Skip to main content
Log in

Impure Systems and Ecological Models (I): Axiomatization

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstracts

Building models as a practical aspect of ecological theory has as a principal purpose the determination of relations in formal (mathematical) language. In this paper, the authors provide a formalization of ecological models based on impure systems theory. Impure systems contain objects and subjects: subjects are human beings. We can distinguish a person as an observer (subjectively outside the system) that by definition is the subject himself and part of the system. In this case he acquires the category of object. Objects (relative beings) are significances, which are the consequence of perceptual beliefs on the part of the subject about material or energetic objects (absolute beings) with certain characteristics. The impure system approach is as follows: objects are perceptual significances (relative beings) of material or energetic objects (absolute beings). The set of these objects will form an impure set of the first order. The existing relations between these relative objects will be of two classes: transactions of matter and/or energy and inferential relations. Transactions can have alethic modality: necessity, possibility, impossibility and contingency. In this work we define measures which let us choose the more suitable variables to relate both the model with the ecosystem and with different models. In this way we define different comparison indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Semiotics is the theory and study of signs and symbols.

  2. See more details on the paper: “Conclusive reasons that we perceive sets (MacCallum 2000)”.

  3. The Quine–Putnam mathematical indispensability argument asserts that mathematical entities are on a par with other scientific entities from our best scientific theories. This argument is an argument for mathematical realism. Mathematical entities exist because they are indispensable in our best scientific theories.

  4. Let Ω be an open connected space in the complex plane (Markushevich 1978): we will call H Ω the set of all analytical functions over Ω which have a ring structure with the operations of addition and product. For F \(\subset\) H Ω, A(F) will denote the subring generated by F and \(A*(f)\) will be the set of analytical functions which depend algebraically on some subset of F.

    1. 1.

      \(A*(f)\) ⊂ E

    2. 2.

      If f ∈ E then \(f^{{\prime }}\), Ef, Pf Lf ∈ E being \(f^{{\prime }}\) the derivative, Ef the exponential of f, Pf a primitive and Lf the logarithm of f.

    3. 3.

      If f, g ∈ E, then f + g, f/g, (g ≠ 0), fg [that is exp(glog f)], are elements of E.

    4. 4.

      If f, g ∈ E y f(Ω) ⊂ Ω then \(g \circ f\) ∈ E.

    Given F \(\subset\) H Ω any function like the following one: f 1 o f 2 o…o fn with fi \(\in\) F, \(\forall\) i = 1,2,,n we will call a transformed function (Usó-Domènech et al. 1997) of order n.

References

  • Beaugrande, R. A., & Dressler, W. U. (1997). Einführung in die Textlinguistik. (Spanish Trad., Introducción a la lingüística del texto). Barcelona: Ariel.

  • Benacerraf, P. (1973). Mathematical truth. Journal of Philosophy, 19, 661–679.

    Article  Google Scholar 

  • Cale, W. G., Jr., & Odell, P. L. (1979). Concerning aggregation in ecosystems modelling. In E. Halfon (Ed.), Theoretical systems ecology. Advances and case studies. Cambridge: Academic Press.

    Google Scholar 

  • Chandler, D. (2004). Semiotics. The basis. London: Routledge.

    Google Scholar 

  • Colgate, S. A., & Ziock, H. (2011). A definition of information, the arrow of information, and its relationship to life. Complexity, 16(5), 54–62.

    Article  Google Scholar 

  • Eco, U. (1976). El signo. Barcelona: Editorial Labor (in Spanish).

    Google Scholar 

  • Febres, G., Jaffé, K., & Gershenson, C. (2015). Complexity measurement of natural and artificial languages. Complexity, 20(6), 25–48.

    Article  Google Scholar 

  • Field, H. (1980). Science without numbers: A defense of nomilanism. Pricenton: Princeton University Press.

    Google Scholar 

  • Field, H. (1989). Realism, mathematics and modality. Oxford: Basil Blackwell.

    Google Scholar 

  • Gell-Mann, M., & Lloyd, S. (1996). Information measures, effective complexity, and total information. Complexity, 2(1), 44–52.

    Article  Google Scholar 

  • Gershenson, C. (2001). Comments to neutrosophy. In Proceedings of the first international conference on neutrosophy, neutrosophic logic, set, probability and statistics, University of New Mexico, Gallup, December 1–3, 2001.

  • Gershenson, C., & Fernández, N. (2012). Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales. Complexity, 18(2), 29–44.

    Article  Google Scholar 

  • Hempel, C.G. (1945). On the nature of mathematical truth. American Mathematical Monthly 52. Reprinted in H. Feigl, & W. Sellars (eds.) Readings in philosophical analysis. New York: Appleton-Century-Crofts, 1949. Reprinted in J. R. Newman (ed.) The world of mathematics, vol. III. New York: Simon and Shuster, 1956. Transcribed into hypertext by Andrew Chrucky, Feb. 4, 2001.

  • Higashi, M., & Burns, T. P. (1991). Enrichment of ecosystem theory. In Theorical studies of ecosystems. Cambridge, NY: Cambridge University Press.

  • Jorgënsen, S. E. (1988). Fundamentals of ecological modelling. Amsterdam: Elsevier.

    Google Scholar 

  • Kun, W., & Brenner, J. E. (2015). An informational ontology and epistemology of cognition. Foundations of Science, 20(3), 249–279.

    Article  Google Scholar 

  • Lincoln, R. J., Boxshall, G. A., & Clark, P. F. (1982). A dictionary of ecology, evolution and systematics. Cambridge, NY: Cambridge University Press.

    Google Scholar 

  • Lloret, M., Villacampa, Y., & Usó, J. L. (1998). System-linkage: Structural functions and hierarchies. Cybernetics and Systems, 29, 29–39.

    Google Scholar 

  • Locker, M. (2016). Blindness and seeing in systems epistemology: Alfred locker’s trans-classical systems theory. Foundations of Science. doi:10.1007/s10699-016-9502-y.

    Google Scholar 

  • Lombardi, O. (2004). What is information? Foundations of Science, 9(2), 105–134.

    Article  Google Scholar 

  • MacCallum, D. (2000). Conclusive reasons that we perceive sets. International Studies in the Philosophy of Science., 14(1), 26–42.

    Article  Google Scholar 

  • Maddy, P. (1990). Realism in mathematics. Oxford: Clarendon Press.

    Google Scholar 

  • Maddy, P. (1996). Set theoretic naturalism. Journal of Symbolic Logic, 61, 490–514.

    Article  Google Scholar 

  • Margalef, R. (1995). Ecología. Barcelona: Omega (in Spanish).

    Google Scholar 

  • Markushevich, A. (1978). Teoría de las funciones Analíticas (Vol. I). Moscow: Editorial Mir (in Spanish, translated from Russian).

    Google Scholar 

  • Nescolarde-Selva, J., & Usó-Domènech, J. L. (2014a). Semiotic vision of ideologies. Foundations of Science, 19(3), 263–282.

    Article  Google Scholar 

  • Nescolarde-Selva, J., & Usó-Domènech, J. L. (2014b). Reality, systems and impure systems. Foundations of Science, 19(3), 289–306.

    Article  Google Scholar 

  • Nescolarde-Selva, J., Usó-Doménech, J. L., & Gash, H. (2015a). A logic-mathematical point of view of the truth: Reality, perception, language. Complexity, 20(4), 58–67.

    Article  Google Scholar 

  • Nescolarde-Selva, J., Usó-Doménech, J. L., Lloret- Climent, M., & González-Franco, L. (2015b). Chebanov law and Vakar formula in mathematical models of complex systems. Ecological Complexity, 21, 27–33.

    Article  Google Scholar 

  • Nescolarde-Selva, J., Usó-Doménech, J. L., & Sabán, M. J. (2015c). Linguistic knowledge of reality: A metaphysical impossibility? Foundations of Science, 20(1), 27–58.

    Article  Google Scholar 

  • Nescolarde-Selva, J., Vives-Macía, F., Usó-Doménech, J. L., & Berend, D. (2012a). An introduction to alysidal algebra (I). Kybernetes, 41(1/2), 21–34.

    Article  Google Scholar 

  • Nescolarde-Selva, J., Vives-Macía, F., Usó-Domènech, J. L., & Berend, D. (2012b). An introduction to alysidal algebra (II). Kybernetes, 41(5/6), 780–793.

    Article  Google Scholar 

  • Peirce, C. S. (1931–1958). In C. Hartshorne, P. Weiss, & A. W. Burks (Eds.) Collected papers of charles sanders peirce (vol. 1–8). Cambridge, MA: Cambridge University Press.

  • Quine, W. V. O. (1969). Epistemology naturalized. In Ontological relativity. New York: Columbia University Press.

  • Usó-Domènech, J. L., Mateu, J., & Lopez, J. A. (1997). Mathematical and statistical formulation of an ecological model with applications. Ecological Modelling, 101, 27–40.

    Article  Google Scholar 

  • Usó-Doménech, J. L., & Nescolarde-Selva, J. (2012). Mathematic and semiotic theory of ideological systems. Sarrebruck: Editorial LAP.

    Google Scholar 

  • Usó-Doménech, J. L., Nescolarde-Selva, J. A., & Lloret-Climent, M. (2016a). Complex impure systems: Sheaves, freeways, and chains. Complexity, 21(S1), 387–400.

    Article  Google Scholar 

  • Usó-Doménech, J. L., Nescolarde-Selva, J. A., Lloret-Climent, M., & Gash, H. (2016b). Semantics of language for ecosystems modelling: A model case. Ecological Modelling, 328, 85–94.

    Article  Google Scholar 

  • Usó-Domènech, J. L., Villacampa, Y., Mateu, J., & Sastre-Vazquez, P. (2000). Uncertainty and complementary principles in flow equations of ecological models. Cybernetics and Systems, 31(2), 137–160.

    Article  Google Scholar 

  • Villacampa, Y., Usó-Domènech, J. L., Mateu, J., & Sastre, P. (1999). Generative and recognoscitive grammars in ecological models. Ecological Modelling, 117, 315–332.

    Article  Google Scholar 

  • Yang, Z. B. (1989). A new model of general systems theory. Cybernetic and Systems, 20, 67–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josué-Antonio Nescolarde-Selva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usó-Doménech, JL., Nescolarde-Selva, JA. & Lloret-Climent, M. Impure Systems and Ecological Models (I): Axiomatization. Found Sci 23, 297–321 (2018). https://doi.org/10.1007/s10699-017-9522-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-017-9522-2

Keywords

Navigation