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Abstract

In this paper we present an Whiteheadean style point-free theory of space and time.
Here ”point-free” means that neither space points, nor time moments are assumed as
primitives. The algebraic formulation of the theory, called dynamic contact algebra
(DCA), is a Boolean algebra whose elements symbolize dynamic regions changing in
time. It has three spatio-temporal relations between dynamic regions: space contact,
time contact and preceding. We prove a representation theorem for DCA-s of topo-
logical type, reflecting the dynamic nature of regions, which is a reason to call DCA-s
dynamic mereotopoly. We also present several complete quantifier-free logics based
on the language of DCA-s.
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Introduction

Alfred Whitehead is well-known as the co-author with Bertrand Russell of the
famous book ”Principia Mathematica”. They intended to write a special part of
the book related to the foundation of geometry, but due to some disagreements
between them this part has not been written. Later on Whitehead formulated
his own program for a new theory of space and time. The best articulation of
this program is in this quote from [24], page 195 (boldface is ours):

”...Our space concepts are concepts of relations between material things in space.
Thus there is no such entity as a self-subsistent point. A point is merely the name
for some peculiarity of the relations between matter which is, in common language,
said to be in space.

It follows from relativity theory that a point should be definable in
terms of the relations between material things. So far as I am aware,
this outcome of the theory has escaped the notice of mathematicians, who have
invariably assumed the point as the ultimate starting ground of their reasoning.
... Similar explanations apply to time. Before the theories of space and time
have been carried to a satisfactory conclusion on the relational basis, a long and
careful scrutiny of the definitions of points of space and instants of time will have
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to be undertaken, and many ways of effecting these definitions will have to be tried
and compared. This is an unwritten chapter of mathematics...”

According to the above program Whitehead should be considered as the
initiator of point-free approach to the theory of space, known now as Region
Based Theory of Space (RBTS). In his famous book ”Process and Reality” [26]
Whitehead presented a more detailed program of how to build mathematical
formalizations of some versions of RBTS. His main primitive is the notion of
region as a formal analog of physical body, and some relations between regions
like part-of, overlap, and contact. Whitehead shows how to define points, lines
and planes by means of certain classes of regions, and in general how to rebuild
the whole geometry on this new basis in an equivalent way. Other sources of
RBTS are, for instance, de Laguna [5] and Tarski [21], who showed how to
rebuild Euclidean geometry on the base of mereology and the primitive notion
of ball. Survey papers about RBTS are [3,15,22].

Part-of and overlap are studied in mereology considered as a philosophical
theory of parts and wholes [19], and according to Tarski (see [19]) mereology is
equivalent in certain sense to Boolean algebra. Extensions of mereology with
contact or some contact-like relations, is now called mereotopology, which can
be considered as a theoretical tool for RBTS. Motivation for such a terminol-
ogy is that the main point models of mereotopologies are topological. Recent
forms of mereotopology are various notions of contact algebras (see [9,20,7]),
which are Boolean algebras enriched with an additional relation called contact,
and the simplest one for which we reserve the name ”contact algebra”, was
introduced in [7]. Standard point models of contact algebras are the Boolean
algebras of regular closed sets in topological spaces and two regular closed sets
are in a contact if they have a nonempty intersection. The paper [7] contains
point-free characterizations of contact algebras of regular closed sets of vari-
ous classes of topological spaces. Let us mention that the pioneering work in
this area was given by H. de Vries [6] but mainly oriented to applications in
topology, which was one of the reasons his work to be unknown for a long time
among the community of researchers interested in RBTS. Let us note also that
Whitehead’s ideas for RBTS were in a sense reinvented in computer science
and Artificial Intelligence as a more suitable formalism for representing spatial
information. This fact generated a very intensive study of spatial formalisms
related to RBTS with various applications (see for this [4]).

Whitehead’s theory of time was developed mainly in [25] and [26] and was
called Epochal Theory of Time (ETT). Whitehead claims that the theory of
time should not be separated from the theory of space and their integrated
theory has to be extracted from the existing things in reality and some of their
spatio-temporal relations. This integrated theory should be point-free in a dou-
ble sense: that both space points and time points (moments of time) should
be definable by the other primitives of the theory. Unfortunately, unlike his
program how to build mathematical theory of space, given in [26], Whitehead
did not describe analogous program for his integrated theory of space and time.
He presented his ideas for ETT quite informally and in a pure philosophical
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manner, which makes extremely difficult to extract from his texts clear math-
ematical theory corresponding to ETT. So, in this paper we will follow mainly
Whitehead’s ideas described in the quote cited above and will try to present
an extension of RBTS, considered as an integrated theory of space and time,
containing neither points, nor moments of time as primitive notions.

The present paper is a second one in the series of papers started by [23]
with the aim to present some integrated theory of space and time in a point-free
Whiteheadean style. The main idea in [23] was to obtain an analog of contact
algebra, called dynamic contact algebra (DCA), which formalizes changing re-
gions. The standard point model of DCA having explicit set T of time points
(moments of time) is defined as follows. Suppose we are observing some area
of regions. If they are not changing then their spatial structure forms a contact
algebra. If the regions are changing in time then the information which we need
for a given dynamic region a is to know its instance am at each moment of time
m. So, a has to be considered as a vector, or a function defined in T , with
coordinates am, m ∈ T . It is natural to consider am as an element of a contact
algebra (Bm, Cm) = (Bm, 0m, 1m,≤m, .,+, ∗, Cm), (called coordinate contact
algebra corresponding to the time moment m), assuming in this way that Bm

as a snapshot of the whole state of affairs at the moment m. We may assume
further that dynamic regions form a Boolean algebra with operations defined
coordinatewise. Hence this Boolean algebra is a sublagebra of the Cartesian
product of all coordinate algebras. Just to make things not very complicated
we assumed in [23] that the set T has no internal structure of the intended time
ordering and considered as primitives only two very simple spatio-temporal re-
lations between dynamic regions: stable contact denoted by C∀, and unstable
contact denoted by C∃, with the following definitions in the standard model:

aC∀b iff (∀m ∈ T )amCmbm,
i.e. a is in a stable contact with b if a and b are in a contact at each moment
of time m. Analogously

aC∃b iff (∃m ∈ T )amCmbm,
i.e. a is in an unstable contact with b if a and b are in a contact at some moment
of time m.

Note that these relations do not depend on any time ordering. In order to
make all this free of the explicit use of time we axiomatized this structure in
an abstract algebraic form obtaining an abstract definition of DCA. The main
result in [23] was a representation theorem of DCA into standard dynamic
contact algebras.

In the present paper we extend the point-free approach from [23] considering
standard dynamic models in which the set of time moments T is supplied
with an intended time ordering denoted by ≺ and satisfying some reasonable
conditions. So, in order to introduce it we need a new relation between dynamic
regions depending on time order. There are many such relations and the main
problem is to find a suitable one which guarantees the expected representation
theorem with some natural properties of the time order. In this paper we
use one, denoted by B, called precedence relation, with a very simple formal
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properties in the expected axiomatization. The intuitive meaning of aBb is ”a
exists at some moment of time and b exists at a later moment”. In the standard
model this definition sounds as follows:
• aBb iff (∃m,n ∈ T )(m ≺ n, and am 6= 0m and bn 6= 0n).
Here am 6= 0m just says that a exists at the moment m, and the same for
bn 6= 0n.

We consider also two other relations:
• aCsb iff (∃m ∈ T )amCmbm, space contact,
• aCtb iff (∃m ∈ T )am 6= 0m and bm 6= 0m, time contact.

Space contact coincides with the unstable contact C∃ and we renamed it,
because it is the natural contact relation between dynamic regions which en-
sures that the coordinate algebras Bm are contact algebras and consequently
it is responsible for the definition of space points. While space contact means
having a common space point, time contact indeed means having a common
time point and it is also responsible for the definition of time points. Note that
it is a kind of simultaneity or contemporaneity relation mentioned in Whitehead
texts. Let us note that Whitehead did not use something like our precedence
relation aBb. We take it by two reasons: first it is responsible in the definition
of time ordering, and second, although its simplicity in the axiomatization, it
together with the time contact is able to characterize point-free many natu-
ral properties of time ordering: left and right seriality, reflexivity, transitivity,
linearity, density, up-directness and down-directness, different subsets of which
define different space-time theories.

The rest of the paper is organized as follows. Section 1 lists some facts about
contact and precontact algebras. In Section 2 we introduce dynamic models of
space with explicit moments of time and time ordering. Section 3 is devoted to
the main notion of the paper - dynamic contact algebra (DCA). In Section 4 we
developed representation theory of DCA-s. Section 5 contains some quantifier-
free constraint logics based on the language of DCA. In Section 6 we discuss
relations with other works, some open problems, and plans for future research.

1 Preliminaries about contact and precontact algebra

Definition 1.1 ([7]) Let (B, 0, 1, .,+,∗ ) be a non-degenerate Boolean algebra
with ∗ denoting its Boolean complement. A binary relation C in B is called a
contact relation if it satisfies the following conditions:

(C1) If aCb, then a, b 6= 0,
(C2) aC(b+ c) iff aCb or aCc,
(C3) If aCb, then bCa,
(C4) If a.b 6= 0, then aCb.

If B is a Boolean algebra and C a contact relation in B then the pair (B,C)
is called a contact algebra over B. The elements of B are called regions. The
negation of C is denoted by C. The element 0 is called zero region and is
considered as a region which does not exist (here ”exists” is considered as a
predicate). Then a 6= 0 means that a exists. If a ≤ b, where ≤ is the Boolean
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ordering, then this will be read as a is a part of b, so ≤ is the mereological
relation part-of. The region 1 is called the unit region, the region which has
as its parts all other regions. The relation aOb iff a.b 6= 0 is the mereological
relation overlap in B.

The following lemma lists some easy consequences of axioms.

Lemma 1.2 (i) aCb and a ≤ a′ and b ≤ b′ implies a′Cb′,
(ii) a 6= 0 iff aCa

Let us note that each Boolean algebra has at least two contact relations: the
overlap O, which by axiom (C4) is the smallest contact in B, and aCmaxb↔def

a 6= 0 and b 6= 0, which by axiom C1 is the maximal contact in B.

Contact algebras of regular closed sets in a topological space. Let
X be a non-empty topological space with the closure and interior operations
denoted respectively by Cl(a) and Int(a). A subset a of X is regular closed if
a = Cl(Int(a)). The set of all regular closed subsets of X is denoted by RC(X).
It is a well-known fact that regular closed sets with the operations a+b = a∪b,
a.b = Cl(Int(a∩b)), a∗ = Cl(X \a), 0 = ∅ and 1 = X form a Boolean algebra.
If we define the contact by aCX b iff a ∩ b 6= ∅ then CX satisfies the axioms
(C1)–(C4). Such a contact is called standard contact for regular closed sets
and the contact algebra of this example and any its subalgebra is said to be
standard contact algebra of regular closed sets, or simply topological contact
algebra. Topological space with a closed base of regular closed sets is called
semiregular (for other topological notions related to contact algebras see [7] or
[22]).

The following representation theorem for contact algebras is proved in [7]:

Theorem 1.3 (Topological representation thm. for contact algebras)
For every contact algebra (B,C) there exists a semi-regular and compact T0
space X and an embedding h into the contact algebra RC(X).

Theorem 1.4 ([23] Joint embedding theorem for contact algebras)
Let (Bt, Ct), t ∈ T be a nonempty family of contact algebras. Then there
exist a semiregular and compact T0 space X and a family of embeddings gt of
(Bt, Ct) into RC(X), t ∈ T .

Abstract points of contact algebras. The abstract points which are used
in the representation theory of contact algebras developed in [7] are called clans
(see [7] for the origin of this name). The definition is the following:

Definition 1.5 ([7]) Let (B,C) be a contact algebra. A subset Γ ⊆ B is called
a clan if the following conditions are satisfied:

(i) 1 ∈ Γ and 0 6∈ Γ,
(ii) If a ∈ Γ and a ≤ b then b ∈ Γ,
(iii) If a+ b ∈ Γ then a ∈ Γ or b ∈ Γ,
(iv) If a, b ∈ Γ then aCb.

The set of all clans is denoted by CLANS(B). For a ∈ B we denote by
h(a) = {Γ ∈ CLANS(B) : a ∈ Γ}. It is shown in [7] that the set CLANS(B)
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with the set {h(a) : a ∈ B} considered as a closed base of a topology in
CLANS(B), defines a semiregular and compact T0 topology and h is the em-
bedding of (B,C) into RC(CLANS(B)) considered in Theorem 1.3. The fol-
lowing lemma, used in the proof of Theorem 1.3, characterizes contact relation
on terms of clans.

Lemma 1.6 aCb iff (∃Γ ∈ CLANS(B))(a, b ∈ Γ) iff h(a) ∩ h(b) 6= ∅ [7].

Precontact algebras. A slight generalization of contact algebra is the notion
of precontact algebra, studied in [8] under the name proximity algebra. The
definition sounds as follows.

Definition 1.7 (Precontact algebras) Let B be a Boolean algebra and C is
a binary relation on B. C is called a precontact relation on B if it satisfies
the following conditions:

(P1) aCb→ a 6= 0 and b 6= 0,
(P2a) aC(b+ c)↔ aCb or aCc,
(P2b) (a+ b)Cc↔ aCc or bCc.
The pair (B,C) is called a precontact algebra.

Obviously every contact relation is a precontact relation.
The following property is an easy consequence from the axioms:
(Mono C) aCb ∧ a ≤ a′ ∧ b ≤ b′ → a′Cb′.

2 Dynamic models of space with explicit moments of
time and time ordering

Choosing the right definition. In this section we will present a dynamic
model of time with explicitly given time moments and precedence relation
between them. The construction is based on the following intuition. Suppose
we have a domain with changing regions in time and a camera making snapshots
for each moment of time. Then each snapshot describes the picture of the state
of affairs in the corresponding moment of time m. We assume that the regions
at each moment m form a contact algebra - Bm, which describes their spatial
interrelations. In this way to each m from a given set T of time moments
we associate a contact algebra Bm. Each changing region has a trajectory,
which can be considered as a vector with coordinates indexed by the elements
of T , and each coordinate am being from the contact algebra Bm. We identify
changing regions by their trajectories and assume that they form a Boolean
algebra with Boolean operations defined coordinate-wise. In this way they
form a Boolean subalgebra of the cartesian product

∏
m∈T Bm of the family

of contact algebras {Bm : m ∈ Bm}. We may assume also that T is supplied
with some natural ordering relation ≺.

The above informal reasoning suggests the following formal definition.

Definition 2.1 (Dynamic models of space with explicit moments of
time and time ordering) Let T be a non-empty set, which elements are
called time moments and ≺ be a binary relation on T , called time ordering,
or before-after relation (m ≺ n is read: m is before n, or n is after m).
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Then the system T = (T,≺), T 6= ∅ is called a time structure. Let for each
m ∈ T , (Bm, Cm) = (Bm, 0m, 1m,≤m, .,+, ∗, Cm) be a contact algebra. Let
B(T ) =

∏
m∈T Bm denote the Cartesian product of the family {Bm : m ∈ T}

considering its members as Boolean algebras. Since contact algebras are non-
degenerated Boolean algebras, then their product B(T ) is also a non-degenerated
Boolean algebra (note that this fact does not depend on the Axiom of Choice).
The algebras (Bm, Cm), m ∈ T , are called coordinate contact algebras of B(T ).
The elements of B(T ) are vectors with coordinates in the coordinate contact
algebras, so they can be considered as possible trajectories of changing regions.
So we name the elements of B(T ) dynamic regions. The product B(T ) contains
all possible trajectories of changing regions, which is an extreme case, so it is
natural to consider subalgebras of the product. Any such subalgebra is called
a dynamic model of space with explicit moments of time and time ordering,
shortly dynamic model of space.

Let B be a dynamic model of space. B is called full if it coincides with the
product B(T ); B is called rich if it contains all vectors in which there are no
coordinates different from zero and one. Obviously full models are rich.

In dynamic model of space time moments and the precedence relation are
given explicitly by the time structure (T,≺). By the topological represen-
tation theory of contact algebras each coordinate contact algebra (Bm, Cm)
determines its topological space Xm, called coordinate space. By the joint
embedding theorem 1.4 all coordinate algebras can be embedded into the con-
tact algebra of regular closed sets RC(X) of a single space X, which may be
considered as the set of points of the dynamic model of space.

We will use the following notations for dynamic regions. If a ∈ B(T ) and
m ∈ T , then am denotes the m-th coordinate of a and am is the region a at
the moment m. For instance the expression am 6= 0m means that a exists at
m, and the expression amCmbm means that a and b are in a contact at the
moment m.

Dynamic model of space is a quite rich spatio-temporal structure in which
one can give explicit definitions of various spatio-temporal relations between
dynamic regions. In this paper we shall study the following three relations
between dynamic regions:
• aCsb iff (∃m ∈ T )(amCmbm), called space contact,
• aCtb iff (∃m ∈ T )(am 6= 0m and bm 6= 0m), called time contact,
• aBb iff (∃m,n ∈ T )(m ≺ n and am 6= 0m and bn 6= 0n), called precedence.
While space contact means having a common space point, the time contact

indeed means having a common time point. It also is a kind of simultaneity
relation or contemporaneity relation used in Whitehead’s works.

Definition 2.2 Dynamic model of space supplied with the three relations
Cs, Ct, and B is called a standard dynamic contact algebra. It is called rich
if the dynamic model is rich.

Our aim is to give abstract point-free characterization of standard dynamic
contact algebras. First we will study some formal properties of the three rela-
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tions, which in the abstract setting will be taken as axioms.

Lemma 2.3 (i) Cs is a contact relation,
(ii) Ct is a contact relation satisfying the additional condition
(Cs → Ct) aCsb→ aCtb.
(iii) B is a precontact relation.

Proof. Direct verification. 2

Correspondence results for time structures. Below we list some corre-
spondences between conditions on time ordering ≺ and conditions on dynamic
regions in standard dynamic contact algebras formulated in terms of Ct and B.
(RS) Right seriality (∀m)(∃n)(m ≺ n) ⇐⇒ (rs) aCtb→ aBp ∨ bBp∗,
(LS)Left seriality (∀m)(∃n)(n ≺ m) ⇐⇒ (ls) aCtb→ pBa ∨ p∗Bb,
(Up Dir) Updirectness (∀i, j)(∃k)(i ≺ k and j ≺ k)⇐⇒

(up dir) aCtb ∧ cCtd ∧ a′ + b′ + c′ + d′ = 1→ aBa′ ∨ bBb′ ∨ cBc′ ∨ dBd′,
(Down Dir) Downdirectness (∀i, j)(∃k)(k ≺ i and k ≺ j) ⇐⇒

(down dir) aCtb∧ cCtd∧ a′+ b′+ c′+ d′ = 1→ a′Ba∨ b′Bb∨ c′Bc∨ d′Bd,
(Dens) Density i ≺ j → (∃k)(i ≺ k ∧ k ≺ j) ⇐⇒ (dens) aBb→ aBp ∨ p∗Bb,
(Ref) Reflexivity (∀m)(m ≺ m) ⇐⇒ (ref) aCtb→ aBb,
(Lin) Linearity (∀m,n)(m ≺ n∨n ≺ m) ⇐⇒ (lin) aCtb∧ cCtd→ aBc∨ dBb,
(Tr) Transitivity i ≺ j and j ≺ k → i ≺ k ⇐⇒ (tr) aBb→ (∃c)(aBc ∧ c∗Bb).
Note 1 The correspondence . . . ⇐⇒ . . . means that the condition from the
left side is universally true in the time structure (T,≺) iff the condition
from the right side is universally true in B. Note that the above listed
conditions for time ordering are not independent, for instance (Ref) im-
plies (RS), (LS) and (Dens); (Tr) implies (Up Dir) and (Down Dir). Tak-
ing some meaningful subsets of these conditions we obtain various differ-
ent notions of time order. For instance the subsets {(Ref), (Tr), (Lin)}
and {(RS), (LS), (Tr), (Lin), (Dens)} are typical for classical (reflexive or
non-reflexive) time, while the subsets {(Ref), (Tr), (UpDir), (DownDir)} or
{(RS), (LS), (Tr), (UpDir), (DownDir)} are used to characterize some types
of relativistic time (for the later see, for instance, [12,18,17,16]). Note that ir-
reflexivity of ≺ and linearity for irreflexive ≺ in the form m = n∨m ≺ n∨n ≺ m
are also good properties of time ordering, but we did not find suitable corre-
spondence conditions for them.

Lemma 2.4 (Correspondence Lemma) Let B be a standard dynamic con-
tact algebra with time structure (T,≺), and consider the above listed correspon-
dences except transitivity. They are true under the following conditions: (1)
for the implication from left to the right B is arbitrary, (2) for the implication
from right to the left B is supposed to be rich. (3) for the case of transitivity
in both directions B is supposed to be rich.

Proof. See Appendix A. 2
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3 Dynamic contact algebras

Definition 3.1 By a dynamic contact algebra (DCA for short) we mean any
system B = (B,Cs, Ct,B) = (B, 0, 1, .,+,∗ , Cs, Ct,B) where (B, 0, 1, .,+,∗ ) is
a non-degenerate Boolean algebra, satisfying the following conditions:

(i) Cs is a contact relation on B called space contact,
(ii) Ct is a contact relation on B, called time contact satisfying the following

additional axiom
(Cs → Ct) aCsb→ aCtb.
(iii) B is a precontact relation.
The elements of B are called dynamic regions. We will consider DCA-s

satisfying some of the eight conditions (rs), (ls),(up dir), (down dir), (ref),
(lin), (dens) and (tr) listed in Section 2. Since these axioms determine the
properties of the time ordering between moments of time (which will be defined
in the next section), they are called shortly ”time axioms”. Since DCA-s are
algebraic systems, we adopt for them the standard definitions of subalgebra,
homomorphism, isomorphism, isomorphic embedding, etc.

Note 2 In [23] the name ”dynamic contact algebra” (DCA) was used for an-
other, but similar notion. We consider DCA as an integral name for a wider
class of algebras formalizing some aspects of an integrated point-free theory of
space and time. In this paper, however, it will be used as given by Definition
3.1.

Typical examples of DCA-s are standard dynamic contact algebras intro-
duced in Section 2. In the next section we will show that each DCA is isomor-
phic to an algebra of such a kind.

Ultrafilter characterizations of the relations Cs, Ct and B. Let B be
a DCA. We denote by UF (B) the set of ultrafilters in B. We define three
relations Rs, Rt,≺ between ultrafilters as follows: URsV iff U × V ⊆ Cs,
URtV iff U × V ⊆ Ct, U ≺ V iff U × V ⊆ B. Note that these three definitions
are meaningful not only for ultrafilters but also for arbitrary subsets of B.

Lemma 3.2 Let C denote any of the three relations Cs, Ct,B and let R be the
above defined corresponding relation between filters. Then:

(i) If F,G are filters and FRG, then there are ultrafilters U, V such that
F ⊆ U , G ⊆ V and URV .

(ii) aCb iff there exist ultrafilters U, V such that URV , a ∈ U and b ∈ V .
(iii) Rs and Rt are reflexive and symmetric,
(iv) Rs ⊆ Rt

Proof. Conditions (i), (ii) and (iii) are from [8] and (iv) follows directly from
axiom (Cs → Ct). 2

Now we list some correspondences between the eight conditions (rs)– (tr)
listed in Section 2 and corresponding conditions between ultrafilter relations
Rt and ≺. They are similar to the corresponding relations (RS)–(Tr). We give
the new relations the same short notations but in square brackets - [RS] – [Tr].
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[RS] U1R
tU2 → (∃V )(U1 ≺ V ∧ U2 ≺ V ) ⇐⇒ (rs) aCtb→ aBp ∨ bBp∗,

[LS] U1R
tU2 → (∃V )(V ≺ U1 ∧ V ≺ U2) ⇐⇒ (ls) aCtb→ pBa ∨ p∗Bb,

[Up Dir] U1R
tU2 ∧ U3R

tU4 → (∃V )(U1 ≺ V ∧ U2 ≺ V ∧ U3 ≺ V ∧ U4 ≺ V )
⇐⇒ (up dir) aCtb ∧ cCtd ∧ a′ + b′ + c′ + d′ = 1→ aBa′ ∨ bBb′ ∨ cBc′ ∨ dBd′,
[Down Dir] U1R

tU2 ∧U3R
tU4 → (∃V )(V ≺ U1 ∧V ≺ U2 ∧V ≺ U3 ∧V ≺ U4)

⇐⇒ (down dir) aCtb∧ cCtd∧a′+ b′+ c′+d′ = 1→ a′Ba∨ b′Bb∨ c′Bc∨d′Bd,
[Dens] U ≺ V → (∃W )(U ≺W ∧W ≺ V ) ⇐⇒ (dens) aBb→ aBp ∨ p∗Bb,
[Ref] URtV → U ≺ V ⇐⇒ (ref) aCtb→ aBb,
[Lin] U1R

tU2 ∧ V1RtV2 → (U1 ≺ V1 ∨ V2 ≺ U2)⇐⇒
(lin) aCtb ∧ cCtd→ aBc ∨ dBb,
[Tr] U ≺ V ∧ V ≺W → U ≺W ⇐⇒ (tr) aBb→ (∃c)(aBc ∧ c∗Bb).

Lemma 3.3 (Ultrafilter correspondences) Let B = (B,Cs, Ct,B) be a
DCA. Then all eight correspondences listed above are true in the following
sense: for a given correspondence . . . ⇐⇒ . . ., the left side is universally true
in the set UF (B)) iff the right side is universally true in B.

Proof. See Appendix B. 2

4 Representation theory of dynamic contact algebras

In this section we will show that each DCA, with possible extension with some
additional time axioms, can be represented as a dynamic model of space with
explicit moments of time and time ordering, satisfying some reasonable prop-
erties. The representation theorem will be based on a canonical construction of
the dynamic model of space associated to the given DCA B = (B,Cs, Ct,B).
Our strategy is the following. First we define the set T = T (B) of moments of
time and before-after relation ≺ in T . The time moments are defined as some
sets of ultrafilters in T with a canonical definition of ≺ with properties deter-
mined by the corresponding time axioms. The next step is to associate to each
time moment the corresponding coordinate contact algebra and to define the
canonical dynamic model of space and the canonical embedding isomorphism.
The final step is to show that it indeed embeds the algebra into the obtained
dynamic model of space.

Defining the time structure.

Definition 4.1 Let B = (B,Cs, Ct,B) be a DCA. A set α of ultrafilters in B
is called a time moment if it satisfies the following conditions:

(tm1) α is non-empty,
(tm2) If U, V ∈ α, then URtV ,
(tm3) If B satisfies some of the axioms (rs),(ls), (up dir), (down dir) and

(dens) then α has at most two different ultrafilters.
The set of time moments of B is denoted by T (B) or simply by T . Obviously

T is nonempty, because, for instance, each singleton set {U}, where U is an
ultrafilter, is a time point (condition (tm1) is obviously satisfied and (tm2) is
satisfied because of the reflexivity of Rt).

The definition of time ordering ≺ is this: for α, β ∈ T
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(to) α ≺ β iff (∀U, V ∈ UF (B))(U ∈ α ∧ V ∈ β → U ≺ V ).
The pair T (B) = (T (B),≺) (denoted sometimes shortly (T,≺)) is called the

time structure of B.

Note that condition (tm3) is taken only by technical reasons for the proofs
of the properties of time ordering, and depends on the fact that the correspon-
dents of the axioms mentioned in the condition, namely [RS], [LS], [Up Dir],
[Down Dir] and [Dens], are not universal sentences, while the correspondents
of the other time axioms are universal sentences.

Lemma 4.2 (Properties of time ordering) Let B = (B,Cs, Ct,B) be a
dynamic contact algebra and (T,≺) be its time structure. Consider the corre-
spondences . . . ⇐⇒ . . . from Section 2. Then each correspondence is true in
the following sense: the condition from the left side of . . .⇐⇒ . . . is universally
true in the time structure (T,≺)) iff the right side is universally true in the
algebra B.

Proof. See Appendix C. 2

Defining coordinate contact algebras, the canonical dynamic model
of space and the isomorphic embedding. To define coordinate contact
algebras we will use the following construction of factor contact algebra from
sets of ultrafilters in a given contact algebra.

Let α be a non-empty set of ultrafilters in a contact algebra B = (B,C).
Define the following equivalence relation on B depending on α:

a ≡α b iff (∀U ∈ α)(a ∈ U ↔ b ∈ U).
It is easy to see that ≡α is a congruence on B and let B/α denote the factor
algebra B/ ≡α. Denote the Boolean ordering on B/α by ≤α. Define the
relation |a|αCα|b|α iff there exist ultrafilters U, V ∈ α such that URV and
a ∈ U and b ∈ V , ( URV ↔def U × V ⊆ C, see Lemma 3.2).

Lemma 4.3 (i) Bα is a non-degenerated Boolean algebra.
(ii) |a|α 6= |0|α iff there exists an ultrafilter U ∈ α such that a ∈ U .
(iii) The relation Cα is well defined and the pair (Bα, Cα) is a contact

algebra.

Proof. Direct verification. 2

Definition 4.4 (Coordinate contact algebras, the canonical dynamic
model of space and the embedding) Let B be a DCA and α be a moment of
time in B. Define the factor Boolean algebra Bα by the construction described
above and the contact relation
|a|αCα|b|α iff (∃U, V ∈ α)(URsV , a ∈ U and b ∈ V ).

Then by Lemma 4.3 (Bα, Cα) is a contact algebra, called the coordinate con-
tact algebra associated to α. The canonical dynamic model of space, denoted
here Bcan, and the relations Cs, Ct and B in it are defined by the just de-
fined coordinate contact algebras as in Section 2. The embedding h is defined
coordinatewise as follows: for each a ∈ B,

h(a)α = |a|α.
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Note 3 The definition of the coordinate contact algebra Bα as a factor algebra
with respect to the set of ultrafilters of the time moment α is based on the
following intuition. If we look at dynamic regions as trajectories of changing
regions, then for different a and b we may have that aα = bα, which is an
equivalence relation determined by α. The formal definition of this equivalence
is just the relation ≡α, which determines the coordinate contact algebra Bα.
So the elements of Bα are the equivalence classes |a|α.

Lemma 4.5 (Embedding Lemma) Let B be a DCA. Then:
(i) aCsb iff there exists α ∈ T such that |a|αCα|b|α iff h(a)Csh(b),
(ii) aCtb iff there exists α ∈ T such that |a|α 6= |0|α and |b|α 6= |0|α

iff h(a)Cth(b),
(iii) aBb iff there exist α, β ∈ T such that α ≺ β and |a|α 6= |0|α and

|b|β 6= |0|β
iff h(a)Bh(b),

(iv) a ≤ b iff for all α ∈ T |a|α ≤α |b|α iff h(a) ≤ h(b),
(v) h preserves Boolean operations.

Proof. See Appendix D. 2

Lemma 4.6 Let B be a DCA and Bcan be its canonical dynamic model of
space. Then for each time axiom Ax from the list 〈(rs), (ls), . . . , (tr)〉 the fol-
lowing equivalence is true: Ax holds in B iff Ax holds in Bcan.

Proof. The proof for all cases for Ax is the same, so we will illustrate it for
Ax = (rs). Namely we have the following chain of equivalencies:
The condition (rs) holds in B ⇐⇒ (by Lemma 4.2) the condition (RS) holds
in the time structure (T,≺) of B ⇐⇒ (by Lemma 2.4) the condition (rs) holds
in Bcan. 2

Theorem 4.7 (Representation Theorem for DCA-s) Let B be a DCA.
Then there exists a dynamic model of space B and an isomorphic embedding
h of B into B. Moreover, B satisfies some of the time axioms iff the same
axioms are satisfied in B.

Proof. The proof is a direct corollary of Lemma 4.5 and Lemma 4.6. 2

5 Quantifier-free logics based on dynamic contact
algebras

In this section we will present a complete axiomatization of some quantifier-free
logics based on the language of dynamic contact algebras. The motivation to
consider quantifier-free logics is to obtain decidable fragments. The language
contains a denumerable set of variables, called Boolean variables, two symbols
for the Boolean constants 0 and 1, symbols +, .,∗ for the Boolean operations,
equality = and three two place predicate symbols Cs, Ct,B. Terms of this
language (called Boolean terms) are build in the standard way from Boolean
variables and constants. Atomic formulas are of the form a = b, aCsb, aCtb
and aBb, where a, b are Boolean terms. Formulas are build from the atomic
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formulas by means of the propositional operations ¬,∧,∨,⇒,⇔ in a standard
way.

The intended semantics of the introduced language is in various classes of
DCA-s. Let B be a DCA, a valuation v in B is a mapping from the set of
Boolean variables and constants to B extended in a standard way to the set of
all terms. The pair (B, v) is called a model. The truth of a formula α in the
model (B, v), denoted by (B, v) |= α is defined inductively as follows:

(B, v) |= a = b iff v(a) = v(b),
(B, v) |= aCsb iff v(a)Csv(b), and similarly for aCtb and aBb.
(B, v) |= ¬α iff (B, v) 6|= α,
(B, v) |= α ∧ β iff (B, v) |= α and (B, v) |= β,

and similarly for the other propositional connectives.
We say that α is true in the algebra B if it is true in all models over B; α

is true in a class Σ of DCA-s if it is true in all algebras from Σ. A formula α
has a model in a given class of DCA-s if there is a model in this class in which
α is true. A set A of formulas has a model in a given class of DCA-s if there is
a model in that class in which all members of A are true.

We denote by Lall the logic corresponding to the class of all DCA-s. Since
all axioms of DCA are universal formulas, axiomatization of Lall can be done
quantifier-free on the base of propositional logic as follows:

Axiom system for Lall.
(I) Axiom schemes for classical propositional logic
Here one can use any Hilbert-style axiomatization of classical propositional

logic with axiom schemes with metavariables ranging in the set of formulas.
(II) Axiom schemes for Boolean algebra with the axioms of equal-

ity.
Since Boolean algebras can be axiomatized by universal formulas in a first-

order logic with equality, one can take any such set of axiom schemes plus the
axioms of equality, all written in a quantifier-free form.

(III) Specific axioms for DCA
Since the axioms of DCA are all universal sentences, we rewrite them as

formulas of our language
Rules of inference: The only rule is Modus Ponens (MP) α,α⇒β

β

Since all time axioms except the axiom (tr) are also universal formulas,
extensions of Lall with such axioms can be done just by adding them as axiom
schemes to the above axiom system. Since the axiom of transitivity (tr) is not
a universal formula, we can not add it to the axiom system of Lall, but instead
we can add the following additional rule of inference, which in a sense imitates
the corresponding axiom:

The rule of transitivity TR:
α⇒ (aBp ∨ p∗Bb)

α⇒ aBb
, where p is a Boolean

variable that does not occur in a, b, and α.
If Ax is a set of time axioms then LAx will denote the extensions of Lall

with the axiom schemes from Ax, where for the case of transitivity axiom (tr)
we consider the rule of transitivity TR.
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Let us note that the rule of transitivity TR was studied in [1] under the
name of rule of normality (NOR).

The following theorem is the main result in this section:

Theorem 5.1 (Completeness theorem for LAx) The logic LAx is strongly
sound and complete in the class of all dynamic contact algebras satisfying the
axioms Ax.

Proof. See appendix E. 2

Let us note that due to the representation Theorem 4.7 for dynamic contact
algebras we obtain as a corollary from Theorem 5.1 also completeness of LAx
with respect to the corresponding class of standard dynamic contact algebras.

Theorem 5.2 (Decidability of some LAx) Let Ax be a subset of time ax-
ioms not containing the axiom (tr). Then the logic LAx is decidable.

Proof. We shall show that the logic has finite model property. Let α be a
formula which is not a theorem. Then by the completeness theorem there is
a model (B, v) based on some dynamic contact algebra B from the class of
algebras in which LAx is complete, such that (B, v) 6|= α. Let Bfin be the
finite Boolean subalgebra of B generated by the set {v(b1), . . . , v(bn)}, where
b1, . . . , bn are all variables of α. Since all axioms from Ax are universal formulas,
then they are satisfied in Bfin and hence it is in the class of algebras in which

the logic is complete. So α is falsified in a finite algebra with the size ≤ 22
n

where n is the number of the variables of α. 2

Let us note that we do not know if decidability is preserved by adding to
the logic the rule of transitivity. We formulate also as an open problem the
complexity of the decision problems related to discussed logics.

6 Concluding remarks

Related works. Some other works quite similar to our approach are [9,10].
They are point-free with respect to space points but not with respect to time
points in the sense that the set of time points is explicitly given in the axiomati-
zation. A point-free version of dynamic mereology based on some natural stable
and unstable mereological relations is [14]. The survey paper [13] is devoted
to various combinations of spatial and temporal logics, concerning mainly ex-
pressivity and complexity of formalisms, but not point-free representations (see
also [2,11]). Modal logics for Minkowski space-time, based on different ideas,
are considered in [12,18,17,16].

Discussion and open problems. We want to note here that this ”second
attempt” to present an integrated theory of space and time in an Whitehea-
dian manner shows that the structure of time can also be characterized in a
point-free way considering as primitives neither time points, nor their intended
internal ordering structure. The three primitive spatio-temporal relations be-
tween dynamic regions – space contact Cs, time contact Ct and precedence
B studied in the present paper form in a sense the minimal set of primitives
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which guarantee the definitions of space points and the coordinate contact al-
gebras and the set time points and the corresponding time structure (T,≺).
There are, however, many other spatio-temporal relations which are not con-
sidered in this paper. For instance we do not consider stable contact C∀,
considered in [23]. The reason is that canonical constructions used in the rep-
resentation theory in [23] are not compatible with the canonical constructions
used in the present paper and it is an open problem to characterize C∀ in
the context of the primitives Ct and B. So we formulate as an open problem
the extension of the language of dynamic contact algebras with other sensible
spatio-temporal relations between dynamic regions depending on time order.
For instance we may define in the standard model the following one-place predi-
cate – ”a has only one period of life” with the following formal definition: there
exist two moments of time m 6= n and m ≺ n such that for all k in the set
[m,n] =def {k ∈ T : k = m ∨ k = n ∨ m ≺ k ≺ n}, a exists at k (formally
ak 6= 0k) and for all k 6∈ [m,n], a does not exist”. For instance living organisms
have only one period of life in the above sense. Another open problem is to en-
sure coordinate contact algebras to determine some good classes of topological
spaces: connected spaces, regular spaces, Hausdorff spaces, Euclidean spaces.

Let us mention that the time contact Ct corresponds to the natural notion
of simultaneity or contemporaneity. It can be generalized for any finite set A
of regions: CON(A) (the members of A are contemporaries) iff there exists
m ∈ T such that for all a ∈ A, am 6= 0m (am exists at the moment m). Such
a polyadic version is considered also by Whitehead and we plan to axiomatize
this generalization in an extended version of this paper. Let us note, however,
that our notion of contemporaneity, which is based on its standard use in the
ordinary language, differs from the meaning used by Whitehead, who consid-
ered it as a kind of ”causal independency” ( introduced rather informally).
Causal independency in Whitehead is related to some other relations named
”causal future” and ”causal past”, which are influenced by relativity theory (see
[24], part IV). The exact definitions of similar causal relations, considered as
relations between points in Minkowski space, are studied in some modal logics
of space-time [12,18,17,16]. It will be nice to have good formal analogs of such
relations considered as relations between dynamic regions.

We plan to apply a translation of the quantifier-free logics studied in this
paper in suitable modal logics with universal modality in order to see if the
rule of transitivity TR can be eliminated and to use this fact for the study of
decidability and complexity problems related to these logics.

Thanks. The paper is sponsored by the contract with the Bulgarian Na-
tional Science Fund, project name: ”Theories of Space and Time: algebraic,
topological and logical approaches”. Thanks are due to the anonymous referees
for their useful suggestions and also to Philippe Balbiani and Tinko Tinchev for
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Appendix A: proof of Lemma 2.4 (Correspondence
Lemma)

Proof. We consider first the case of transitivity. Suppose that B is rich.
(Tr) =⇒ (tr) Suppose that ≺ is transitive and let aBb. We have to find c

such that (aBc and c∗Bb). Define c coordinatewise as follows:

ck =

{
1k, if (∃j)(k ≺ j ∧ bj 6= 0j)

0k, if (∃i)(i ≺ k ∧ ai 6= 0i)

The definition of ck is correct, because if the two conditions are satisfied simul-
taneously then by transitivity we obtain i ≺ j which together with ai 6= 0i and
bj 6= 0j imply aBb - a contradiction. Obviously by richness c ∈ B.

To show aBc suppose the contrary. Then there exist i, k ∈ T such that
i ≺ k, ai 6= 0i and ck 6= 0k. From here and by the definition of ck we get
ck = 1k. By the definition of ck, this implies that there exists j ∈ T such that
k ≺ j and bj 6= 0j . From i ≺ k and k ≺ j we obtain (by transitivity) i ≺ j,
which together with ai 6= 0i and bj 6= 0j imply aBb - a contradiction with the
assumption aBb.

To show c∗Bb suppose again the contrary. Then there exists k, j ∈ T such
that k ≺ j, c∗k 6= 0k and bj 6= 0j . From here we get c∗k = 1k and ck = 0k. This
implies that there exists i ∈ T such that i ≺ k and ai 6= 0i. Conditions i ≺ k
and k ≺ j imply i ≺ j which together with ai 6= 0i and bj 6= 0j imply aBb -
again a contradiction with the assumption aBb.

(Tr)⇐= (tr) Suppose that transitivity does not hold for ≺, then for some
i′, j′, k′ we have i′ ≺ j′, j′ ≺ k′ but i′ 6≺ k′. Define a and b coordinatewise as
follows:

ai =

{
1i, if i = i′

0i, if i 6= i′
, bk =

{
1k, if k = k′

0k, if k 6= k′
.

By richness a and b belong to B. We will show that aBb→ (∃c)(aBc∧c∗Bb)
does not hold, i.e. aBb and ¬(∃c)(aBc ∧ c∗Bb).

First we show aBb. Suppose the contrary. Then for some i, k ∈ T we have
i ≺ k, ai 6= 0i and bk 6= 0k. This implies i = i′, k = k′ and hence i′ ≺ k′ - a
contradiction with the assumption i′ 6≺ k′.

Now we will show ¬(∃c)(aBc ∧ c∗Bb). Suppose the contrary, i.e. that there
exists c such that aBc and c∗Bb.

Case 1. cj′ 6= 0j′ . We have i′ ≺ j′, ai′ = 1i′ 6= 0i′ . This implies aBc - a
contradiction with the assumption aBc.

Case 2. cj′ = 0j′ . Then c∗j′ = 1j′ 6= 0j′ . We have j′ ≺ k′ and bk′ = 1k′ 6=
0k′ . This implies c∗Bb - a contradiction with the assumption c∗Bb.

(RS) =⇒ (rs) Suppose that ≺ is right-serial and let aCtb. Then for some
m ∈ T we have am 6= 0m and bm 6= 0m. By right-seriality there exists n ∈ T
such that m ≺ n. Let p be an arbitrary region.
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Case pn 6= 0n. This implies aBp.
Case pn = 0n. This implies p∗n 6= 0n and hence bBp∗.
So, in both cases we obtain aCtb→ aBp ∨ bBp∗.
(RS)⇐= (rs) In this case we will reason by contraposition. Suppose that

≺ is not right-serial so (∃m′)(∀n)(m′ 6≺ n). Under this assumption we will
proceed to show that aCtb → aBp ∨ bBp∗ does not hold, so for some a, b, p
aCtb, aBp and bBp∗. Let p = 1 and define a, b coordinatewise as follows:

am = bm =

{
1m, if m = m′

0m, if m 6= m′
,

By richness a, b are in B.
First we will show aCtb. Observe that we have am′ = bm′ = 1m′ 6= 0m′

which implies aCtb.
To show aBp suppose the contrary, i.e. that aBp, i.e. aB1 holds. Then

for some m ≺ n we have am 6= 0m and 1n 6= 0n. By the definition of a we
obtain am = 1m and hence m = m′, which implies m′ ≺ n. This contradicts
the assumption (∀n)(m′ 6≺ n).

Since p = 1, then p∗ = 0 and hence the condition bBp∗ trivially holds.
The proofs for the other cases of the lemma are similar. 2

Appendix B: proof of Lemma 3.3 (Ultrafilter
correspondences)

Proof. For the proof of Lemma 3.3 we will need the following facts about
filters in Boolean algebra and one lemma which we formulated without proofs:
Facts. If F,G are filters then F ⊕ G =def {c : (∃a ∈ F )(∃b ∈ G)(a.b ≤ c)}
is the smallest filter containing F and G. F ⊕ G is not a proper filter (i.e.
0 ∈ F ⊕ G) iff there exists p such that p∗ ∈ F and p ∈ G. The operation ⊕
is associative and commutative. Every proper filter can be extended into an
ultrafilter.

Lemma 6.1 Let U, V be filters and let FI(U) =def {b : (∃a ∈ U)aCb∗} and
FII(V ) =def {a : (∃b ∈ V )a∗Cb}. Then:

(i) FI(U) and FII(V ) are filters,
(ii) If U is a filter and V is an ultrafilter then: U × V ≤ C iff FI(U) ⊆ V ,
(iii If U is an ultrafilter and V is a filter then: U ×V ≤ C iff FII(V ) ⊆ U .

[RS] ⇒ (rs). Suppose [RS] holds and let aCtb. Then by Lemma 3.2 There
are ultrafilters U1, U2 such that U1R

tU2, a ∈ U1 and b ∈ U2. By [RS] there
exists an ultrafilter V such that U1 ≺ V and U2 ≺ V . Let p be an arbitrary
region.
Case 1: p ∈ V . Then by U1 ≺ V and a ∈ U1 we conclude by Lemma 3.2 that
aBp.
Case 2: p∗ ∈ V . As in Case 1, this implies bBp∗.

[RS] ⇐ (rs). Suppose (rs) holds and let U1R
tU2. We shall show that there

exists an ultrafilter V such that U1 ≺ V and U2 ≺ V .
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To prove this we shall show first that FI(U1) ⊕ FII(U2) is a proper filter
(see Lemma 6.1 for notations). Suppose that this is not the case. Then there
exists p such that p∗ ∈ FI(U1) and p ∈ FII(U2). This implies that there exists
a ∈ U1 such that aBp and that there exists b ∈ U2 such that bBp∗. Since
U1R

tU2, this implies aCtb, which by aBp and bBp∗ shows that (rs) does not
hold - a contradiction. Thus FI(U1) ⊕ FII(U2) is a proper filter. Then it can
be extended into an ultrafilter V . Consequently FI(U1) ⊆ V (which implies
U1 ≺ V ) and FII(U2) ⊆ V (which implies U2 ≺ V ), which ends the proof of
this case.

The other cases of the lemma can be proved in a similar way making use
of Lemma 6.1, Lemma 3.2 and and the above mentioned Facts many times.
Since (tr) is not an universal sentence, as an illustration we will demonstrate
the proof of the implication [Tr]⇒(tr). Another proof of this implication can
be found in [8].

[Tr]⇒(tr). Suppose that [Tr] holds and let aBb. Suppose that there is no c
such that aBc and c∗Bb. We will proceed to obtain a contradiction as follows.
First we will show that there are ultrafiltres U, V,W , such that a ∈ U , b ∈ W ,
U ≺ V and V ≺ W . Then by transitivity we get U ≺ W . But a ∈ U , b ∈ W
and U ≺W implies aBb - the desired contradiction.

Now to realize the above strategy define [a) =def {a′ : a ≤ a′}, [b) =def

{b′ : b ≤ b′}. [a) is a filter containing a and [b) is a filter containing b. We
shall show that the filter FI([a))⊕ FII([b)) is a proper filter. Otherwise there
are p∗ ∈ FI([a)), p ∈ FII([b)), which implies (see Lemma 6.1) that there exists
a′ ∈ [a) (so a ≤ a′) such that a′Bp and that there exists b′ ∈ [b) (so b ≤ b′)
such that p∗Bb′. By the monotonicity of B we obtain aBp and p∗Bb. This
contradicts the assumption that there is no c such that aBc and c∗Bb – simply
take c = p. Consequently FI([a))⊕ FII([b)) is a proper filter. Then it can be
extended into an ultrafilter V . Hence we get FI([a)) ⊆ V and FII([b)) ⊆ V .
This, by 6.1 implies [b)× V ⊆ B and [a)× V ⊆ B. Then applying Lemma 3.2
we can extend [a) into an ultrafilter U such that U × V ⊆ B,(so U ≺ V ), and
similarly to extend [b) into an ultrafilter W such that V ×W ⊆ B, (so V ≺W ).
Obviously a ∈ U and b ∈ W . Thus we have obtained U ≺ V , V ≺ W , a ∈ U
and b ∈W - the strategy is fulfilled, which ends the proof of this case. 2

Appendix C: proof of Lemma 4.2 (Properties of time
ordering)

Proof. The proofs of all cases are similar, so we will demonstrate only two
examples: (Tr)⇐⇒ (tr) and (RS)⇐⇒ (rs).
(Tr) =⇒ (tr). Suppose the contrary, i.e. ≺ is a transitive relation on T and
that (tr) does not hold in B. Then by Lemma 3.3 there are ultrafilters U, V,W
such that U ≺ V , V ≺ W but U 6≺ W . Let α = {U}, β = {V } and γ = {W}.
Since Rt is a reflexive relation, then α, β, γ are time points and hence are
elements of T . By the definition of ≺ we get α ≺ β, β ≺ γ, but not α ≺ γ,
which contradicts the transitivity of ≺ in T .
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(Tr)⇐= (tr). Suppose that (tr) holds in B . Then by Lemma 3.3 the relation
≺ defined in the set of ultrafilters of B is a transitive relation. We will show that
≺, as a relation between time moments, is a transitive relation on T . Suppose
α, β, γ are from T , α ≺ β, β ≺ γ but α 6≺ γ. Then there are ultrafilters U ∈ α
and W ∈ γ such that U 6≺W . Since β is non-empty, let V ∈ β. Then we obtain
U ≺ V , V ≺ W , which together with U 6≺ W contradicts the transitivity of ≺
in the set of ultrafilters.
(RS) =⇒ (rs). Suppose that the condition (RS) holds in T . We will show
that B satisfies (rs). To this end suppose that aCtb holds in B and proceed
to show that ether aBp holds or bBp∗ holds.

From aCtb it follows by Lemma 3.2 that there are ultrafilters U, V such
that URtV , a ∈ U and b ∈ V . Let α = {U, V }. Since URtV , we obtain that
α ∈ T . Then by the condition (RS) there exists β ∈ T such that α ≺ β. Let
W ∈ β. Then by the definition of ≺ in T we have U ≺ W and V ≺ W . Let p
be an arbitrary region in B.
Case 1: p ∈ W . We have a ∈ U and U ≺ W . This by Lemma 3.2 implies
aBp.
Case 2: p∗ ∈ W . We have b ∈ V and V ≺ W . This by Lemma 3.2 implies
bBp∗.
(RS) ⇐= (rs). Suppose that (rs) holds in B, then by Lemma 3.3 [RS] holds
in the set of ultrafilters in B. We shall show that (RS) holds in T . Let
α ∈ T . Now, since we are working with the condition (rs) the condition (tm3)
is fulfilled and hence α is in the form α = {U1, U2}. Then by (tm2) U1R

tU2

and by [RS] there is an ultrafilter V such that U1 ≺ V and U2 ≺ V . Define
β = {V }. By the reflexivity of Rt and (tm2) we have β ∈ T . By the definition
of ≺ in T we obtain α ≺ β, so (RS) holds in T . 2

Appendix D: proof of Lemma 4.5 (Embedding Lemma)

Proof. (i)(⇒). Suppose aCsb. By Lemma 3.2 there exist ultrafilters U, V such
that UCsV , a ∈ U and b ∈ V . Define α = {U, V }. By Lemma 3.2 we have also
UCtV , so α ∈ T and hence |a|αCα|b|α, which is equivalent to h(a)Csh(b).

(⇐). Suppose h(a)Csh(b). Then for some α ∈ T we have |a|αCα|b|α and
by the definition of Cα there are ultrafilters U, V ∈ α such that URsV , a ∈ U
and b ∈ V . Then by Lemma 3.2 we obtain aCsb.

(ii)(⇒). Suppose aCtb. By Lemma 3.2 aCtb implies that there exist ul-
trafilters U, V such that UCtV , a ∈ U and b ∈ V . Define α = {U, V }. Since
UCtV we get α ∈ T . By Lemma 4.3 a ∈ U ∈ α and b ∈ V ∈ α is equivalent
to |a|α 6= |0|α and |b|α 6= |0|α, which is equivalent to h(a)Cth(b). Thus aCtb
implies h(a)Cth(b).

(⇐). Suppose h(a)Cth(b). This implies that for some α ∈ T , |a|α 6= |0|α
and |b|α 6= |0|α. Then by Lemma 4.3 there exist U, V ∈ α such that a ∈ U and
b ∈ V . Condition U, V ∈ α ∈ T implies by (tm2) that URtV , which together
with a ∈ U and b ∈ V implies by Lemma 3.2 that aCtb.

(iii) (⇒). Suppose aBb. By Lemma 3.2 aBb implies that there exist ultra-
filters U, V such that U ≺ V , a ∈ U and b ∈ V . Define α = {U} and β = {V },



558 Axiomatizing some Whiteheadean Type Space-time Logics

and by reflexivity of Rt and (tm2) we obtain α, β ∈ T . Since U ≺ V we get
α ≺ β. By Lemma 4.3 a ∈ U ∈ α and b ∈ V ∈ β is equivalent to |a|α 6= |0|α and
|b|β 6= |0|β , which together with α ≺ β implies h(a)Bh(b). Thus aBb implies
h(a)Bh(b).

(⇐). Suppose h(a)Bh(b). This implies that there are α, βinT such that
α ≺ β, |a|α 6= |0|α and |b|β 6= |0|β . This by Lemma 4.3 implies that there are
ultrafilters U ∈ α and V ∈ β such that a ∈ U and b ∈ V . Since α ≺ β, this
implies by the definition of ≺ in T that U ≺ V . Conditions a ∈ U , b ∈ V
and U ≺ V imply by Lemma refultrafilter relations that aBb. Thus h(a)Bh(b)
implies aBb.

(iv). In this case we will reason by contraposition: a 6≤ b iff a.b∗ 6= 0 iff
(a.b∗)Cs(a.b∗) iff (by (i) ) there exists α ∈ T such that (|a|α.|b|∗α)Cα(|a|α.|b|∗α)
iff there exists α ∈ T such that |a|α.|b|∗α 6= |0|α iff there exists α ∈ T such that
|a|α 6≤α |b|α iff h(a) 6≤ h(b).

(v) The condition follows from the fact that a 7→ |a|α is a homomorphism
with respect to Boolean operations. 2

Appendix E: Proof of Theorem 5.1

Proof. The soundness part of the theorem is easy. For the completeness part
we have to show that each consistent set A of formulas has a model. For the
proof we will use a kind of canonical model construction. This construction is
a variant of the Henkin proof of the completeness theorem for the first-order
logic adapted for the logics with additional rules like the rule of transitivity
TR. This construction is described in [1] Sec. 7 (see also [22] Sec. 3.3), so we
refer the reader to consult for the details the above references. The main idea
is shortly the following.

Each consistent set A can be extended into a maximal consistent set Γ with
some special properties depending on the rules of the logic:

(1) Γ contains all theorems of the logic and is closed under the rule modus
ponens,

(2) If the conclusion α ⇒ aBb of the rule TR does not belong to Γ then
the premise α⇒ (aBp ∨ p∗Bb) also does not belong to Γ for some variable p.

Then, using Γ, one can construct in a canonical way a dynamic contact
algebra B as follows: define in the set of Boolean terms a ≡ b iff a = b ∈ Γ.
It can be proved that this is a congruence relation with respect to the Boolean
operations which makes possible to define a Boolean algebra over the classes |a|
modulo this congruence. We define |a|Cs|b| iff aCsb ∈ Γ and similarly for the
other relations Ct and B. The axioms of dynamic contact algebra guarantee
that B is a dynamic contact algebra. Moreover the above properties of Γ and
the additional axioms and the rule TR of the logic guarantee that the obtained
dynamic contact algebra satisfies all axioms of the set Ax.

By means of Γ one can define a canonical valuation v in B as follows:
v(p) = |p| and to prove that (B, v) |= α iff α ∈ Γ. Then this shows that (B, v)
is a model of Γ and hence a model of A. 2
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