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Abstract

This paper proposes a new classification algorithm for the partitioning of a conceptual space.
All the algorithms which have been used until now have mostly been based on the theory of
Voronoi diagrams. This paper proposes an approach based on potential theory, with the criteria
for measuring similarities between objects in the conceptual space being based on the Newtonian
potential function. The notion of a fuzzy prototype, which generalizes the previous definition of
a prototype, is introduced. Furthermore, the necessary conditions that a natural concept must
meet are discussed. Instead of convexity, as proposed by Gärdenfors, the notion of geodesically
convex sets is used. Thus, if a concept corresponds to a set which is geodesically convex, it is
a natural concept. This definition applies, for example, if the conceptual space is an Euclidean
space. As a by-product of the construction of the algorithm, an extension of the conceptual space
to d-dimensional Riemannian manifolds is obtained.
Keywords: conceptual space; concept; natural concept; potential theory; Riemannian manifolds;
geodesics; geodesically convex sets

1 Introduction
This paper considers the problem of partitioning a conceptual space (the definition of which
appears later). In a broad sense, the problem of partitioning of a given space is closely related to
the problem of data classification (Gordon, 1999). Recently, the theory and application of data
classification has attracted the interest of many scientists from different areas, who are working
on this topic and related problems. The reason for this trend is the fact that companies and
institutions connected to industry (but not only), as well as scientists working in such areas as
statistics, economics, sociology, psychology and linguistics (especially those working on corpus
linguistics), collect enormous sets of data in order to work on them to identify patterns and
structure. Usually, the first step is to divide a set of data into smaller classes in such a way that
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elements belonging to the same class are, in some sense, similar to each other, whereas elements
from different classes should be essentially different. A measure of similarity (or dissimilarity) is
very often constructed ad hoc depending on the concrete practical problem considered. A classical
monograph (Gordon, 1999), mentioned above, contains a survey of possible similarity measures.
As a matter of fact, this survey does not cover all of the possible measures, since those measures,
as mentioned earlier, depend on the problem in question or the hypothesis which is to be proved.
Hence, there is actually an infinity of similarity measures.

A set which is divided into several classes has a simple structure, and is therefore potentially
easer to deal with.

The paradigm of dividing objects into classes is one of the most natural cognitive processes,
one which is performed by human beings upon the objects of their surrounding reality. The next
process is the naming of the encountered objects. An object which does not have a name does not
exist.

As mentioned earlier, the problem under current consideration comes from the area of cogniti-
vism. Cognitivism is an interdisciplinary science whose main aim is to analyze and model the brain
activity of human beings, as well as their senses. Cognitivism also constitutes a basis for other
sciences. One example of this is cognitive linguistics, which is relevant to the problems discussed
in this paper, see e.g. Gärdenfors (2011).

For many years, the dominant paradigm in linguistics was structuralism, which started with
the groundbreaking ideas of Ferdinand de Saussure, which were published in 1916 (posthumously)
by his students in the famous book Cours de linguistique générale (Saussure, 1916). Around 1980,
the ideas of structuralism seemed to fall out of favor and linguistics shifted to the new paradigm
of cognitivism. It became widely accepted that natural language should be studied together with
its relation to the perception of reality. The term language and world view was coined, although
the idea itself is much older. One of the pioneers of cognitive linguistics is Ronald Langacker, who
in 1986 published a paper which laid out the basics of cognitive grammar (Langacker, 1986, see
also Langacker, 2008).

This paper is concerned with the notion of conceptual space — an idea introduced to cognitive
studies by Peter Gärdenfors (1988, 1996). The paper will focus on, at least to start with, conceptual
space as the usual d-dimensional Euclidean space, Rd = {(x1, ..., xd) : xi ∈ R} which is simply
a set of d-dimensional vectors with real entries. In other words, the focus is on objects, which can
be characterized by d real parameters. The second important example of conceptual space are
subsets of Rd (for example, if x1 represents the mass of the object x, then x1 can only be a non-
negative number. Thus, instead of the whole real straight line there is only a half-line on the first
axis). A concept in the conceptual space is represent by a subset. A natural concept1 is a concept
which is given by the convex subset2. The subsets are constructed on the basis of prototypes, i.e.
by the objects which are “the best” representatives. Usually, all methods of partitioning of the
conceptual space are based on some version of the Voronoi diagram, see (Okabe, Boots, Sugihara,
& Chiu, 2000). As a result, all sets corresponding to a given concept are polygons (they may be
unbounded). Gärdenfors, in his monograph (Gärdenfors, 2000), claims that:

1Definition of this notion given in Gärdenfors (2000, p. 67) is not quite clear. According to Gärdenfors natural
concepts are those, “that are natural for the purposes of problem-solving, planning, memorizing, communicating,
and so fort.” (Emphasis by Gärdenfors).

2A subset A ⊆ Rd is said to be convex if for all x, y ∈ A and for every real number 0 ≤ λ ≤ 1, the element
λx + (1 − λ)y ∈ A. In other words this means that together with two (different) elements of A the whole interval
which connect these elements ia also contained in A.
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“A Voronoi tessellation based on a set of prototypes is a simple way of classifying
a continuous space of stimuli. The partitioning results in a discretizationa of the space.
The prime cognitive effect is that the discretization speeds up learning. The reason
for this is that remembering the finite prototypes, which is sufficient to compute the
tessellation once the metric is given, puts considerably less burden on memory than
remembering the categorization of each single point in the space. In other words,
a Voronoi tessellation is a cognitively economical way of representing information about
concepts. Furthermore, having a space partitioned into a finite number of classes means
that it is possible to give names to the classes”. (Gärdenfors, 2000, p. 89).

aEmphasis by Gärdenfors.

The idea that partitioning of space takes place in the human mind may seem quite plausible.
However, it is not so easy to agree with the second part of Gärdenforsa’s statement in which he
claims that the human brain, for reasons of economy, uses Voronoi diagrams. It is not thought
that the human brain is limited to only operating on linear notions. Similar doubts have been
articulated by Douven, Decock, Dietz and Égré. Nevertheless, these researchers also used Voronoi
diagrams, saying that:

“[...] we adopt as our working hypothesis that, to a first approximation at least, the
conceptual spaces approach, coupled with the ideas of prototypes and Voronoi dia-
grams as a way of generating categorizations, captures an important part of the truth
about human cognition”. (Douven, Decock, Dietz, & Égré, 2013, p. 142)

Hence, these authors also, in some sense, suppose the linearity of thinking processes. This paper
presents a different “nonlinear” partitioning algorithm. One justification for this more general
approach may be the similarity of the model to some models which can be found in physics. Thus,
this paper’s solution to a cognitive problem has its roots in physics. Prototypes in the model
can be interpreted as the mass placed in Rd. The similarity of a given object to a prototype is
measured by the force of attraction of the prototype and the given object. The second innovation
in the model is the definition of a more general notion of a prototype (a fuzzy prototype), which has
some analogy with fuzzy sets, as defined by Zadeh (1965). Another innovation is the replacement
of Gärdenfors’ assumptions about natural concept (convexity) by a more general notion — that of
geodesic convexity for domains or sets (considered as Riemannian manifolds). Geodesic convexity
is a generalization of convexity for spaces with non-zero curvature. Geodesic convexity agrees with
convexity on manifolds with zero curvature. Euclidean space has zero curvature and geodesics
are straight line (or intervals if connecting only two given points). Therefore, geodesically convex
domains or sets in Rd are convex.

2 Partitioning a space by means of a metric. Voronoi dia-
grams

This section describes the construction of Voronoi diagrams. This allows the comparison of our
method with the method based on Voronoi diagrams, in which the similarity measure is the
distance between objects. This is the most popular method of partitioning space.

Let X be a metric space3 with metric ρ. Suppose that we are given n prototypes p1, ..., pn
belonging to X. The aim is to construct a Voronoi diagram on the metric space X.

In this method, the similarity measure of given objects is computed by the metric ρ. Specifically,
the similarity of elements x, y ∈ X is their distance ρ(x, y). If the quantity ρ(x, y) is small, then
the elements are close to each other and they are said to be similar.

3W say that the setX is a metric space if it is equipped with the function ρ defined on the productX×X → (0,∞)
and satisfying the following properties (i) ρ(x, y) = 0⇔ x = y, (ii) for every ρ x, y, z ∈ X, ρ(x, z) ≤ ρ(x, y)+ρ(y, z)
(the triangle inequality), (iii) for every x, y ∈ X, ρ(x, y) = ρ(y, x) (symmetry).
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The idea of Voronoi diagrams is to find domains v(p1), ..., v(pn) ⊆ X, so that element x belongs
to v(pi) if the distance ρ(x, pi) is smaller than the distances ρ(x, pj) for j 6= i. In other words,
element x is the closest to the prototype pi. Hence, v(pi) = {x ∈ X : ρ(x, pi) ≤ d(x, pj)} for every
j 6= i.

The most used is the space X = Rd or it subsets with natural l2-metric defined by

ρ(x, y) =‖ x− y ‖= (
d∑

i=1

| xi − yi |2)1/2.

Clearly, the choice of an appropriate metric depends on what the points in the conceptual
space represent. Thus, the choice of a specific metric depends on the problem under study.

In the picture above we see an example of a Voronoi diagram for the metric space X =
[0, 5] × [0, 5] with the Euclidean distance function l2 defined above, and three prototypes chosen
randomly (three black points).

3 Conceptual space and fuzzy prototypes
In linguistics, there exists the notion of a semantic field (in some cases they can be considered as
equivalents to concepts or natural concepts). The aim of this paper is to show that models which
are based on Voronoi diagrams, and which have been widely applied up to now, are inadequate as
a means of description of (a part of) reality. Let us start with semantic fields which are difficult to
characterize by real parameters. As an example, we can use the semantic field related to modes of
transport. It may contain elements such as {cab, horse, bicycle, scooter, skateboard, train, airplane,
car}. Examples of this kind require a different approach, the first step of which is related to the
concept of fuzziness.

Not all of the modes of transport in question are of equivalent significance nowadays. One
can expect that if one conducted a survey asking randomly selected people to give one example of
a mode of transport, it is fairly certain that the majority of people would answer {car}. An object,
which appears more often than other terms in surveys, which appears with highest frequency and
which is the most associated with a given semantic field by native speakers, is called a prototype.
Therefore, in the example above {car} is the prototype of semantic field of modes of transport.

Let us now consider an example where the object can be described by d = 3 real values. The
simplest example of this kind of notions are colors. They can be characterized by wavelength,
saturation, and hue. Not all people see colors in the same way. For this reason, the prototype of
a given color for one person will not necessarily be the prototype for another person. Moreover,
everybody has a tendency to view the prototype of the color red not as one object described by the
three parameters above, but rather by a spectrum of red colors. For most people, the prototype of
the color red is simply a subset of conceptual space. This example can be very easily generalized
using a Voronoi diagram.

Gärdenfors (2000, p. 139) considers a 2-dimensional R2 with prototypes which are discs and
gives appropriate generalizations. The picture below (page 5) illustrates this situation.
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Voronoi diagrams with prototypes which are general sets are considered in Okabe et al. (2000,
pp. 186–189).

However, even this generalized model is still inadequate. Although someone may see the color
red as a spectrum, they are also able to show that some red colors from the prototype set are
‘redder’ than the others. Taking this into account, we propose a completely different method which
solves the case described above.

Firstly, it is necessary to introduce weight functions on prototype domains. A prototype for us
is a set U together with a weight function defined on U , i.e., ϕ : U → [0, 1], and which meets the
condition that there is an element x ∈ U , so that ϕ(x) = 1. This last condition can be interpreted
as meaning that element x is the best prototype among all the prototypes from U4. A prototype
satisfying the above definition will be called a fuzzy prototype.

As was mentioned in the introduction, we do not completely agree with the statement that
cognitive processes operate only on simple linear objects, and therefore we propose a new algorithm
for partitioning a conceptual space which generates concepts which are not convex. Instead of
polygons, we get curved domains with smooth boundaries.

4 Newton’s potential and the partitioning of conceptual space
Let P = {p1, p2, ..., pn} consist of n elements. Every element is a vector in d-dimensional space Rd.
Let Ui be a subset of Rd containing pi. A fuzzy prototype is the set Ui together with the function
ϕi : U → [0, 1], satisfying ϕi(pi) = 1. (Clearly, such a point is not unique, see also footnote 5).
The function ϕi is called the weight or density of the prototype Ui.

Partitioning of the conceptual space is performed as follows. For every x, which does not belong
to the sum of the sets Ui, i = 1, ..., n we compute the Newtonian potentials5

Ψi(x) = −
∫
Ui

ϕi(y) ln ‖ x− y ‖ dy, for d = 2,

and
Ψi(x) = −

∫
Ui

ϕi(y)

‖ x− y ‖d−2
dy, for d ≥ 3.

A quantity Ψi(x) indicates the energy of the potential field at point x, which is generated by
the mass concentrated in the domain Ui with density ϕi.6

This means that for a given i, the greater the value of Ψi(x), the stronger the element (object)
x is attracted by the set (domain) Ui. Our algorithm for partitioning conceptual space is based

4In fact, points with ϕ(x) = 1 does not play any role in our construction. However, their existence is caused
by the fact that in every U we want to have at least one characteristic and typical prototype — “100 percent sure
prototype”.

5Recall that ‖ x ‖= (
∑n

i−1 x
2
i )

1/2 is the standard norm in Rn.
6Note that we can also think about functions ϕi as a kind of generalization of fuzzy sets or the characterizing

functions of fuzzy vectors. Notice that we do not assume anything about α-cuts, i.e., the sets of the form {x ∈ Rd :
ϕi(x) ≥ α}, where 0 < α ≤ 1. The theory of fuzzy sets and numbers is very well presented in two monographs
(Viertl & Hareter, 2006; Viertl, 2011).
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on this simple observation. Specifically, for every x ∈
⋃

i Ui/ we compute Ψi(x) for i = 1, ..., n and
if for some i0, Ψi0(x) = maxi Ψi(x),then we classify the element x to the domain of attraction
of Ui0 . If x is on the border lines of our partitioning then a few functions Ψi(x) (with different
indices) have the same values and cannot be classified. The same problem appears in Voronoi
diagrams.

Below are presented two examples of the partitioning of a conceptual space using fuzzy pro-
totypes. We have limited ourselves to only the simplest fuzzy prototypes, where the differences
between Voronoi diagrams and our algorithm are visible.

Example 1

As conceptual space X we take a direct product X = [0, 5]× [0, 5] which is a subset of the plane
R2. We denote a generic element (vector) on the plane by (x, y). Consider three domains Ui with
density functions ϕi defined as follows,

ϕ1(x, y) = 1− (x− 1)2 − (y − 1)2 on the set U1 = {(x, y) ∈ R2 : (x− 1)2 + (y − 1)2 ≤ 1},

ϕ2(x, y) = 1− (x− 3)2 − (y − 2)2 on the set U2 = {(x, y) ∈ R2 : (x− 3)2 + (y − 2)2 ≤ 1}
and

ϕ3(x, y) = 1 on the set U3 = {(x, y) ∈ R2 : (x− 4)2 + (y − 4)2 ≤ 1}.
Note that the sets U1, U2, U3 are discs with their centers at (1, 1), (3, 2), (4, 4), respectively. The

graphs of the functions ϕ1, ϕ2 are the upper-halves of the spheres of radii 1 over the discs U1 and
U2. The function ϕ3 is a constant function equal to 1 on U3.

The domains Ui, together with ϕi, will play the role of fuzzy prototypes in this example. The
functions ϕi visualize the density of the prototypes and give information about how prototypical
they are. If for a given (x, y) in the domain Ui we have ϕi(x, y) = 1, then we can conclude that
the object (x, y) is the most prototypical7 and the point (x, y) gives the highest contribution to
the force of attraction of the set Ui. According to the formula of Newtonian potential (see section
4), for every i = 1, 2, 3, we write the energy of the potential Ψi(x, y):

Ψ1(x, y) = −
∫∫

[1− (s− 1)2 − (t− 1)2] ln[(x− s)2 + (y − t)2]1/2dsdt,

{(u,v)∈R2:(u−1)2+(v−1)2≤1}

Ψ2(x, y) = −
∫∫

[1− (s− 3)2 − (t− 2)2] ln[(x− s)2 + (y − t)2]1/2dsdt,

{(u,v)∈R2:(u−3)2+(v−2)2≤1}

Similarly

Ψ3(x, y) = −
∫∫

ln[(x− s)2 + (y − t)2]1/2dsdt.

{(u,v)∈R2:(u−4)2+(v−4)2≤1}

The space X = [0, 5]× [0, 5]. The values of the potential function were computed for a domain8

{(x, y) ∈ R2 : (x, y) ∈
⋃3

i=1 Ui}/ in lattice points of the form (0.2i, 0.2j) where i, j = 0, ..., 25.
The lattice points (x, y) on which the maxi Ψi(x, y) = Ψ1(x, y) are drawn using blue color,
maxi Ψi(x, y) = Ψ2(x, y) are indicated on the picture in red. Finally, the black points are these
for which the function Ψ3 has the highest value. This is shown on the picture below (page 7)9:

7Clearly, we can have several most prototypical elements, since in the definition of ϕi we only assume the
existence of at least one element in the domain Ui, at which density ϕi is equal to 1.

8Points (x, y) belonging to Ui are not interesting and are drawn using yellow color. By definition they belong to
the domain Ui. They are simply a (weighted) prototypes.

9All computation in this work was done using the Maple program on a laptop computer with a processor Intel
Core i3.
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Example 2

As in the previous example, we consider the same conceptual space X = [0, 5]× [0, 5] ⊂ R2. The
values of the potential function are computed in the lattice points as in Example 1. Define three
fuzzy prototypes (Ui, ϕi), i = 1, 2, 3.

ϕ1(x, y) = 1− (x− 1)2 − (y − 1)2 on the domain U1 = {(x, y) ∈ R2 : (x− 1)2 + (y − 1)2 ≤ 1},

ϕ2(x, y) = 1− (x− 3)2 − (y − 2)2 on the domain U2 = {(x, y) ∈ R2 : (x− 3)2 + (y − 2)2 ≤ 1}

and finally

ϕ3(x, y) = 1− (x− 4)2 − (y − 4)2 on the set U3 = {(x, y) ∈ R2 : (x− 4)2 + (y − 4)2 ≤ 1}.

As before, we get formulae for potentials Ψi:

Ψ1(x, y) = −
∫∫

[1− (s− 1)2 − (t− 1)2] ln[(x− s)2 + (y − t)2]1/2dsdt,

{(u,v)∈R2:(u−1)2+(v−1)2≤1}

Ψ2(x, y) = −
∫∫

[1− (s− 3)2 − (y − 2)2] ln[(x− s)2 + (y − s)2]1/2dxdt,

{(u,v)∈R2:(u−3)2+(v−2)2≤1}

Ψ3(x, y) = −
∫∫

[1− (s− 4)2 − (t− 4)2] ln[(x− s)2 + (y − t)2]1/2dsdt,

{(u,v)∈R2:(u−4)2+(y−4)2≤1}

The points (x, y) for which the function Ψ1 achieves maximum value are indicated in blue,
those for which Ψ2 achieve maximum in red color, and black points indicate that function Ψ3 has
the highest value. This is shown in the picture below.

On the pictures above it is clearly visible that the conceptual space is not divided “linearly” into
polygons, as it was in the case of applying Voronoi diagrams. One can also observe a dependence
of the partitioning process on the density of the prototypes.



Roman Urban, & Magdalena Grzelińska – 8/10 –
A potential theory approach to an algorithm of conceptual space partitioning

Remarks

The partitioning obtained by the fuzzy prototype algorithm consists of disjoint sets which are
typically non-convex. This is most visible in Example 1. However, this is not an obstacle to
applying this partitioning because in fact the natural concept does not need to be convex in the
usual Euclidean sense. In our method, the notion of geodesic convexity, which is the analogue of
convexity, appears quite naturally. This will be examined in more detail in the next section.

5 The natural concept and geodesic convexity
Due to the limitations of the paper’s length, differential geometry and the theory of Riemannian
manifolds 10 will not be explained here in detail. Instead, what follows is a brief outline of the
application of the Theory of General Relativity to the constructed partitioning of a conceptual
space by means of fuzzy prototypes.

In Gärdenfors (2011), we encounter one more notion — natural property.11 The difference bet-
ween a natural concept and a natural property can be checked by comparing the definitions given
in Gärdenfors (2000, 2011). According to Gärdenfors, if a concept (or property) is a natural con-
cept (or a natural property), they are represented in a conceptual space by convex sets. Henceforth
we will focus only on concepts. Gärdenfors argues for the necessity of natural concept convexity
when he states:

“[. . . ] if an object o1 is described as having color term C in a given language, and
another object o2 is also said to have color C, then an object o3 with a color which
lies between the color of o1 and the color of o2 will also be described by the color term
C.”

This implies that the interval joining the objects o1 and o2 has to be contained in the correspon-
ding domain C. In the Euclidean space used by Gärdenfors, the above explanation is meaningful
and convexity is an obvious assumption. However, Gärdenfors does not say that if one considers,
in the Euclidean space, all the curves joining the two points o1 and o2 then the shortest curve is
an interval (geodesics). This is a consequence of the fact that the Euclidean space has a curvature
equal to 0. This observation, together with our algorithm which generates a partitioning consisting
of sets which are not necessarily convex, lead us to a different condition which is necessary for
a natural concept to satisfy.

Clearly, there is no obstacle to considering more general conceptual spaces than the Euclidean
space (there is only one condition in the classical definition — a conceptual space must be a metric
space). Therefore, instead of the metric space Rd we can consider the Riemannian space Md. For
simplicity, we assume that our Riemannian manifolds are smooth. A smooth Riemannian manifold
is a smooth differential manifold (locally, looks like Rd and its coordinate system is differentiable
an arbitrary number of times) endowed with a smooth Riemannian metric: for every point p ∈Md

there is defined the tangent space TpM ≈ Rd with an inner product g(Xp, Yp)p, which is smooth
as a function of p ∈ Md. The inner product allows us to define the Riemannian metric on Md.
The Euclidean space is a trivial example of a smooth Riemannian manifold. The Euclidean space
Rd with the inner product (x, y) =

∑d
i=1 xiyj (here the inner product does not depend on the

point p ∈ Rd) and the metric function ρ(x, y) =‖ x− y ‖= (
∑d

1(xi − yi)2)1/2.
At this point, the notion of geodesic becomes necessary. One can say that a geodesic (a certain

curve in Md) locally minimizes a distance. If the Riemannian manifold has some curvature then
the geodesics are curved, whereas they are straight lines in Rd — a space which has zero curvature.

In a Riemannian space, it is very easy to generalize the notion of convexity. We say that
a subset A ⊆Md is geodesically convex if for all x, y ∈ A there is a geodesic contained in A which
joins the points x, y and minimizes the distance between these points, see e.g. Lee (2009, p. 634).

10A very good introduction to these subjects is a textbook (Carmo, 1992).
11Natural properties are not discussed in this work.



Roman Urban, & Magdalena Grzelińska – 9/10 –
A potential theory approach to an algorithm of conceptual space partitioning

In this way, the necessary condition for a concept to be an (extended) natural concept is met.

Definition

Let a d-dimensional Riemannian manifold Md be the conceptual space. A subset A of the concep-
tual space Md is said to be a natural concept if A is geodesically convex.

The curvature of a Riemannian manifold is expressed by its curvature tensor. The curvature
tensor shows (locally) how much the spaces Md and Rd differ. The curvature tensor is calculated
using the affine connection of Levi-Civita, which in turn can be expressed by the Riemannian
metric gjk(p) = gp(ej , ek) where {e1, ..., en} is the standard basis in the tangent space TpMd ≈
Rd. In Albert Einstein’s groundbreaking work, General Relativity, published in 191512 (in four
papers published in the journal “Preussische Akademie der Wissenschaften, Sitzungsberichte”), it
is shown that gravitation (which is related to a mass) influences the curvature of space-time —
which is the space R4 endowed in the metric with the signature 13 (−,+,+,+) — particularly on
curvature in the space R3. The Theory of General Relativity was conceived by Einstein in a (3+1)-
dimensional space-time (3-dimensional space and 1-dimensional time). However, generalizations
for other dimensions are known. In particular, there is the Theory of General Relativity in (2+1)-
dimensional space, which can be directly applied to our examples, see e.g. Gott & Alpert (1984).
We deal with 2-dimensional space. Our fuzzy prototypes play the role of mass distributed in R2.
Since our system is static, we do not deal with a (2 + 1)-dimensional space-time but only with the
2-dimensional space. As mentioned above, General Relativity implies that the mass in Examples
1 and 2 causes the space to be curved. The domains in the pictures illustrating Examples 1 and
2 may be considered as being curved due to the mass (indicated in yellow) distributed in the
conceptual space, which is now a 2-dimensional Riemannian manifold. Thus, in this situation we
can not use the Euclidean metric. The Riemannian metric must be used instead. However, it
can be proved that the domains are geodesically convex. This follows from Theory of General
Relativity, which states that a free particle is always traveling along a geodesic. Therefore, in
Examples 1 and 2, according to our definition of natural concepts based on geodesic convexity, all
the domains obtained in the process of partitioning using our Newtonian algorithm, are natural
concepts. A similar argument also works in the arbitrary dimension d ≥ 3.
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