve human beings are prone to
violations of the axioms of probability theory w.r.t. their reasoning behavior.
It, hence, appears as though human beings might not be able to carry out
judgments of probabilistic consistency adequately.

Observe, however, that there is also ample evidence that human beings
are quite capable of processing probabilities adequately (e.g., Hertwig &
Gigerenzer, 1999; Gigerenzer & Hoffrage, 1995) and that human cognition
can be well described by means of probabilistic and Bayesian principles
(Chater et al., 2006a; Griffiths et al., 2010). In particular, some of the evidence
against human probabilistic competence in the heuristics and biases literature
is less conclusive than it might seem at first hand.

For example, the famous experiments of Tversky and Kahneman showed
that under specific circumstances subjects rate the probability of a conjunc-
tion A&B higher than the probability of A, which contradicts the axioms of
probability calculus (Tversky & Kahneman, 1983).6 But Hertwig and Gigeren-
zer (1999, p. 291) found that when probabilities were described in a frequency
format (e.g., “How many of the 200 women are bank tellers?”) rather than a
degree of belief version (e.g., “Rank the following hypotheses according to
their probability.”) , the conjunction fallacy essentially disappeared. Further-
more, studies in the area of uncertain reasoning (Evans et al., 2003; Oberauer
& Wilhelm, 2003) clearly show that subjects’ reasoning with conditional
probabilities concurs with postulates of probability theory. Moreover, we are
not aware of any study, which demonstrates that there exists a strong bias
for consistency judgments of probabilistic statements. These types of con-
sistency judgments are quite different from the probabilistic tasks inquired in
the heuristics and biases tradition (e.g., Tversky & Kahneman, 1983; see also
above).

In conclusion, subjects’ competence in probabilistic reasoning is not so
bad, after all. Moreover, in the evaluation of our empirical study of the new
Tweety puzzle we do not need to assume that subjects are able to master com-
plicated probabilistic calculations; all we need to presuppose is that subjects
have a basic understanding of the concept of probabilistic inconsistency. In
order to test the latter thesis, we included items, which represent clear-cut

6 See Crupi, Fitelson, and Tentori (2008) and Cevolani, Crupi, and Festa (2011) for an
interesting recent investigation and discussion of the conjunction fallacy from a philosophical
perspective.
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cases of probabilistically consistent and inconsistent sets of assertions. The
clearly inconsistent sets of assertions were the following two items:

InCons1 a) Erika visits most probably an evening class.
b) Carl visits most probably an evening class.
c) Most probably neither Erika visits an evening class nor Carl

visits an evening class.

InCons2 a) If Arnold teases Joseph, then Joseph will most probably get
irritated.

b) If Joseph is teased by Arnold, then Joseph will most probably
not get irritated.

c) Arnold most probably teases Joseph.

The expressions ‘InCons1’ and ‘InCons2’ abbreviate ‘Inconsistency item 1’
and ‘Inconsistency item 2’, respectively. The qualitative logical form of the
assertions InCons1.a-c are A, B, and ¬A&¬B, respectively. InCons2.a-c have
the qualitative form A ⇒ B, A ⇒ ¬B, and A, respectively. Note that A in
InCons2.b is – contrary to A in InCons2.a and InCons2.c – formulated in the
passive voice. The clearly consistent sets of assertions in the questionnaire
are the following:

Cons1 a) Hans travels most probably by train to Munich.
b) Peter most probably does not travel by train to Munich.

Cons2 a) If Suzy goes shopping, then Suzy is most probably happy.
b) If Lena goes shopping, then Lena is most probably not happy.

The expressions ‘Cons1’ and ‘Cons2’ stand for ‘Consistency item 1’ and
‘Consistency item 2’, respectively. The qualitative form of assertions Cons1.a
and Cons1.b are A and ¬B, respectively. Assertions Cons2.a and Cons2.b
have the qualitative forms A ⇒ B and C ⇒ D, respectively. Our second
hypothesis is as follows:

HYPOTHESIS 2. The subjects have a basic probabilistic competence, in-
sofar they rate clear cases of probabilistically contradictory sets of asser-
tions (i.e., InCons1 and InCons2) as being contradictory and clear cases of
non-contradictory sets of assertions (i.e., Cons1 and Cons2) as being non-
contradictory.
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16 Unterhuber & Schurz

3.2. Method

3.2.1. Participants
Twenty-seven persons (59% female) participated in the study. We required
all participants to be between 18 and 50 years of age, to be native speakers
of German and not to have participated in a study we conducted earlier.7 The
average age was 25.67 years (the standard deviation was 6.4 years). 96% were
students, 82% of these from the humanities. The remaining 18% of students
came from the sciences, medicine, management, and art. Only two psychol-
ogy students and four philosophy students participated in the questionnaire
study. 40.7% and 55.6% of the subjects indicated that they had in some form
or other exposure to logic and statistics or probability theory (in high school,
at the university, etc.), respectively.

3.2.2. Test Material
The questionnaire consisted of two parts. The first part included the consisten-
cy-ratings described in the previous section and the second part a probability
estimation task (see previous section). All testing material was administered
in German. We will report here only the consistency ratings of the first part
of the questionnaire. In the consistency rating task subjects were instructed
to answer all items according to their intuitive understanding. We told sub-
jects in the instructions that the phrase ‘most probably’ (German: ‘höchst-
wahrscheinlich’), used throughout all items, implies a probability of 90%
or higher. Subjects were, then, asked to tell for TwGen, TwSp, Incons1 and
Incons2 whether assertions a)+b)+c) [or alternatively a)+b) for items Cons1
and Cons2] were contradictory, viz. whether they contradict each other. The
exact formulation of the question for item Nr. X was: ‘Xa), Xb) and Xc) are
conjointly: � non-contradictory � contradictory.’ The complete list of items
administered in the consistency rating task can be found – in the order of
presentation – in Appendix A.

3.2.3. Procedure
All questionnaires were administered in terms of single person testing by a
psychologist. All subjects answered the questionnaire in a cubicle located in
a quiet office and received 5 euros for their participation in the study.

7 Despite our participation requirements one subject was not a native speaker of German,
but spoke German fluently. We decided to include the participant in the study.
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Table I. Percentages of Inconsistency Ratings for Item Types

Item Type Percentage of Rating as ‘Inconsistent’

Cons1+Cons2 9.3%
InCons1+InCons2 83.3% (96.3% without the Arnold item)
TwGen 11.1%
TwSing 22.2%

3.3. Results and Discussion

Percentages of mean ratings for all item types can be found in Table I.8 The
data clearly confirms our hypothesis 2. Subjects were able to categorize both,
clearly probabilistically contradictory sets of assertions (83.3%) and non-
contradictory sets of assertions (90.7%), correctly. We interpret this result
as indicating that human beings have a basic understanding of the concept of
probabilistic consistency and inconsistency and are in this context not prone
to violations of the axioms of probability theory, as, for example, described
by the conjunction fallacy (see section 3.1). Note that the percentage of in-
consistency ratings for clearly inconsistent items was higher (96.3%) when
we did not include the Arnold example (item InCons2). This was expected to
some degree, since the antecedent was used both in the active and the passive
voice. Despite this fact, the pooled percentage of correct inconsistency ratings
for InCons1 and InCons2 was quite high (83.3%).

Hypothesis 1 was also clearly confirmed by our data. The great majority
of subjects rated both, a singular formulation of the Tweety case (TwSing)
and a generic formulation (TwGen) as probabilistically consistent (88.9% and
77.8%, respectively). So, since monistic Bayesianism renders both singular
formulations and generic formulations of Tweety type cases as probabilisti-
cally inconsistent (see section 2), this study provides clear evidence against
monistic Bayesianism as a fully adequate theory of epistemic states.

Furthermore, our discussion in section 2 suggests that the second probabil-
ity function – besides a probability function interpreted in terms of degrees of
belief – is, as Schurz (2011) suggests, best reconstructed as being frequency-
based. It is interesting to observe that the singular formulations of (A) and (B)
in the item TwSing did not seem to have an effect on the consistency ratings
to any significant degree. This result suggests that the singular formulations
of (A) and (B) were essentially read as objective single case probabilities
backed up by frequencies rather than actual degrees of belief. So, the con-
sistency/inconsistency ratings provide evidence that the human mind works

8 We ran a separate analysis for subjects, who indicated that they had some exposure to
logic. The pattern of results for this subgroup did not differ from the results for the total
sample.

Tweety_Rev_abg.tex; 20/05/2012; 14:37; p.17



18 Unterhuber & Schurz

with these two types of probability functions, without making this necessarily
explicit.

Note, however, that we do not argue that the present study is decisive.
Despite the clear pattern observed in our sample, a replication of our results is
needed, best with a variety of items. We, however, believe that this study pro-
vides a first confirmatory result for the inadequacy of monistic Bayesianism
as a fully adequate theory of epistemic states.

4. The Tweety Problem in Cognitive Science

In this section we will, first, survey Bayesian approaches in cognitive sci-
ence and describe their key tenets. As we will see, the cognitive scientists
endorsing a Bayesian approach almost universally employ a type of monistic
Bayesianism, which aims to rely solely on a degree of belief interpretation
of probabilities. We will, first, criticize this type of approach by discussing
the new Tweety puzzle in the context of these approaches. We will, then,
take a closer look at Oaksford and Chater’s models of conditional inference,
and argue – although the authors are clear proponents of a monistic brand
of Bayesianism – that their model eventually has to refer to frequencies in
one form or another. The latter discussion is intended as a case study, which
aims to show that also in an applied context in cognitive science, a monistic
Bayesian approach is not viable.

4.1. Bayesian Approaches in Cognitive Science

In recent years Bayesian approaches in cognitive science became more and
more prominent. For example, a special issue in Trends in Cognitive Sci-
ences (2006, Vol. 10, Issue No. 7) was specifically dedicated to Bayesian
and probabilistic approaches in cognitive science. Furthermore, a range of
papers applied Bayesian ideas and methods to topics, such as knowledge
representation (Griffiths et al., 2010; Chater et al., 2006a), language pro-
cessing and acquisition (Xu & Tenenbaum, 2007; Chater & Manning, 2006),
vision (Yuille & Kersten, 2006), inductive learning and reasoning (Kemp &
Tenenbaum, 2009; Tenenbaum, Griffiths, & Kemp, 2006; Oaksford & Chater,
2007, 2008), sensorimotor control (Körding & Wolpert, 2006), and mem-
ory (Griffiths, Steyvers, & Tenenbaum, 2007; Steyvers, Griffiths, & Dennis,
2006).

The cognitive scientists endorsing the Bayesian framework are very ex-
plicit about their own theoretical position and seem to share the idea that only
subjective probability functions are needed in their approach, much like the
monistic Bayesians criticized in section 2. So, Chater et al. (2006a, p. 288f)
and Chater, Tenenbaum, and Yuille (2006b, p. 292) – in their introduction and

Tweety_Rev_abg.tex; 20/05/2012; 14:37; p.18



The New Tweety Puzzle 19

programmatic outlook of the special issue described in the previous paragraph
– clearly state that they intend to use a subjective rather than a frequen-
tistic interpretation of probabilities. Moreover, Oaksford and Chater (2007,
p. 10f; 2009, p. 69) also explicitly endorse this assumption in their Bayesian
approach in the area of reasoning.

Let us now see at which theoretical level Bayesian cognitive scientists
locate their monistic Bayesian principles. Oaksford and Chater (2007), for
example, do not presuppose that human cognition actually carries out prob-
ability calculations, but rather assume that Bayesian assumptions allow one
to characterize human behavior in terms of the rational problems that hu-
man cognition has to solve (cf. Anderson’s 1990 program of rational anal-
ysis). In other words Bayesian cognitive scientists, such as Oaksford and
Chater (2007), use Bayesian principles to describe, which type of problems
human cognition aims to solve. The human mind uses, then, heuristics to
approximate these normatively correct solutions (Oaksford & Chater, 2007,
p. 14f).

Note that the rational analysis, endorsed by Oaksford and Chater (2007),
pertains in Marr’s (1982) terminology to the computational level (Oaksford &
Chater, 2007, p. 46) and differs from approaches at the representational/algo-
rithmic and the neuronal-implementational level. Accounts at the latter levels
aim to answer the questions ‘what is represented in human cognition’ and
‘which brain mechanisms underlie these phenomena’, respectively. In con-
trast, connectionist accounts, such as Rogers and McClelland (2004), do not
start with assumptions regarding the computational/rational analysis level,
but rather the representational/algorithmic level, by making assumptions re-
garding the neuronal implementation of human cognition, as described by
connectionist models.

Observe further that Oaksford and Chater (2007) explicitly reject deduc-
tive-logical approaches for a rational level analysis and argue at length (pp. 41–
65) against any deductive-logical approach, including default logic approaches
(pp. 60–62), as, for example, Reiter (1980). Oaksford and Chater’s alternative
is a Bayesian approach, as described above. The Bayesian cognitive scientists
also explicitly indicate that Marr’s computational level is best understood in
terms of probabilistic approaches, such as their Bayesian approach (Griffiths
et al., 2010, p. 363; cf. also Chater et al., 2006a, p. 289f).

4.2. Criticism of monistic Bayesian approaches in Cognitive Science

Unlike other critics, such as McClelland et al. (2010), we do not argue against
the general approach of the Bayesian cognitive scientists, in terms of an anal-
ysis of cognition at a computational level. We, rather, endorse a pluralistic
view regarding investigations at all Marrian levels, including the compu-
tational and the representational/algorithmic level. In particular, we regard
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analyses of cognition at the computational level, as for example done by the
Bayesian cognitive scientists, as being fruitful and complementary to analy-
ses at the representational/algorithmic level, such as connectionist approaches
(e.g., Rogers & McClelland, 2004).

We, furthermore, do not reject a probabilistic analysis at the computational
level in favor of an alternative analysis, such as default logic approaches
(e.g., Reiter, 1980). Although we do not agree with much of Oaksford and
Chater’s (2007) criticism of deductive-logical approaches and default logic
approaches, we will not argue here – in principle – against probabilistic anal-
yses of cognition. On the contrary, we share and appreciate the idea that
Bayesian methods and ideas from mathematics and epistemology can and
should be fruitfully applied in cognitive science.

We, however, criticize the particular probabilistic approach employed by
Oaksford and Chater (2007) and other Bayesian cognitive scientists (Chater et
al., 2006a; Griffiths et al., 2010), namely a monistic type Bayesian approach.
In particular, we regard the thesis that a probabilistic theory on the computa-
tional level can solely rely on a subjective interpretation of probabilities and
still be fully adequate as not tenable. We rather suggest that Bayesian cogni-
tive scientists should weaken their monistic standpoint and explicitly incor-
porate frequency-based probability functions besides subjectively interpreted
probability functions, also at the computational level.

To argue against the viability of a monistic Bayesian approach in cogni-
tive science we will, first, strengthen our general argument against monistic
type Bayesianism, based on the new Tweety puzzle. We will, then, focus on
Oaksford and Chater’s (2007, 2008) Bayesian model of conditional inference
as a cases study. We saw earlier, that Oaksford and Chater (2007, p. 10) also
endorse an account that only draws on subjectively interpreted probabilities.
We will argue here that their model of conditional inference implicitly and
non-trivially relies also on a frequentistically interpreted probability function.
Our argumentation aims to show that also in an applied context in cognitive
science a monistic type Bayesian approach is not viable.

Note that Oaksford and Chater (2008) admit that their 2007 model of con-
ditional inference implicitly uses in addition a frequency-based probability
function and propose a modification, which does not rely on relative fre-
quencies explicitly. We will aim to demonstrate that neither their 2007 model
nor their 2008 version can be adequate without employing a frequency-based
probability function. We will also draw out in more detail, in which way both
Oaksford and Chater’s 2007 and their 2008 model refer to a frequency-based
probability function, since in Oaksford and Chater (2008) it is not explicitly

Tweety_Rev_abg.tex; 20/05/2012; 14:37; p.20



The New Tweety Puzzle 21

described, in which way their 2007 model relies on the notion of relative
frequencies.9

Let us, now, apply our argumentation from section 2 to the monistic type
Bayesian approaches in cognitive science, as described in section 4.1. We
saw in section 2 that exception structures, such as the Tweety case, cannot
adequately be represented by monistic Bayesian approaches. But what are
Tweety type cases? They are simply cases, in which an exceptional subclass,
such as penguins, of a class, such as birds, is instantiated. Now, as we saw in
section 1, it is one of the motivations of probabilistic approaches that these
are more flexible than, for example, classical logic in allowing for exceptional
cases and classes. Griffiths et al. (2010) defends the project of monistic type
Bayesianism, as described in section 4.1, against criticism by Rogers and
McClelland (2004) who argue that in general symbolic models cannot handle
exceptions adequately:

“Connectionists have criticized symbolic models for failing to handle
exceptions or produce graded generalizations, or to account for how rep-
resentations are learned [. . . ] Combining structured representations with
probabilistic inference meets those challenges” (Griffiths et al., 2010,
p. 360)

Thus, Griffiths et al. (2010) argue that one can, when combining structured
representations with probabilistic inferences, also account for handling ex-
ceptions. We, however, saw in section 2, that we cannot do so on the basis
of a monistic type Bayesian approach. For, whenever we use an instanti-
ated exceptional subclass, we cannot describe this scenario adequately by
means of a single subjective probability function only, but must also refer to
a frequency-based probability function.

Note that Griffiths et al. (2010, p. 359) argue that monistic type Bayesians
can account for exception structures. For that purpose they suggest a pro-
cedure, by which assignments of relative frequencies, such as (A2g), are
replaced by assignments of subjective probabilities to the corresponding uni-
versal conditional, such as (A1g) (see section 2). Note, however, that there
are strong reasons that speak against pursuing such a strategy (see section 2
for a discussion of these points): First, this contradicts thesis (2) of monistic
Bayesianism. Although Griffiths et al. (2010) do not explicitly endorse this
principle, their procedure amounts to a rejection of the thesis that conditionals
should be probabilistically represented by conditional probabilities, which is
for many Bayesians hard to swallow. Second, the logical properties of these
new assignments differ from those of the frequency-based versions (see also
section 2.2).

9 Also Oaksford and Chater (2009) describe a model of conditional inference. Since it is
very close to their 2007 version, not to say identical, we will rather focus on Oaksford and
Chater’s (2007) model.

Tweety_Rev_abg.tex; 20/05/2012; 14:37; p.21



22 Unterhuber & Schurz

We conclude here that Griffiths et al.’s approach is not viable. We suggest
that instead of sticking to monistic tenets, Bayesians in cognitive science
should rather endorse a weaker form of Bayesianism, which – unlike monistic
Bayesianism – allows for the specification of instantiated exceptions.

4.3. Case Study: Oaksford and Chater’s (2007, 2008) Model of
Conditional Inference

4.3.1. Oaksford and Chater’s (2007) Model of Conditional Inference
Before we describe Oaksford and Chater’s model of conditional inference, let
us, first, specify what they mean by ‘conditional inferences’. The conditional
inferences, on which Oaksford and Chater’s model focuses, are of the follow-
ing four types, which have a long tradition in the psychology of reasoning
(Oaksford & Chater, 2007, p. 113, p. 100; Evans, 1982, Ch. 8):

From A and A⇒ B conclude B (Modus Ponens, short: MP)
From ¬A and A⇒ B conclude ¬B (Denying of the Antecedent, DA)
From B and A⇒ B conclude A (Affirming of the Consequent, AC)
From ¬B and A⇒ B conclude ¬A (Modus Tollens, MT)

Here ‘A⇒ B’ stands for the conditional ‘If A then B’. The formulas in ‘From
. . . ’ and ‘conclude . . . ’ are called ‘premises’ and ‘conclusion’, respectively.
We also distinguish between conditional and categorical premises. The cate-
gorical premises in the MP, DA, AC, and MT inferences are A, ¬A, B, and
¬B, respectively.10

Oaksford and Chater (2007) propose a Bayesian framework in order to
describe inferences of type MP, DA, AC, and MT. For this purpose Oaksford
and Chater (2007) use their 2000 model of conditional inference (Oaksford et
al., 2000) as a starting point. In the latter model, which they also call ‘condi-
tional probability model’ (see Oaksford & Chater, 2007, p. 121), conditional
inferences of type MP, DA, AC, and MT are described by an “update [proce-
dure of] their beliefs about the conclusion by using the categorical premise to
conditionalize on the relevant conditional probability” (Oaksford & Chater,
2007, p. 121). In other words MP, DA, AC, and MT inferences are described
by conditionalization on the respective categorical premise.

Oaksford and Chater (2007, p. 120f), then, specify the relevant conditional
probabilities for the conditional probability model the following way, where
a, b, and c are specified by a = P0(B | A), b = P0(¬B) and c = P0(A),
respectively (Oaksford & Chater, 2007, p. 119f):

10 Oaksford and Chater (2007, p. 122) give ¬p, as an example for a categorical premise
of the inference DA, which is specified as ‘from p ⇒ q and ¬p conclude q’ in that context
(Equation 5.14, p. 119).
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Cond MP P1(B) = P0(B | A) = a for c > 0
Cond DA: P1(¬B) = P0(¬B|¬A) =

b−(1−a)c
1−c for c < 1

Cond AC: P1(A) = P0(A | B) = ac
1−b for b < 1

Cond MT: P1(¬A) = P0(¬A|¬B) =
b−(1−a)c

b for b > 0

So, in their 2000 model, Oaksford et al. presuppose that the probability of
the conclusion is determined by conditionalizing on the categorical premise
with probability 1, viz. the probability of a conclusion P1(C) is specified
by assuming the categorical premise with certainty (see Oaksford & Chater,
2007, p. 120f).

Oaksford and Chater (2007) argue that we do not need to look at gen-
eralizations of Cond MP, DA, AC, and MT, where the probability of the
categorical premise is smaller than 1, since “[f]or almost all the data we
look at later on, the generalization [. . . ] [in terms of the probability of the
categorical premise not equaling 1] is not needed” (Oaksford & Chater, 2007,
p. 121). We will follow here Oaksford and Chater’s suggestion and focus on
conditionalization in line with Cond MP, DA, AC, and MT as a starting point.

While the Oaksford et al. (2000) model provided overall good fit with
the empirical data (Oaksford & Chater, 2007, p. 126), this model did not
perform particularly well w.r.t. the MP-MT asymmetry (2007, p. 126; 2008,
p. 100). By ‘MP-MT asymmetry’ we refer to the unequivocal finding in the
area of conditional inferences that human beings draw more MP inferences
than MT inferences (Oaksford & Chater, 2008, p. 98f; see also Evans &
Over, 2004, p. 47). In a model fitting exercise Schroyens and Schaeken (2003)
compared different models of conditional inference and noted that Oaksford
et al.’s (2000) model underestimated the probability of MP endorsements and
overestimated the probability of MT inferences (Oaksford & Chater, 2007,
p. 126).

To account for this MP-MT asymmetry in a better way, Oaksford and
Chater suggested a modified account, as described in the 2007 and 2008
versions of their revised model. At the heart of the revised model lies the as-
sumption that the so-called rigidity condition is violated for MT inferences.11

The rigidity condition specifies that the conditional probability P0(B | A) re-
mains stable in the course of conditionalizing from P0 to P1 for all conditional
inferences, as specified by Cond MP, DA, AC, and MT (Oaksford & Chater,
2007, p. 127). According to Oaksford and Chater’s (2007, 2008) revised
model it is highly probable that a violation of the rigidity condition occurs
for MT inferences, but not so for MP inferences (Oaksford & Chater, 2007,
p. 127; 2008, p. 108).

11 Oaksford and Chater suggest that DA and AC inferences are also prone to rigidity vio-
lations (Oaksford & Chater, 2008, p. 110). We will, however, restrict our discussion here to
rigidity violations for MT inferences.
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Oaksford and Chater (2007, p. 127f; 2008, p. 108) explain why agents
violate the rigidity condition for MT inferences. They do so by means of
the pragmatics of item presentation. Oaksford and Chater use the following
example to illustrate their point (2007, p. 127f; 2008, p. 108):

(D) If you turn the key (p), the car starts (q).
(E) The car did not start (¬q).

Suppose you belief (D) and on that occasion also (E). Then, “[t]here would
seem to be little reason to expect the car to start unless one was reasonably
confident that the key had been turned” (Oaksford & Chater, 2007, p. 127).
Furthermore, “the assertion of the categorical premise of MT only seems to
be informative against a background where the car was expected to start [. . . ]
So this seems like a case where rigidity might be violated, i.e. it is a counter-
example, and so P0(q | p) needs to be adjusted” (Oaksford & Chater, 2007,
p. 127f).12

Before we go on with the description and criticism of the Oaksford and
Chater 2007 model of conditional inference, let us, first, clarify where our
general punch line is. We do not, on general grounds, argue against Oaksford
and Chater’s model of conditional inference. We rather believe that their
model, based on rigidity violations to be explained below, represents a plausi-
ble and promising approach. We, however, believe that Oaksford and Chater’s
restriction to a monistic Bayesian approach, which only allows for subjective
probability functions, limits the full potential of their model and we argue that
their model has to acknowledge in one way or another a probability function
which is interpreted in terms of relative frequencies, in addition to a subjective
probability function.

Oaksford and Chater argue that in rigidity violations the original value
P0(q | p) is revised and lowered to the new value PR

0 (q | p) (‘R’ for ‘revised’;
Oaksford & Chater, 2008, footnote 6, p. 115; 2008, p. 128). The revised
value PR

0 (q | p) is, then, used to calculate the new probability function P1,
as described by Cond MT. Why, however, does in the Oaksford and Chater
(2007) model the counter-example imply a lower value PR

0 (q | p) compared to
P0(q | p) rather than an equal or a higher value?13

12 Note that Oaksford and Chater (2008, p. 108) describe the case with almost the same
words.

13 Oaksford and Chater (2007, p. 128) say that the value of P0(q | p) can be determined
on the basis of a dependence-independence model comparison, in which a conditional in-
dependence model (P0(q | p) = P0(q)) is compared with a conditional dependence model
(P0(q | p) , P0(q)). However, the authors do not explain how this model comparison is used
to achieve lower values for PR

0 (q | p), but only vaguely sketch it. Moreover, in their empirical
evaluation of their revised model Oaksford and Chater (2007, p. 130) do not use any values
predicted by the dependence-independence model, but rather estimated PR

0 (q | p) by their best
fit values when testing the fit of their model with the data. In Oaksford and Chater (2008)
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Let us inquire how it is that Oaksford and Chater (2007) might account for
a lower probability of PR

0 (q | p). For that purpose, we shall take a closer look
at the example, which was used in both the 2007 and the 2008 version of their
model. In this example, an agent is described as believing (D) (‘if you turn
the key, the car starts’) and (E) (‘the car did not start’). According to Oaksford
and Chater’s (2007, 2008) model, agents make the following assumption, on
pragmatic grounds of conversational relevance:

(F) You turned the key (p).

In Oaksford and Chater’s model, the fact that you turned the key and the
car did not start – that is (F)+(E) which is represented by p&¬q – is a single
counter-example (cf. Oaksford & Chater, 2007, p. 129f). Oaksford and Chater
(2007) argue, then, that “participants update on the evidence of a single p,¬q
counter-example” (Oaksford & Chater, 2007, p. 130).14 But in which sense
can this counter-example decrease PR

0 (q | p) in comparison to P0(q | p)?
The problem with Oaksford and Chater’s (2007, 2008) formalization of

(D) is that the probability P0(q | p) is not just lowered to some degree by
considering the “single counter-example” p&¬q, but receives the value zero,
if we apply Oaksford and Chater’s approach. On that basis, however, one
can hardly argue that p&¬q is just a single counter-example that lowers the
probability P0(q | p) to some degree, to the value PR

0 (q | p). Rather p&¬q is a
“falsifying” counter-example that lowers PR

0 (q | p) to zero.
Let us draw this out in more detail: The probability P1(p&¬q) is, as we

saw in section 4.2, interpreted as the degree of belief in the proposition p&¬q,
namely the probability that on a specific occasion you turned the key, but the
car did not start. However, in order for p&¬q to serve as a counter-example,
the agent has to be certain or nearly certain that p&¬q is in fact the case.
Given that one is certain that p&¬q is a counter-example, viz. P1(p&¬q) =

1, it follows that P1(q) = 0, and by Cond MT this implies that P1(q) =

PR
0 (q | p) = 0. So, the single counter-example p&¬q fully determines PR

0 (q | p)
as having probability 0, without having to refer to any other positive p&q or
negative p&¬q instances.

What went amiss in Oaksford and Chater’s (2007) model? The problem
is that the probability associated with (D) cannot be sensibly specified by
P(q | p), when the counter-example has the form p&¬q. It rather seems that
(D) is understood as a generic conditional, not a conditional, which only
refers to a specific occasion. The representation of the probability associated

the authors do not comment on this idea any further; instead they argue that they employed
in their 2007 version the notion of relative frequencies, without saying explicitly how and
why (Oaksford & Chater, 2008, p. 108). In conclusion, the dependence-independence model-
comparison does not answer the question why Oaksford and Chater’s model implies a lower
value for PR

0 (q | p) compared to P0(q | p).
14 Note here that ‘p,¬q’ in Oaksford and Chater (2007, cf. p. 130) correspond in our

terminology to ‘p&¬q’.
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with (D) by an assignment of the form P(q | p) = r, however, implies that this
conditional probability only refers to the very same occasion described by the
counter-example p&¬q. Note that also Oaksford and Chater (2007, p. 127)
seem to imply that the counter-example, in contrast to (D), refers to a specific
occasion (see also Oaksford & Chater, 2008, p. 108).

Since (D) is understood as a generic conditional, it seems, hence, best to
associate it with a generic probability assignment of the following sort:

(G) p(S x |T x) = r

Here ‘S x’ and ‘T x’ stand for ‘the car starts on occasion x’ and ‘you turn
the key on occasion x’, respectively. (G) does not refer to an assignment
of a state of affairs relative to another state of affairs, as a degree of belief
interpretation of probabilities suggests. Rather (G) specifies the relative fre-
quency of individuals having property S among those individuals, which have
property T (cf. example (A2g)). In the case of (D) both T x and S x range
over individual occasions, on which the key has been turned, and the car has
started, respectively.

By this interpretation of (D) we can also explain why an instance, on
which the key was turned but the car did not start, is a single counter-example
for (D). Let us assume that among four occasions before time t0 the car always
started when the key was turned. Then, the probability associated with (D) at
time t0, namely p0(S x |T x), as estimated from the observed sample frequen-
cies, equals 4

4 and, thus, 1. Suppose we encounter now on this occasion o1, the
new, pragmatically implied counter-example, which amounts to the key being
turned (To1), but the car not starting (¬S o1). Then, the new counter-example
To1&¬S o1 reduces the estimated frequentistic probability from p0(S x |T x)
to pR

0 (S x |T x), which equals 4
5 , taking into account the new counter-example.

Our frequentistic interpretation of (D), hence, provides a clear explana-
tion of why the probability p0(S x |T x) is lowered to pR

0 (S x |T x) on learning
about the counter-example, while the probability value associated with (D)
need not be zero. For the subjective Bayesian, however, there seems to be
no way out of the problem described here. She can, hence, not explain why
the pragmatically implied counter-example is just a single counter-example
for (D) rather than a falsification of (D). Hence, the monistic Bayesian can-
not explain why the revised probability associated with (D) is lowered by
the single counter-example. Rather, the very concept of a counter-example
seems to imply that (D) must be generically understood, as described by
(D1). However, a monistic Bayesian cannot achieve this. Once again we see
that subjectively interpreted probability functions cannot express condition-
als or generics, such as (D), in a generic, rather than singular way (see also
section 2).
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4.3.2. Oaksford and Chater’s (2008) Model of Conditional Inference
In this section we will describe Oaksford and Chater’s (2008) modified ap-
proach. We will, then, discuss whether their modified model is describable
solely in terms subjective probability functions.

In 2008 Oaksford and Chater present a revised version of their 2007 model.
As in their 2007 model, Oaksford and Chater (2008) still employ the idea
of a rigidity violation for MT inferences based on a pragmatically implied
counter-example, as described above. We saw earlier, Oaksford and Chater
(2008) even use almost the same wording as in Oaksford and Chater (2007).
The authors, however, go on to argue that a frequentistic interpretation seems
implausible. To make a case for this point they discuss the following example,
describing a conditional promise, as given by the agent John (p. 109):

(G) If it is sunny tomorrow, then I will play tennis.

Oaksford and Chater (2008, p. 109) suppose that (G) relates to a specific
occasion and argue about this case the following way:

“Under these circumstances, it is nonsensical to suggest that the truth
of this claim could be assessed by looking at the relative frequencies
of whether John plays or does not play tennis when it is sunny on, say
the 14th February 2007 (tomorrow[’]s date as we write). Rather we must
look to other sorts of evidence that bear on this claim derived from world
knowledge. For example, is John generally reliable when making prom-
ises, what is the chance that something will prevent him from playing
tennis even if it is sunny?” (Oaksford & Chater, 2008, p. 109).

In this way Oaksford and Chater (2008) argue that not for all types of proba-
bilistic conditionals a frequency-based approach might be possible and, thus,
make a case for a specification of belief updating based on a purely subjective
probability function.

Let us, first, discuss the conditional promise example (G) before we move
on to the description and discussion of the second part of Oaksford and
Chater’s modified model. We think that this example is unconvincing for two
reasons. First, Oaksford and Chater’s original model seems to be targeted
for conditional inferences with “normal” conditionals rather than conditional
promises. In Oaksford and Chater (2007, 2008) the premier example, namely
(D), is not a conditional promise but rather a “normal” conditional in the
sense of conditional assertions, such as (D). Given that framing conditionals
as promises, threats, tips and warnings has a strong impact on endorsement
rates of MP, DA, AC, and MT inferences (Evans & Twyman-Musgrove, 1998;
Evans & Over, 2004, p. 108f), it is not clear, which implications a discussion
of (G) has for conditional assertions without a promise modifier.

Second, to make their point Oaksford and Chater (2008) argue that one
cannot sensibly interpret (G) – understood as pertaining to a specific point
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in time and space – in terms of frequencies and has to refer to specific evi-
dence, such as the promising person’s (John’s) reliability regarding keeping
promises. While we accept that not all conditionals can be interpreted in terms
of frequencies, such as for example conditional (a) of TwSp (see section 3.1),
we do not accept that all the evidence can be specified purely by a subjective
probability function. For example, the evaluation of John’s reliability of keep-
ing promises and, hence, the determination of the probability associated with
(G), eventually has to refer to relative frequencies, in terms of how often he
has kept promises in the past. One cannot escape relative frequencies when
specifying a model of conditional inference. To ignore this aspect, seems
to set aside important information, as specified by probability assignments
interpreted in terms of relative frequencies.

We shall now continue with our description and discussion of the modifi-
cation of Oaksford and Chater’s (2007) earlier model. Oaksford and Chater
(2008) go on to suggest – in contrast to their 2007 model – that “[t]he classes
of evidence we identified can not be regarded as individual pieces of evi-
dence that can be used to update P0(q | p) to PR

0 (q | p) by Bayesian revision
as proposed by Oaksford and Chater (2007). Rather they must directly influ-
ence P0(p,¬q) and P0(¬p, q), while the marginals [that is P0(p) and P0(q)]
remained fixed” (Oaksford & Chater, 2008, p. 109). Note here that ‘p,¬q’ in
Oaksford and Chater (2008) correspond in our terminology to ‘p&¬q’.

In a nutshell, in Oaksford and Chater’s (2008) new model the counter-
example p&¬q influences PR

0 (p&¬q) and PR
0 (¬p&q) instead of PR

0 (q | p) di-
rectly. The problem from Oaksford and Chater (2007) resurfaces in Oaksford
and Chater (2008). Oaksford and Chater (2008) still have to answer why the
revised probability PR

0 (q | p) becomes smaller compared to the original value
P0(q | p), when we take the counter-example p&¬q into account.

If we accept the assumptions made by Oaksford and Chater (2007, 2008),
then – as our discussion from section 4.3.1 suggests – in order for p&¬q
to qualify as a counter-example the agent must be certain that p&¬q, in
other words that P1(p&¬q) = 1. It follows that P1(p) = 1 and P1(q) = 0.
On the basis of Oaksford and Chater’s assumptions concerning Cond MT it
holds that P1(¬q) = PR

0 (¬q | ¬p) and P1(q) = PR
0 (q | p). Since P1(q) = 0

and P1(p) = 1, this implies that PR
0 (q | p) and PR

0 (¬p | ¬q) equal zero and
one, respectively. So, Oaksford and Chater’s (2008) modified model in fact
cannot explain, why the revised probability PR

0 (q | p) becomes smaller to some
degree compared to its original estimate. It rather treats p&¬q once more as
a falsifying counter-example.

Again, no such problem arises, if we assume that (D) is interpreted in
terms of a frequency-based probability function, as described by (D1). Then,
the counter-example adds to the negative instances of the respective frequency-
based probability function, as specified in section 4.3.1. We, thus, conclude
that the model of Oaksford and Chater, as specified in Oaksford and Chater
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(2007) and in Oaksford and Chater (2008), essentially has to refer to a frequency-
based probability function in one way or another.

Let us make some final remarks regarding the change of frequencies when
accounting for MT inferences, as suggested by Oaksford and Chater in their
2007 and 2008 model. Observe that there are empirical studies, which suggest
that human beings use relative frequencies of counter-examples to estimate
the probability of conditionals (Geiger & Oberauer, 2007), which supports
the model of modification of frequencies by singular counter-examples, as
suggested in the previous section. There exists, however, also evidence that
under some circumstances human beings use classes of counter-examples
rather than frequencies to estimate the probability of conditionals (Markovits,
Forgues, & Brunet, 2010). Observe that the estimation of probabilities of
conditionals by means of classes of counter-examples also aims to predict
the prevalence or frequency of certain attributes. So, even if Markovits et al.’s
(2010) finding turns out to provide the more accurate account, this does not
speak against our main point, namely that in order to adequately describe
Oaksford and Chater’s model, one has to refer to relative frequencies in one
way or another.

5. Conclusion

We, finally, give an overview over the topics discussed in this paper. The first
part of our paper (sections 1 and 2) focused on the new Tweety puzzle. We
argued on that basis that monistic Bayesians – Bayesians who restrict them-
selves to a single “actual” probability function for the specification of epis-
temic states – cannot account for Tweety type cases adequately. Since Tweety
type cases represent an important class of situations, which an agent should
be able to represent in terms of beliefs, we argue that monistic Bayesianism
cannot be a fully adequate theory of epistemic states.

In the second part (section 3) of our paper we described an empirical study,
which provides initial empirical support for the thesis that human beings
regard Tweety type cases as probabilistically consistent. Given our theoret-
ical argument in the first part of the paper, this result suggests that in order
to account for this empirical finding we have to rely on both a subjective
probability function and an objective frequency-based probability function to
describe human beings’ epistemic states.

In the third part of the paper (section 4) we discussed monistic type Bayes-
ian approaches in cognitive science. We provide a general argument against
monistic type Bayesian accounts in cognitive science by applying the new
Tweety puzzle to these approaches. We, then, focus on a model of this brand,
put forth by Oaksford and Chater (2007, 2008), namely their model of condi-
tional inference. We argue that their model has to rely on a frequency-based
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probability function, in order to explain why the probability associated with a
conditional should be lowered for modus tollens inferences, but not for modus
ponens inferences. Since the probability functions in Oaksford and Chater’s
model are used to model (probabilistic) beliefs of agents, our argumentation
shows that we need in Oaksford and Chater’s model of conditional infer-
ence in addition to a subjective probability function also a frequency-based
probability function to adequately represent agents’ epistemic states.

Appendix

A. Items Used in the Empirical Study

The following items are English translations from their German originals
used in our empirical study. Subjects were asked to rate whether the items
a)+b)+c) or else a)+b) were jointly contradictory or not. The items are listed
in order of administration. For more details see section 3.

1. a) Erika visits most probably an evening class.

b) Carl visits most probably an evening class.

c) Most probably neither Erika visits an evening class nor Carl visits an
evening class.

2. a) This animal is most probably dangerous, given it is a lion.

b) This animal is most probably not dangerous, given it is a one-month-
old lion.

c) This animal is most probably a one-month-old lion.

3. a) Hans travels most probably by train to Munich.

b) Peter most probably does not travel by train to Munich.

4. a) Tigers are most probably dangerous.

b) 3 months old tigers are most probably not dangerous.

c) This animal is most probably a 3 months old tiger.

5. a) If Arnold teases Joseph, then Joseph will most probably get irritated.

b) If Joseph is teased by Arnold, then Joseph will most probably not get
irritated.

c) Arnold most probably teases Joseph.

6. a) Animals, which can fly, are most probably egg-laying.
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b) Mammals are most probably not egg-laying.

c) This animal is most probably a mammal, which can fly.

7. a) If Suzy goes shopping, then Suzy is most probably happy.

b) If Lena goes shopping, then Lena is most probably not happy.

8. a) This animal is most probably egg-laying, given it is animal, which
can fly.

b) This animal is most probably not egg-laying, given it is a mammal.

c) This animal is most probably a mammal, which can fly.
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