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> Context • Strict finitism is usually not taken seriously as a possible view on what mathematics is and how it func-
tions. This is due mainly to unfamiliarity with the topic. > Problem • First, it is necessary to present a “decent” his-
tory of strict finitism (which is now lacking) and, secondly, to show that common counterarguments against strict 
finitism can be properly addressed and refuted. > Method • For the historical part, the historical material is situat-
ed in a broader context, and for the argumentative part, an evaluation of arguments and counterarguments is pre-
sented. > Results • The main result is that strict finitism is indeed a viable option, next to other constructive ap-
proaches, in (the foundations of) mathematics. > Implications • Arguing for strict finitism is more complex than 
is usually thought. For future research, strict finitist mathematics itself needs to be written out in more detail to 
increase its credibility. In as far as strict finitism is a viable option, it will change our views on such “classics” as 
the platonist-constructivist discussion, the discovery-construction debate and the mysterious applicability prob-
lem (why is mathematics so successful in its applications?). > Constructivist content • Strict finitism starts from 
the idea that counting is an act of labeling, hence the mathematician is an active subject right from the start. It 
differs from other constructivist views in that the finite limitations of the human subject are taken into account.  
> Key words • Mathematics, finite, largest number, infinite, limits, budget constraints.

1. Introduction

When discussing with either math-
ematicians, philosophers acquainted with 
mathematics, or philosophers that are not, 
invariably, the idea of a mathematics that 
is without infinity being a conceivable or 
even workable one is met with a number 
of spontaneous counterarguments. Often 
these objections are of an informal nature, 
not requiring a formal rejoinder. In this pa-
per a number of those (the most important 
ones, at least to my mind) are looked into 
and rejected. Should this succeed then of 
course the “real” work, to formally build a 
full-fledged strictly finite mathematics, has 
not even begun. But at least a first hurdle 
would have been taken. This, in a nutshell, is 
the modest goal of this contribution. In the 
next section, I will begin by clearing away a 
number of historical misconceptions about 
strict finitism, before dealing with a number 
of different objections in the sections to fol-
low. 

2. Some historical remarks

Strict finitism, over the course of the 
years, has mostly received a bad press. The 
reasons are many, and often involve a “natu-
ral” disgust for the subject (to be dealt with 
in the sections to follow). Also of impor-

tance is the lack of consensus about the label 
itself: strict finitism, ultrafinitism, and ultra-
intuitionism are often used without distinc-
tion, which adds to the confusion.

Very often, the name Alexander Yes-
senin-Volpin (or Essenine-Volpin or És-
enine-Volpine) is mentioned as that of its 
founder. This is to be lamented for a couple 
of reasons. First of all, his papers, such as 
e.g.,Yessenin-Volpin (1970), the most fa-
mous among them, are extremely cryptical, 
not to say nonsensical. Moreover, he had 
rather specific purposes in mind, which are 
not necessarily shared by strict finitists (in-
cluding the present author). Incidently, Yes-
senin-Volpin himself described his approach 
as ultra-intuitionism not strict finitism. Very 
briefly, and doing him injustice, the central 
idea was the following: consider classical 
set theory, ZFC (Zermelo-Fraenkel with the 
choice axiom). We know, thanks to Kurt 
Gödel, that the consistency of this system 
cannot be shown by ZFC’s own means. One 
would normally think that finitary means 
are surely excluded because these are easily 
formulated in set theory. But, as Gödel him-
self remarked in his famous 1931 paper, it is 
not excluded that there exist finitary proof 
methods that are themselves not expressible 
in ZFC.1 This goal in mind, Yessenin-Volpin 

1 |  Here is what the Gödel paper says: “For 
this viewpoint presupposes only the existence of 

introduced so-called “Zenonian” sets. Char-
acteristic of this kind of set is that: first, if n 
belongs to it, then so does n + 1; and second, 
nevertheless, in its entirity, the set is finite. 
To give substance to this curious idea, he 
gives the following example: consider the set 
of all the heartbeats in one’s youth. For each 
and every heartbeat there has been a next 
one. Still, there have only been but a finite 
number of heartbeats in one’s youth. What 
has just been said probably already makes 
clear that Yessenin-Volpin’s perspective can 
hardly be qualified as strict finitism, as in the 
latter the infinite is squarely banned from 
mathematics. This being said, recent authors 
such as David Isles (1992, 1994) have suc-
ceeded in translating (some of) Yessenin-
Volpin’s ideas into a formal and accessible 
presentation, allowing for some nuance in 
this debate.

A second source often mentioned in 
connection with strict finitism, and also 
causing a lot of confusion is Ludwig Witt-
genstein, more particularly his Bemerkun-
gen über die Grundlagen der Mathematik 
(Wittgenstein 1984). The view that this 
rather enigmatic work betrays strict finitist 

a consistency proof in which nothing but fini-
tary means of proof is used, and it is conceivable 
that there exist finitary proofs that cannot be 
expressed in the formalism of P (or of M or A)” 
(Gödel 1971: 615).
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sympathies in the author can be defended. 
Many paragraphs deal with feasibility, a 
concept referring to what is mathematically 
executable by real humans (situated in space 
and time), and some paragraphs contain 
very critical remarks with respect to infin-
ity. It is however a very intricate affair to sort 
out whether or not Wittgenstein was indeed 
a strict finitist. The Bemerkungen in no way 
contain a systematic proposal to this effect, 
and it is even near to impossible to distil 
one out of them for oneself. Add to this that 
many mathematicians and philosophers do 
not in general have an awful amount of sym-
pathy for Wittgenstein, and it becomes clear 
that, like Yessenin-Volpin, he is not likely 
to become the best promoter of the strict 
finitist’s cause. Nevertheless, in the case of 
Wittgenstein also, a lot of authors have tried 
to deduce something useful (intelligible, 
coherent) from his writings, and this mate-
rial is actually very interesting for the strict 
finitist, although it is of course not necessar-
ily developed from within this spirit. Some 
examples are Wright (1980), Marion (1998), 
and Rodych (2000).

Should one be urged to point to an 
original source for strict finitism, then one 
of the best candidates would probably be an 
article from 1956 by David Van Dantzig2 
with the title “Is 101010 finite number?” Al-
though no full-fledged, explicit proposal is 
formulated in it, it does contain a very clear 
defense of strict finitism as well as an impe-
tus to get to work with various, finite num-
ber systems. Roughly, the idea is to start 
with n1 natural numbers forming a row S1, 
and then to look at the sums of these, ob-
taining another row S2, and so on. At no one 
particular moment does one have to deal 
with the entire row of naturals, and sup-
posing one is able to add and multiply, this 
does not imply the possibility of exponen-
tiation. Interestingly, van Dalen (1978) and 
Epstein & Carnielli (2000) not only men-
tion Yessenin-Volpin but also van Dantzig 
as pioneers. Whoever one wants to point to 
as its founder(s), it is clear that strict finit-
ism as a school of thought is quite young, 
hence material is not abundant (yet). In ad-
dition to this, I want to draw the attention 

2 |  For an excellent introduction to the life 
and work of this author, see Alberts (2000) and 
Alberts & Blauwendraat (2000).

to three directions that, though not seeing 
themselves as strict finitist, in a number of 
aspects come very close to it and can thus, 
at the very least, be inspiring. 

A first trend starts from classical math-
ematics, e.g., Peano Arithmetic (PA), and 
adds to this a certain operator expressing a 
limitation. A well-known approach is that of 
Parikh (1971), where a feasibility operator 
is added to PA, having the properties that, 
first, if natural numbers n and m are feasible 
then so is the sum n + m, and second, if nat-
ural numbers n and m are feasible, then so is 
the multiplication n × m, but, third, 2 to the 
10000th power is not. Briefly, adding and 
multiplying always works, exponentiation 
does not. Obviously, this is no strict finitist 
approach, because for the strict finitist sum-
mation itself is also not closed. Nevertheless, 
as said, this material is very inspiring for the 
strict finitist. Along the same lines, Shaugh-
an Lavine (1994) has devised a beautiful 
model for transfinite set theory that assumes 
the potential infinite.

A second trend has to do with the study 
of fragments of PA. This seldom pertains to 
strict finitism but other philosophical and 
foundational concerns are involved. Pres-
burger arithmetic (Presburger 1929), for ex-
ample, retaining addition but omitting mul-
tiplication, has the nice property of being 
decidable, as opposed to regular arithmetic, 
e.g., PA, which is incomplete and undecid-
able. A lot of research is concerned with 
the question of how far the lower limit can 
be raised: what can one add to Presburger 
arithmetic while maintaining decidability 
and/or other pleasant properties (vis-à-vis 
PA) of the extension. Similarly, in Robinson 
arithmetic or system Q (see Nelson (1986)), 
the full induction axiom is dropped, bring-
ing up questions as to the means of expres-
sion without and with several limited ver-
sions of the axiom. Needless to say, this kind 
of material is also very interesting to the 
strict finitist.

Finally, a third trend also takes PA as a 
starting point, and via (sometimes minimal) 
changes to the axioms tries to bring into 
play finite models, next to the classical in-
finite ones. One of the earliest proposals to 
this effect is Jan Mycielski (1981). This will 
moreover be relevant for our discussion of 
the argument from poverty below. In PA, 
the so-called successor function is of central 

importance. This function s maps numbers 
to numbers, such that, for each n, s(n) is the 
next number in line. Two axioms determine 
the structure of this function, to wit:
(s1)	 ∼(∃n)(s(n) = 0), i.e., 0 is the first 

number, and
(s2)	 (∀n)(∀m)((s(n) = s(m) ⊃ (n = m)), 

i.e., if the successors are equal, then 
so are the originals.

It suffices to replace (s2) by the following 
axiom (s2)*
(s2)*	 (∀n)(∀m)((n ≠ s(n) & 

m ≠ s(m)) ⊃ (s(n) = s(m) ⊃ (n = m)).
For the classical model, it is obviously 

the case that for all n, the successors are 
different from the original, but at the same 
time (s2)* is perfectly compatible with an 
additional axiom stating:
(s3)	 (∃n)(n = s(n))

Note that this number can serve as the 
greatest number. It has therefore been par-
ticularly this approach that inspired the 
present author to develop proposals for a 
finitary arithmetic himself: Van Bendegem 
(1994, 1999, 2003). In parallel, from within 
paraconsistent logic, Graham Priest has also 
become interested in strict finitism. Not be-
ing convinced of the correctness of this po-
sition, his main motivation is related to the 
possibility of a finite model, for this opens 
ways to clarify certain metamathematical 
properties; see Priest (1994a, 1994b, 1997, 
2000).

The preceeding may give the impres-
sion that among strict finitists, the focus is 
predominantly or even exclusively on arith-
metic and numbers. Although in the pres-
ent paper, attention will indeed be limited 
to numbers, this is certainly not the case 
in general: see, e.g., Van Bendegem (1995, 
2000, 2002a). Let it moreover be noted that 
there are several beautifully argued papers 
against strict finitism, such as Dummett 
(1978) or Wright (1982), that a number of 
very good surveys and reviews are avail-
able, such as Welti (1987), Groenink (1993), 
Mawby (2005) or Styrman (2009), and also 
that interest has even been shown from se-
miotics: Rotman (1988, 1993). It is not the 
intention to impress with or draw conclu-
sions from this list, although it should be 
pointed out that the widespread belief that 
this theme has only attracted a limited num-
ber of (marginal) philosophers and math-
ematicians is pertinently wrong.
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3. The argument from 
continuous counting
This first argument against strict finit-

ism is without doubt the most popular 
one. It runs as follows. It is totally sense-
less to claim that one can only count up 
to a certain number n and then suddenly 
stop. Put otherwise: if one can write down 
a number (sign) n, then one can also write 
down number (sign) n + 1. This argument 
is analogous to the one saying that surely 
the universe must be infinite, for supposing 
that there is a border, what is to be found 
beyond that border? Admittedly, this is a 
very strong argument. Therefore my de-
fense shall proceed in two steps. In a first 
step, I want to show that something must 
be wrong with this reasoning, without ex-
actly pinpointing what. In a second step, 
I want to clarify what is the origin of the 
misunderstanding, thereby refuting the ar-
gument.

The first step of the counter-argument 
uses the Sorites paradox, already implicitly 
evoked in the previous section, when deal-
ing with Yessenin-Volpin. Most philoso-
phers are acquainted with the paradox as 
dealing with a heap, a beard, a bald man, 
etc. What it all boils down to is also familiar 
to most: we are dealing with vague predi-
cates. Basically, this is the reasoning:
(P1)		  A(1)
(P2)		  (∀n)(A(n) ⊃ A(n + 1))
hence	
(C)		  (∀n)A(n).

(P1) says that 1 has the property A, 
(P2) that if n has property A, then the next 
number in line also has it, and (C) says 
that all numbers are A. A classic example: 
A(n) ≝ “the number n is small.”3 If (P1) and 
(P2) are acceptable – which on first sight 
seems to be the case – then (C) follows, 
or in other words, all numbers are. Which 
is obviously wrong. Ways to deal with the 
problem are also well known: (a) reject the 
reasoning, (b) reject (P1), or (c) reject (P2).

Strategy (a) is mostly avoided, for the 
argument in question is none other than 
mathematical induction (see the previous 
section). Few want to rob mathematics 

3 |  This version, known as Wang’s paradox, 
has been the object of a brilliant analysis in Dum-
mett (1978).

of one of its favorite reasoning schemes. 
Strategy (b), in its turn, is of little avail: one 
chooses property A in order to be able to 
start with the number 1. Put otherwise, the 
fact that there exist properties for which, 
no matter what, A(1) is the case, is enough. 
Strategy (c) remains. However, to reject 
(P2) has a peculiar consequence. In terms 
of models, it means that there is at least one 
model where (P2) is false, i.e., the negation 
that (P2) is the case, so:

∼(∀n)(A(n) ⊃ A(n + 1)), 
or, according to the rules of classical logic,

(∃n)(A(n) & ∼A(n + 1)).
This is a strange result, because we have 

hereby transformed the vague A to a precise 
one. And who would be prepared to claim 
that 1000 is small, whereas 1001 is not? 
Some solutions proposed, such as Sorensen 
(2006), are based on the idea of a “grey” 
area in between A and not-A. The details 
need not be discussed here, but usually 
solutions like these are considered hardly 
elegant. In the present context, however, I 
would like to present this as an advantage.

But let me first show the connection. 
Very simply: for property A(n), take “I can 
write down the number (sign) n.” Let us 
carefully spell out the various steps of the 
reasoning involved:
(P1)	 I can write down the number 1. 
No comment.
(P2)	 If I can write down the number 

n, then I can also write down the 
number n + 1. 

This claim also seems perfectly accept-
able. I am even inclined to add to this: for 
anyone. Whether one is a Platonist, logicist, 
formalist, intuitionist, constructivist, strict 
finitist, ultra-intuitionist, or just a working 
mathematician, one has to agree that once 
n is available, n + 1 can be derived via a 
simple manipulation. Supposing no issue is 
made of mathematical induction, the con-
clusion then follows with absolute force, 
again: for anyone. But what does (C) state?
(C)	 For any number n it is the case that 

I can write down the number n. 
In contrast, this claim seems unaccept-

able, and again, one is inclined to add: for 
all. Or is it? Perhaps room should be left to 
interpret (C) conditionally. When one is 
asked to write down any specific number 
n, then there are circumstances imaginable 
in which this is perfectly possible. If nec-

essary, we devise a handy and economical 
notational system, such that, however finite 
our universe might be, one can write down 
the number in question anyhow. But to be 
clear, we are talking here of a physical activ-
ity: one is asked to write down the number 
n. That is, on a carrier substance. And using 
a particular notation. For anyone appealing 
to this “way out,” I will confront them with 
this version:
(P1) 	 I can write down the number n on 

paper in the decimal system.
(P2) 	 If I can write down the number n 

on paper in the decimal system, 
then I can also write down the 
number n + 1 on paper in the deci-
mal system.

(C) 	 For each number n in the decimal 
system, it is the case that I can write 
down the number n on paper in the 
decimal system.

Of course, your average classical math-
ematician can reply that this precisely 
shows that there is no room in mathemat-
ics for properties such as “to write down the 
number n on paper in the decimal system.” 
In all honesty, I have nothing against this. 
But what is the strict finitist’s reaction to 
the reasoning just proposed? Whenever (s)
he refuses to accept the conclusion (C), we 
find ourselves in a typical Sorites situation. 
One can discuss whether the transition 
from (P1) and (P2) to (C) is justified, but 
to doubt (P2) is surely the most interesting 
strategy. In order to avoid entering a situa-
tion in which to maintain that for a certain 
number n, we can write down n, but on the 
other hand are unable to write down n + 1, 
one can make use of the “grey” area men-
tioned above. For a specific initial fragment 
of the naturals, one can hold that A(n) is the 
case, from a certain number onwards that 
A(n) is definitely not the case, and for the 
region in between those, that it is, e.g., in-
determined whether A(n) is the case or not. 
A situation like this is easily understand-
able. One sees a mathematician at work on 
a piece of paper. Once the paper is full, (s)he 
takes another sheet, and then another and 
another. Upon the announcement that one 
has run out of paper, then the walls are still 
available, but that too must come to an end. 
One can try and write as small as possible, 
but again: there comes a moment when the 
available blank space is used up. 
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A possible objection to this approach is 
that vagueness remains a problematic con-
cept, and that thus, considering the fact that 
strict finitism is in need of vagueness, this 
is rather an argument against instead of for 
it. The answer to this objection is straight-
forward: the impact will be minimal. If 
statements about numbers in the grey zone 
are indetermined, then nothing much can 
be said about them in mathematical terms 
anyway. In other words: these numbers are 
not useful. I shall return to this point in the 
section about the argument from poverty. 
There arises another danger, however. In or-
der to be able to speak about the above rea-
soning, I had to allow myself to write down 
expressions such as “from a certain number 
n onwards, A(n) is definitely not the case.” 
But does this not sound terribly paradoxi-
cal? After all, we are talking here about the 
statement “I can write down the number n 
on paper in the decimal system.” How then, 
can I know n? If I do know n, then I need 
a description of n and that description can 
be written, which is contradictory. But if I 
do not know n, then how can I ever be able 
to make the statement that I am unable to 
write down n under certain conditions? 
This argument can be applied to the great-
est number itself in particular.

4. The argument from the 
greatest number itself
The essence of this objection is that 

the closer the strict finitist gets to a precise 
characterization of the greatest number, say 
L, the easier it becomes for adversaries to 
imagine numbers that are greater than L, 
or to come up with questions about L that 
make it seem quite arbitrary. Classical ex-
amples of the latter are: Is L prime? If not, 
what or how many are its prime factors? 
Can L be divided by a specific number, 
say  3? Examples of the former are: Does 
L + 1 exist? Does L²? Is L different from 
L + 1? Or, if all expressions of the L + n have 
a meaning, does one not obtain a potential-
ly infinite number of names that can serve 
as number signs? And so on.

The key to dealing with objections like 
these, it seems to me, is given by wonder-
ing what are the presuppositions of one 
of the above questions, viz. “Is L different 

from L + 1?” One of these presuppositions 
is that I can rightfully speak of L and L + 1. 
But surely that is the problem to start with! 
To the extent that one can speak about a 
number L + 1, I should be able to make a 
representation of it, which immediately im-
plies that L is no longer the greatest num-
ber. As a consequence, to reply to the above 
question by “I am sorry, but I cannot an-
swer this question” is perfectly defensible. 
This might sound awfully silly, but consider 
the analogy with the matter of discrete vs 
continuous time. One who holds time to be 
discrete is unavoidably confronted with the 
question of what is to be found in between 
two subsequent moments in time. Here 
also, avoiding this question is legitimate 
because its presupposition is precisely that 
something can be found in between these 
two moments, which is not the case (or so 
is the claim). Note that few will object to 
the analogous question in the continuous 
case, viz. what moment in time immedi-
ately follows a given one. Here also, the evi-
dent answer will be that this question does 
not make sense, because such a moment is 
simply inexistent (out of the nature of the 
continuum). In essence, this is the same an-
swer, although I admit that this is a pretty 
weak argument. To condone one’s own 
mistakes (if they are mistakes, of course) 
by pointing to similar mistakes by others 
is indeed an intellectually not very satis-
factory option. Nevertheless, with respect 
to the greatest number L, one can very 
well answer: it is that number about which 
no question whatsoever can be answered. 
Strictly speaking, I am thus even prohibited 
from claiming that L actually is the great-
est number, unless by using the phrase “the 
number about which no question whatso-
ever can be answered” as a definition.4 This 
has a very interesting consequence, for I 

4 |  It has been pointed out to me, among 
others by Leon Horsten and Diderik Batens, that 
there is something paradoxical about this state-
ment (so perhaps Graham Priest would like this). 
The paradox is this: can you answer the question 
“Is L a number?” Given the definition, I would be 
forced to answer “yes,” but then there is at least 
one question one can ask about L and answer. If, 
nevertheless, I insist that the answer must be neg-
ative, then I cannot even claim that L is a number, 
and that is an extremely weak position. This prob-

shall not consider L as the greatest number 
because I can write down L – 1 as opposed 
to L. So the objection is disarmed. A legiti-
mate question remains: what can one do 
with L, mathematically speaking? I shall 
return to this point below.

Is that it? Unfortunately not, because 
the critic can still remark that, although it 
might be wrong to demand an answer to 
the question “Is L different from L + 1?,” the 
fact remains that two different expression L 
and L + 1 have been used to formulate the 
question. These two expressions are very 
well determined: one consists of a capital 
letter L, the other of that same capital letter 
L followed by a “+” sign, followed by a 1. 
So the question about the expressions can 
be answered, and the answer has to be: yes, 
we are confronted here with two different 
expressions, one consisting of one sign, the 
other of three. No strict finitist will claim 
that one and three are actually the same. 
But is this not destructive for the strict 
finitist? For the question above can be reit-
erated: “If all expressions of the form L + n 
have a meaning, do we not in this way ob-
tain a potentially infinite amount of names 
that can serve as number signs?” The an-
swer, again, will have to be “yes.” Which is 
problematic.

5. The argument from 
object and language
In order to be in a position to answer 

the above problem without bringing the po-
tentially infinite in again through the back 
door, it is necessary to clarify the relation 
between the objects we talk about, number 
signs for instance, and our actual talk about 
them. The latter comprises the production 
of mathematical proofs about a certain 
domain. This relation is not at all straight-
forward. Typical objections directed at the 
strict finitist are the following.

A. Suppose you have a domain consist-
ing of numbers from 1 to 100. When writ-
ten down in the decimal system, we need 
9 signs for the first 9 digits, then 90 times 
2 signs, and 3 signs for the last number in 
line, which adds up to 192 signs in total. 

lem has also motivated the idea of a “dummy” 
largest number, presented further on.
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Suppose I want to write down all these nu-
merals, only having 100 numbers at my dis-
posal, how will I ever be able to count them 
(which I will need to do to keep track)? Let 
us not even discuss the possible sums of 
these numbers for, even if I only wanted to 
write down all these sums of the form n + m, 
then I would have 100 times 100, altogether 
10,000 possibilities. That means that I can-
not even write down all these sums, let alone 
count them afterwards.

B. Suppose you have a domain con-
sisting of numbers from 1 to 100. Suppose 
you have a language in which expressions 
dealing with these numbers can be writ-
ten down. Suppose that such expressions 
can take the form of a system of axioms 
and inference rules, so that one can speak 
of proofs in that language. Is it then not 
completely arbitrary to claim that proofs 
are limited in length, namely not exceeding 
100 signs? For should the opposite be the 
case, then it suffices to take the number of 
signs used as a measure for a greater num-
ber. Allowing the latter, the argument can 
be repeated until the potentially infinite is 
brought in.

For the time being, I will pass around 
the problem of finite proofs that, qua text, 
are perfectly acceptable for the strict finitist 
but nevertheless deal with infinite domains. 
That problem will be (briefly) touched upon 
in the next section. 

A first and crucial observation, also of 
importance for what follows in the next 
section, is that to work with all numbers up 
to the greatest one is an impossible affair. 
As the greatest number itself is indetermi-
nate, there is no sense in making statements 
about all numbers. A universal quantifier 
such as “For all n up to L” must be mean-
ingless, for, to briefly recapitulate, from the 
moment we make a representation of all 
numbers up to L, L ceases to be the greatest 
number. 

A supportive argument for this is given 
by considering this case at scale. Imagine a 
world with N objects, where people in this 
world are asked to count objects by associ-
ating each object with another as its label. 
It is straightforward in this world: people 
using this particular, elementary counting 
act will only be able to count half of the 
objects present. In other words, what is be-
ing shown here is that there need not be a 

contradiction between claiming that, one 
the one hand, the world is finite and, on the 
other, no man or woman is able to count all 
objects. Finitism does not imply countabil-
ity. As a consequence, to create a workable 
situation, one has to look at a fragment of 
the whole. Or, we determinate an arbitrary 
upper limit by choosing a number L as the 
greatest number, this number being a ficti-
tious one. Perhaps it is better to speak of a 
dummy as the greatest number. From this 
moment, L is a number about which state-
ments can be made, e.g., asking what could 
be L + 1, and so. One could put it this way: 
by determining L, one establishes a budget, 
within the margins of which not just all ac-
tivities involving operations on numbers 
have to be accounted for, but also all rea-
soning about these operations, particularly 
theory building about the domain in ques-
tion. The whole of this should be seen as 
limited in extent. Let me give a very simple 
example to illustrate this point.

Suppose you have at your disposal a 
budget B and you are able to identify a 
specific amount of numbers, say up to N. 
Let us, for the sake of argument, assume 
that to label each number, one sign is suf-
ficient. Then, N elements of the budget 
have been used, and what remains, i.e., 
B – N, can be used to talk about these N 
numbers. Let us limit ourselves to sums of 
two numbers, n + m. If one wants to write 
down all possible sums, then N² signs are 
needed to this effect. If one wants to write 
down all equalities, i.e., expressions of the 
form n + m = k + l, then N4 signs are needed, 
and so on. If one wants to write down even 
more complex expressions, e.g., of the form 
((n + m) + k) + l, then this will increasingly 
burden the budget. In general, the cost of 
theoretical reflection is considerably higher 
than the mere representation of the entities 
involved (as one might expect). On the oth-
er hand, one is perhaps not often invited or 
urged to this kind of undertaking. Who on 
earth would want to write down all expres-
sions of the form n + m?5

5 | U ndertakings like these are not usually 
associated with mathematics, but rather with the 
Guinness Book of World Records. E.g., in 1998, Les 
Stewart from Australia, after 16 years, finished his 
task of typing all numbers from one to one million 
in words, resulting in a book of 19,890 pages.

Besides, in mathematics we have at our 
disposal a very economical way of dealing 
with signs, also applied above, i.e., the use of 
variables. It is crucial to see that with the ex-
pression n + m, not all concrete expressions 
or instantiations of that form have been 
written down. When looked at this way, the 
first thing that should be determined is the 
theoretical budget. In function of this, it can 
then be calculated what the “dummy” great-
est, workable number is. Which implies 
that all arguments of the form “The greatest 
number should be equal to the amount of el-
ementary particles in the universe” or “The 
greatest number is a function of Planck time 
and length” can be dismissed right away 
because they totally disregard the contribu-
tion of theoretical considerations. I have not 
listed this argument separately because the 
objections against it are so straightforward 
that it did not seem worth it. When only 
considering the question of whether all sub-
sets of elementary particles exist, and if so, 
what numbers could possibly correspond 
with them, it becomes clear that something 
is not right.

From this perspective, it is peculiar 
and highly relevant to observe that most of 
mathematical literature rarely makes use of 
concrete number signs of a specific number 
system. To give but one example, in the first 
chapter of Baker (1984), a famous, concise 
introduction to number theory, the follow-
ing specific numbers appear (in a mathemat-
ical context): 1, 2, 3, 4, 5, 7, 11, 12, 16, 32, 
35, 40, 41, 55, 77, 95, 187, 432, 641, 13395, 
44497. 

There is an obvious reason behind the 
remarkable jump from 641 to two clearly 
larger numbers. Namely, the latter two are 
related to Mersenne primes – numbers of 
the form 2n – 1, with n prime – appearing in 
a statement about the then greatest concrete 
Mersenne number known, i.e., the 27th in 
line, where the smaller number refers to the 
number of digits and the larger number to 
the prime exponent. I’ll get back to this. In 
the same chapter, however, it is also shown 
that there are infinitely many prime num-
bers. This is made possible via the subtle use 
of expressions such as “1, 2, …, n.” Though 
it may seem that the complete row from 1 to 
n is represented here, this is actually not the 
case, that is, except for the mathematician 
who has no problem with the infinite, for 



Ph
il

os
op

hica


l 
Co

nc
ep

ts
 in

 ma
t

he
ma

t
ica

l
 c

on
st

ru
ct

iv
ism



146

Constructivist Foundations vol. 7, N°2

whom such a problem is but a meaningless 
detail since in principle such an enumera-
tion is always possible. For the strict finitist, 
the hidden subtleties are the witnesses of a 
mathematical practice suggesting that there 
are no limits to the budgets.

It may be remarked that a curious game 
is being played here. I am working with a fi-
nite budget, but what I have just done is to 
present a number of reflections about that 
budget. Does this not require an even big-
ger budget? In other words: does this kind 
of approach not imply the need, given any 
budget, for an even bigger budget? Which 
again brings in the potentially infinite. The 
answer is simple: these costs at the meta-lev-
el should also be taken into account when 
drafting the original budget.

There is, however, another consequence 
that needs to be addressed. Let me illustrate 
it with a concrete example. Suppose you have 
chosen a “dummy” greatest number L and 
you wish to examine a mathematical propo-
sition, e.g., Goldbach’s conjecture, or the 
claim that each even number larger than 2 
is the sum of two primes. There is no reason 
whatsoever to assume that your budget will 
allow you to check individually whether all 
even numbers smaller than or equal to L can 
indeed be written as the sum of two primes. 
This can be generalized to other, similar 
cases. It is certainly not the case that, for the 
strict finitist, mathematical activity, primar-
ily consisting of the search for and formula-
tion of proofs, is a pointless and superfluous 
affair just because one can always reduce 
such a proof to a finite number of cases that 
can be checked one by one. Most certainly 
not! For the strict finitist, too, mathemati-
cal proof has a crucial role to play. On the 
contrary, for him or her the “economical” 
aspect will be extremely important. Think 
about the question of how to calculate the 
sum of the first n natural numbers, viz. 
1 + 2 + 3 + … + n (yes, I am now myself using 
the mysterious three dots). The rudimentary 
way of doing this is to perform n – 1 sums. 
Assuming the execution of one such sum 
has a price K, this costs (n – 1) ∙ K. However, 
if we can use the formula n ∙ (n + 1) / 2, and 
assuming that multiplication and division 
cost the same as a single sum, then the total 
cost is but 3K (one sum of n and 1, one mul-
tiplication of n and n + 1 and one division of 
n ∙ (n + 1) by 2, neglecting the cost of show-

ing that both expressions introduced above 
are equivalent. Note that the total cost now 
has become independent of n itself!6

This establishes a smooth transition to 
the last argument against strict finitism to 
be dealt with in this paper, viz. the argu-
ment that a strictly finite mathematics is not 
worthwhile because of the loss of virtually 
all interesting mathematical theorems.

6. The argument from 
poverty
It can hardly be the intention to show, 

in this section, how mathematics can be 
recast in strict finitist terms. This is a huge 
task, and moreover a technically very intri-
cate one. What I would like to present in-
stead is a rather simple example that might 
have the status of exemplar. Put otherwise, 
anyone convinced by the following argu-
ment should have no reason to believe that 
this approach might not work for the whole 
of mathematics. There is only a minimum 
of formal background needed. Take three 
propositions about variables x, y, z and a 
relation R specified for a domain of objects, 
for example the natural numbers. R can be 
interpreted as “follows” (in the sense of the 
successor function), so xRy means “after x 
comes y.”
(a)	 (∀x) ∼ xRx
(b)	 (∀x)(∃y)xRy
(c)	 (∀x)(∀y)(∀z)((xRy & yRz) ⊃ xRz).

Following the interpretation given, 
these propositions, in words, say:
(a) 	N o object succeeds itself (or R is ir-

reflexive).
(b) 	 For each object, there is another ob-

ject succeeding it.
(c)	 If y succeeds x and z succeeds y, then 

z succeeds x (or R is transitive).
Informally speaking, it is easy to see that 

a finite set of objects can never meet condi-
tions (a), (b), and (c) at the same time. As-

6 |  I fully realize that an important aside is in 
order. One can remark that this independence is 
presupposed, as the cost for a sum is considered 
as constant, regardless of the size of terms to be 
added. The point is, of course, that in the first cal-
culation, n is a factor next to the cost K (which 
itself can be independent from n), and that in the 
second calculation, n has disappeared.

sume, for simplicity’s sake, that there are but 
two objects, a and b. Consider statement (b). 
Both for a and for b an element has to exist 
that succeeds them. Take a. Can a succeed 
itself? No, that much is prohibited by (a). 
So aRb must be the case. But what about b? 
bRb is impossible, again because of (a), so 
all that remains is bRa. However, from aRb 
and (c) it follows that bRb, which is impos-
sible. Summarizing, for each object there 
has to be a next object different from any 
previous object, in other words, you are in 
need of an infinite amount of elements. How 
can a strict finitist deal with this situation? 
That is the challenge. One thing stands out: 
whatever the budget available, (a), (b), and 
(c) are expressible, so the question of what 
are the corresponding models is perfectly 
legitimate. There is no escape there.

The way out is rather that, for a strict 
finitist, it is acceptable to ask the question as 
to how the universal quantifier be read, that 
is, what is the meaning of “∀“ in expressions 
such as (a), (b), and (c)? Let us stick with the 
example of the two objects. A possible pro-
posal could be to read the three statements 
in question as follows (the influence of My-
cielski is clear here):
(a)*	 (∀x)(((x = a) ˅  (x = b)) ⊃ ~xRx)
(b)*	 (∀x)(∃y)((((x = a) ˅  (x = b)) &

((y = a) ˅  (y = b))) ⊃ xRy)
(c)*	 (∀x)(∀y)(∀z)((((x = a) ˅  (x = b)) &

((y = a) ˅ (y = b)) & ((z = a) ˅  (z = b)))
⊃ ((xRy & yRz) ⊃ xRz)).

Let us not set out the general procedure, 
but focus on (a)*. What has been added? 
Part of the expression “((x = a) ˅  (x = b)) ⊃.” 
Which just means that what immediately 
follows is limited to both elements a and b, 
or we relate the statement (a) to a domain 
with two labelled elements. In (b)* exactly 
the same happens, but as we have now two 
variables, x and y, both have to be related 
to a and b. Ditto for (c)* where this has to 
happen for x and y as well as z. One might 
think that this is a pretty trivial strategy, but 
nothing is further from the truth. In the 
expressions (a)*, (b)*, and (c)*, a and b are 
explicity mentioned, but that does not have 
to preclude that in the domain itself further 
elements are present, not mentioned in the 
propositions themselves. Now suppose the 
domain consists of three elements a, b, and 
c. The third element is thus not explicitly 
mentioned in the statements. For (a)* and 
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(c)* this poses no problems, only (b)* merits 
our attention. If we take a for x then (b)* is 
okay if we take b for y. But what if we take b 
for x? Then (b)* is turned into the following 
expression: 

(∃y)(((b = a) ˅  (b = b)) & (y = a) ˅  (y = b))
⊃ bRy)

As a small aside, as b = b is certainly ac-
ceptable and therefore also (b = a) ˅  (b = b), 
this can be easily omitted, so the expression 
becomes:

(∃y)(((y = a) ˅  (y = b)) ⊃ bRy)
What shall we choose for y? a is no 

candidate, and neither is b, because of the 
previous argumentation. The only possi-
bility left is to take the (or an) unnamed 
object c. This makes the statement trivially 
true, for if y stands for c, then neither y = a, 
nor y = b is the case, so the implication is 
always true.

There is an alternative way to under-
stand this procedure (and by explaining 
this, I clarify the connection with the work 
of Graham Priest). Start out with an infinite 
model with elements a, b, c, d, e, … and 
divide this model into a finite number of 
parts. An initial part is retained, so we allow 
a to be a, and b to be b, but all that follows 
is squeezed into one element. Doing this, 
one obtains a finite number of parts that 
let themselves be – informally – described 
as a, b, and “the rest,” for which we write 
c. By the fact that a and b are still sharply 
delimited, statements can be made about 
these elements that perfectly coincide with 
classical ones. And from the moment one 
ends up in “the rest” of the elements, it does 
not matter what is being said, which has the 
very pleasant consequence that it cannot 
possibly contradict what is expressible in 
precise terms.

There is, however, more. Let us return 
to the original formulations (a), (b), and (c). 
It is easily seen that claim (d) can be shown 
(provided classical predicate logic can be 
used):
(d)	 (∀x)(∀y)(xRy ⊃ ∼yRx)

The proof could look as follows: sup-
pose that xRy is the case, and so is yRx, then 
because of transitivity from (c) it is the case 
that xRx, which is, however, contradicted by 
(a). QED

Let us now rewrite this little proof, re-
placing the original claims by their starred 
variants. One shall see that mostly it only re-
quires the addition of “(x = a) ˅  (x = b) ⊃” or 
“(y = a) ˅  (y = b) ⊃” in the appropriate place, 
nothing more. When dropping these extra 
passages, the classical proof appears. A nice 
graphical way to express what is going on here 
is to work with a main and margin text. The 
margin then contains the restrictions, while 
the main text only holds the claims without 
the restrictions. Forgetting the margin text, 
one only considers the classical proof in the 
main text, as if the proofs were dealing with 
infinite domains. I would describe this as the 
“book keeper’s model.” Although it seems 
that what is put in the margin is not very im-
portant from a classical point of view, once 
the available means are restricted, it has to be 
taken into account. If one forgets the margin 
altogether, then one runs a considerable risk 
of assuming that one’s means are indeed in-
finite. This, however, should be considered a 
fiction in mathematics, too. This opens up a 
quite interesting perspective: are there rela-
tions between strict finitism and a new de-
velopment in the philosophy of mathematics, 
where mathematical entities are considered 
to be fictions; see Leng (2010) for a fervent 
defense of this position.

For strict finitism, the immediately 
above is of central importance. Here is an 
alternative formulation: apparently there 
are mathematical proofs that allow the ap-
plication of the book keeper’s model. This 
means that, in the main text, there is no 
mention of limits and borders, or in other 
words, the main text can be considered as 
budget independent. This is exactly what 
makes mathematical activity so interesting 
for the strict finitist. To him or her, too, a 
proof independent of any budget will be 
much richer than one that is not and where, 
e.g., the “dummy” greatest number comes 
into play (just because it is a dummy, it is 
not worth much). So, to be clear, the strict 
finitist will, as actively as the classical math-
ematician, search for the most interesting 
and richest type of proof. So much for the 
alleged poverty!

To give an additional, mathematically 
interesting example, let us look at a proof 
showing that the number of primes is in-
finite. In essence, this proof is very simple. 
Assume that the number of primes is fi-
nite, i.e., p1, p2, …, pn. Define the number 
P = p1 ∙ p2. …pn + 1 and show that this num-
ber has prime factors, including P itself, that 
must differ from all pi. The question, from 
a strict finitist point of view, is whether P 
can always be constructed. Since any bud-
get is finite, there will indeed come a mo-
ment when P can no longer be calculated, 
and in this sense there is a greatest prime 
number. But take a closer look at the proof. 
In its margin, the budgetary constraints 
will appear, while the main text is nothing 
but the classical proof just introduced. This 
also means that, should a larger budget be 
available, the main text would not undergo 
any changes because it is independent of a 
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budget.7 Whoever is so sloppy as to forget 
about the margin text can thus be deceived 
into believing that indeed there are an in-
finite amount of primes. At the same time, 
it is perfectly sound to hold that the classi-
cal proofs can be retained, even within the 
frame of strict finitism. I hope the above 
shows that strict finitism, in practice, does 
not need to be a trivial affair.

Of course, I do realize that even a reader 
sympathetic towards this approach will still 
have many questions that cannot possibly 
be answered in this paper. For example: 
(a) How does one deal with the real and 
transcendental numbers, such as π in par-
ticular? π can be defined, e.g., as the sum of 
particular infinite series, but how does one 
capture that in the book keeper’s model? 
(b) What about the possibility of analysis? 
What are differentials and integrals like? 
How does one define continuity? (c) Is 
transfinite number theory possible at all, or 
should this part of mathematics disappear? 
To be fair, some of these questions have al-
ready received a lot of study, and partial an-
swers have been given (see the first section). 
Some of these have, moreover, revealed 
unexpected connections. In Van Bendegem 
(2002b), for example, I initiated a strict 
finitist approach to infinitesimals, thereby 
putting at stake the property of compact-
ness, which has opened up a very interest-
ing discussion. And this, it should be said, 
is already an achievement in itself, even if 
the position, in the end, might appear to be 
untenable.

7. Conclusion

In this paper, I have concentrated on 
a defense of strict finitism. In the second 
section, I have tried to show that a consid-
erable number of researchers have, either 
directly or indirectly, been involved with 
this subject, and in the sections following 
it, that possible answers to the most famous 

7 | N ote that one has to be very careful not 
to introduce the potential infinite through ever 
larger budgets. Then again, the advantage of 
budgets is that one is more likely to accept that 
there is an ultimate, finite budget rather than the 
fact that there is only a finite number of num-
bers.

and common counter arguments are avail-
able. Summarizing these, I would use the 
word “naive.” Which means that, as a strict 
finitist, one often has to conclude that so-
called critical remarks have not been cor-
rectly formulated, cutting short any dis-
cussion about the substance of the matter. 
This could also be observed in the course of 
the present paper. Nevertheless, especially 
towards the end, I hope to have been able 
to show in a positive way that the under-
taking has indeed a chance of success. The 
philosophical benefits of a plausible strict 
finitism would, moreover, be consider-
able, I think. To end, I give a few examples. 
(a) The discussion about the mysterious ap-
plicability of mathematics can be handled 
in a radically different way. In a slogan: 
finite world, finite mathematics, end of 
problem. (b) As infinity has been the main 
reason for its collapse, the project of nomi-
nalizing physics by Field (1980) could be 
reassessed. (c) To the extent that the book 
keeper’s model can be extended, there are 
also opportunities to enhance our under-
standing of mathematical practice. On the 
one hand, one accepts the theorem that 
there are infinitely many primes, while at 
the same time there is an impressive quest 
to find the (next) greatest one. Both seem 
to be in conflict but are not. From the view-
point of strict finitism, both undertakings 
make perfect sense.
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