
A communication algorithm for teamwork in
multi-agent environments

E. van Baars & R. Verbrugge

Ordina ICT B.V., Europaweg 31-33, 9723 AS Groningen, The Netherlands,
e-mail egon@vanbaars.com &
Department of Artificial Intelligence, University of Groningen,
P.O. Box 407, 9700 AK Groningen, The Netherlands,
email L.C.Verbrugge@rug.nl

ABSTRACT. Using a knowledge-based approach, we derive a protocol, MACOM1, for the se-
quence transmission problem from one agent to a group of agents. The protocol is correct
for communication media where deletion and reordering errors may occur. Furthermore, it
is shown that after k rounds the agents in the group attain depth k general knowledge about
the members of the group and the values of the messages. Then, we adjust this algorithm for
multi-agent communication for the process of teamwork. MACOM1 solves the sequence trans-
mission problem from one agent to a group of agents, but does not fully comply with the type of
dialogue communication needed for teamwork. The number of messages being communicated
per communication between the initiator and the other agents from the group can differ. Fur-
thermore, the teamwork process can require the communication algorithm to handle changes of
initiator. We show the adjustments that have to be made to MACOM1 to handle these proper-
ties of teamwork. For the new multi-agent communication algorithm, MACOM2, it is shown
that the gaining of knowledge required for a successful teamwork process is still guaranteed.

KEYWORDS: Epistemic logic, teamwork, communication protocol, dialogue

DOI:10.3166/JANCL.18.1–27 c© Year of publication undefined Lavoisier, Paris

1. Introduction

For cooperative problem solving (CPS) within multi-agent systems, Wooldridge
and Jennings give a model of four consecutive stages, namely potential recognition,
team formation, plan formation, and plan execution (Wooldridge et al., 1999). Dignum,
Dunin-Kȩplicz and Verbrugge present a more in-depth analysis of the communica-
tion and dialogues that play a role during these four stages of teamwork (Dignum et

Journal of Applied Non-Classical Logics. Volume Volume of the issue undefined –
No. Number of the issue undefined/Year of publication undefined,
page Pages undefined

2 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

al., 2001; Dunin-Kȩplicz et al., 2003). At every stage one agent of the group acts as
an initiator, communicating with the other agents of the group. For a successful pro-
cess of teamwork, the agents have to achieve an approximation of common knowledge
through communication. In this article we aim to provide a means of reliable commu-
nication that can achieve such approximations of common knowledge in a teamwork
setting. Agents communicate to each other by a communication system consisting of
a connection in a communication medium between agents, together with a protocol by
which the agents send and receive data over this connection.

One of the great advantages of epistemic logic is that it can be used to model
communication in distributed systems (Fagin et al., 1995; Meyer et al., 1995). For
example, in their classical paper (Halpern et al., 1987), Halpern and Zuck showed
that epistemic logic enables perspicuous specification and verification for a number
of protocols (like the alternating-bit protocol) that had been introduced for error-free
transmission of sequences of messages over a distributed network. Let two processors
be given, called the sender S and the receiver R. The sender has an input tape with an
infinite sequence X of data elements. S reads these elements and tries to send them to
R, which writes the elements on an output tape.

The protocols are required to guarantee that (a) at any moment the sequence of data
elements received by R is a prefix of X (safety) and (b) if the communication medium
satisfies certain so-called fairness conditions, every data element of X will eventually
be written by R (liveness). Fairness here means that infinitely many message instan-
tiations from S to R and from R to S are delivered, guaranteeing that every message
arrives eventually. To be reliable, the connection has to satisfy the fairness condi-
tion, leaving the protocol responsible for the liveness and safety properties (Halpern et
al., 1987; van Baars, 2006). Besides the liveness and safety properties a protocol used
in teamwork has to satisfy the requirements of teamwork explained below.

Knowledge-based algorithms like those for the alternating-bit protocol by Halpern
and Zuck (Halpern et al., 1987) or TCP by Stulp and Verbrugge (Stulp et al., 2002) are
meant for one-on-one communication. For announcements from one agent to a (finite)
group, however, using TCP or a similar protocol with all agents separately often does
not create sufficient knowledge. For example, during the stage of team formation in
teamwork, the goal is to create a collective intention among a team (Dunin-Kȩplicz
et al., 2002; Dignum et al., 2001). For this to happen, communication between the
initiating agent and a group of potential agents is needed. One message with a certain
content ϕ is sent to all members of the group simultaneously, and a certain amount of
meta-knowledge in the group about the message sent is needed, or more precisely, a
k-fold iteration of “everyone in the group knows . . . ϕ".

The algorithms for one-on-one communication from (Halpern et al., 1987; Stulp
et al., 2002) are not sufficient for this. Protocols like the alternating-bit protocol and
TCP have been designed for sending a message to one other agent, not to a group. So
even if one initiator sends messages simultaneously to a group of agents by TCP, this
achieves meta-knowledge about these messages solely between the initiator and each
agent individually, and no meta-knowledge among the group as a whole is acquired.

A communication algorithm for teamwork 3

What is needed is an algorithm that guarantees reliable communication for one-on-
group communication. In this article, two protocols that can handle one-on-group
communication will be presented, in which at every round the agents in the group
attain a higher level of general knowledge about the make-up of the group as well as
the contents of the announced message.

We first derive an algorithm MACOM1 for one-on-group messages. The al-
gorithm ensures the liveness and safety property, but does not satisfy the other re-
quirements of teamwork 1. This algorithm solves the sequence transmission prob-
lem (Halpern et al., 1987) from one agent to a group of agents. However, the com-
munication during teamwork is not a one-way transport of data as in the sequence
transmission problem, but a dialogue. The next message is not pre-defined, but de-
pends on the answers from the receivers (Dunin-Kȩplicz et al., 2003). Teamwork starts
with an initiator communicating individually to the other agents, referred to as one-
on-one communication. After a successful one-on-one communication, the initiator
communicates the outcome to all the agents of the group, referred to as one-on-group
communication. After a successful one-on-group communication, the initiator starts
to communicate one-on-one again. Although ‘one-to-group’ is a more common term
used in for example computer science to refer to broadcasting protocols, we rather use
‘one-on-group’ to underline that dialogue type protocols are used.

Teamwork demands flexible forms of communication. One of the properties of
teamwork dialogues is that the number of messages communicated between the initia-
tor and the other agents can differ per agent during one-on-one communication. If, for
example, the initiator asks whether the abilities of the agents are sufficient for a goal,
then some of the agents can answer directly. Other agents need more information to
determine whether their abilities are sufficient and they answer with a request. This
property is referred to as the asynchronous communication property.

Another property of teamwork is that the initiator can change. At the four different
stages of teamwork (from potential recognition to plan execution), the initiator has to
have different abilities (Wooldridge et al., 1999; Dunin-Kȩplicz et al., 2003). If an
agent has all the required abilities, then it can fulfill the role of initiator throughout
the whole process of teamwork. If not, then different agents can fulfill the role of
initiator at different stages. During the transition from one-on-one to one-on-group
communication, the initiator always stays the same, because the initiator during one-
on-one communication is the only agent who has sufficient group knowledge to start
communicating one-on-group (Dignum et al., 2001). At the transition from one-on-
group to one-on-one communication, however, any agent from the group can bid to
become the initiator. This property is referred to as the changing initiator property.

The algorithm MACOM1 cannot handle asynchronous communication, because
it uses only one index, representing the position of the message in a sequence of mes-
sages. Introducing a separate index for each sender-receiver pair solves this problem,

1. A simulation of the protocol MACOM1, first presented in (van Baars et al., 2006), can be
found at www.ai.rug.nl/alice/mas/macom.

4 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

but only for the situation where the initiator does not change. The initiator is the sender
and it increments the indices; the other agents are the receivers. When the initiator
changes, the sender becomes one of the receivers and one of the receivers becomes
the sender. This means that another agent now increments the indices, which can lead
to several messages with the same index but containing different data, or to parallel
communication processes. Introducing a two-index mechanism, where the sender and
a receiver both increment their own index, partially solves these problems. The re-
maining problem is that an initiator change does not become general knowledge. The
solution for this problem is a procedure that is not embedded in the algorithm. In this
paper we show that MACOM1 can be modified to handle the asynchronous commu-
nication property and the changing initiator property. The modified communication
algorithm MACOM2 (first presented in (van Baars et al., 2007)) guarantees a stream
of accumulating messages during a teamwork process, meeting the requirements of
teamwork concerning the gaining of group knowledge 2.

The analysis of the algorithms yields some interesting results. ForMACOM1, we
will show that the depth of knowledge the sender and receiver can accumulate about
messages sent is dependent upon the length of the tape and the position of informa-
tion on the tape. If an infinite tape models the transmitted data, the following can
be shown. For any k and any piece of data on the tape, at some point k-fold depth
of general knowledge (‘everyone knows’) arises about the message, although com-
mon knowledge can never be achieved (cf. (Halpern et al., 1990)). Similar results are
shown for MACOM2, but then the k-fold depth of knowledge about a fact depends
on the number k of consecutive dialogue messages communicated after it was sent.

The rest of the paper is structured as follows. Section 2 gives a short review of
epistemic and temporal notions needed for the rest of the paper. Section 3 presents an
algorithm MACOM1 that solves the extension of the sequence transmission problem
to one-on-group communication. Section 4 presents a proof that approximations of
common knowledge are indeed attained by this algorithm. Section 5 and section 6
present the problems that arise in the flexible context of teamwork and their possible
solutions, while section 7 gives the new algorithm MACOM2 incorporating the fea-
sible solutions. In section 8 security issues with respect to MACOM2 are discussed
and a possible solution is presented. Finally, section 9 closes the paper with some
conclusions and ideas about further research.

2. Logical background: knowledge and time

When proving properties of knowledge-based protocols, it is usual to use semantics
of interpreted systems I representing the behavior of processors over time (see (Fagin
et al., 1995)). In this formalism, one views the sender and receivers as agents, and
the communication channel as the environment. For each of these, their local states,

2. A simulation of the protocol MACOM2 can be found at www.ai.rug.nl/mas/
finishedprojects/2008/RichardTomTheije/index.php?page=simulation.

A communication algorithm for teamwork 5

actions and protocols can be modeled. The semantics is based on runs, which can
be seen as sequences of worlds through discrete time. We give a short review. At
each point in time, each of the processors is in some local state. All of these local
states, together with the environment’s state, form the system’s global state at that
point in time. These global states form the possible worlds in a Kripke model. The
accessibility relations are defined according to the following informal description. The
processor R “knows” ϕ if in every accessible world, namely in every global state hav-
ing the same local state as processor R, ϕ holds. In particular, each processor knows
its own local state; for the environment, there is no accessibility relation. These ac-
cessibility relations are equivalence relations, obeying the well-known epistemic logic
S5C

n (see (Fagin et al., 1995)). Next to all instantiations of propositional tautologies
and the modus ponens rule, here follow the axioms and rule for individual knowledge
for i = 1, . . . , n:

A2K Kiϕ ∧Ki(ϕ→ ψ)→ Kiψ (Knowledge Distribution)
A3K Kiϕ→ ϕ (Veracity of Knowledge)
A4K Kiϕ→ KiKiϕ (Positive Introspection)
A5K ¬Kiϕ→ Ki¬Kiϕ (Negative Introspection)
R2K From ϕ infer Kiϕ (Knowledge Generalization)

Here follow the axioms governing general knowledge EGϕ (“everyone in group
G knows ϕ") and common knowledge CGϕ (“it is common knowledge among G that
ϕ"). Let G ⊆ {1, . . . , n}:

CK1 EGϕ↔
∧

i∈GKiϕ (General Knowledge)
CK2 CGϕ↔ EG(ϕ ∧ CGϕ) (Common Knowledge)
CK3 CGϕ→ ϕ (Truth of Common Knowledge)
RCK1 From ϕ→ EG(ψ ∧ ϕ) infer ϕ→ CGψ (Induction Rule)

We use abbreviations for general knowledge at any finite depth. Inductively, E1
Gϕ

stands for EGϕ and Ek+1
G ϕ is EG

(
Ek

Gϕ
)
.

A run is a (finite or infinite) sequence of global states, which may be viewed as
running through time. Time here is taken as isomorphic to the natural numbers. There
need not be any accessibility relation between two global states for them to appear
in succession in a run. As for notation, global states are represented as (r,m) (m-th
time-point in run r) in the interpreted system I. In particular for the temporal opera-
tors, we use the notation 2 for “always from the present moment onwards" and P for
“at least once in the past". Thus, we have the following truth definitions:

(I, r,m) |= 2ϕ iff (I, r,m′) |= ϕ for all m′ ≥ m

(I, r,m) |= Pϕ iff (I, r,m′) |= ϕ for some m′ < m

(I, r,m) |= Kiϕ iff (I, r′,m′) |= ϕ for all (r′,m′) such that (r,m) ∼i (r′,m′)

Here, ∼i is the epistemic indistinguishability relation between worlds for agent i,
where (r,m) ∼i (r′,m′) if and only if ri(m) = r′i(m

′) (i.e. the local states for i are

6 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

the same in the two global states r(m) and r′(m′)). Time clearly obeys the axioms of
the basic temporal logic Kt (see (Goldblatt, 1992)), in which the following principle
(A) is derivable:

(A) P (2ϕ)→ 2ϕ

To further model time, we extend S5C
n + Kt with the following mixed axiom:

KT1. Ki2ϕ→ 2Kiϕ, i = 1, ..., n

This axiom holds for systems with perfect recall (Halpern et al., 2004). Halpern et
al. (Halpern et al., 2004) present a complete axiomatization for knowledge and time,
however in this article we only need the axiom KT1.

3. An algorithm for one-on-group communication

The goal of one-on-group communication is that all the members of the group
gain a certain level of knowledge about a fact ϕ sent by the sender, and that all the
members gain a certain level of knowledge about the knowledge of the group of this
fact ϕ. This implies that the members have to gain a certain level of knowledge about
which members the group consists of. When the group consists of only a sender and
one receiver, we speak of one-on-one communication and the gaining of knowledge is
quite straightforward as described in (Stulp et al., 2002; Halpern et al., 1987).

When the group consists of a sender and two or more receivers, it becomes a bit
more complicated. The receivers of a certain fact now also have to know to whom the
sender is sending this fact for gaining the above-mentioned knowledge. The solution
for this is to send the information about the extension of the group together with the
fact ϕ. Considering the general form of a message this can be achieved in two ways.
Analogously to the TCP (Postel, 1981), we will refer to the general form of a message
as a package. A package consists of a data part which contains the fact to be sent and
of a header which contains meta-information about the data part. Thus, the sender
can put the group information RG (the make-up of the group) in the data part of the
message or in the header. The group to whom the sender is sending a certain fact ϕ
is meta-information about this fact ϕ, so it is preferred to store this group information
in the header of a package instead of in the data part. For the one-on-group algorithm
MACOM1, we assume that the sender takes the content of his messages from an
input tape with indexed data; the position of the data on the tape is included in the
message package and turns out to be an important parameter when computing the
iterated general knowledge gained during communication.

When the group of receiving agents is stored in the header, then as soon as any of
the receiving agents Ri receives this package it knows the j-th fact ϕj stored in this
package, KRi

ϕj , and it knows to which other receivers this message is sent, KRi
RG.

How does Ri know whether the other receivers received this package? The sender

A communication algorithm for teamwork 7

has to wait with sending a package with the next fact ϕj+1 until it has received ac-
knowledgements about the package with the previous fact ϕj from all the receivers.
The sender then knows that all the receivers know ϕj , and thus KSEGϕj . Every re-
ceiver knows that the sender works this way, so when a receiver Ri receives a package
with the next fact ϕj+1, it knows that the sender knows that all other receivers did
receive the previous package and thus know the previous fact ϕj , so KRi

KSEGϕj .
With every repeating step of this cycle the knowledge of the sender and receivers of
each others’ knowledge of the facts grows for previously sent facts and the knowledge
about each others’ knowledge of the group they are in grows as well, KSE

k
Gϕj and

KRi
KSE

k
Gϕj . The depth k of knowledge gained by the members of a certain fact is

equal to the amount of consecutive facts sent successfully after this fact. Because each
message sent by the sender contains both a fact ϕ and the make-up of the group RG,
the depth of knowledge within the group about the members of the group is equal to
the depth of knowledge within the group about the first fact sent by the sender.

If one of the one-on-one algorithms from (Stulp et al., 2002; Halpern et al., 1987)
had been used, the receiving agents would not have known that the facts ϕj they
received were sent to other receivers as well. Each of the receivers would not have
known any more than that the group consisted of just the sender and itselfG = {S,Ri}
instead ofG = {S,R1, ..., Rn}. The gaining of knowledge works in this case the same
as mentioned above. However, the knowledge that is gained differs. The knowledge a
receiver Ri now has gained after having received two packages with the consecutive
facts ϕj and ϕj+i, is KRiKSE{S,Ri}ϕj , and not the much stronger KRiKSEGϕj .
So when the goal is to attain a certain depth of group knowledge, the algorithms from
(Stulp et al., 2002; Halpern et al., 1987) are not sufficient.

3.1. The algorithm MACOM1

The packages from our algorithm have the following form:
Ksource(destination,−, group, position,−, data)

source = source port where this package is sent from [S,Ri];
Ksource = the source who sends this package knows this package;
destination = destination port of package [S,Ri];
group = group receivers to which the message is sent [RG,−] (“−" means that the
sender communicates only to the destination (one-on-one communication));
position = position of data from the input tape;
data = data that has to be transmitted.

The next table explains variables used in the algorithm MACOM1:

Acknowledgement
ack_Ri : Used by S. Acknowledged sequence number received from Ri

ack_RG : Used by S. Acknowledged sequence number for which ac-
knowledgments were received from all Ri in G

8 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

The fields filled with “−" are the checksum and window_size fields which deal with
package mutation errors and congestion control (Douglas, 2006; Douglas et al., 1999).
Because they are not of interest for investigating the gaining of knowledge, they are
left out in this summarized protocol version. The algorithm for the sender as well as
for the receiver consists of two parts, because the algorithm works in an asynchronous
system in the sense that the sender and receivers do not have access tot a shared clock.
Thus the sending and receiving part of the algorithm work independently. One part
handles the sending of the packages and the other part handles the received pack-
ages. The reception of messages is independent and works asynchronously to the
sending process. These two processes affect the same local knowledge state of an
agent. Though being independent, the sending and receiving algorithm influence each
other’s behavior through the local knowledge state of an agent.

The algorithm MACOM1 consists of four parts. Both sender and receiver have
an algorithm that handles incoming messages and an algorithm that handles outgoing
messages. The lines in bold face are the lines from the algorithm and the lines between
curly brackets contain some comments on them. The numbers at the beginning and at
the end of the comments represent the line numbers at which the commented block of
code begins or ends, respectively.

Sender (incoming packages)
1 for (i = 1 to n)

{For all agents who sender is sending to, ... }
2 ack_Ri = 0

{... initialize the acknowledgement number.}
3 end

{ack_Ri’s initialized}
4 while true do

{Get ready for receiving acknowledgements from the receivers, ... [12]}
5 when received KRi(S,−,−, seq,−,−) do

{You have received a package. Prepare for processing, ... [11]}
6 if (seq = ack_Ri+1) do

{If this acknowledgement from Ri is equal to the next ack_Ri, ... [10]}
7 ack_Ri = seq

{... this is the new current acknowledgement from Ri, ...}
8 store KSKRi(−,−,−, seq,−,−)

{... store the fact that you know that Ri knows it.}
9 ack_RG = min(ack_Ri (for i = 1 to n)

{The highest acknowledgement by the group is equal to the lowest ack_Ri.}
10 end

{[6] ... acknowledgement from Ri, and highest group acknowledgement updated.}
11 end

{[5] ... finished processing of incoming package.}
12 end

{... [4].}

A communication algorithm for teamwork 9

Sender (outgoing packages)
1 seq = 0

{Reading of a tape starts at position 0.}
2 while true do

{Start reading and sending an infinite tape, ... [13]}
3 read(seq,alpha)

{... read the value from the tape, ...}
4 store KS(−,−,−, seq,−, alpha)

{... and store this information in your knowledge base.}
5 while (ack_RG 6= seq) do

{While not all receivers have acknowledged the package with sequence seq ...[11]}
6 for (i = 1 to n) do

{For all receiving agents, ...}
7 if not KSKRi(−,−,−, seq,−,−) do

{... check if package ‘seq’ has been acknowledged yet by Ri, ...}
8 send KS(Ri,−, RG, seq,−, alpha)

{... (re)send the package to Ri.}
9 end

{A package that was unacknowledged by Ri, has been (re)sent.}
10 end

{A package has been (re)sent to all agents that didn’t acknowledge it.}
11 end

{[5] ... all agents Ri have acknowledged the package with sequence number seq.}
12 seq = seq +1

{Move the sequence number to the next position.}
13 end

{... [2].}

Receiver (incoming packages)
1 while true do

{Get ready for receiving an infinite tape, ... [5]}
2 when received KS(Ri,−, RG, seq,−, alpha) do

{You have received a package (from S). Prepare for processing, ... [4]}
3 store KRiKS(−,−, RG, seq,−, alpha)

{Store the received package.}
4 end

{[2] ... finished processing incoming package.}
5 end

{... [1].}

Receiver (outgoing packages)
1 when KRiKS(−,−,−, 0,−,−)

{Wait until the first message is received.}
2 seq = 0

{Initiate the sequence at 0.}
3 while true do

{Get ready to acknowledge incoming packages, ... [8]}
4 while not KRiKS(−,−,−, seq + 1,−,−) do

{Still not received package with sequence number ‘seq+1’, ...}
5 send KRi(S,−,−, seq,−,−)

{... (re)send acknowledgement.}
6 end

{You’ve received message seq+1.}
7 seq = seq +1

{You know the sequence number of the next message. Increment seq.}
8 end

{... [3].}

10 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

4. Analysis of epistemic properties of the MACOM1 algorithm

In this section we show that by passing more and more data segments, the group’s
depth of knowledge about the initial message increases. For example, if a receiver
stores the fact that he knows that the sender has sent the k-th data segment, then al-
ways in future the receiver will know that the sender knows that there is a k-depth
knowledge in the whole group that the sender knows the 0-th data segment:

Ri stores KRi
KS (k, αk)⇒ 2KRi

KS (EGKS)k (0, α0) .

4.1. Proof of the increase of group knowledge

For the readability of the proof, the form of the package is shortened to
Ksource(sequence, data). We assume that the group stays unchanged and that the
sender S sends to a receiver Ri and vice versa, so the destination and group field are
left out. Furthermore, we assume that no mutation errors occur, so the checksum field
is also left out. We only use the sequence number in the proof; the acknowledgement
number is left out. In the next table we present some relevant formulas with their in-
formal meanings.

Formulas Descriptions
KRi (j, α) Receiver i knows that the j-th data segment is α;

similar for KS (j, α)
EG (j, α) Every agent in group G knows that the j-th data segment is α
Ek

Gϕ Group G has depth k general knowledge of ϕ
RG G is the current group of receivers
Pϕ At some moment in the past on this run, ϕ was true
2ϕ ϕ is now true and will always be true on this run

In the table above, the j stand for natural numbers, and the data segments α may
represent formulas in a given communication language, for example, the messages ex-
changed during team formation in (Dignum et al., 2001; Dunin-Kȩplicz et al., 2003).
Note that the messages α always occur in the scope of knowledge operators. Just as in
treatments of the bit-transmission protocol such as (Meyer et al., 1995, Section 1.9),
where KR(xi) stands for “R knows what is data element xi”, the notation KRi

(j, αj)
just means that Ri knows that the j-th data segment is αj . No claims are made about
the truth of αj . We do, however, suppose that agents do not lie about the messages
they have received.

THEOREM 1. — Let R be any set of runs consistent with the algorithm MACOM1

where:

– the environment allows for deletion and reordering errors, but no other kinds of
error;

– The safety property holds (so that at any moment in an exchange between an Ri

and S, the sequence of data segments received by each Ri is a prefix of the sequence
of data segments sent by S).

Suppose that for each j ≥ 0, the j-th data segment is represented by αj . Then for
all runs inR and all k ≥ 0, j ≥ 0 the following hold:

[Forth]: Ri stores KRi
KS (j + k, αj+k)⇒ 2KRi

KS (EGKS)k (j, αj) .
[Back_i]: S stores KSKRi (j + k, αj+k)⇒ 2KSKRiKS (EGKS)k (j, αj) .
[Back_G]: If for all Ri ∈ G, S stored KSKRi

(j + k, αj+k), then
2KS (EGKS)k+1 (j, αj) .

A communication algorithm for teamwork 11

In the proof below we use a general principle from temporal logic (A), and some
consequences we can derive from the assumptions of the theorem (B & C).

A P (2ϕ)→ 2ϕ

B BecauseR is consistent with the algorithm MACOM1, S and Ri store (and never
forget) all relevant information from the packages that they receive. Moreover,
packages that are sent have the following form: KRi

ϕ or KSϕ. Finally, we as-
sume that agents observe and remember their own ‘receive’ and ‘store’ actions.
From these reasonable assumptions, the following can be concluded. If Ri re-
ceives KSϕ, then Ri stores KRiKSϕ, thus also 2KRiKSϕ. Similarly for S: If
S receives KRiϕ, then S stores KSKRiϕ, thus also 2KSKRiϕ.

C Under the same assumption ofR being consistent with the algorithm MACOM1,
system R can be viewed as a system of perfect recall. Now we have in general
that KS2ϕ→ 2KSϕ, see axiom KT1.

Proof
We prove theorem 1 by induction on k. First we look at the situation for k = 0.
From B follows the Forth-part for (k = 0) namely

Ri stores KRi
KS (j, αj)⇒ 2KRi

KS (j, αj) . (1)

Ri sends an acknowledgement only if it received a package. Together with A and B
we have:

if Ri sends KRi
(j, αj) then P (Ri stores KS (j, αj)) , (2)

so P2KRiKS (j, αj) , and 2KRiKS (j, αj) .

S only stores an acknowledgement if it also received it from Ri, thus it knows that Ri

has sent it in the past.

If S stores KSKRi (j, αj) then KSP (Ri sends KRi (j, αj)) ... (3)

With A, C and the fact proven at (2) it can now be derived that:

KSP (2KRi
KS (j, αj)) , and KS2KRi

KS (j, αj) , so 2KSKRi
KS (j, αj) . (4)

If (3) and (4) are combined, then we have the Back_i-part of the theorem for the j-th
data segment (k = 0).

S receives acknowledgements from all the receivers and is able to retrieve infor-
mation out of this. We go back two steps and look at another knowledge level of S
instead of the knowledge level between S and just one receiver.
S only stores acknowledgements it received. If S has received acknowledgements of
a certain package from all receivers Ri ∈ G, then S knows that all receivers have sent
these acknowledgements in the past.

If for allRi ∈ G,S stores KSKRi
(j, αj) then KSP

(∧
Ri∈G

Ri sends KRi
(j, αj)

)
...

(5)
With A, C, axiom CK1 and the fact proven at (2) it can now be deduced that:

KSP (2EGKS (j, αj)) , and KS2EGKS (j, αj) , so 2KSEGKS (j, αj) . (6)

12 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

If (5) and (6) are combined, then we have the Back_G-part of the theorem for the
j-th data segment (k = 0). What knowledge about the j-th data segment emerges for
k 6= 0? This is shown in the induction step.

Induction step Suppose as induction hypothesis that Back_i, Back_G and Forth are
valid for k−1, with k ≥ 1. Now a proof follows that Forth, Back_i, and Back_G are
also valid for k.
[Forth]: S only starts sending packages with position mark (j + k) if it has re-
ceived from all the receivers Ri an acknowledgement for package with position mark
(j + (k − 1)):

S sends KS (j + k, αj+k)⇒ P
(
S stores KSEG

(
j + (k − 1) , α(j+k)−1

))
. (7)

With the Back_G-part of the theorem for k − 1 and A, the following can be deduced:

S sends KS (j + k, αj+k)⇒ 2KS (EGKS)k (j, αj) . (8)

Ri knows this fact. So if Ri receives a package from S with position mark j+ k, then
Ri knows that S has sent this package somewhere in the past. From the fact given at
(8) together with A and B, the following can be derived:

Ri stores KRiKS (j + k, αj+k)⇒ 2KRiKS (EGKS)k (j, αj) . (9)

This is exactly what the Forth-part of the theorem says.

[Back_i]: Ri only sends an acknowledgement for the (j + k)-th data element if
he stored KRi

KS (j + k, αj+k) in the past. By Forth, already proved above, this
entails that P2KRiKS (EGKS)k (j, αj), so by A, also 2KRiKS (EGKS)k (j, αj).
Combining these two steps, we conclude that:

Ri sends KRi (j + k, αj+k)⇒ 2KRiKS (EGKS)k (j, αj) . (10)

S knows this fact. So if S receives an acknowledgement from Ri for the (j + k)-th
data segment, then S knows that Ri has sent this acknowledgement in the past. Using
A and B it can now be concluded that:

S stores KSKRi (j + k, αj+k)⇒ 2KSKRiKS (EGKS)k (j, αj) , (11)

and this is exactly the Back_i-part of the theorem.

[Back_G]: S receives acknowledgements from all Ri ∈ G. At a certain time S
has received an acknowledgement for the (j + k)-th data segment from all Ri. Thus,

For all Ri ∈ G,S stored KSKRi (j + k, αj+k) .

With A and B and axiom CK1 it can now be concluded that:

If for all Ri ∈ G,S stored KSKRi
(j + k, αj+k) , then 2KS (EGKS)k+1 (j, αj) ,

(12)
and this is exactly the Back_G-part of the theorem.

This finishes the proof of theorem 1. Note that, because the make-up of the group G
(message RG) is sent on a par with the initial data segment at position 0, it follows by
the same proof as above that iterated general knowledge about the group accumulates
during communication as follows:

A communication algorithm for teamwork 13

[Forth]: Ri stores KRi
KS (k, αk)⇒ 2KRi

KS (EGKS)k
RG.

[Back_i]: S stores KSKRi
(k, αk)⇒ 2KSKRi

KS (EGKS)k
RG.

[Back_G]: If for all Ri ∈ G, S stored KSKRi
(k, αk), then 2KS (EGKS)k+1

RG.

Is theorem 1 the best one can do? Certainly by the well-known result of Halpern and
Moses, common knowledge within a group can never be achieved in communication
environments that allow for any errors (Halpern et al., 1990). In fact, the bounds
shown above are tight. So, for example, we have on the positive side Forth:

Ri stores KRi
KS (j + k, αj+k)⇒ 2KRi

KS (EGKS)k (j, αj) .

Nevertheless, at the same stage of communication k + 1-fold knowledge has not
been achieved: Ri stores KRiKS (j + k, αj+k)⇒ ¬2KRiKS (EGKS)k+1 (j, αj) .
The proof is analogous to the proof of Theorem 4 of (Stulp et al., 2002).

5. Adjusting the algorithm MACOM1 for asynchronous communication

As explained in the introduction, teamwork demands more flexibility than sim-
ple one-on-group sequence transmission: communication may be asynchronous in the
sense of different numbers of messages exchanged between the sender and different
receivers; and during the transition from one stage of teamwork to the next, a change
of initiator may be called for. We first handle the challenge of asynchronous commu-
nication.

To handle the asynchronous communication property, a separate index is needed
for every sender-receiver communication. This solution works for the situation where
the initiator stays the same. For example, we take one group G consisting of three
agentsR1,R2, andR3,G = {R1, R2, R3}. AgentR3 is the initiating (sending) agent,
temporarily denoted as S3, and the two other agents R1 and R2 are the receivers. The
index that S3 uses to communicate with R1 starts at 100 and the index that S3 uses
to communicate with R2 starts at 200. Let us work out an example. S3 sends three
messages to R1, which are received and answered by R1. These answers can be an
answer to a question or request sent by S3 or just an acknowledgement if S3 sent a
statement.

In the notation below, the agents are identified by the numbers 1,2 and 3. If an
agent acts as a sender or receiver, then this is denoted by S1 or R1 respectively. The
agents exchange messages and the arrow -> indicates the direction of each message.
The messages are of the form (100,_,data). The first field contains a sequence
number. The second field contains the group information. In the case of one-on-
one communication the value of this field is ‘_’ and in the case of one-on-group
communication the value of this field is ‘G’. The last field contains the data that is
sent.

1. S3 (100,_,data)-> R1
2. S3 <-(100,_,answ) R1
3. S3 (101,_,data)-> R1
4. S3 <-(101,_,answ) R1
5. S3 (102,_,data)-> R1
6. S3 <-(102,_,answ) R1

This moves the index for the next message to be sent to R1 to 103. S3 communicates
two messages with R2, which are answered by R2, as follows:

14 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

1. S3 (200,_,data)-> R2
2. S3 <-(200,_,answ) R2
3. S3 (201,_,data)-> R2
4. S3 <-(201,_,answ) R2

This moves the index for the next message to be sent to R2 by S3 to 202. During
both these one-on-one communications, S3 has reached the goal for this phase and is
now ready to communicate the outcome one-on-group to R1 and R2. To announce the
outcome, S3 has to communicate two messages one-on group, which are answered by
R1 and R2:

1. R1 <-(103,G,data) S3 (202,G,data)-> R2
2. R1 (103,_,answ)-> S3 <-(202,_,answ) R2
3. R1 <-(104,G,data) S3 (203,G,data)-> R2
4. R1 (104,_,answ)-> S3 <-(203,_,answ) R2

After this successful one-on-group communication, S3 enters the next stage in order to
communicate one-on-one again with the others inG. The indices for the next message
to R1 and R2 are 105 and 204, respectively. Introducing a separate index for each
sender-receiver pair in the communication solves the problem of the different numbers
of messages sent during the one-on-one communication phase. Does this solution also
work for the situation where the initiator changes after one-on-group communication?

6. Adjusting the algorithm MACOM1 for changing initiators

The last example from the previous section ends with a successful one-on-group
communication. Let us go from there while R2 now takes over the role of initiator,
temporarily denoted as S2. The previous initiator S3 is denoted again as R3. The
communication between S2 and R1 is straightforward. Because S2 did not communi-
cate to R1 before, S2 sets a new index. The last communication between S2 and R3

was the message (203,_,answ), sent from R2 to S3. Now, S2 wants to send some data
to R3. Which index does it have to use? One possibility could be that S2 sets a new
index for this communication, starting for example at 400. Another possibility is that
S2 continues with the index used by S3 while communicating one-on-group to R2.
In this case, S2 can use the same index number, 203, as used during its last answer
message to S3. Alternatively S2 can use the next index number, 204. Let us develop
these three options. The last two communication lines of the previous one-on-group
communication are taken as a starting point and are repeated in the examples.

Option 1, S2 sets new index:

1. R1 <-(104,G,data) S3 (203,G,data)-> R2
2. R1 (104,_,answ)-> S3 <-(203,_,answ) R2
3. R3 <-(400,_,data) S2
4. R3 (400,_,answ)-> S2
5. R3 <-(401,_,data) S2

A communication algorithm for teamwork 15

Option 2, S2 reuses the last index number:

1. R1 <-(104,G,data) S3 (203,G,data)-> R2
2. R1 (104,_,answ)-> S3 <-(203,_,answ) R2
3. R3 <-(203,_,data) S2
4. R3 (204,_,answ)-> S2
5. R3 <-(204,_,data) S2

Option 3, S2 uses the next index number:

1. R1 <-(104,G,data) S3 (203,G,data)-> R2
2. R1 (104,_,answ)-> S3 <-(203,_,answ) R2
3. R3 <-(204,_,data) S2
4. R3 (204,_,answ)-> S2
5. R3 <-(205,_,data) S2

All the above options show some anomalies in the index numbering with respect to
being an accumulating stream of messages.

For option 1, two different consecutive communication streams run between agent
2 and agent 3. This can lead to parallel communication streams if agent 3 continues
communicating as initiating agent S3 to agent 2, while agent 3 as receiver R3 also re-
ceives messages from S2. Two parallel communication processes between two agents
about the same process are prone to communication errors and should be avoided.

For option 2, two anomalies can occur. The first one is that in one-on-one com-
munication the receiver increases the index with every answer instead of the sender.
So, when R3 sends an answer, it acknowledges an index it did not receive yet. The
second anomaly can arise when agent 2 uses the same index number for the next con-
secutive message. If the previous message was just an acknowledgement, then there
is no problem. Acknowledgements do not occupy an index number, otherwise we
would end up with acknowledging acknowledgements (Postel, 1981). If R2 sent data
instead of just an acknowledgement to agent 3 in the previous message, then agent 2
cannot send the next consecutive message with the same index number. When agent
3 answers with just an acknowledgement, agent 2 does not know which of the two
different consecutive messages is acknowledged by agent 3.

For option 3, agent 3 might send a next message (204,_,data) to agent 2 and receive
from agent 2 a message (204,_,data) instead of (204,_,answ). Thus, both agents sent
a data message with index 204 and also received a data message while both agents
expected an answer message. This situation should be avoided.

6.1. Two-index mechanism to the rescue

How can these problems be solved? The transmission control problem (TCP)
makes use of two indices per connection (Stulp et al., 2002; Postel, 1981). One index
is configured by the sender and the other index is configured by the receiver. Thus
every message contains a sequence number as well as an acknowledgement of the last
consecutive sequence number that is received. Could this two-index system solve the
index numbering problems?

Let us look at a one-on-one communication process ending with a one-on-group
communication. Agent S3 sends two messages to agent R1 which are answered by

16 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

agent R1, and sends one message to agent R2 which is answered by agent R2. Next,
agent S3 sends one message one-on-group to agent R1 and R2 which is answered
by both agents after which agent S3 starts communicating one-on-one to agent S1

and S2 again. In his first message to an agent, the sender conveys only its own se-
quence number. When the receiver receives this, it initiates its own sequence num-
ber and answers with a message containing this number together with the acknowl-
edged sequence number from the sender. Thus after two messages, the sender and
receiver know one another’s sequence numbers. The messages are now of the form
(100,200,_,data). The first field contains the sequence number of the agent that

sends the message. The second field contains the acknowledged sequence number of
the message the agent is reacting to. The third field contains the group information
and the last field contains the data that is sent.

1. R1 <-(100,_,_,data) S3
2. R1 (200,100,_,answ)-> S3
3. R1 <-(101,200,_,data) S3 (300,_,_,data) --> R2
4. R1 (201,101,_,answ)-> S3 <-(400,300,_,answ) R2
5. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2
6. R1 (202,102,_,answ)-> S3 <-(401,301,_,answ) R2

This works straightforwardly, so let us look how this two-index mechanism works
when the initiator changes. Lines 5 and 6 from the previous communication schema
are used as starting point, and agent 2 becomes the sender. The first option with the
one index mechanism is that S2 sets a new index to communicate with R3. There are
already two indices between S2 and R3, so it is not necessary to set a new index. S2

andR3 start communicating one-on-one, continuing the use of the indices they already
used during the previous one-on-group communication. This eliminates the problem
of two parallel communication processes between both agents. Now two options are
left for S2 when using the two-index number mechanism. The first option is to reuse
the last index number and the second option is to use the next index number. Worked
out, these options look as follows.

Option 1, S2 reuses the last index number:

1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2
2. R1 (202,102,_,answ)-> S3 <-(401,301,_,answ) R2
3. R3 <-(401,301,_,data) S2
4. R3 (302,401,_,answ)-> S2
5. R3 <-(402,302,_,data) S2

Option 2, S2 uses the next index number:

1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2
2. R1 (202,102,_,answ)-> S3 <-(401,301,_,answ) R2
3. R3 <-(402,301,_,data) S2
4. R3 (302,402,_,answ)-> S2
5. R3 <-(403,302,_,data) S2

For option 1, the anomaly of the receiver increasing the index (as happened with one
index) does not occur. However, the second anomaly still exists. Agent 2 still sends
two messages with the same index number containing different data. For option 2,
agent 2 sends two messages with the same acknowledgement number, but it increases
its own sequence number. Again a similar problem can arise as with the single index

A communication algorithm for teamwork 17

mechanism. It is possible that agent 3 sends a next message, (302,401,_,data), to agent
2 while it receives from agent 2 a message (402,301,_,data) instead of (402,302,_,answ).
As can be seen, the index numbering is now completely messed up. Both agents will
not know how to proceed so this situation should be avoided.

6.2. Who’s the ‘boss’

Using a two-index mechanism solves some but not all of the problems that arise
while the initiator changes. The problems that are left have a single cause. When a
new agent becomes the initiator, this is not general knowledge. Another agent from
the group can start acting as an initiator while the current initiator continues acting as
an initiator as well. This leads to problems between these two agents as discussed in
the previous subsection, but also leads to problems for the other agents in the group,
continuing to act as receivers. These agents start getting one-on-one communication
messages about the next stage from different agents acting as initiator. Obviously this
is not a workable situation. To solve this problem, the algorithm has to provide a
mechanism that prevents multiple concurrent initiators.

An initiator change takes place at the transition from a successful one-on-group
communication to the next one-on-one communication process. The solution for pre-
venting multiple concurrent initiators is that if any new agent wants to act as initiator,
then this agent notifies the current initiator of this fact. Every potential new initiator
sends a request with its acknowledgement of the last one-on-group message. The cur-
rent initiator now knows whether there are other candidate initiators and can decide
whether it continues as an initiator itself, or allows one of the other agents to act as
initiator.

If the current initiator decides to stay on, then it continues communicating one-
on-one concerning the next stage. As soon as an agent that announced itself as a
new initiator receives the first one-on-one communication message from the sender, it
knows that it should not act as initiator. If the current initiator decides that one of the
other agents can take over, then it sends a message one-on-one to this agent confirming
that it is the new initiator. After the initiator for the next stage receives this message,
it knows its new role and starts communicating messages one-on-one concerning the
next stage. As soon as the other agents that announced themselves as new initiator
receive the first one-on-one communication message from the new initiator, they know
that they should not act as initiator. We assume that agents involved in teamwork
are cooperative, so if one of the other agents has better resources for being the new
initiator, then the current initiator transfers the role of initiator to that agent.

Let us develop two examples. In both, the current initiator and two other agents
want to act as initiator. In the first example, the initiator changes, while in the second
example, the initiator stays the same. An agent announcing itself as a potential initia-
tor for the next stage is represented by the value init in the data field. If the current
initiator decides that another agent can have the role of initiator, then it sends a mes-
sage containing answ into the data field.

18 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

Example 1, S2 as initiator after init request from R1 and R2.

1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2
2. R1 (202,102,_,init)-> S3 <-(401,301,_,init) R2
3. S3 (302,401,_,answ)-> R2
4. R3 <-(402,302,_,data) S2 (500,_,_,data)-> R1
5. R3 (303,402,_,answ)-> S2 <-(600,500,_,answ) R1
6. R3 <-(403,303,_,data) S2 (501,600,_,data)-> R1

Example 2, S3 stays the initiator after init request from R1 and R2.

1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2
2. R1 (202,102,_,init)-> S3 <-(401,301,_,init) R2
3. R1 <-(103,202,_,data) S3 (302,401,_,data)-> R2
4. R1 (203,103,_,answ)-> S3 <-(402,302,_,answ) R2
5. R1 <-(104,203,_,data) S3 (303,402,_,data)-> R2
6. R1 (204,104,_,answ)-> S3 <-(403,303,_,answ) R2

In the above two examples, no anomalies in the index numbering are present. The
combination of the two-index mechanism with the mechanism regulating the change
of initiator handles the problems that could occur when the initiator changes during
the teamwork process. In the next section, we outline a new algorithm, MACOM2,
guaranteeing knowledge transfer even in those flexible teamwork situations where ini-
tiators may change.

7. An algorithm for flexible team dialogues

In sections 5 and 6, it was shown which adjustments had to be made to ensure
the group’s appropriate gain of knowledge for the asynchronous communication and
changing initiators. Let us have a look at the adjusted algorithm. The messages from
the MACOM1 algorithm have the following form:

Ksource(destination,−, group, position,−, data)

The fields filled with “−" are the checksum and window_size fields, dealing with pack-
age mutation errors and congestion control (Douglas, 2006; Stulp et al., 2002). As
discussed in section 6, an algorithm for teamwork needs an index mechanism consist-
ing of two indices. The window_size is used for the sliding window (Postel, 1981)
mechanism which is not used during dialogue. This allows us to use the window_size
field as the second index field. Because the checksum field does not contribute to
the gaining of knowledge, it is filled with “−”. The first index contains the sequence
number of the agent who sends the message, and the second index field contains an
acknowledgement of the sequence number of the message this agent reacts to. These
fields are called the sequence field and the acknowledgement field, respectively. The
message used by the team-specific algorithm MACOM2 has the following form:

Ksource(destination,−, group, sequence, acknowledgement, data)

A communication algorithm for teamwork 19

Here follows a description of the fields in the messages used in MACOM2; these are
the same as those used for MACOM1 in section 3.

source = source port where this message is sent from [S,Ri];
Ksource = the source who sends this message knows this message;
destination = destination port of message [S,Ri];
group = group receivers to which the message is sent [RG,−] (“−" means that the
sender communicates only to the destination (one-on-one communication));
sequence = sequence number of message from agent who sends this message;
acknowledgement = sequence number of message that agent is reacting to;
data = data that has to be transmitted.

The next table explains variables and functions used in the teamwork-specific al-
gorithm MACOM2:

Acknowledgement
ack_Ri : Used by S. Acknowledged sequence number received from Ri

seqSRi : Used by S. Sequence number of messages S is sending to Ri

seqS : Used by Ri. Sequence number of messages Ri is receiving from S
seqRi : Used by Ri. Sequence number of messages Riis sending to S
seqRi : Used by S. Sequence number of messages S is receiving from Ri

Data
compose() : Used by S and Ri. Agent makes up the data it wants to send

7.1. The team dialogue algorithm MACOM2

Just likeMACOM1, the algorithmMACOM2 consists of four parts. Both sender
and receiver have an algorithm that handles incoming messages and an algorithm that
handles outgoing messages. The lines in bold face are the lines from the algorithm
and the lines between curly brackets contain some comments on them. The numbers
at the beginning and at the end of the comments represent the line numbers at which
the commented block of code begins or ends, respectively.

Compared to MACOM1, the new algorithm has quite similar parts for the incom-
ing messages for both Sender and Receivers, but the ones for outgoing messages are
considerably different. Most adaptations for asynchrony and changing initiator are
reflected in the sender’s part concerning outgoing messages. We do assume that there
is one designated initiator who has the role of Sender S at the start of the process of
teamwork.

20 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

Sender (incoming packages)

1 for (i = 1 to n) do
{For all agents who sender is sending to, ... }

2 ack_Ri = seqSRi
{... initialize the acknowledgement number.}

3 end
{ack_Ri’s initialized}

4 while true do
{Get ready for receiving acknowledgements from the receivers, ... [11]}

5 when received KRi(S,−,−, seqRi, seqSRi, data) do
{You have received a package. Prepare for processing, ... [10]}

6 if (seqSRi = ack_Ri + 1) do
{If this acknowledgement from Ri is equal to the next ack_Ri, ... [9]}

7 ack_Ri = seqSRi
{... this is the new current acknowledgement from Ri, ...}

8 store KSKRi(S,−,−, seqRi, seqSRi, data)
{... store that you know that Ri knows it.}

9 end
{[6] ... acknowledgement from Ri, and highest group acknowledgement
updated.}

10 end
{[5] ... finished processing of incoming package.}

11 end
{[4].}

Sender (outgoing packages)

1 for (i = 1 to n) do
{For all receiving agents.}

2 if not seqSRi do
{If S did not communicate to Ri before}

3 seqSRi = x
{Initiate own sequence number for Ri at x}

4 end
{seqSRi initiated.}

5 end
{seqSRi for all receiving agents initiated.}

6 while true do
{Start sending sequence of messages, ... [20]}

7 compose(data)
{... ,make up the data for this package, ...}

8 store KS(−,−, G,−,−, data)
{... and store this information in your knowledge base.}

9 while (∃ ack_Ri 6= seqSRi) do
{While not all receivers acknowledged the package with sequence seqSRi, ... [15]}

10 for (i = 1 to n) do
{... and for all receiving agents, ... [14]}

11 if not KSKRi(−,−, G, seqRi + 1, SeqSRi, data) do
{... check if package ‘seqSRi’ has not been acknowledged yet by Ri, ... [13]}

12 send KS(Ri,−, G, seqSRi, seqRi, data)
{... (re)send the package to Ri.}

13 end
{[11] ... A package that was unacknowledged by Ri, has been resent.}

14 end
{[10] ... A package has been resent to all agents that didn’t acknowledge it.}

15 end

A communication algorithm for teamwork 21

{[9] ... all agents Ri have acknowledged package with sequence number seqSRi.}
16 for (i = 1 to n) do

{For all receiving agents, ... [19]}
17 seqRi = seqRi + 1

{Sequence number of next message from Ri is known. Increment seqRi.}
18 seqSRi = seqSRi + 1

{Increment own sequence number for Ri.}
19 end

{[16] ... Sequence numbers for and from Ri updated.}
20 end

{[6].}

Receiver (incoming packages)

1 while true do
{Get ready for receiving sequence of messages, ... [5]}

2 when received KS(Ri, G,−, seqS, seqRi, data) do
{You have received a package (from S). Prepare for processing, ... [4]}

3 store KRiKS(−,−, G, seqS, seqRi, data)
{Store the received package.}

4 end
{[2] ... finished processing incoming package.}

5 end
{[1].}

Receiver (outgoing packages)

1 when KRiKS(Ri,−, G, x, ∅, data)
{The first message is received.}

2 seqS = x
{The first sequence number from S is x.}

3 seqRi = y
{Initiate own sequence number at y.}

4 while true do
{Get ready to acknowledge incoming packages, ... [11]}

5 compose(data)
{Make up the data for this message. (Possibly a request to act as initiator.)}

6 while not KRiKS(Ri,−, G, seqS + 1, seqRi, data) do
{Still not received package with ‘seqS+1’ (and ‘seqRi’), ... [8]}

7 send KRi(S,−,−, seqRi, seqS, data)
{... (re)send data package.}

8 end
{[6] ... You’ve received message seqS+1 wiht acknowledgement seqRi}

9 seqS = seqS+1
{You know the sequence number of the next message. Increment seqS.}

10 seqRi = seqRi+1
{Increment own sequence number, seqRi.}

11 end
{[4].}

For the adjustments for asynchronous communication and changing initiators, we
showed informally in this article in sections 5 and 6 that they ensure the required
knowledge gaining for teamwork. The formal proof that MACOM2 ensures appro-
priate levels of general knowledge is an adaptation of the proof in subsection 4.1.
The gain of knowledge applies to each exchange between one sender and set of re-
ceivers separately. Moreover, at each stage in a team dialogue, the receiving agents

22 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

know the identity of the sender (initiator) from whom they receive a message. Thus,
the information gain from successive stages with possibly different initiators can be
appropriately combined.

8. The teamwork algorithm MACOM2 and security

Security in the MACOM2 protocol can be viewed on two levels: the security of
the reliability of the communication; and the security of the information that is being
communicated. Let us investigate both in turn.

8.1. Security and reliability of the communication

A communication system is reliable if it satisfies the safety , liveness and the fair-
ness properties. As discussed in section 1, the protocol is responsible for safety and
liveness. An attacker could try the following options during execution of MACOM2:
Read package; delete package; insert package; or modify package. What are the
consequences for the reliability of MACOM2 if an attacker executes the above-
mentioned actions?

Read An attacker reading one, or more, of the packages being sent has no conse-
quences for the reliability of the communication. The packages sent are deliv-
ered as usual by the receivers.

Delete An attacker deleting randomly one (or a few) packages has no consequence for
the reliability of the communication. The deleted packages will be resent and
none of the reliability properties are violated. However, if the attacker can read
all packages and deletes all instances of one package, then the fairness property
is violated.

Insert Without specific information about the communication of a group, an attacker
inserting a package has no consequence for the reliability of communication. An
attacker needs to know one agent it can send the package to and needs to know a
second agent it can pretend the package is being sent from. One of these agents
has to be the current initiator. Besides knowing such a sender-receiver pair, the
attacker needs to know the actual sequence and acknowledgement number, as
well as the right moment to insert a package. The inserted package has to be
received by the destination agent before this agent receives the original package
with the same sequence numbers. An attacker can obtain this information by
reading the packages being sent. Finally, the attacker needs to know how the
checksum is calculated. It cannot obtain this knowledge by reading packages,
because the method for calculating the checksum is not presented there. The
attacker needs another source where it can obtain knowledge about calculating
the checksum. A successful inserted package violates the safety property.

Modify An attacker modifying a package has in principle no consequence for the
reliability of communication. An attacker needs to know how to calculate the
checksum, because this needs to be recalculated after the message has been
modified. An attacker also needs to know the right moment to modify a pack-
age, because if it modifies an instance of a package after the receiver already
received another instance of this package, then the receiver will delete the mod-
ified package. The attacker can determine the right moment from reading the
packages sent. A successfully modified package violates the safety property.

A communication algorithm for teamwork 23

Summing up, it is hard for an attacker to do real harm. To successfully perform
deletion, insertion or modification, an attacker must read the packages being sent.
Thus if a security mechanism is added to the MACOM2 protocol that prevents an
attacker to read packages, the reliability of the communication will be guaranteed.

8.2. Security and the information being communicated

A package consists of a header and a data field. The header consists of differ-
ent fields containing meta-information about the package. Which information can an
attacker attain from these fields while eavesdropping on the communication?

Source field tells the attacker the identity of one agent, and also divulges that this
agent is communicating with at least one other agent. If the group field of the
package is filled, then the source field also tells the attacker that this agent is the
initiator and that this agent is communicating one-on-group.

Destination field tells the attacker the identity of an agent and that this agent is com-
municating with another agent.

Checksum field tells the attacker what the value is of the checksum of a package.
This value does not reveal any information about the group or what they are
communicating about.

Group field can be filled or can be empty. In case it is filled, it concerns a package
sent by the initiator during one-one-group information. A filled group field tells
the attacker the identity of all the receivers of the group as well as the fact
that these agents are involved in teamwork. In case this field is empty, it can
concern a package sent during one-on-one communication by the initiator or
by the receiver. The group field is also empty when a receiver acknowledges
a one-on-group message from the initiator. Thus, an empty group field is not
necessarily an indication for one-on-one communication.

Sequence field tells the attacker what the current sequence number is from the source
agent in his communication with the destination agent. This value does not
reveal any information about the group or what they are communicating about.

Acknowledgement field tells the attacker which sequence number belongs to the des-
tination agent to whom the source agent reacts. This value does not reveal any
information about the group or what they are communicating about.

Data field contains the messages sent during the teamwork dialogue. This field can
tell the attacker al lot of information, such as the goal of teamwork, the current
stage of teamwork, as well as information about the qualities of the individual
members of the team. So if an attacker is able to eavesdrop on communication,
then even from reading one or a few packages, it can obtain al lot of informa-
tion about the teamwork. The consequences of an attacker eavesdropping on
communication depends on the possible damage for the goal of teamwork. For
a team of scientists developing a new medicine, it can be disastrous if a third
party gets their hands on the information communicated. Costly investments
can be lost if another company also knows how to produce a new medicine
without having any research costs.

24 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

Summing up, the security of the communicated information is violated if an at-
tacker is able to read the messages sent: a similar conclusion as we drew before about
the security and the reliability of the communication. The solution for both security
problems is to prevent an attacker to read the packages. In the sequel, we sketch some
possible solutions.

8.3. Encryption as a solution for security of teamwork communication

One solution for preventing an attacker from reading packages is to build a network
for the members of the team only, physically inaccessible for any other agents. This
solution might work for the last two stages in teamwork, namely plan formation and
plan execution, when the extension of the team has been settled (Wooldridge et al.,
1999; Dunin-Kȩplicz et al., 2003). A team is established at the end of the second
stage of teamwork (Dignum et al., 2001). Because there is no team yet during potential
recognition, building a network for team members only is not the security solution for
teamwork.

Another solution is to encrypt the packages. The attacker can still read part of the
packages, but is not able to retrieve the information which is stored in its encrypted
fields. Let us examine which fields of a package can be encrypted and how that af-
fects security. The only field that cannot be encrypted is the destination field. The
communication medium used to transmit the packages needs to know to which agent
a package has to be delivered. Therefore, an attacker will always be able to obtain
the identity of the destination agent. The attacker will also know that this agent is
communicating with at least one other agent. The checksum field does not reveal any
information about the group or what they are communicating about and has no value
for an attacker trying to violate the reliability of the communication. So there is no
need for encrypting this field.

The MACOM2 algorithm provides a dialogue type of communication. All pack-
ages sent by an initiator will be acknowledged by the receiver. Because an attacker can
read the destination agent of every package, it is able to reveal the identity of all agents
sending packages in a communication medium. By reading the destination fields, the
attacker cannot obtain information about the make-up of current teams.

In case of a one-on-group package, the group and source fields reveal the members
of a team and reveal which agent is the initiator. Encrypting these fields prevents the
attacker from directly obtaining information about a team from one package. Even
when the source field is encrypted, an attacker can still retrieve information about
which sender-receiver pairs are communicating by reading the sequence and acknowl-
edgement fields. These fields also help the attacker to determine which packages are
instances of the same package, enabling it to successfully delete packages. Therefore,
the sequence and acknowledgement fields should also be encrypted. The data field can
contain valuable information about the team’s goal. It is obvious that this field should
also be encrypted. To prevent an attacker from violating the reliability of the communi-
cation and from obtaining information communicated within the group, the following
fields should be encrypted: source, group, sequence, acknowledgement, and data field.
In order to formally investigate the security of MACOM2 combined with appropri-
ate encryption, one could use model checking methods as proposed in (Armando et
al., 2009; Boureanu et al., 2009).

A communication algorithm for teamwork 25

9. Discussion, conclusion and future work

This research falls in the tradition, starting with Halpern and Zuck’s landmark
paper (Halpern et al., 1987), of using interpreted multi-agent systems to analyze com-
munication protocols, and including the analysis of file transmission protocols such
as (Lomuscio et al., 2004). In (Stulp et al., 2002) Stulp and Verbrugge extend the
knowledge-based approach to the Transmission Control Protocol (TCP), which is in-
dispensable for the Internet today. The main contribution there is the modeling of a
sliding window, allowing agents to make use of available bandwidth, and an epistemic
analysis in which exact lower and upper bounds on the attained knowledge of the par-
ticipants at every moment in the communication process are proved. However, TCP
does not allow for creating iterated general knowledge within a group.

Our aim in this paper has been to make communication protocols much more
flexible than file transmission protocols, in order to adapt them to dialogue-based
teamwork. There, more interactive inter-group communication is needed than can
be achieved by simply transmitting the same infinite sequence of bits from an initiator
to each agent in the rest of his team individually. In this paper a knowledge-based
algorithm MACOM1 for multi-agent communication is presented, and subsequently
adjusted for dialogue communication in teamwork. It is shown how the adapted pro-
tocol MACOM2 handles the different numbers of messages between the initiator
and different members and the changing initiator property, guaranteeing the knowl-
edge gain required for teamwork. An algorithm supporting the dynamic properties of
teamwork communication enables a flexible approach to teamwork. In order to make
MACOM2 secure against attackers, however, it needs to be complemented with en-
cryption of the relevant fields of the packages.

This research complements other literature that aims to make Wooldridge’s and
Jennings’ cooperative problem solving model (Wooldridge et al., 1999) more flexible,
for example, (Dunin-Kȩplicz et al., 2004) where the needed group attitudes for team-
work are adjusted to properties of the environment and the organization. Durfee et al.
present another model of cooperative problem solving (Cox et al., 2005). Their idea of
partial global planning interleaves plan execution with stages of gradually specifying
the global plan in more detail. This seems to be an appropriate model for long term
software development projects, where teams change over time. It would be interesting
to see whether communication during teamwork based on such more flexible mod-
els can be handled similarly to the knowledge-based algorithm presented here, by a
modular approach that can be instantiated for specific models of teamwork.

In the present work, we have concentrated on the types of dialogues needed during
team formation. Future work will include an investigation how protocols establishing
binary social commitments during plan formation can be developed and analyzed in an
interpreted multi-agent systems framework. Chopra and Singh have presented relevant
work on commitment protocols, based on the formalism of transition systems (Chopra
et al., 2006). Lomuscio and Sergot (Lomuscio et al., 2004) investigate the possibility
of applying deontic logic in order to study agents’ violations of file transmission pro-
tocols. We have not yet investigated this issue for our protocols, but it is interesting
future research. It is also interesting to design a logic exactly suited to communica-
tion protocols such as MACOM1 and MACOM2, in a similar fashion as the sound
and complete system TDL developed by Lomuscio and Woźna for authentication pro-
tocols (Lomuscio et al., 2006). For such a system with a computationally grounded
semantics of interpreted systems, it may even be possible to develop model checking
techniques in order to check relevant properties automatically.

26 Journal of Applied Non-Classical Logics. Volume Volume of the issue
undefined – No. Number of the issue undefined/Year of publication
undefined

Acknowledgements

We would like to thank several anonymous referees for their helpful comments on
this work. Furthermore, we would like to thank Hans van Ditmarsch, Jan van Eijck
and Philippe Balbiani for organizing the wonderful workshop Logics for Information
Security.

10. References

Armando A., Carbone R., Compagna L., “LTL model checking for security protocols”, Journal
of Applied Non-classical Logics, vol. 19, issue, pp. xxxx, 2009.

Boureanu L., Cohen M., Lomuscio A., “Automatic model checking of temporal-epistemic prop-
erties of cryptographic protocols”, Journal of Applied Non-classical Logics, vol. 19, issue,
pp. yyyy, 2009.

Chopra A. K., Singh M. P., “Contextualizing commitment protocols.”, in H. Nakashima, M. P.
Wellman, G. Weiss, P. Stone (eds), AAMAS, ACM, pp. 1345-1352, 2006.

Cox J. S., Durfee E. H., Bartold T., “A distributed framework for solving the Multiagent Plan
Coordination Problem.”, in F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh,
M. Wooldridge (eds), AAMAS, ACM, pp. 821-827, 2005.

Dignum F., Dunin-Kȩplicz B., Verbrugge R., “Creating collective intention through dialogue”,
Logic Journal of the IGPL, vol. 9, num. 2, pp. 289–303, 2001.

Douglas D. E., Internetworking with TCP/IP, Volume 1: Principles, Protocols and Architectures,
Pearson Prentice Hall, Upper Saddle River, NJ, USA, 2006.

Douglas D. E., Stevens D. L., Internetworking with TCP/IP, Volume 2: Desing, Implementation
and Internals, Prentice Hall, Upper Saddle River, NJ, USA, 1999.

Dunin-Kȩplicz B., Verbrugge R., “Collective intentions”, Fundamenta Informaticae, vol. 51,
num. 3, pp. 271–295, 2002.

Dunin-Kȩplicz B., Verbrugge R., “Dialogue in teamwork”, in J. M. F. et al. (ed.), Proceed-
ings of The 10th ISPE International Conference on Concurrent Engineering: Research and
Applications, A.A. Balkema, Rotterdam, pp. 121–128, 2003.

Dunin-Kȩplicz B., Verbrugge R., “A Tuning Machine for Cooperative Problem Solving”, Fun-
damenta Informaticae, vol. 63, pp. 283-307, 2004.

Fagin R., Halpern J. Y., Moses Y., Vardi M., Reasoning About Knowledge, MIT Press, Cam-
bridge (MA), 1995.

Goldblatt R., Logics of Time and Computation, num. 7 in CSLI Lecture Notes, Center for
Studies in Language and Information, Palo Alto (CA), 1992.

Halpern J., van der Meyden R., Vardi M., “Complete axiomatizations for reasoning about
knowledge and time”, SIAM Journal on Computing, vol. 33, num. 3, pp. 674-703, 2004.

Halpern J. Y., Moses Y., “Knowledge and common knowledge in a distributed environment”,
Journal of the ACM, vol. 37, num. 3, pp. 549–587, 1990.

Halpern J. Y., Zuck L. D., “A little knowledge goes a long way: Simple knowledge-based
derivations and correctness proofs for a family of protocols”, Proceedings of the 6th ACM
Symposium on Principles of Distributed Computing, pp. 269–280, 1987. Full version in-
cluding proofs appeared in Journal of the ACM 39(3) (1992) 449–478.

Lomuscio A., Sergot M., “A formulation of violation, error recovery, and enforcement in the bit
transmission problem”, Journal of Applied Logic, vol. 2, pp. 93–116, 2004.

A communication algorithm for teamwork 27

Lomuscio A., Woźna B., “A complete and decidable security-specialised logic and its appli-
cation to the TESLA protocol”, in P. Stone, G. Weiss (eds), Proceedings of the Fifth In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems, ACM Press,
pp. 145-152, 2006.

Meyer J.-J. C., van der Hoek W., Epistemic Logic for AI and Computer Science, Cambridge
University Press, Cambridge, 1995.

Postel J., Transmission Control Protocol (TCP), Technical Report num. RFC 793, Internet So-
ciety, September, 1981. ftp://ftp.rfc-editor.org/in-notes/rfc793.txt.

Stulp F., Verbrugge R., “A knowledge-based algorithm for the Internet protocol TCP”, Bulletin
of Economic Research, vol. 54, num. 1, pp. 69–94, 2002.

van Baars E., “Knowledge-based Algorithm for Multi-agent Communication”, Mas-
ter’s thesis, Department of Artificial Intelligence, University of Groningen, 2006.
www.ai.rug.nl/alice/mas/macom.

van Baars E., Verbrugge R., “Knowledge-based Algorithm for Multi-agent Communication”, in
G. Bonanno, et al. (eds), Proceedings of the 7th Conference on Logic and the Foundations
of Game and Decision Theory, University of Liverpool, pp. 227 - 236, 2006.

van Baars E., Verbrugge R., “Adjusting a Knowledge-Based Algorithm for Multi-agent Com-
munication for CPS”, in M. Dastani, A. E. Fallah-Seghrouchni, J. Leite, P. Torroni (eds),
LADS, vol. 5118 of Lecture Notes in Computer Science, Springer, pp. 89-105, 2007.

Wooldridge M., Jennings N. R., “The cooperative problem-solving process”, Journal of Logic
and Computation, vol. 9, num. 4, pp. 563–592, 1999.

