Skip to main content
Log in

Elusive Propositions

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

David Kaplan observed in Kaplan (1995) that the principle \(\forall p \Diamond \forall q (Qq \leftrightarrow q = p)\) cannot be verified at a world in a standard possible worlds model for a quantified bimodal propositional language. This raises a puzzle for certain interpretations of the operator Q: it seems that some proposition p is such that is not possible to query p, and p alone. On the other hand, Arthur Prior had observed in Prior (1961) that on pain of contradiction, ∀p(Qp →¬p) is Q only if one true proposition is Q and one false proposition is Q. The two observations are related: ∀p(Qp →¬p) is elusive in that it is not possible for the proposition to be uniquely Q. Kaplan based his model-theoretic observation on Cantor’s theorem, but there is a less well-known link between this simple set-theoretic observation and Prior’s remark. We generalize the link to develop a heuristic designed to move from Cantor’s theorem to the observation that a variety of sentences of the bimodal language express propositions that cannot be Q uniquely. We highlight the analogy between some of these results and some set-theoretic antinomies and suggest that the phenomenon is richer than one may have anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, C.A. (2009). The lesson of Kaplan’s paradox about possible world semantics. In Almog, J., & Leonardi, P. (Eds.) The philosophy of David Kaplan (pp. 85–92). London: Oxford University Press.

  2. Bacon, A., Hawthorne, J., & Uzquiano, G. (2016). Higher-order free logic and the Prior-Kaplan paradox. Canadian Journal of Philosophy, 46(4-5), 493–541.

    Article  Google Scholar 

  3. Bacon, A., & Uzquiano, G. (2018). Some results on the limits of thought. Journal of Philosophical Logic, 47(6), 991–999.

    Article  Google Scholar 

  4. Bueno, O., Menzel, C., & Zalta, E.N. (2013). Worlds and propositions set free. Erkenntnis, 79(4), 1–24.

    Google Scholar 

  5. Crossley, J.N. (1973). A note on Cantor’s theorem and Russell’s paradox. Australasian Journal of Philosophy, 51(1), 70–71.

    Article  Google Scholar 

  6. Davies, M. (1981). Meaning, quantification, necessity: themes in philosophical logic. Evanston: Routledge.

    Google Scholar 

  7. Ding, Y., & Holliday, W.H. (2020). Another problem in possible world semantics. In Olivetti, N., Negri, S., & Verbrugge, R. (Eds.) Advances in modal logic. College Publications, Vol. 13.

  8. Fine, K. (1970). Propositional quantifiers in modal logic. Theoria, 36(3), 336–346.

    Article  Google Scholar 

  9. Forster, T. (2003). Logic, induction and sets. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  10. Forster, T. (2003). Reasoning about Theoretical Entities, Vol. 3. World Scientific/Imperial College Press.

  11. Holliday, W.H., & Litak, T. (2018). One modal logic to rule them all? In Bezhanishvili, G., D’Agostino, G., Metcalfe, G., & Studer, T. (Eds.) Advances in modal logic, (Vol. 12 pp. 367–386).

  12. Kaplan, D. (1970). S5 with quantifiable propositional variables. Journal of Symbolic Logic, 35(2), 355.

    Google Scholar 

  13. Kaplan, D. (1995). A problem in possible world semantics. In Walter Sinnott-Armstrong, D.R., & Asher, N. (Eds.) Modality, morality and belief: essays in honor of Ruth Barcan Marcus (pp. 41–52). Cambridge: Cambridge University Press.

  14. Lewis, D. (1986). On the plurality of worlds. London: Oxford University Press.

    Google Scholar 

  15. Mirimanoff, D. (1917). Les antinomies de Russell et de burali-forti: Et le probleme fondamental de la théorie des ensembles. L’Enseignement Mathématique, 19, 209–217.

    Google Scholar 

  16. Prior, A. (1961). On a family of paradoxes. Notre Dame Journal of Formal Logic, 2(1), 16–32.

    Article  Google Scholar 

  17. Smullyan, R.M. (1993). Satan, cantor & infinity: mind boggling puzzles. London: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

I would like to thank Andrew Bacon for discussion and two reviewers for this journal for helpful comments and suggestions. I’m grateful to audiences at Chapman, Oxford, Oslo, and St Andrews, where I presented earlier versions of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Uzquiano.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Syntactic Proofs

Appendix: Syntactic Proofs

We provide proof outlines for some of the lemmas introduced in Section 4. In what follows, we only explicitly annotate the use of certain modal axioms and definitions but we generally leave quantificational steps implicit, including appeals to instances of the Converse Barcan schema, \(\Box \forall p \varphi \to \forall p \Box \varphi \), which are provable in the system.

Lemma 3

\(\vdash \forall p \ (Qp \to \Box (q \to \gamma )) \to \gamma \)

We outline a derivation of ¬γ →∃q(Qq ∧♢(q ∧¬γ)):

1

\(\neg \gamma \to \exists p(p \wedge \Box (p \to \exists q(Qq \wedge \Diamond (p \wedge q)))\)

Def γ

2

\(p \wedge \Box (p \to \exists q(Qq \wedge \Diamond (p \wedge q))) \to \Box \Box (p \to \exists q(Qq \wedge \Diamond (p \wedge q)))\)

4 (\(\Box \varphi \to \Box \Box \varphi \))

3

\(p \wedge \Box (p \to \exists q(Qq \wedge \Diamond (p \wedge q))) \to \exists q(Qq \wedge \Diamond (p \wedge q))\)

T

4

\(\neg \gamma \to \exists q(Qq \wedge \exists p (\Diamond (p \wedge q) \wedge \Box \Box (p \to \exists q(Qq \wedge \Diamond (p \wedge q)))))\)

1, 2, 3

5

\(\neg \gamma \to \exists q(Qq \wedge \exists p \ \Diamond ((p \wedge q) \wedge \Box (p \to \exists q(Qq \wedge \Diamond (p \wedge q))))) \)

4

6

\(\neg \gamma \to \exists q(Qq \wedge \Diamond (q \wedge \exists p \ (p \wedge \Box (p \to \exists q(Qq \wedge \Diamond (p \wedge q))))) \)

5

7

¬γ →∃q(Qq ∧♢(q ∧¬γ))

6, Def γ

Lemma 4

closedχ(her(χ)).

1

\(\forall q(Qq \to \Box (q \to her(\chi ))) \to \)

Def her(χ)

 

\(\forall q(Qq \to \Box (q \to \forall p (closed_{\chi }(p) \to p)))\)

 

2

\(\Box (q \to \forall p (closed_{\chi }(p) \to p)) \to \)

K

 

\(\Box \forall p (closed_{\chi }(p) \to (q \to p))\)

 

3

\(\Box \forall p (closed_{\chi }(p) \to (q \to p)) \to \)

 
 

\(\forall p \ \Box (closed_{\chi }(p) \to (q \to p))\)

 

4

\(\forall p \ \Box (closed_{\chi }(p) \to (q \to p)) \to \)

K

 

\(\forall p (\Box \ closed_{\chi }(p) \to \Box (q \to p))\)

 

5

\(\forall p (closed_{\chi }(p) \to \Box \ closed_{\chi }(p))\)

4 (\(\Box \varphi \to \Box \Box \varphi \))

6

\(\forall p \ \Box (closed_{\chi }(p) \to (q \to p)) \to \)

4, 5

 

\(\forall p \ (closed_{\chi }(p) \to \Box (q \to p))\)

 

7

\(\forall q(Qq \to \Box (q \to her(\chi )) \to \)

1, 2, 6

 

\(\forall p (closed_{\chi }(p) \to \forall q (Qq \to \Box (q \to p)))\)

 

8

\(\forall q(Qq \to \Box (q \to her(\chi )) \to \forall p (closed_{\chi }(p) \to (\chi \to p))\)

7, Def closedχ(p)

9

p(closedχ(p) →(χp)) →(χ →∀p(closedχ(p) →p))

 

10

\((\forall q(Qq \to \Box (q \to her(\chi )) \to (\chi \to her(\chi ))\)

8, 9, Def her(χ)

11

\((\forall q(Qq \to \Box (q \to her(\chi )) \wedge \chi ) \to her(\chi )\)

10

11

\(\Box (\forall q(Qq \to \Box (q \to her(\chi )) \wedge \chi ) \to her(\chi ))\)

11, RN

Lemma 5

\(\vdash closed_{\chi }(\forall p(Qp \to \Box (p \to her(\chi )) \wedge \chi ))\).

1

\(\Box (\forall q(Qq \to \Box (q \to her(\chi )) \wedge \chi ) \to her(\chi ))\)

Lemma 4

2

\(\forall q(Qq \to \Box (q \to (\forall p(Qp \to \Box (p \to her(\chi )) \wedge \chi ))) \to \)

 
 

\(\forall q (Qq \to \Box (q \to her(\chi ))))\)

1

3

\((\forall q(Qq \to \Box (q \to (\forall p(Qp \to \Box (p \to her(\chi )))) \wedge \chi )) \wedge \chi )\to \)

 
 

\( (\forall q (Qq \to \Box (q \to her(\chi )))\wedge \chi )\)

2

4

\(\Box (\forall q(Qq \to \Box (q \to (\forall p(Qp \to \Box (p \to her(\chi )) \wedge \chi ))) \wedge \chi )\to \)

 
 

\( (\forall q (Qq \to \Box (q \to her(\chi )))\wedge \chi )\)

3, RN

Lemma 7

\(\vdash her(\chi ) \wedge Q \ her(\chi ) \to \Diamond (her(\chi ) \wedge Q \ her(\chi ) \wedge \forall q (Qq \rightarrow \Box (q \to \\ \neg (her(\chi ) \wedge Q \ her(\chi )))))\).

1

her(χ) →∀p(closedχ(p) →p)

Def her(χ)

2

(her(χ) ∧Q her(χ)) →¬ closedχ(¬(her(χ) ∧Q her(χ)))

1

3

\(\neg closed_{\chi } (\neg (her(\chi ) \wedge Q \ her(\chi ))) \to \neg \Box ((\forall q (Qq \to \)

 
 

\(\Box (q \to \neg (her(\chi ) \wedge Q \ her(\chi )))) \wedge \chi ) \to \neg (her(\chi ) \wedge Q \ her(\chi )))\)

Def closedχ(φ)

4

her(χ) ∧Q her(χ) →♢(χher(χ) ∧Q her(χ) ∧

 
 

\(\forall q (Qq \to \Box (q \to \neg (her(\chi ) \wedge Q \ her(\chi )))))\)

2, 3

Lemma 8

⊩¬(her(χ) ∧ Q her(χ)).

1

\(\forall q(Qq \to \Box (q \to \neg (her(\chi ) \wedge Q \ her(\chi )))) \to (Q \ her(\chi ) \to \)

 
 

\(\Box ((her(\chi ) \to \neg (her(\chi ) \wedge Q \ her(\chi )))))\)

1

2

\(\Box (her(\chi ) \to \neg (her(\chi ) \wedge Q \ her(\chi ))) \to (her(\chi ) \to \)

T

 

¬(her(χ) ∧Q her(χ)))

 

3

\(\forall q(Qq \to \Box (q \to \neg (her(\chi ) \wedge Q \ her(\chi )))) \to (Q \ her(\chi ) \to \)

 
 

(her(χ) →¬(her(χ) ∧Q her(χ))))

1, 2

4

(her(χ) ∧Q her(χ)) →¬(Q her(χ) →(her(χ) →

 
 

¬(her(χ) ∧Q her(χ))))

 

5

\((her(\chi ) \wedge Q \ her(\chi )) \to \neg \forall q(Qq \to \Box (q \to \neg (her(\chi ) \wedge Q \ her(\chi ))))\)

3, 4

6

\((\chi \wedge (her(\chi ) \wedge Q \ her(\chi )) \to \neg \forall q(Qq \to \Box (q \to \)

5

 

¬(her(χ) ∧Q her(χ))))

 

7

\(\Box (\chi \wedge (her(\chi ) \wedge Q \ her(\chi )) \to \neg \forall q(Qq \to \Box (q \to \)

6, RN

 

¬(her(χ) ∧Q her(χ)))))

 

8

\(\neg \Diamond (\chi \wedge (her(\chi ) \wedge Q \ her(\chi )) \wedge \forall q(Qq \to \Box (q \to \)

7

 

¬(her(χ) ∧Q her(χ)))))

 

9

¬(her(χ) ∧Q her(χ))

8, Lemma 7

Lemma 10

\(\vdash ^{\prime } Q! \ her(\tau ) \to \tau \).

1

\(closed_{\tau }(\forall p(Qp \to \Box (p \to her(\tau )))\wedge \tau )\)

Lemma 5

2

\(\Box (her(\tau ) \to \forall p (Qp \to \Box (p \to her(\tau ))))\)

1, Def her(τ)

3

\(Q \ her(\tau ) \to \forall p_{2}\Box ((her(\tau ) \wedge Qp_{2})\to \Box (p_{2} \to her(\tau )))\)

2

4

\(Q! \ her(\tau ) \to \forall p_{1} (Qp_{1} \to \forall p_{2}\Box ((p_{1} \wedge Qp_{2})\to \Box (p_{2} \to her(\tau ))))\)

3

5

\(\forall p (world(p) \to (Q! \ her(\tau ) \to \Box (p \to Q \ her(\tau ))))\)

Def Q!, W

6

\(\forall p (world(p) \to (\forall p_{1}(Qp_{1} \to \forall p_{2} \Box ((p_{1} \wedge Qp_{2}) \to \Box (p_{2} \to \)

 
 

\( \exists p_{3} (p_{3} \wedge \Box (p \to Qp_{3})))))))\)

4, 5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzquiano, G. Elusive Propositions. J Philos Logic 50, 705–725 (2021). https://doi.org/10.1007/s10992-020-09582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-020-09582-5

Keywords

Navigation