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The topology of a supply chain network affects the impacts of disruptions in it. We formulate a network-based measure of the
impact of a disruption loss in a supply chain propagating downstream from an originating node. The measure takes into account
the loss profile of the originating node, the structure of the supply network, and the resilience of the network components.We obtain
an analytical expression for the impact measure under a beta-distributed initial loss (generalizable to any continuous distribution
supported on the interval [0, 1]), under a breakthrough scenario (in which a fraction of the initial production loss reaches a focal
company downstream as opposed to containment upstream or at the originating point). Furthermore, we obtain a closed-form
solution for a supply chain network with a 𝑘-ary tree topology; a numerical study is performed for a scale-free network and a
random network. Our proposed approach enables the evaluation of potential losses for a focal company considering its supply
chain network structure, which may help the company to plan or redesign a robust and resilient network in response to different
types of disruptions.

1. Introduction

In supply chain networks, the mitigation of production losses
arising from upstream disruptions is an important aspect of
their management. Another important aspect is identifying
which components of the network are bound to play a key
role in either spreading or mitigating such an impact, based
on their positions in the network as well as their inherent risk
profiles; a component’s critical position in the supply chain
network may amplify the effects arising from its disruption.

The impacts of disruptions on supply chain networks can
be seen in the aftermath of the floods which affectedThailand
in 2011 and the earthquake and tsunami which affected the
Tohoku region of Japan in the same year. Haraguchi and Lall
[1] made an assessment of the impacts of the floods on both
industries and the local economy, as well as overseas compa-
nies in both the automobile and the electronics sectors. Saito
et al. [2] examined the impacts of the Tohoku earthquake and

tsunami on the sales growth and transaction relationships
of firms outside the affected areas (but have suppliers and
customers within the affected areas) and found significant
negative effects propagated downstream to firms as far as five
degrees of separation away.

In an analysis of a survey conducted among various
organizations and firms in 2017, the Business Continuity
Institute reported that 65% of the respondents experienced at
least one disruption within the past 12 months [3], a decrease
from 70% in the previous year’s survey [4]. The same series
of surveys reveals patterns in the origins of disruptions in
supply networks. Disruptive events arose predominantly in
“Tier 1,” or direct, suppliers (44% in 2017; 41% in 2016), and
“Tier 2,” those suppliers’ own suppliers (24% in 2017; 17% in
2016). Cumulative losses of at least € 1,000,000 became less
frequent (22% in 2017; 34% in 2016). However, the frequency
of events costing the same amount increased over the same
period (23% in 2017; 9% in 2016).
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These results illustrate the need for awareness by com-
panies of upstream conditions and effective anticipation
and compensation for disruptions arising there. This need
is more and more keenly felt: respondents without origin-
identification mechanisms for disruptive events drastically
decreased from 40% in 2016 to 22% in 2017. As the intercom-
ponent relationships of a supply chain can be mapped onto a
network, network theory offers a natural way to help fulfill
such a need. By examining how an initial loss of an entity
propagates downstream in the network, the impacts of the
entity’s loss on the other entities in the chain can bemeasured.

Aspects of network theory have been applied in supply
chain management, specifically in the context of analyzing
the relationships between the components of the chain [5].
Network theory also provides a natural context in which risks
associatedwith a network’s components or thewhole network
itself can be determined: a loss sustained by a component
due to some adverse event may propagate downstream in
a cascade of losses, unless mechanisms to mitigate losses
had been put in place. Such a process is not restricted to
supply chain networks alone but can be found elsewhere,
such as in banking and financial networks [6, 7], organiza-
tional networks [8], production and input-output networks
[9], infrastructure networks [10], and indeed any network
consisting of interconnected, vulnerable entities [11–13].

In this work, we examine a different aspect of the propa-
gation of the impact of a disruption event in a supply network.
Specifically, we look at the production losses sustained by
a member of the network due to a disruption occurring
elsewhere. In addition, unlike previous studies, we consider
the network as composed of resilient members. In other
words, the elements of the network have the capability to
partially or fully cushion losses which they otherwise would
have sustained. The propagation of losses is thus potentially
attenuated due to the resilience of individual components.
Under such a scenario we seek the conditions where an
initial loss sustained by a network component succeeds
in propagating, in the face of attenuation at intervening
components. We situate our work in this paper in the
context of social network theory-based perspectives in supply
chain risk management [14], as well as under supply chain
risk assessment (specifically, within generic risk assessment),
under the framework proposed by Ho et al. in 2015 [15].

The rest of this work is divided as follows. We review
some of the related literatures in the second section. In the
third section, we consider the downstream propagation of an
initial disruption (measured as a fraction of the production
lost) in a directed, acyclic network from an initial node,
where each node has a certain degree of resilience to the
disruption. We make a simplifying approximation to the
equations we obtain and show that the simplification does
not incur loss of accuracy. We then combine this propagated
loss with a communicability-based measure first introduced
by Estrada andHatano [16] to yield an analytic expression for
themeasure of impact a production loss in a node has over its
downstream nodes. Afterwards, we obtain an expression for
the distribution and the 𝑛th moment of this impact measure,
assuming that the production loss fraction follows a beta
distribution.

The fourth section contains calculations using the impact
measure for three different network structures. We first
obtain exact results for a perfect 𝑘-ary tree, with the assump-
tion that the nodes in the tree are identically resilient to
production loss. Afterwards, we obtained computational
results for two acyclic networks: one is a scale-free network,
and the other is an Erdős-Rényi network. The work is then
summarized in the fifth and last section.

2. Related Literature

2.1. Supply Chain Risk Management Definitions and Frame-
works. Consensus for the definition of “supply chain risk
management (SCRM),” as well as frameworks for it, had been
slow to form. This is in part due to the relative nascence of
the field, the diversity of definitions among researchers and
practitioners, and perspective gaps between the latter two
groups. In surveys of both research teams and company exec-
utives, Sodhi et al. [17] uncovered research gaps in SCRM,
ranging from a lack of clear consensus in its definition (a
definition gap) to a lack of studies in response to supply chain
risk incidents (a process gap) and to a shortage of empirical
research (a methodology gap). Within the same work, in a
review of research articles covering SCRM up to that point
(with the exception of most works which used mathematical
modeling as their main methodology [18]), they also found
an abundance of literatures on risk identification, but a
surprisingly low number of works specifically focusing on
risk assessment. Other works dealt with risk assessment and
mitigation on a conceptual basis, or in the context of the
wider SCRM framework. Furthermore, most of the surveyed
literatures on risk response only covered high-frequency, low-
impact events (operational risks).

Tang’s 2006 review [18], focusing on quantitative models
for managing supply chain risks, sketched out a framework
for classifying the SCRM articles as dealing with supply
management (including supply network design, with a focus
on mixed-integer models), demand management (dealing
with strategies to shift demand across time, markets, or
products), product management, and information manage-
ment, respectively. He then provided a discussion of robust
strategies for mitigating operational and disruption risks for
each of the four management subdivisions. He outlined two
properties of robust strategies: efficiency, enabling a company
to manage operational risks in spite of occurrence of major
disruptions, and resiliency, enabling sustained operations
during and quick recovery after major disruptions.

Two more recent reviews attempted to cover subse-
quent works and to develop frameworks for SCRM. In
a review focusing on SCRM enablers, Kilubi and Haasis
[14] performed a review of 80 articles from 2000 to 2015,
covering definitions, research methodologies, and linkages
between SCRM and performance. They found disparities
in definitions of SCRM and proposed a definition of it as
“the identification, assessment, monitoring and evaluation
of risks and potential threats within and outside supply
chain networks with all members and entities involved.”
They also identified 12 main enablers in the literature:
visibility, flexibility, relationships, redundancy, coordination,
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postponement, multiple sourcing, collaboration, risk aware-
ness, agility, avoidance, contingency planning, risk monitoring,
and the transferring and sharing of risks. Of these, they
label six (visibility, relationships, collaboration, coordination,
multiple sourcing, and postponement and redundancy) as
preventive enablers, aiming at reducing the probability of
occurrence of risk events. Five SCRM enablers (visibility,
flexibility, multiple sourcing, redundancy, and coordination)
were labeled as responsive enablers, focusing on mitigating
adverse effects of risk events. Visibility, multiple sourcing,
and redundancy are labeled both preventive and responsive
and thus are of central importance among enablers. Lastly,
they point to incorporating insights from social network
theory as an avenue for future research. Some work on this
front had been done by Hearnshaw and Wilson [19], who
proposed that a supply chain network is efficient if it has a
scale-free structure (a short characteristic path length, a high
clustering coefficient, and a power-law degree distribution).
Here, “efficiency” is from a focal company’s point of view: its
supply chain is efficient if it can rapidly fulfill a customer’s
product order even in the absence of stockpiles.

Ho et al. [15] sought to bring together insights from a large
corpus of recent articles (224 articles between 2003 and 2013),
for the purposes of classification, identification of recent
developments, and exploration of potential research gaps. In
doing so, they proposed new definitions for supply chain
risk (“the likelihood and impact of unexpected macro and/or
micro level events or conditions that adversely influence
any part of a supply chain leading to operational, tactical,
or strategic level failures or irregularities”) and SCRM (“an
interorganisational collaborative endeavour utilizing quan-
titative and qualitative risk management methodologies to
identify, evaluate, mitigate, and monitor unexpected macro
and micro level events or conditions, which might adversely
impact any part of a supply chain”). Reviewed articles were
classified into the SCRM processes they cover: risk identifi-
cation, assessment,mitigation, andmonitoring. Identification-
focused papers focused on developing methods for identify-
ing potential risks, however without strong efforts on evalu-
ating the impacts of such risks. Assessment-oriented papers
focused on quantifying the impacts of various risk types (e.g.,
macrorisk, demand risk, manufacturing risk, supply risk,
transportation risk, financial risk, and information risk) as
well as generic risk assessment. They also include risk mod-
eling, assessments of the relationships between supply chain
risk and strategies, and evaluations of supply chain resilience.
Their classification of riskmitigation articles follows the same
schema as for risk assessment articles, using the same risk
subtypes. The articles reviewed employed various modeling
techniques, from linear programmingmodels to simulations.
In contrast, however, risk monitoring seems to have received
less attention, with fewer articles classified as pertaining to
it.

Somewhat different from the previous articles, a review
by Olson and Swenseth [20] examined supply chain risk
from a systems-theoretic perspective, involving tradeoffs
in balancing costs, risk, and, increasingly, environmental
considerations, for green supply chainmanagement, risk, and
efficiency. The authors discussed the usefulness of applying

systems thinking to the decision-making process in supply
chainmanagement, tomore effectively handle these tradeoffs.

2.2. Systemic Vulnerabilities, Disruptions, and Propagation in
Networks. Network approaches are a natural fit to the exam-
ination of multiple interconnected and interacting agents,
both as individuals and as a whole. Thus, they provide
a natural framework for considering systemic risks and
propagation of shock events.

Acemoglu et al. [11] proposed a framework for the study of
propagating microeconomic shocks via network interactions
and how these shocks translate tomacroeconomic ones.Their
framework also enables the characterization of an economy’s
macrostate performance stemming from its characteristic
network interactions, as well as identification of the key
network actors using centrality considerations.

Another treatment of propagating, or cascading, shocks,
or failures in interdependent networks wasmade by Buldyrev
et al. [12] in 2010. The authors developed a framework for
evaluating the robustness of interacting networks in the
face of cascading failures. With this, they demonstrated the
presence of a critical fraction of network nodes (agents),
upon whose failures will cause network fragmentation into
disconnected components. Contrary to the established results
for single networks (robust to failures of random nodes
but susceptible to targeted disruptions), they show that
the opposite holds true for interdependent networks (more
vulnerable to random failures than systematic disruptions).

Systemic risks in banking networks were examined by
Haldane and May [6] in a 2011 article. Drawing inspira-
tion from ecological and epidemic networks, they identify
possible mechanisms by which the initial shock caused by
a single bank’s collapse can propagate across the network.
Firstly, a bank failure potentially leads to a collapse in turn
of its creditors, causing a cascade of interbank loan-driven
failures. This, however, tends to be attenuated due to losses
being subdivided among a failing bank’s creditors. Secondly,
market liquidity shocks can generate losses in the value
of a bank’s external assets and potentially propagate the
shock. In contrast with loan-driven failures, liquidity shocks
tend to amplify with more banks failing, causing even small
liquidity shocks to contribute strongly to systemic risk. A
third mechanism, liquidity hoarding, can arise from hoarding
of liquidity in interbank funding markets, causing a decrease
in the availability of interbank loans. Liquidity hoarding can
cascade through a banking network, resulting in a shock not
subject to attenuation.

Laszka et al. [7] proposed a framework for estimating
the systematic risk in networks. In their model, the risk of a
node being compromised (or failing) may come from outside
the network system (“direct compromise”) or propagate to
it from a neighboring node (“indirect compromise”), with
direct compromise being the only propagatable risk. The
authors then calculated the network’s loss distribution (the
probability that a given fraction of the nodes in the network
becomes compromised) and the loss distribution of a subset
of nodes (similar to the former distribution but restricted
to a given subset of nodes in the network) in accordance
with the model rules. They tested the model on two large
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real-life networks (a network of common-policy groups of
IP addresses called autonomous systems participating in the
Internet’s routing system, and the network of Facebook
users), as well as scale-free models of the two networks.
As their research was made with an eye on quantifying
the insurability of the components of a network, they also
computed the safety loading, a measure of the expensiveness
in insuring a subset of the network nodes. They showed that
while predicting the risk to a network using data froma subset
is very challenging due to underestimation, it is nevertheless
still possible.

Shabnam et al. [8] proposed a methodology for the
measurement of risk in an organizational network utilizing𝑖∗ (an agent-oriented conceptual modeling framework) and
BPMN (business process modeling notation) frameworks,
combined with a simple propagation of a node’s vulnerability
measures to its dependencies. Blöchl et al. [9] examined
input-output networks (networks of flows of goods and ser-
vices between economic sectors) and defined node centrality
measures (based on random walks on the network) suitable
in identifying the key sectors in an economy. Using these
metrics, they find commonalities in the network structures
of economic networks which share geographical proximity
and similar developmental status. Chopra and Khanna [10]
also used the input-output network framework to examine
the resilience of the United States’ economy and found that
it is vulnerable due to greater interdependencies of its critical
infrastructure sectors (CIS).

Nagurney and Qiang [21] reviewed developments in
analytical tools for the assessment of network vulnerability
and robustness. In the review they showed how appropriate
network measures can capture, besides network topology,
underlying behavior, network flows, and induced costs.
Furthermore, they proposed ways to measure the synergy
associated with network integration, focusing on topological
changes in supply chain networks (such as those induced
by corporate mergers and acquisitions, as well as teams and
partnerships for disaster relief).

More recently, Garvey et al. [22] proposed a model for
the propagation of risk in a supply chain network. They
made use of the structure of the supply chain and the nodes’
individual risk profiles to construct a Bayesian Network (BN)
of the causal risk relationships in the supply chain.They then
developed risk measures based on the model and performed
simulations to verify these measures. Käki et al. [23] also
utilized the BN framework in modeling the propagation
of risks across a supply chain network but combined it
with probabilistic risk assessment (PRA) to evaluate supply
network risks. A different approach was proposed by Yildiz et
al. [24], where the reliability of a supply chain network (using
a metric that takes into account both a network component’s
intrinsic reliability and the reliability of its upstream) is used
as a target for optimization, along with calculated cost, in a
multiobjective nonlinear programming model. This model is
then solved using a novel fusion of a genetic algorithm for the
network design and linear programming for the optimization
of the network flow. A third approach is examined by Xu et
al. [25], who modeled the propagation of losses in a three-
tier supply chain where information sharing and multiple

sourcing for a focal company are present and the resulting
value-at-risk (VaR).

3. Materials and Methods

3.1. Network Loss Propagation. Let us consider G, a directed,
acyclic network (a directed, acyclic graph, DAG) of size 𝑁.
This is a representation of, for example, the flow of materials
in a supply chain network from the raw materials, through
intermediate processed materials, and down to the finished
product.We assume that there is a single type of flow through
the network; a treatment of multiple flow types is beyond the
scope of this work.

Furthermore, implicit in the acyclic formulation of a
supply chain network is the assumption that the processing
of a material at a given stage would not require material from
downstream inputs, that is, from further processed stages of
the material produced in the same supply network. This is
a reasonable assumption for a wide variety of materials and
products. The acyclic formulation also simplifies some of the
mathematical steps in the formulation of the impactmeasure,
as discussed below.

Given two nodes, 𝑖 and 𝑗, we call 𝑖 a supplier of 𝑗 and𝑗 a customer of 𝑖, if a path from 𝑖 to 𝑗 exists. Node 𝑖 is a
direct supplier of 𝑗 if the path is of (unweighted) length 1
(i.e., if a directed edge from 𝑖 to 𝑗 exists) and an indirect
supplier otherwise. We use analogous definitions for direct
and indirect customers.

The weight of the edge between any two adjacent nodes 𝑖
and 𝑗 is normalized such that the sum of all weights incident
on 𝑗 equals 1. Equivalently, if W is the (weighted) adjacency
matrix of G, then we require that ∑𝑖𝑊𝑖𝑗 = 1. We can
think of 𝑊𝑖𝑗 as the fraction of 𝑗’s input provided by a direct
supplier 𝑖. Furthermore, as G is acyclic, loops are excluded
and downstream inputs are nonexistent. These include self-
loops, edges which lead from a node to itself (𝑊𝑖𝑖 = 0). This
implies that nodes do not produce materials which are their
own inputs but strictly receive them fromupstream suppliers.

W, the weighted adjacency matrix ofG, has an important
property which we will use in subsequent sections. In G, a
path of length 𝐿 exists between two different nodes 𝑖 and 𝑗 if
and only if [W𝐿]𝑖𝑗, the 𝑖𝑗th element of the 𝐿th power of W,
is nonzero [26, pp. 136-137]. To see this, let us explicitly write
out the sums for 𝐿 = 2 and 𝐿 = 3, as well as the general case:

[W2]
𝑖𝑗
= ∑
𝑘

𝑊𝑖𝑘𝑊𝑘𝑗, (1)

[W3]
𝑖𝑗
= ∑
𝑘

∑
𝑚

𝑊𝑖𝑘𝑊𝑘𝑚𝑊𝑚𝑗 (2)

[W𝐿]
𝑖𝑗
= ∑
𝑘

⋅ ⋅ ⋅∑
𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿−1

𝑊𝑖𝑘 ⋅ ⋅ ⋅𝑊𝑚𝑗. (3)

We see that for a path of length 2 to exist between 𝑖 and𝑗 (i.e., two directed edges exist such that one goes from 𝑖 to
an intermediate node and the other from the intermediate
node to 𝑗), by (1), there must be at least one node 𝑘 for which
both𝑊𝑖𝑘 and𝑊𝑘𝑗 are nonzero, as otherwise zero indicates the
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Figure 1: Schematic representation of a supply chain network as a directed, acyclic graph. Node 𝑖 represents where an initial loss 𝑙 originates.
The loss may propagate downstream through intervening nodes (omitted) to node 𝑗. Also shown are three nodes representing immediate
suppliers of 𝑗.

absence of a corresponding edge. Similarly an 𝐿 = 3 path
exists between 𝑖 and 𝑗 if, by (2), at least one pair of nodes 𝑘
and 𝑚, different from 𝑖, 𝑗, and each other, can be found such
that the three factors on the right hand side are all nonzero.
For the general case of a path with length 𝐿 between 𝑖 and 𝑗,
(3) implies that 𝐿 − 1 other distinct intermediate nodes must
be present. The cases where any node index equals another
correspond to self-loops, which are assumed to be absent and
thus do not contribute to the sum. We further observe that
the right hand side of (3) requires exactly 𝐿 nonzero factors,
each corresponding to a directed edge along the path from 𝑖
to 𝑗.

Let us consider a scenario where node 𝑖 (the originating
node) incurs a production loss. Depending on the properties
of 𝑖 and intervening nodes, this loss might propagate through
the network and reach node 𝑗 downstream, resulting in a
potential loss at the latter node. In this context, we take 𝑙 ∈[0, 1] as the production loss fraction sustained by 𝑖 due to the
disruption, 𝑞(𝑖)𝑗 (𝑙) ∈ [0, 1] as the potential loss fraction of 𝑗
downstream from 𝑖 which can be sustained from a loss of 𝑙,
and 𝑟(𝑖)𝑗 (𝑙) as the actual loss fraction at 𝑗 due to 𝑖.

Each node (including 𝑖 and 𝑗) also has a resilience
threshold, 𝑏 ∈ [0, 1], which represents the extent to which
a node can compensate for loss in its total inputs. A node
with 𝑏 = 0.5 can compensate for up to a 50% loss in its
input without its total output changing. A resilience 𝑏 of 1
indicates that the node can completely absorb any potential
loss propagated from 𝑖, while a resilience of 0 means that any
loss cannot be absorbed, and hence the actual loss equals the
potential loss. This can represent the aggregation of the node
firm’s mechanisms in place in-house to compensate for input
loss (such as safety stocks), which will allow it to partially or
completely compensate for production losses upstream.

The loss 𝑙 may be propagated through or attenuated by
intervening nodes, depending on their individual resilience
thresholds. Let the index 𝑘 denote the immediate suppliers
of node 𝑗 (𝑗’s upstream neighbors) and 𝑏𝑗 be 𝑗’s resilience, as
previously defined. Then 𝑞(𝑖)𝑗 (𝑙) is the sum of the actual loss
fractions of 𝑗’s immediate suppliers, 𝑟(𝑖)

𝑘
(𝑙), multiplied by their

respective contributions to 𝑗’s input,𝑊𝑘𝑗. Consequently, 𝑟(𝑖)𝑗 (𝑙)
is either zero (if 𝑞(𝑖)𝑗 (𝑙) < 𝑏𝑗) or difference 𝑞(𝑖)𝑗 (𝑙)−𝑏𝑗 otherwise.
Similarly, the potential and actual losses of 𝑗’s immediate
suppliers 𝑘, 𝑞(𝑖)

𝑘
(𝑙), and 𝑟(𝑖)

𝑘
(𝑙) are defined identically for each

of their own immediate suppliers, and so on. Thus, we can
recursively define 𝑞(𝑖)𝑗 (𝑙) and 𝑟(𝑖)𝑗 (𝑙) by the following:

𝑞(𝑖)𝑗 (𝑙) = ∑
𝑘

𝑟(𝑖)𝑘 (𝑙)𝑊𝑘𝑗, (4)

𝑟(𝑖)𝑗 (𝑙) = (𝑞(𝑖)𝑗 (𝑙) − 𝑏𝑗)+ , (5)

where the summation in (4) is taken over 𝑗’s immediate
suppliers 𝑘 and (⋅ ⋅ ⋅ )+ is the ramp function which stands for
taking the enclosed argument to be zero if it is negative. 𝑞(𝑖)𝑗
and 𝑟(𝑖)𝑗 can be interpreted as the input and output losses,
respectively, of node 𝑗 due to 𝑖. Taken together, (4) and (5)
recursively define the loss sustained by a node 𝑗 by those of
its suppliers and ultimately by the loss at 𝑖.

Consequently, the terminating condition (at the starting
node 𝑖) is given by

𝑞(𝑖)𝑖 (𝑙) = 𝑙. (6)

Figure 1 shows a schematic of a generic network G and the
downstream propagation of loss 𝑙 from the originating node.

3.2. Breakthrough Scenario. It is difficult to obtain analytical,
closed-form solutions to (4) and (5) under general condi-
tions, due to the difficulty in obtaining expressions for the
nested use of the ramp function the two equations imply.
However, we can obtain a solution for a “breakthrough
case” scenario. From the point of view of node 𝑗, the loss 𝑙
originating from an upstream node 𝑗 breaks through if it is
strong enough not to be reduced to zero by the resilience of
intervening nodes between 𝑖 and 𝑗. The latter then receives
some fraction of 𝑙, which subject to its resilience 𝑏𝑗 may or
may not become a real loss 𝑟(𝑖)𝑗 . Aweaker 𝑙while not achieving
breakthrough to 𝑗, might still be able to do so to one or more
of its suppliers upstream.
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Figure 2: (a) Sample network and (b) comparisons of exact and approximate expressions for the loss sustained by node 3 due to a loss at
node 1, 𝑟13(𝑙), against the loss sustained by node 1, 𝑙. The network follows the schema and variables shown as in Figure 1.

This formulation may be useful, as it is often in the
interest of a company to determine the potential loss due to
a disruption event at a specific supplier upstream, given that
supplier’s own risk history due to natural (such as earthquakes
or cyclones) or anthropogenic causes (such as political or
economic instability).

To obtain an analytical solution in the breakthrough
regime, we consider themaximum loss, 𝑟∗(𝑖)𝑗 (𝑙), that 𝑗 can take
given a fixed value of 𝑙.This occurs when the initial loss 𝑙 at 𝑖 is
strong enough for a portion of it to reach 𝑗 via the intervening
nodes, without getting canceled out by any individual node’s
resilience threshold. The loss function is thus reduced to a
simple difference between 𝑞(𝑖)𝑗 (4) and its own resilience 𝑏𝑗.
Performing the recursion up to the terminating condition, we
can reduce (5) to the following form:

𝑟∗(𝑖)𝑗 (𝑙) = V(𝑖)𝑗 𝑙 − 𝑏̃(𝑖)𝑗 . (7)

The breakthrough regime is given by 𝑟∗(𝑖)𝑗 ≥ 0. Thus, we
only need to apply the ramp function to 𝑟∗(𝑖)𝑗 to obtain an
expression for 𝑟(𝑖)𝑗 :

𝑟(𝑖)𝑗 (𝑙) = (𝑟∗(𝑖)𝑗 (𝑙))+ = (V(𝑖)𝑗 𝑙 − 𝑏̃(𝑖)𝑗 )+ . (8)

The first constant, V(𝑖)𝑗 , can be written in terms of the
elements of the powers of the adjacency matrix [W]:

V(𝑖)𝑗 = 𝑁−1∑
𝐿=1

[W𝐿]
𝑖𝑗
, (9)

where we make use of the fact that for a DAG, [W𝐿]𝑖𝑗 is the
sum of the products of the weights along each (unweighted)
path of length 𝐿 leading from 𝑖 to 𝑗 (and zero if no such paths
are present).G being aDAGalso imposes a naturalmaximum

path length of𝑁−1.Though the actualmaximumpath length
from 𝑖 to 𝑗may be less than𝑁− 1, [W𝐿]𝑖𝑗 is guaranteed to be
zero for path length 𝐿 above it. V(𝑖)𝑗 represents the fraction of
inputs to 𝑗 which ultimately originate from 𝑖.

For the second constant 𝑏̃(𝑖)𝑗 , let S𝑖𝑗 be the set of all nodes
which lie on any path from 𝑖 to 𝑗, inclusive of 𝑖 but not 𝑗. This
can be thought of as the set of all suppliers (direct or indirect)
of 𝑗 which takes some input from 𝑖. Then 𝑏̃(𝑖)𝑗 can be written
as

𝑏̃(𝑖)𝑗 = 𝑏𝑗 + ∑
𝑚∈S𝑖𝑗

𝑁−1∑
𝐿=1

𝑏𝑚 [W𝐿]𝑚𝑗 , (10)

where 𝑏𝑗 is 𝑗’s resilience threshold and the second term is
the average of those of 𝑗’s suppliers weighted by their frac-
tional contributions to 𝑗’s input. 𝑏̃(𝑖)𝑗 represents the effective
resilience threshold of the subnetwork of G starting from 𝑖
and ending at 𝑗.

We compare the results obtained from (8) to exact cal-
culations obtained by explicitly iterating (4) and (5) with (6)
as the terminating condition, on a specific network. Figure 2
shows the network, along with results for the exact and
approximate calculations for 𝑟(1)3 (𝑙), the loss sustained bynode
3 due to a loss at node 1 (which we take to be the originating
node for the loss), as a function of the loss fraction at node
1, 𝑙. The results are identical, showing that the mathematical
simplifications stemming from the breakthrough case do not
entail loss of accuracy for the single-point-of-origin disrup-
tions we consider. The derivation of an analytical expression
for the impacts of simultaneous, multiple-originating-node
disruptions upstream of 𝑗 is beyond the scope of this paper.

3.3. Communicability-Based Impact Measure. In this section,
we review the concept of communicability in the network
context and apply it to our objective of formulating ameasure
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of impact that disruption losses at a node have on another
node. Introduced in [16], the communicability between two
nodes 𝑖 and 𝑗 in a network with unweighted edges is a
generalization of the concept of the shortest path between the
two and is given by

[exp (W)]𝑖𝑗 =
+∞∑
𝑚=0

[W𝐿]
𝑖𝑗𝐿! , (11)

where W is the adjacency matrix of the network. It is a
weighted sum of the number of walks of length 𝐿 from𝑖 to 𝑗, where the longer walks are weighted by 1/𝐿!, and
can be interpreted as the ease with which information can
be transported from 𝑖 to 𝑗. A generalization to networks
with weighted edges was described in [27]. A further gen-
eralization, f -communicability, was introduced in [28]. It
allows walk weight factors other than 1/𝐿! to be used, with
convergence of the series representation of the function 𝑓
being the only requirement. In this paper we use a weight
factor of 1/𝐿; the corresponding𝑓-communicabilitymeasure
becomes

+∞∑
𝐿=1

[W𝐿]
𝑖𝑗𝐿 = − [ln (I −W)]𝑖𝑗 , (12)

where I is the identitymatrix andW is the weighed adjacency
matrix of the network as defined above. Due to the network
being directed and acyclic, themaximumpath length is finite,
and thus the higher-order 𝐿 terms in (12) contribute nothing
to the sum. Convergence is assured due to each term [W𝐿]𝑖𝑗
being less than unity. Furthermore, for any 𝑖 and 𝑗, [W𝐿]𝑖𝑗 will
only be nonzero if at least one path of length 𝐿 exists between
the two.We call thismeasure the logarithmic communicability
from 𝑖 to 𝑗. Other communicability measures can be used in
place of the logarithmic communicability, such as the original
(exponential) one, or any function which can be represented
as a convergent infinite series. In this work, however, we use
the logarithmic form, due to its result, (12), containing the
matrix Laplacian ofW, (I−W), which can easily be computed
for an arbitrary adjacency matrix. We also note that the right
hand side of (12) is positive due to the elements of the matrix
logarithm being negative.

A suitable measure of the impact of an initial loss 𝑙 of 𝑖 at𝑗, I(𝑖)𝑗 (𝑙), would take into account both the communicability
between the two and the actual loss incurred at 𝑗. Combining
(8) and (12) yields the following:

I
(𝑖)
𝑗 (𝑙) = − [ln (I −W)]𝑖𝑗 𝑟(𝑖)𝑗 (𝑙)

= − [ln (I −W)]𝑖𝑗 (V(𝑖)𝑗 𝑙 − 𝑏̃(𝑖)𝑗 )+
(13)

with support given by [0, −[ln(I −W)]𝑖𝑗(V(𝑖)𝑗 − 𝑏̃(𝑖)𝑗 )].
3.4. Distribution andMoments of the Impact Measure. Deter-
mining the distribution and moments of the impact measure
defined in (13) necessitates a choice of density function for
the loss, 𝑙. As it represents a percentage loss in the output of

a given node 𝑖, it must be within the interval [0, 1]. The beta
distribution𝐵𝛼𝛽(𝑙) [29] is a suitable choice for its distribution,
as this distribution has precisely the required support of [0, 1].
Furthermore, any distribution defined on this interval can
be represented as a weighted sum of beta distributions. With𝐵(𝛼, 𝛽) denoting the beta function, the density function of 𝑙
is then given by

𝐵𝛼𝛽 (𝑙) = 𝑙𝛼−1 (1 − 𝑙)𝛽−1
𝐵 (𝛼, 𝛽) (14)

for 𝛼 and 𝛽 both being positive.The two are the shape param-
eters of the beta distribution, controlling the characteristics
of the latter. The distribution’s concavity is determined by the
values of 𝛼 and 𝛽: if at least one of them is less than 1.0, the
resulting loss distribution is convex, with one or two maxima
appearing at either end of [0, 1]. If both 𝛼 and 𝛽 exceed 1.0,
the distribution is concave with a singlemaximum. 𝛼 = 𝛽 = 1
corresponds to a uniform loss distribution.

Furthermore, the two control the distribution’s skewness:
if 𝛼 > 𝛽, the distribution is left-tailed, and the converse also
holds true. 𝛼 = 𝛽 results in a symmetric distribution. This
implies that, for a beta-modeled loss distribution, 𝛽 > 𝛼
corresponds to a lower probability of sustaining large losses.
Finally, 𝛼 and 𝛽 are related to 𝑙’s mean, 𝑙, and standard
deviation, 𝜎𝑙, which facilitates analysis of empirical data.

The corresponding distribution of the impact measure,𝑃[I(𝑖)𝑗 ], can be obtained from (14) by a change of variables
and is given by

𝑃 [I(𝑖)𝑗 (𝑙)] = 1
−V(𝑖)𝑗 [ln (I −W)]𝑖𝑗
⋅ 𝐵𝛼𝛽 [[

𝑙̃(𝑖)𝑗 + I
(𝑖)
𝑗

−V(𝑖)𝑗 [ln (I −W)]𝑖𝑗]]
.

(15)

Equation (15) is valid in the breakthrough regime given
by 𝑙 ≥ 𝑙̃(𝑖)𝑗 = 𝑏̃(𝑖)𝑗 /V(𝑖)𝑗 .

Denoting the regularized incomplete beta function with
parameter 𝑥 by 𝐼𝑥(𝛼, 𝛽) and making use of the identities

𝐵 (𝛼 + 𝑘, 𝛽) = 𝐵 (𝛼, 𝛽) 𝑘−1∏
𝑚=0

𝛼 + 𝑚𝛼 + 𝛽 + 𝑚 = 𝑙𝑘𝐵 (𝛼, 𝛽) , (16)

𝐼𝑥 (𝛼 + 𝑘, 𝛽) = 𝐼𝑥 (𝛼, 𝛽) −
𝑘−1∑
𝑚=0

𝑥𝛼+𝑚 (1 − 𝑥)𝛽
𝑙𝑚 (𝛼 + 𝑚) 𝐵 (𝛼, 𝛽) (17)

for integer 𝑘, it can be shown that, in the breakthrough
regime, the 𝑛th moment of the impact distribution is given
by

(I(𝑖)𝑗 )𝑛

= [V(𝑖)𝑗 [ln (I −W)]𝑖𝑗]𝑛
𝑛∑
𝑘=0

(𝑛𝑘) (−1)𝑘 (𝑙̃(𝑖)𝑗 )
𝑛−𝑘 𝑙𝑘

× [
[
1 + 𝑘−1∑
𝑚=0

(𝑙̃(𝑖)𝑗 )𝛼+𝑚 (1 − 𝑙̃(𝑖)𝑗 )𝛽
(𝛼 + 𝑚) 𝑙𝑚𝐵 (𝛼, 𝛽) − 𝐼𝑙(𝑖)𝑗 (𝛼, 𝛽)]]

(18)
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and is zero otherwise. Here, 𝑙𝑘 is the 𝑘th moment of the beta
distribution 𝐵𝛼𝛽(𝑙), as given by (16).

The average impact,I(𝑖)𝑗 , is given by

I
(𝑖)
𝑗 = V(𝑖)𝑗 [ln (I −W)]𝑖𝑗{{{

𝑙̃(𝑖)𝑗 [1 − 𝐼𝑙(𝑖)𝑗 (𝛼, 𝛽)]

− 𝑙 [
[
1 + (𝑙̃(𝑖)𝑗 )𝛼 (1 − 𝑙̃(𝑖)𝑗 )𝛽𝛼𝐵 (𝛼, 𝛽) − 𝐼𝑙(𝑖)𝑗 (𝛼, 𝛽)]]

}}}
.

(19)

In the following two sections, we obtain results for three
particular network topologies. First, we examine a perfect𝑘-ary tree, where each customer node has exactly 𝑘 direct
suppliers. For this network,we are able to obtain results which
are expressed in terms of the branching ratio 𝑘.

Lastly, we compare results from two networks: one with a
random Erdős-Rényi and the other with a scale-free network
topology, with a power-law degree distribution [30]. The
scale-free network structure has previously been hypothe-
sized to be a characteristic of a robust supply chain network
[19].

4. Results and Discussion

4.1. Impact for a Perfect 𝑘-Ary Tree. We consider the impact a
supplier node has on a customer in a network with a perfect𝑘-ary tree topology with height ℎ. In such a topology, all
nodes have an indegree 𝑘 (except for the leaf nodes, which
have indegree zero) and an outdegree one, and the leaf nodes
are at a distance ℎ away from the root node. Furthermore,
we assume that for any node 𝑗, all its immediate suppliers{𝑚1, . . . , 𝑚𝑘} contribute equally to the input.

In this network, a node 𝑖 can only have nonzero impact
on 𝑗 only if 𝑗 is downstream of 𝑖. In addition, the 𝑖𝑗th element
of the resulting weighted adjacency matrix,𝑊𝑖𝑗, equals 1/𝑘 if𝑖 ∈ {𝑚1, . . . , 𝑚𝑘} and zero otherwise. Letting 𝐿 𝑖𝑗 = ℎ𝑖 − ℎ𝑗 be
the unweighted distance between nodes 𝑖 and 𝑗 and assuming
that the nodes have identical resilience 𝑏𝑗 = 𝑏 for all 𝑗, we can
calculate V(𝑖)𝑗 , 𝑏̃(𝑖)𝑗 , and 𝑙̃(𝑖)𝑗 :

V(𝑖)𝑗 = 1
𝑘𝐿 𝑖𝑗 , (20)

𝑏̃(𝑖)𝑗 = 𝑏 𝐿 𝑖𝑗∑
𝑚=0

1𝑘𝑚 = 𝑏1 − 𝑘−(𝐿 𝑖𝑗+1)1 − 𝑘−1 , (21)

𝑙̃(𝑖)𝑗 = 𝑏1 − 𝑘𝐿 𝑖𝑗+11 − 𝑘 . (22)

As the value of 𝑙̃(𝑖)𝑗 must lie between zero and one, (22)
imposes an upper bound equaling (1 − 𝑘)(1 − 𝑘(𝐿 𝑖𝑗+1))−1 for
the propagation of loss from node 𝑖 to node 𝑗. Alternatively,
the limit also defines the minimum resilience any node 𝑗 on
the networkmust have, to prevent losses incurred by supplier𝑖 from having an effect on its own output.

Let i(2,1)
𝛼𝛽

= I
(𝑖)
𝑗

(2)/I(𝑖)𝑗 (1) be the ratio between the average
impact on a node by a supplier for 𝐿 𝑖𝑗 = 2 and that for 𝐿 𝑖𝑗 = 1.
This is equivalent to the impact ratio between a node’s direct
supplier’s supplier and that direct supplier. We note the well-
known result (e.g., [28]) that, for any network represented by
a weighted adjacency matrix W, the 𝑖𝑗th element of its 𝑚th
power, [W𝑚]𝑖𝑗, is equal to the sum of the products of the
weights along each path leading from 𝑖 to 𝑗. To put it another
way, [W𝐿 𝑖𝑗]𝑖𝑗 is zero if no path of distance 𝐿 𝑖𝑗 from 𝑖 to 𝑗 exists.
Aswe are considering a perfect 𝑘-ary tree configuration, there
exists at most only one downstream path of any distance
from a node 𝑖 to another node 𝑗. The weight of each edge
along the path is exactly 1/𝑘; thus [W𝐿 𝑖𝑗]𝑖𝑗 = (𝑘)−𝐿 𝑖𝑗 . By
(12), the 𝑖𝑗th element of the logarithmic communicability−[ln(I − W)]𝑖𝑗 becomes 𝐿−1𝑖𝑗 𝑘−𝐿 𝑖𝑗 : 1/𝑘 for 𝐿 𝑖𝑗 = 1 and 1/2𝑘2
for 𝐿 𝑖𝑗 = 2. Similarly, the effective resilience threshold 𝑏̃(𝑖)𝑗
and the effective loss threshold 𝑙̃(𝑖)𝑗 for the two cases become

𝑏̃(𝑖)(1)𝑗 = 𝑏1 − 𝑘−21 − 𝑘−1 ,
𝑏̃(𝑖)(2)𝑗 = 𝑏1 − 𝑘−31 − 𝑘−1 ,
𝑙̃(𝑖)(1)𝑗 = 𝑏1 − 𝑘21 − 𝑘 ,
𝑙̃(𝑖)(2)𝑗 = 𝑏1 − 𝑘31 − 𝑘 .

(23)

Substituting the above equations into (19) yields the
following expression for the ratio i𝛼𝛽:

i
(2,1)
𝛼𝛽 = 12𝑘2

𝑙̃(𝑖)(2)𝑗 (1 − 𝐼𝑙(𝑖)(2)𝑗 (𝛼, 𝛽)) − (𝛼/ (𝛼 + 𝛽)) (1 + (𝑙̃(𝑖)(2)𝑗 )𝛼 (1 − 𝑙̃(𝑖)(2)𝑗 )𝛽 /𝛼𝐵 (𝛼, 𝛽) − 𝐼𝑙(𝑖)(2)𝑗 (𝛼, 𝛽))
𝑙̃(𝑖)(1)𝑗 (1 − 𝐼𝑙(𝑖)(1)𝑗 (𝛼, 𝛽)) − (𝛼/ (𝛼 + 𝛽)) (1 + (𝑙̃(𝑖)(1)𝑗 )𝛼 (1 − 𝑙̃(𝑖)(1)𝑗 )𝛽 /𝛼𝐵 (𝛼, 𝛽) − 𝐼𝑙(𝑖)(1)𝑗 (𝛼, 𝛽)) . (24)

With the restriction given by (22) inmind,we set the node
resilience 𝑏 to be a fraction of themaximum allowed value for
𝐿 𝑖𝑗 = 2: 𝑏 = 𝛾(1 − 𝑘)(1 − 𝑘3)−1, where 𝛾 ∈ [0, 1]; with this 𝑙̃(2)𝑖𝑗
reduces to 𝛾 and 𝑙̃(𝑖)(1)𝑗 to 𝛾((1 − 𝑘2)/(1 − 𝑘3)) ≤ 𝛾.

Using similar argumentswe obtain expressions for impact
ratios from suppliers of distance other than 1 or 2 from a given
node in a 𝑘-ary tree. In this work we consider the ratios for𝐿 𝑖𝑗 = {2, 1}, 𝐿 𝑖𝑗 = {3, 1}, and 𝐿 𝑖𝑗 = {4, 1}. To comply with the
restriction given by (22), we define 𝛾 to be the ratio between 𝑏
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and its maximum allowed value for the latter two cases, such
that 𝑙̃(𝑖)(3)𝑗 and 𝑙̃(𝑖)(4)𝑗 both reduce to 𝛾. As the impact measures
depend on 𝛼 and 𝛽, the parameters of the beta distribution,
we plot how the ratios vary with both. Figure 3 shows the
results for the three ratios previously mentioned.

Figure 3(a) shows that i(2,1), the impact ratio on a given
customer by its supplier’s supplier, as opposed to a direct
supplier is substantial across most combinations of 𝛼 and 𝛽,
exceeding 0.45 when the tree is a binary tree (𝑘 = 2) and
the nodes have low resilience (𝛾 = 0.1); the exception is the
region very near the 𝛽 axis, where 𝛼 is very small compared
to 𝛽, corresponding to a beta distribution which is strictly
decreasing from 𝑙 = 0 to 𝑙 = 1, in other words, suppliers
with very low-risk of losing production. Here the ratio drops
slightly, to approximately 0.41. i(2,1) decreases both with
increasing the branching ratio 𝑘 and the node resilience
fraction 𝛾, with the decreases being more prominent in the𝛼 < 𝛽 zone. The corresponding loss distribution peaks at𝑙 < 0.5, and the suppliers are more likely to sustain low to
moderate losses in production. Even for a binary tree (𝑘 = 2)
and high node resilience (𝛾 = 0.9), the impact ratio reaches
0.4 in the 𝛼 > 𝛽 region, corresponding to suppliers likely to
sustain moderate to high production losses. We see similar
trends for 𝑘 = 3 and 𝑘 = 4, except that the ratio values
decrease, due to the fact that an increasing 𝑘 increases the
number of direct suppliers a customer has and thus decreases
the “influence” any single direct supplier has on it.

Thus for i(2,1), below the resilience threshold (where any
upstream losses are not propagated downstream), decreases
in 𝛾 serve to minimize variations in the impact ratio with𝛼 and 𝛽; that is, such decreases minimize the influence of
the local conditions of the suppliers. Since at the same time,
decreases in 𝛾 also increase the ratio regardless of𝛼 and𝛽, this
implies that the impact of a production loss at direct supplier’s
supplier (called a Tier 2 supplier in the supply chain field) on
a customer will be consistently high in relation to that of a
direct supplier (a Tier 1 supplier), regardless of whether the
actual chance of that loss happening is low (𝛼 < 𝛽) or high
(𝛼 > 𝛽). Increasing 𝛾 (while keeping below the resilience
threshold of 𝛾 = 1) decreases i(2,1), with further decreases
when 𝛼 is much smaller than 𝛽.

Figures 3(b) and 3(c), respectively, show the impact ratios
of Tier 3 and Tier 4 suppliers to Tier 1 suppliers. We see that
the impact ratios are much smaller and are only appreciable
for low branching ratio 𝑘 and resilience fraction 𝛾, with the
maximum values reaching up to 0.24 for i(3,1) and 0.11 for
i(4,1). As with i(2,1), increasing 𝑘 brings reductions in the ratio
values, while increasing 𝛾 corresponds to greater reductions
when 𝛼 is less than 𝛽. Due to the distances of Tier 3 and Tier
4 suppliers from the customer, any production losses they
incur either fail to propagate or become attenuated as they
propagate to the customer.We see that the attenuation is large
for impacts originating from Tier 4 suppliers: i(4,1) does not
exceed 0.3 when 𝑘 = 3, 4; even with 𝑘 = 2, the ratio does not
exceed 0.05 when 𝛾 = 0.5 and is practically zero regardless of𝛼 and 𝛽when 𝛾 = 0.9.Thus, Tier 4 suppliers (and presumably
those of higher tiers) only have noticeable impact when 𝑘

is minimized (meaning less alternative suppliers for each
node in the network) and 𝛾 is also low (implying that the
nodes have less capability to successfully absorb propagating
impacts). Meanwhile the loss profile of the supplier (as given
by the loss distribution parameters 𝛼 and 𝛽) serves as an
additional determinant of whether the impact is high (𝛼 > 𝛽)
or low (𝛼 < 𝛽), each corresponding to higher and lower risk of
sustaining high losses in production (𝑙 > 0.5). Tier 3 suppliers
have intermediate impact between those of Tier 2 and Tier 4
ones, with the impact more appreciable for lower 𝑘 and 𝛾.

While the supply chain surveys previously mentioned
in this work [3, 4] have data on the distribution of the
cumulative losses the surveyed firms suffer in a year as well as
data on distance between the originating supplier responsible
for the disruption and the surveyed firm, the information
reported by the respondents is incomplete, and there is
a lack of information from a portion of the respondents.
Nevertheless, 2017 survey data on the proportion of firms
which reported predominant disruptions from Tier 1, Tier
2, and Tier 3 and upstream suppliers at 44%, 24%, and
10% supplier disruptions, respectively, may be suggestive.
Disruptions from Tier 1 suppliers have a higher impact
on focal companies compared to those from Tier 2 and
below. With comparison with Figure 3(a), the ratios between
the different tiers suggest the prevalence of a supply chain
network structure with low redundancy and low effective
resilience. However, more data are needed; 22% of companies
surveyed did not trace the sources of disruption that year,
and the survey did not ask respondents to provide disruption
loss data segregated by supplier tier, suggesting an avenue for
further empirical research.

4.2. Impact for Two Networks. We also consider the impact
on downstream nodes in two networks: one a scale-free
DAG generated by the algorithm proposed in [31] and the
other an Erdős-Rényi DAG [32], each with 𝑁 = 250 nodes.
The two networks were generated such that their average
indegrees (the average number of Tier 1 suppliers per node)
are close to each other. Each node was given a resilience
threshold 𝑏𝑖 drawn uniformly from the interval [0.01, 0.03],
while the (unnormalized) weight between adjacent nodes,
which is taken to be how much a node supplies to a direct
customer, was taken from a uniform distribution between100.0 and 900.0. Unlike the 𝑘-ary tree case, the nodes in the
generated network are not identical. Figure 4 shows sample
distributions for 𝑙 at node 𝑖 and the resulting impact two
nodes downstream (𝑗) in both networks, following (15).

In our sample distributions, we see zero impact on 𝑗 from𝑖 in the scale-free network throughout the range of possible
values of the initial loss 𝑙, which indicates that any loss does
not result in an actual loss downstream. In the E-R network’s
sample distribution, breakthrough occurs at a low threshold
(𝑙 = 0.23).

Due to the nodes and edges not being identical even
within each network, the results we obtain from the sample
distributions, while interesting, are not sufficient. However,
distributions we obtained across supplier nodes (i.e., all Tier
1, Tier 2, or Tier 3 suppliers) in each network of the average
impact given by (19) bear them out: the per-tier distributions
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Figure 3: Continued.
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Figure 3: Impact ratios for varying supplier distance, 𝐿 𝑖𝑗, beta distribution parameters 𝛼 and 𝛽, branching ratio 𝑘, and resilience fraction 𝛾.
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Figure 4: Initial loss and impact distributions for two directed
acyclic graphs: a scale-free network (“scale-free”) and an Erdős-
Rényi network (“E-R”), in which the loss 𝑙 originates at node 𝑖 two
nodes upstream of node 𝑗 and obeys a beta distribution (𝛼 = 5.0,𝛽 = 2.0).

in the E-R network are wider than their counterparts in the
scale-free network and thus have higher median impact for
the same initial loss distribution (see Figure 5).

The results support previous arguments for the robust-
ness of supply chain networks with a scale-free network
topology [19]; Figure 5 shows that the two networks, which
are otherwise very similar in size, average indegree, node
and edge characteristics, and loss profiles, nevertheless have
different behaviors, with the scale-free network featuring
smaller impacts from suppliers regardless of tier.

5. Conclusion

In this work, we have formulated a network-based measure
of the impact of a disruption at one part of a supply network
on the production of another part. We did this by tracking
the propagation of an initial production loss sustained by
a node downstream to another node, across intervening
nodes. The measure takes into account the risk profile of the
originating node, the structure of the supply network, and the
resilience capabilities of the components of the network. By
an analogous process we also derived the loss sustained by
any node in the network resulting from an upstream initial
loss which has propagated downstream.

The results of this study offer several insights into the
relationship between the impact of disruption losses a sup-
plier has on a downstream customer, the distance between the
two within the network, and the degree of resilience to loss
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Figure 5: Histograms of the average impact I(𝑖)𝑗 , across all possible
node pairs (𝑖, 𝑗) in which 𝑖 is a Tier 1/Tier 2/Tier 3 supplier of 𝑗 and
the initial loss 𝑙 is beta-distributed (𝛼 = 5.0, 𝛽 = 2.0). Medians: Tier
1: 0.0002 (scale-free), 0.0817 (E-R); Tier 2: 0.0 (scale-free), 0.0056
(E-R); Tier 3: 0.0 (scale-free), 0.0004 (E-R).

intervening nodes have. Distance, or equivalently the pres-
ence of intervening nodes between supplier and customer,
reduces the production loss the customer can sustain if the
intervening nodes have some degree of resilience. This loss
can be further reduced and the influence of the supplier’s local
loss profile can be attenuated, if the intervening nodes have
higher resilience from potential losses. This is desirable from
a customer-oriented point of view, with propagated losses
both minimal and independent of suppliers’ circumstances.
On the other extreme, with minimal resilience and minimal
number of intervening nodes, the losses a customer can
sustain are large.The relative impacts of suppliers of different
distances to a customer are also determined by the structure

of the subnetwork involving the suppliers and the customer,
which controls both the relative contribution a supplier has
on the customer and the effective resilience of the part of the
network lying between the two.

The overall structure of the supply chain network also
plays a role in determining whether an upstream loss is able
to break through to downstream customers; our results show
the robustness of a scale-free structured network compared
to a random network of similar characteristics. The average
impacts from upstream supplier losses in such networks are
lower than their random-network counterparts.

The analytic model proposed in this work can be applied
to measure the robustness of a focal company’s supply chain
network, given the disruption profile of supplier nodes and
the network structure of the entire supply chain. This is by
identifying the suppliers that could potentially have the most
impact upon sustaining disruption losses and determining
changes in impact with different network structures, or alter-
native supplier firms with different risk profiles. Thus, this
work clearly illustrates the need for supply chain managers
to build risk profiles of each component of a supply chain
network and inform relevant components in developing
corresponding mitigation strategies for failure events.

The proposed method enables a focal company to esti-
mate the impact of losses from different supplier tiers.
Furthermore, this work suggests the significance of including
in future surveys the distribution of supplier tiers for a
particular amount of loss sustained. Knowledge of this allows
one to obtain the contributions of each supplier tier to one’s
own loss profile.
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