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Preface

This book is based primarily on my lectures in an undergraduate
philosophy course on time and space, which I taught at Yale University
from 1966 to 1968. Because undergraduate philosophy of science
courses are generally intended for philosophy students and science
students, it did not seem suitable to require an extensive background in
either field. It is hoped that the book will itself provide the philosophy
student with some elements of physics and the science student with
some elements of philosophy. In addition, the following sections, which
deal with slightly more advanced material, may be omitted without
essential loss of continuity: Chapter III, Sections 1d, 3b; Chapter 1V,
Sections 2c-d, 4; Chapter V, Sections 2c, 4, 5; and chapter VI, Section 5.
The remainder assumes only a familiarity with some of the basic
concepts of high-school mathematics.

Although this book is therefore quite elementary, I hope that it will
also prove interesting to my colleagues in philosophy. First, it provides
an introduction to the highly significant work on time and space by Hans
Reichenbach, Adolf Griinbaum, and other contemporary philosophers of
science. Second, I have attempted to strike a balance between historical
illustration and logical analysis. In the historical accounts it was my
intention to reconstruct positions and explore their inherent
possibilities, rather than to bare their vagueness and ambiguities.
Although such an attempt is of little value to the historical scholar, it
may be of interest to the student of metaphysics. In the logical analysis I
have used concepts of contemporary logical theory without using its
technical resources; at present, the notions of possible worlds, logical
spaces, presuppositions (of questions and of definitions), and
counterfactual conditionals are of particular logical interest. Chapter VI
is based on my doctoral dissertation on the foundations of the causal



theory of time and deals with subjects of current research in philosophy
of science.

It may seem in order here to make some remarks on the question
of the philosophical point of view. The traditional view may be
summarized as: the theory of time and space is mart of natural
philosophy, and this in turn part of ontology; hence, the subject can be
approached only on the basis of a specific ontology. First the Critical
Philosophy and then positivism and phenomenology attempted to
discredit this neat scheme of philosophical priorities. But in each of
these movements the anti-metaphysical tendencies proved more lively
than hardy, and in each case we can discern a return to ontology.
Indeed, some very interesting contemporary studies in our subject have
a definite ontological point of view.

Nevertheless, I do not think that it is necessary to begin with
specific ontological commitments. In my opinion, the philosophy of
science gains its central importance in philosophy by providing, at least
ideally, a common ground or meeting place for all the major
philosophical schools. The physical world picture has an importance for
which every philosophy worthy of respect must account. And what the
world disclosed by physics is like, is independent of its ontological
status. Perhaps it is to be accorded independent reality; perhaps it has
only intentional inexistence in the perspectives of the individual
monads; perhaps it is best characterized as an intentional correlate of
the scientific orientation. In large areas of philosophy of science our
concerns are independent of these questions, and our ontological
commitments may be “bracketed.” And were it not for these neutral
areas, areas of common problems, how would fruitful contact between
the different philosophical traditions be possible?

Finally, I should like to acknowledge gratefully my great debt to
Professor Adolf Griinbaum of the University of Pittsburgh, who directed
my doctoral dissertation, and whose own work in this area has been my
main inspiration. [ would no be a genuine student of his had I not
departed from his teachings or his concerns at some points; | expect,



however, that any inadequacies of this book will be traceable to such
departures.

There are many others whom I am indebted for reading parts of the
manuscript, for helpful comments, or for stimulating conversations on
related subjects, and I would like to mention especially Professors R.
Fogelin, Yale University; A. Janis, University of Pittsburgh; K. Lambert,
University of California at Irvine; S. Luckenbach, San Fernando Valley
State College; W. Salmon, Indiana University; W. Sellars, University of
Pittsburgh; R. Stalnaker, University of Illinois; R. Thomason, Yale
University; and my students J. Hines and P. Kuekes.



Preface to the Morningside Edition

This is an elementary book; its aim is to lead the reader into a
philosophical subject of great subtlety and fascination. Changes in
philosophical conceptions of time and space have been intimately
involved, moreover, in each of the major revolutions in the history of
physics: the development of Aristotelian mechanics, its demise and the
transition to Renaissance physics, and establishment of the Newtonian
paradigm, and finally, near our own day, the victories of the theory of
relativity. The basic philosophical questions have remained the same,
though refocused each time in the context of scientific development, and
through the lenses of opposed philosophical traditions.

Today, fifteen years after writing this book, it looks more
elementary even than then; for these years saw a spate of impressive
new philosophical work on time and space-time. This introduction
stops with the elements of special relativity, and the twentieth century
causal theory of time. My emphasis was in any case on traditional
philosophical questions, which arose in their original form in earlier
contexts. Legitimate doubts can be entertained about future adequacy
of any philosophical clarity achieved so far: if there is progress in
philosophy, it is that each new understanding of its questions reveals
the inadequacies of earlier answers. An introduction must inevitably
abandon its readers at some too early point, leaving him only a little less
of a stranger, on his own in a strange land.

The preface to a second edition is inevitably a postscript to the
first. But there is also a proper postscript, in which I shall survey
problems that have been raised about the text (which remains un-
changed except for typographical corrections) and the recent literature.
[ shall also try to explain there how my views on time, space, and space-
time are related to more general issues in the philosophy of science.

Princeton, December 1984



[. Basic Issues in the Philosophy of
Time and Space

In this Chapter we shall formulate the basic objectives for the
philosophical theory of time and space: the most important subjects that
must be discussed and the major questions that must be answered.

1. Relations and Order

To say that things happen in time means in part that they happen in a
certain order. To say that things are located in space implies that they
have a certain position vis-a-vis each other. The following statements
all refer to temporal and spatial relations:

(1) The abdication occurred between the two world wars.

(2) The Napoleonic Wars were followed by a period of relative calm.
(3) Belgium is east of England and north of France.

(4) The table stands between the chair and the window.

With respect to time, some of the basic relations are simultaneous,
before, and between. Whether this list is essentially complete, or
perhaps redundant in some respects, are questions that we shall not try
to answer at this point. (The answers may seem obvious to the reader
now, but this impression may change as we follow the history of the
problem.) At least, a theory of time must give an account of these
relations and thus explicate such common assertions as (1) and (2).
With respect to space, it is not easy even to make a plausible
preliminary list of basic relations. It is hard to believe that such
relations as north of and east of—though they are clearly spatial
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relations—can be in any way basic to the subject. For these relations
concern entities on the earth primarily; we may say that Polaris is north
of any point on earth, because a sighting of Polaris indicates the
northerly direction. But this seems already to some extent an analogical
extension of the term “north,” and it certainly would not make obvious
sense to ask whether Polaris is also north of the sun or of the star Alpha
Centauri. Moreover, is Asia Minor east or west of North America? The
relation between of example (4), however, is not subject to these
restrictions and ambiguities. Thus, a theory of space must at least give
an account of the spatial betweenness relation.

Now, relations give rise to order. We may illustrate this intimate
connection between relation and order with a simple example. Suppose
that to the question “In what order to you rank the most famous ancient
generals?” the answer given is, “I rank Hannibal first, Alexander the
Great second, and Leonidas third.” This ordering may equally be
expressed in terms of the relation higher than: the answer might
equivalently have been formulated, “I rank no one higher than Hannibal,
only Hannibal higher than Alexander, and only Hannibal and Alexander
higher than Leonidas.”

Similarly, the temporal relations give rise to a temporal order and
the spatial relations to a spatial order. Of the two orders, the latter is by
far more complex. Let us assume for a moment that between is indeed a
basic relation for both time and space. Then we find nevertheless that
the order to which temporal betweenness gives rise is much simpler
than the order determined by the spatial betweenness relation. To
mention the most obvious case: if X, Y, and Z are in time, but not
simultaneous, then one of the three is between the other two; it is not
true, however, that if X, Y, and Z are in space, though not in the same
place, then one of them is between the other two. The reader may
recognize this point in the form of the statement “Space is three-
dimensional, but time is only one-dimensional.” What exactly is meant
by dimension, however, and how it is related to the complexity of the
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order, and how both these concepts are related to relation, constitute a
basic problem for the theory of time and space.

2. The Use of Coordinates

Our example of someone ranking Hannibal, Alexander, and Leonidas
with respect to military genius also illustrates the subject of
coordinates. The person who made this statement wished to convey
that in his opinion Hannibal ranked higher than the other two generals
and Alexander higher than Leonidas—that is, he wished to describe
certain relationships that, according to him, obtained among these
three. To do so simply and perspicuously, he assigned them numbers: 1
to Hannibal, 2 to Alexander, 3 to Leonidas. This is an elementary use of
coordinates to describe certain relationships.

How does the assignment of these numbers constitute an assertion
that certain relations hold? This is possible because there is a relation
among the natural numbers that has the same formal character as the
relation is a better general than or ranks in my opinion higher than.
This is the relation is less than or comes before. One comes before any
other natural number; hence, one is assigned to the general who is
ranked higher than any other ancient general. Two is a number such
that only one comes before it—hence, two is assigned to the general
who ranks next highest.

To put it most generally, coordinates are assigned to entities in
such a way that the mathematical relations among the coordinates
reflect those relations among the entities that we mean to describe.

And here we find that the kind of order generated by these
relations determines what can serve as coordinates. In the case of time,
real numbers can apparently serve as time coordinates. In the case of
space, however, we need triples of real numbers. And this need is again
connected with the common assertion that temporal order is a one-
dimensional order, spatial order a three-dimensional order. So
relational structure, order, dimension, and coordinate system form a
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family of closely related subjects, which we must understand if we are to
arrive at a coherent account of time and space.

3. Magnitude and Metric

When we say that Boyle was born in 1627, Galileo died in 1642, and
Leibniz was born in 1646, we have conveyed the following information
about temporal order:

(1) Boyle was born before Galileo died.
(2) Galileo died before Leibniz was born.
(3) Boyle was born before Leibniz was born.

But we have also conveyed information about temporal magnitude
(duration):

Approximately four times as much time elapsed between the birth
of Boyle and the death of Galileo as elapsed between the death of
Galileo and the birth of Leibniz.

How much time elapsed between certain pairs of events is not a
question of order at all. Yet the time elapsed can also be reflected in the
choice of coordinates—as indeed it is in the way we commonly date
events. Had we assigned the dates 1627, 1641, and 1642 to the birth of
Boyle, the death of Galileo, and the birth of Leibniz, respectively, we
would still have conveyed the correct information contained in the
statements (1), (2), and (3). But we would have conveyed false
information about the magnitudes of the two time intervals.

How is information about temporal magnitude conveyed by an
assignment of coordinates? In the case of dates, we use the definition

(4) The amount of time elapsed between two events is the numerical
difference between their dates (time coordinates).
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By that definition, and with respect to the time reckoning in terms of
years, the assignment of the dates 1627, 1642, and 1646 gives the
correct information, and the other assignment does not. But in principle
we could use a definition other than (4), in which case we would have to
assign dates in a different way if we wish to retain our usual time
reckoning.

Definition (4) is called a definition of the metric for our system of
time coordinates. The definition of time metric can have this simple
form because the time coordinates are just real numbers. In the case of
space, where each point is assigned a triple of real numbers, the
definition of metric is more complex. (Thus, in plane Euclidean
geometry taught in high school, in which the points are just assigned
couples (x,y), the distance between two points (x,y) and (x',y") is

given as \/(x —x")2+ (y—7y’)2.) To sum up, an assignment of
coordinates can reflect relations of magnitude (distance or duration) as
well as order, and the question how this is done is the question of
metric.

4. The Status of the Entity

The words “time” and “space” are both singular terms. This is simply a
grammatical point about how these words can appear in a sentence. In
particular, it means that they can appear as the subject of a singular
verb. Thus, the following sentences are both grammatical:

(1) Space is infinite.
(2) The ocean is infinite.

The paradigm use of singular terms is to refer to specific things. For
example. “Paris,” “the Atlantic Ocean,” and “the man next door” are all
singular terms and refer to specific things. Other singular terms such as
“heaven” and “hell” were at least intended to refer to entities,
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approximately in the way that “Greenland” and “America” do. This
raises the questions of whether “space” and “time” also refer, or are
intended to refer, to certain entities, and if so, what kind of entities these
are.

These questions take a less academic form when we phrase them
somewhat differently. Instead of asking “Is there something to which
the word ‘heaven’ refers?” we could equally well ask “Does heaven
exist?” Thus, the questions we have raised about the words “time” and
“space” are readily rephrased as questions about time and space: “Does
time exist?” “Does space exist?” “What kind of entity is time?” “What is
space?”’

This kind of question has a rather unfortunate career in the history
of philosophy. Too often the reaction has been: we cannot talk about
what does not exist; hence, anything we can talk about, does exist. The
question “What is glory?” presupposes that there is such a thing as
glory; since the question is perfectly meaningful, we must simply take it
as our task to explain what kind of thing glory is—and to accept as fact
that there is such a thing.

This is exactly the sort of reaction that leads to bloated ontologies,
countenancing various kinds of unreal things as well as real things.! But
it is not a necessary reaction. For example, the question “What is
Pegasus?” has the true answer “A mythical flying horse,” and neither the
meaningfulness of the question nor the truth of the answer presupposes
that Pegasus exists. This is only one kind of example to show that we
may well desire to have a correct and adequate account of something
that does not exist. Another example is provided by events that did not
happen. Consider such a question as “What prevented the explosion?”
This question presupposes that the explosion did not occur (just as the
question “Have you stopped beating your wife?” presupposes that the
person addressed has been beating his wife). Thus, if the question is not
mistaken, the term “the explosion” does not have a referent. A final
example is provided by the philosophy of religion: we do not believe
that Zeus exists, yet we agree that it is true that the ancient Greeks
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worshipped Zeus, and we may desire a philosophical explication of what
is meant by this.

The history of philosophy also provides many examples of
positions implying that certain subjects of discourse do not exist. The
best known of these is the position, recurrent throughout the
development of British empiricism, that no abstract term has a referent.
But this view has also always had its opponents, who argue with equal
force that abstract entities do exist. In the present century this debate
has been most vigorous in the philosophy of mathematics, where the
question at issue is whether there exist mathematical objects (as well as
physical objects).

The same questions of existence also arise with respect to time and
space. In view of the above, we may consider as not a priori absurd the
view that time and space do not exist, as well as the view that they do
exist. In conclusion we shall briefly consider the kinds of questions that
arise for proponents of either view.

First, if it is denied that time exists, for example, this cannot be
taken to imply that discourse which employs temporal locutions is
meaningless. Whether or not the word “time” has a referent, the
sentence

(3) Newton was born after Francis Bacon’s death.

[s true. And whatever the philosopher’s view on the existence of time,
he must provide us with an account of what is meant by the use of these
temporal terms—that is, we still require an account of temporal
relations, of time order, of duration, and of time metric.

Second, if it is held that there is an entity denoted by the word
“time,” the question what kind of thing it is arises. This question clearly
does not arise if it is denied that “time” refers to any thing. But when
this is not denied, we may ask whether time is a physical entity or a
mathematical object or perhaps some other kind of entity. And this is a
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question in addition to all the above questions about temporal order
and metric.

Finally, we are engaged in philosophy of science, not in
metaphysics. Hence, we shall not encumber the discussion of whether
time, or space, exists with the further question whether mathematical
objects, or other abstract entities exist. Thus, if someone who holds that
time exists answers, in addition, that it is an abstract entity, we shall
count his answer as prima facie acceptable (though this answer will in
turn raise other questions). This position will not, I think, make the
discussion useless to those who hold that there are no abstract entities.
After all, they are of the opinion that whatever can be said in the terms
of their opponents and is somehow significant can also be said in their
terms. Nor does this “bracketing” of our ontological commitments
provide the question whether, for example, time exists with a trivial
answer. For certainly this bracketing will not affect such similar
questions about the world studied by physics as whether electrons or
unicorns or force fields exist.
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[I. The Problems of the Theory of
Time: Aristotle to Kant

In this chapter and the next we shall examine the development of the
theory of time before the advent of the theory of relativity. The
historical divisions that we make for purposes of exposition are not
exact; for example, in this chapter we shall discuss work done in the
nineteenth century by the French philosophy Georges Lechalas.

1. Change and Duration: The Aristotelian Theory

In Book Delta of the Physics, Aristotle develops his theory of what time
is and attempts to show its inadequacy.! In his account, a major role is
played by the notions of change, movement, and process. Hence, we
shall begin with an exposition of some features of Aristotle’s theory of
change and then turn to his account of time.

a. Change and Process

Aristotle’s definition of movement can be found in Book Gamma of the
Physics. Bu the definition is formulated in terms of his theory of act and
potency, and bears little relation to modern discussions of the subject.
The description of the kinds of change in Book Epsilon is of more
interest.?

At the beginning of this description we find a distinction between
essential change and accidental change. For our purposes, the first kind
of change is the more important, so let us attempt to explain what it is.

18



A change involves (1) a thing that is changed; (2) an initial
condition, from which this thing is changed; and (3) a final condition, to
which it is changed. To begin, we must consider what kind of conditions
the initial and final conditions are. The change will not be an essential
change if these conditions are described in terms of relations of
comparison. Thus, if Peter is taller than Paul (initial condition), a
change might occur that results in Peter being shorter than Paul. But
this kind of change is called accidental change when Peter is taken as the
subject of the change, because it would occur as a result of Paul’s
growing up. Thus, in this situation Paul is the subject of an essential
change (an increase in his height), but Peter of an accidental change (a
change in how his height compares with Paul’s height).

The initial and final conditions must be conditions of the same kind.
Thus, a given thing might first be hot and later orange, but we would not
say that it had changed from hot to orange (this would be a blatant
category mistake). Aristotle gives as his example a musician who turns
from his music to taking a walk. In both examples, the initial condition
is compatible with the final condition: a thing could be both hot and
orange; a musician could play music while walking. For this reason, the
second is also a case of accidental change." Essential changes do not
take place between compatible conditions, but “between contraries or
their intermediates and between contradictories.”3

In other words, the various properties that we may attribute to
things are here thought of as divided into families. An essential change
is a change in a subject from one property to another property in the
same family. And the members of a single family are mutually
incompatible in the sense that a thing cannot have the property P while
it has the property Q, if P and Q belong to the same family. One such
family would be the family of colors, another the family of heights, a
third the family of positions on a chessboard. Thus, examples of an
essential change would be a change from white to red, a change from

“1 disagree, therefore, with the view that this is an example of accidental
change because walking is an “accidental property” of a musician.
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being 5-feet tall to being 6-feet tall, and a change (move) from K2 to K4
on a chessboard.

We must also note that the members of a single such family must
be of the same degree of determinacy or definiteness. Thus, we do not
say that a thing changed from scarlet to red, or from light blue to blue, as
opposed to from scarlet to crimson, or from light blue to dark blue, or
from blue to red. We may explain this by saying that blue = (light blue
or dark blue);—hence, that blue and light blue do not have the same
degree of definiteness.

Similarly, black and not-white do not belong in the same family;
indeed, not-white belongs only to the family {not-white, white}.
Aristotle calls white and not-white, respectively, a substantive and a
nonsubstantive (defining “substantive” as “what is referred to in a
positive assertion”4). This is the occasion for a further distinction
among essential changes—between generation, destruction, and
movement or process. A change from substantive to its contrary
nonsubstantive is destruction (as from man to not-man); the converse is
generation. But a movement or process is an essential change from one
substantive to a contrary substantive (as from white to black).

For the discussion of time, movement or process is of primary
importance. The movement may be a change with respect to quality
(e.g., color), quantity (e.g., height), or place (also called local motion).
Today we do not generally use the word “movement” unless we have
local motion in mind, but this is not how “movement” is to be
understood in this context.

A process has parts, and these parts are ordered in a certain way.
This was already implied when we said that a change is from an initial
condition to a final condition—and of course the change may involve
passage through certain intermediate conditions. An important
question for us now is whether this order is to be understood as being
simply the temporal order. This is important because in his account of
time Aristotle relies on this account of processes and change. Hence, if
by “initial condition” we mean “condition that immediately precedes the
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process in time,” if follows that Aristotle has simply taken temporal
order for granted. This would not vitiate his theory, because temporal
order is not the only subject for a theory of time.

My opinion is that there is indeed no adequate theory of temporal
order in the Physics. This opinion is in disagreement with the
Commentary on the Physics by St. Thomas Aquinas. Aquinas refers to
the following statement in the Physics:

... we distinguish “before” and “after” primarily in place; and there we
distinguish them by their relative position. But movement must also
have in it a distinction of “before” and “after” analogously to that in
magnitude.... The order of “before” and “after” which is in process is,
existentially, the process; although, indeed, what the distinction
between “before” and “after” is differs from [what] a process [is].>

This passage concerns primarily motion with respect to place, and the
point appears to be that places are ordered in a certain way. The order
of the parts of the movement would then be the order of the places
traversed. At least this seems to be Aquinas’ interpretation.®

Aquinas’ argument is that in the case of local motion, certain places
are traversed; for example, a body moving from A to C via the
intermediate position B. The parts of this movement correspond to
these places; for example, the first part of the movement is the position
at A. Since spatial relations order the positions 4, B, and C, the same
relations order the parts of the movement: being at B would be a part
intermediate to being at A and being at C.

But this argument does not succeed. First, there is no sense in
which one position A is before another position B, except with respect
to a certain point of reference. Thus, New York comes before New
Haven for a traveler who starts from Baltimore, but not for one who
starts from Boston. Second, a position may be intermediate in the
journey without being spatially between the starting point and the end
point—as when a traveler goes from Baltimore to Boston by way of
Chicago. Finally, Aristotle argues at length that only circular motion can
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be eternal.” But circular motion consists in traversing the same
positions again and again; therefore, distinct parts of the same process
may here consist in being in the same position. Clearly, then, the parts
of the only kind of process that can last forever are not ordered through
relations of spatial order.8

b. Time

The most influential view of time preceding Aristotle’s was Plato’s view.
According to Aristotle’s interpretation, Plato identified time with
process, and specifically, with celestial revolution.? Aristotle objected to
this view on several counts. First, a change or process has a location in
space, which time does not. Second, movement is fast or slow, but there
is no literal sense in which time is fast or slow. In fact, we define “fast”
and “slow” in terms of time: “That is ‘fast’ in which there is much going
on in a short time.” 1© Nevertheless, time is not conceptually
independent of change. The argument Aristotle uses to establish this is
phenomenological: we cannot perceive time as such; we are conscious
of the passing of time only through discerning change or movement.!1
But this argument can be restated in terms of information: for example,
the information that a cruiser’s crew was unusually large gives no
information about the duration of its first battle, but the information
that it covered a distance of 50 miles during this battle does.

This must, therefore, be our point of departure: time is neither
identical with nor entirely independent of movement, and it remains for
us to determine the relation between them.12 The distinction between
before and after is introduced as unproblematic or irreducible and is
said to order the parts of a process. These parts, as is well known, exist
for Aristotle only potentially, in the sense that they could be marked.13
Being thus a continuous entity, or more generally an entity having
potential oractual parts, process has a magnitude or “number:”
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For this is what time is: the number of precessions and successions in
process. Thus, time is not a sheer process but is a numerable aspect of
it. This is indicated by the fact that, as we discriminate “more” or “less”
by number, so we discriminate “more” or “less” movement by time.14

The medieval formulation is that time is the measure of motion
with respect to before and after. “Measure” is here meant in the sense of
“magnitude,” or “numerable aspect.”1> Thus, local motion can be
measured in various ways: we can measure how far (the magnitude
with respect to spatial relations) or for how long (the magnitude with
respect to temporal before and after). The latter measure is time.

To the modern reader what is striking is that this account provides
a definition not so much of time as of duration. The temporal relation of
simultaneity is introduced with no indication that a theory of time
should also provide an account of this relation. Yet this relation is
essential to Aristotle’s defense of his definition of time. He does
consider the objection that each process has its own magnitude and that
hence if time is defined as an aspect of the magnitude of a process, then
each process has its own time.1¢ This objection, he says, misconstrues
his intention: time is the measure or number not of any particular
motion, but of motion in general. Given this explanation, the objection
rests on an invalid argument: for each process there is a time during
which it takes place; hence, there are as many distinct times as there are
distinct processes (i.e., it could then not be true to say that two distinct
processes happen during, or at, the same time). The invalidity of this
argument is demonstrated by showing that it has the same form as
another argument that has a patently true premise and false conclusion:
each collection has its own number; hence there are as many distinct
numbers as there are distinct collections (i.e., it could then not be true to
say that two collections have the same number). Aristotle’s example is a
collection of seven dogs and a collection of seven horses: these
collections are distinct, each has its number (thus, the number of the
collection of dogs in question is seven), but it does not follow that these
numbers are distinct.1”
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The two collections have the same number because a certain
relation obtains between them, namely, a one-to-one correspondence.
Similarly, the times of two distinct processes may be the same time,
namely, when they are simultaneous. But this relation of simultaneity, a
relation of temporal order, is used in the account of what time is. Hence,
Aristotle’s theory of time is basically a theory of duration.

2. Time and the Possibility of Creation

a. Aristotle and Aquinas on the Eternity of Motion

Aristotle had a number of arguments to show that the world, and
motion, have no beginning and shall have no end. For our purposes, the
most important of these is the following:

We may here interject the question: how, when there is no time, can
there be any “before” and “after”; or how, when there is nothing going
on, can there be time? Since time is a number belonging to a process ...
then, if there always is time, movement must be eternal also....

Plato alone presents time as generated; time, he maintains, is
coeval with the heavens which, according to him, have had an origin.
But if time can neither be nor be conceived without a present, and the
present is a sort of “mean” in the sense of being at once the starting-
point of the future and the end-point of the past, then there must
always be time. ... Accordingly, if time as an aspect of movement is
eternal, it is evident that movement must be eternal also.18

Since the argument is moderately complex, let us disentangle the
threads. Its basic strategy is to argue that time cannot have a beginning,
but if motion had a beginning, then so would time. If both assertions are
correct, it follows that motion cannot have a beginning. (The argument
applies mutatis mutandis to the possibility of an end to motion.)
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The argument that time cannot have a beginning has as its premise
that a beginning to time is inconceivable. For the moment you refer to
an instant, a time ¢, you conceive of a before and an after, a time before t
and a time after t. Hence, you cannot conceive of a first instant, a time ¢
such that there is no time before t But what is inconceivable is
impossible; hence, time cannot have a beginning.

Let us not stop here to evaluate this argument, but continue the
analysis. The second argument—if motion has a beginning so does
time—relies entirely on the Aristotelian theory of time. If time is but a
numerable aspect of movement, then time is not something that can
exist independently of movement. If this is correct, then it makes no
sense to speak of time during which there is no movement. What of the
possibility, which at first sight seems easy to conceive, that all motion
should cease, say, for one hour? This, according to Aristotle, makes no
sense, for an hour is 1/24 of a day and a day is the duration of one
journey of the sun around the earth (leaving out astronomical niceties).
Thus, it is the motion of the sun that marks the period of one day, and a
period of one hour is marked by 1/24 part of that motion. Were only the
sun’s motion to stop, other motions would mark time periods. Thus, the
minute hand of a clock normally has twenty-four revolutions during one
day. And if some day all minute hands on clocks (electrical, spring,
pendulum, and so on) were to have twenty-five revolutions, we might
reasonably believe that the sun had been made to stand still in the
heavens for one hour. But if not merely the sun’s motion, but all change
ceased, time would not be marked in any way, and no facts about the
physical world would be evidence of the passage of time.

Nevertheless, one might say, we can conceive of this happening,
and we can conceive that time would pass in this case. For in principle,
we need neither clocks nor any other movement to show that time is
passing. We can tell that the sun is standing still for a while by noting
that its relative position with respect to the horizon does not change for
a while. But here Aristotle argues that then we tell time by the
progression of thoughts and feelings in ourselves—were there no
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change in these either (as in deep sleep), this subjective index would not
indicate that time had passed either.l® Were all change to cease, time
should be no more.

For later philosophers, these arguments presented a challenge to
the doctrine of creation. If the world was created by God, does it not
follow that movement does have a beginning? (They were certainly not
inclined to remove the difficulty by saying that God is subject to
constant change, without beginning and without end.) We find,
accordingly, that neither of the arguments above remained
unchallenged in the history of philosophy. Aquinas considered the first
inconclusive, but did accept that time does not exist independently of
movement. Newton, on the other hand, rejected the second argument
and thereby the entire Aristotelian theory of time.

Aquinas’ position is unequivocally that movement has a beginning
and that this is also the beginning of time. Thus, time has a first instant,
an instant before which there are no instants. What then of Aristotle’s
argument that we cannot conceive of an instant without at once thinking
of time before that instant? This Aquinas grants without qualification.
But, he argues, this does not entail that there is time before the instant
in question—that is, he rejects the inference from “That is how we
cannot but conceive of it” to “That is how it must be”; the time may exist
in the imagination only.20 In other words, Aquinas solves the problem
by positing a distinction between real time and imaginary time. Any
necessity concerning how we think of time will be reflected in the
structure of this imaginary time (in particular, it can have no beginning
or end), whereas the structure of real time will depend on the structure
of world history.

But just what are we to think of this imaginary time? What
connection does it have with real time? What relation does it bear to
movement? If time is a numerable aspect of movement and imaginary
time is not, then for what reason is it called “time”? To put it more
strongly, Aquinas has accepted and even defended Aristotle’s account of
time, up to this point where a crucial difficulty appears. At this juncture,
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he says: There is, besides the time of which Aristotle gives a correct
account, also imaginary time to which that account does not apply.
(Rather like: There is, besides those facts about combustion of which the
phlogiston theory gives an entirely correct account, also an aspect of
combustion to which the phlogiston theory does not apply.) And
although Aquinas has a theory of real time (namely, Aristotle’s) he
provides no theory of this other kind of time.

This may be a less than charitable reaction to Aquinas’ solution. It
is a fact, however, that this solution did not close the subject, and the
problem played a central role in the development of the theory of time
in modern philosophy. Before we look at the issue, however, we must
take a brief look at the rather drastic transition from the medieval to the
modern temper.

b. The Role of the Theory of Time in Modern Philosophy

In the Middle Ages, Aristotle’s philosophy was systematized; its natural
philosophy was a part of its metaphysics, its theory of time a part of its
natural philosophy. Toward the end of the Middle Ages, and during the
Renaissance, this grand philosophical system began to fragment and
dissolve. Yet (and this is today a commonplace remark) the beginnings
of modern philosophy and science were very strongly indebted to the
medieval schools. The theory of time developed by the Cartesians, for
instance, was very close to the theory of time of the medieval
Aristotelians. But the place of the theory of time in Descartes’
philosophy was very different from its place in medieval philosophy.

For the Scholastics, metaphysics deals with substance in general;
natural philosophy, or cosmology, is the part that deals with material
substances. The primary characteristics of these substances are
quantity and quality. There are two kinds of quantity: continuous
quantity, or extension, and discrete quantity, or number. Continuous
quantity is also of two kinds: permanent and successive; spatial
extension belongs to the former, duration to the latter. Both process
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and the mere endurance of a substance have duration, but endurance
cannot be measured except through its relation to change. Thus, time or
duration is primarily the measure of change with respect to succession.
The theory of time is found exactly here, as part of natural philosophy
concerned with successive continuous quantity.

In the Aristotelian-Scholastic system, cosmology is an integral part
of its metaphysics; moreover, in this system natural science and natural
philosophy are not distinguished. Hence, the account above fixes the
place of the theory of time in the Aristotelian philosophy. The gradual
disintegration of the Aristotelian tradition was accompanied and
followed by strenuous attempts to fashion a new coherent picture of the
physical world. The most important result of these attempts was the
initial development of modern physics. It is not until the seventeenth
century, however, that we find the piecemeal, though important, results
organized into systems of natural philosophy that could rival that of the
Scholastics. Within these it is already possible to a large extent to
distinguish the scientific theories from their philosophical
interpretations. = The language of the physical theories clearly
incorporates temporal locutions; the theory of time has become part of
the philosophical interpretation of this language.

In this way, it is possible for the physics of Descartes to be a
complete and comprehensive system and for his theory of time to be
very brief and relatively uncritical. The situation is similar for Newton
and Leibniz. Metaphysics has importance, but as a means of making
physics intelligible. This is clear notwithstanding the lip service paid to
the older ideal of having physics as a part of metaphysics. Modern
natural philosophy is a commentary on modern physics, not a whole of
which physics is meant to be part.

We do not mean to imply, of course, that modern philosophy aims
only to be a commentary on physics—although a major reason for its
genesis was the need for a new, coherent world picture in harmony with
the new physics. Nor do we mean to deny that, at least among the
seventeenth-century rationalists, appeal to metaphysical principles was
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a basic maneuver in the attempt to make physics intelligible. Yet the
main point stands: with respect to science, the task that modern
philosophers set themselves was to interpret it.

c. Barrow’s Argument and Newton’s Absolute Time

Sir Isaac Newton’s teacher Isaac Barrow considered the problem that
had led Aquinas to the distinction between imaginary and real time, but
Barrow’s reaction was more radical. His solution was to reject entirely
the Aristotelian idea that time is an aspect of motion. In his Geometrical
Lectures, Barrow asks explicitly whether there was time before creation
(i.e.,, whether the instant of creation is, or is not, the first instant). His
answer is that “before the world and together with the world (perhaps
beyond the world) time was, and is.” He immediately goes on to
consider the contrary, Aristotelian position:

But does time not imply motion? Not at all, I reply, as far as its
absolute, intrinsic nature is concerned; no more than rest; the quality of
time depends on neither essentially; whether things run or stand still,
whether we sleep or wake, time flows in its even tenor. Imagine all the
stars to have remained fixed from their birth; nothing would have been
lost to time; as long would that stillness have endured as continued the
flow of this motion.?!

So, his solution is that time is something independent of motion
(unlike Aquinas’ real time) and also independent of our thought (unlike
Aquinas’ imaginary time). Thus, creation simply happens at one of the
instants, as decided on by the Creator—just as the Eiffel Tower simply
happens to be located in Paris, as decided on by its builders and
financers. There is then no need to say that there must be a first
instant—something that we cannot conceive. Nor is there difficulty in
conceiving that something might have happened before creation, since
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there are many “empty,” “unoccupied” instants that precede the time of
creation.

The position that time “flows in its even tenor” independently of
the uneven course of world history may thus solve the puzzle
concerning the possibility of creation; nevertheless, in some respects it
is not a very satisfying position. For it makes time a strange and
peculiar entity, whose status will immediately become the subject of
philosophical debate. The most obvious positive thing for Barrow to say
about time is that it is simply a very important physical entity, like the
Milky Way, or, better yet, the system of the fixed stars. But this would,
at the least, have to be qualified in important respects: in many ways
time certainly is very different from any material body or physical
system. At this point (influenced by certain of his contemporaries, e.g.,
Henry More), Barrow turns to theology. Barrow holds that space and
time exist independently of material bodies or physical happenings, but
not independently of God. From the viewpoint of natural philosophy,
time “does not denote an actual experience, but simply a capacity or
possibility of possible existence,” whereas from the viewpoint of
theology, it represents a superabundance of the divine presence and
power.22 To the modern reader and to any secular philosopher the
proposed dichotomy does not help much. When we say to Barrow that
if time is not an aspect of motion (nor a construct of the imagination)
then it must be some “actual existence” other than any physical process,
he answers that from the theological viewpoint, this is so. But if we then
admit to being puzzled about what kind of entity this is, he says that
from the viewpoint of natural philosophy time is, of course, not any kind
of thing at all. From the viewpoint of natural philosophy, this is pure
evasion of the issue. Essentially Newton accepted Barrow’s theory. In
the famous Scholium to his Philosophiae Naturalis Principia
Mathematica he asserts:

Absolute, true, and mathematical time, of itself, and from its own
nature, flows equably without relation to anything external, and by
another name is called duration.... For times and spaces are, as it were,
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the places as well of themselves as of all other things. All things are
placed in time as to order of succession; and in space as to order of
situation.23

These and other remarks in the Scholium give the impression that
Newton takes a much less ambiguous position on the reality of time
than Barrow did. Infinite and absolute space and time, independent of
anything external, appear to have been posited as entities existing in
their own right. Indeed, the theologians of Newton’s day were rather
disturbed by eternal and immutable entities; Bishop Berkeley attacked
them as “materialistic and atheistic conceptions.”2¢ Hastening to correct
this impression, Newton added a General Scholium to the second
edition: God is eternal and infinite, and by existing always and
everywhere, “He constitutes duration and space.” But from the
viewpoint of natural philosophy time and space are substantial entities,
infinite containers; the theological remarks deny that God has been
removed from the scene in favor of time and space, but do not deny that
time and space “denote actual existences.” And although every
seventeenth-century philosopher was concerned to give his physical
world picture a metaphysical underpinning, it is within the confines of
natural philosophy that this world picture must prove its merits. From
here on, we shall keep all theological and ontological commitments
firmly “bracketed” and consider the disputants’ arguments only insofar
as they do not burst the bounds of natural philosophy.

d. Leibniz’s Refutation of Barrow’s Argument

The contemporary of Newton who most strongly challenged the theory
of absolute time was Gottfried Wilhelm von Leibniz. This difference
became the subject of a lengthy debate by correspondence between
Leibniz and Samuel Clarke.?> Clarke was a disciple of Newton, and it is
generally acknowledged that he had Newton’s help in drawing up his
replies to Leibniz.
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In view of the preceding, it does not surprise us to find that Clarke
confronts Leibniz with the following difficulty: If you do not accept the
independent existence of absolute time, then you cannot hold that the
world was created. For if it can be asserted that God created the world,
then it can be asserted that He could have created it sooner than He
actually did. But what this means is: God could have created the world
at a time prior to the actual time of creation. And if time is not
independent of the existence of the world, then the instant of creation is
the first instant.26

In his fifth letter, Leibniz answers this challenge.2” This answer is,
in my opinion, the conclusive answer to the difficulty; it shows that the
dilemma of which Aquinas and Barrow embraced either horn is not real.
The answer was apparently too subtle for Clarke, who retorts that
Leibniz has landed himself in a “plain Contradiction.” 22  The
contradiction that Clarke supposes he sees is this: Leibniz holds that the
actual creation of the world marks the beginning of time and also grants
that the event which is creation could have been temporally preceded
by something else. But this view entails that something could have
happened before time began, which is absurd.

Leibniz’s answer consists in drawing a distinction. To conceive of
something happening before creation can be construed in two ways,
namely, as

(i) to conceive of some event X that it is the first event and yet is
preceded by another event,

or as

(ii) to conceive of an alternative world in which X (which in this
world is the first event) is not the first event.
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Now, (i) is indeed an impossibility; but (ii) is perfectly consistent with
the view that time begins with the first event. For in this alternative
world, a different event will mark the beginning of time.

This answer satisfies all the criteria that must be met to answer the
contentions of Barrow, Newton, and Clarke. First, it gives a clear sense
to our conviction that we can conceive of something happening before
creation. When we imagine this possibility, we are imagining an
alternative possible world: one of those possible worlds that happens
not to be the real world. Second, Leibniz exhibits exactly the
contradiction that was perceived by Barrow and those who followed
him; furthermore, he shows how this contradiction is distinguished
from the view he actually holds. Finally, he makes it clear that in the
light of these distinctions, it is consistent to hold that time has a
beginning, namely, the time of the beginning of world history.

But there are still two other questions that we must consider. The
first is a difficulty posed by John Locke, which raises the question
whether Leibniz’s concept of possible worlds is adequate. The second is
a difficulty posed by Aristotle and explicitly discussed by Aquinas,
namely, that a first instant is not conceivable; when we think of an
instant t, we cannot help but think of time before t.

To discuss the difficulty posed by Locke, we must distinguish
between a conditional assertion of possibility and a counterfactual
conditional. Examples of these are, respectively:

(a) If he had been there, he could have done it.
(b) If he had been there, he would have done it.

One difference between could and would is that from (b) we may infer
(c) If he was there, he did it.

but from (a) we may not infer this. From (a) we may only infer
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(d) If he was there, he could (may) have done it.

Both (a) and (b) are in some sense about the possible and the
impossible, not about the actual. (We may compare (d) with the
assertion by Clarke that if God did create the world, then He could have
created it earlier.) And Leibniz’s ideas about possible worlds give us an
explication of conditional assertions of possibility. Thus, according to
Leibniz, (a) means

(e) If there is a possible world in which he was there, then there is a
possible world in which he did it.

from which we can infer (by means of the principle that the actual world
is a possible world) that

(f) If he was there in the actual world, then there is a possible world
in which he did it.

which is what (d) means. But there is at this point no reason to think
that these ideas about possible worlds will help us to explicate
counterfactual assertions such as (b).

Locke’s Essay Concerning Human Understanding appeared in 1690,
twenty-five years before the Leibniz-Clarke correspondence. Locke was
a great admirer of Newton (as he mentions in the Epistle to the Reader
at the beginning of the Essay), as were, of course, most of his English
contemporaries. It is not surprising, therefore, to find Locke arguing for
the independence of time and motion. But he adds something of
considerable importance. Writing in 1689, he says that the world is
believed to have been created 5639 years before, that is, in the hear
3950 B.C. But Locke did not believe the solar system to have been
created at the very beginning. “Year,” however, means “duration equal
to an annual revolution of the sun.” It might seem, therefore, that the
belief described by Locke is that the world was created a certain
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number of revolutions of the sun before the creation of the sun. But of
course this is not so; rather, what is asserted is that the duration of the
world before the creation of the sun equals the duration of this number
of annual revolutions of the sun.

The mind having once got such a measure of time as that annual
revolution of the sun, can apply that measure to duration wherein itself
did not exist....2°

Now you might think that this could be explained by considering other
actual periodic processes that would function as “clocks” in the absence
of the sun. But Locke does not mean just that: he means that even if
(contrary to the fact) some event X happened prior to creation Y, and
then nothing happened or existed between X and Y, there would still be
a definite number of years by which X precedes'Y.

I can imagine that light existed three days before the sun was, or had
any motion, barely by thinking that the duration of light before the sun
was created was so long as (if the sun had moved then as it doth now)
would have been equal to three of its diurnal revolutions....39

Here we have the crux of the issue: the truth of the statement “X
happened five years beforeY” lies in the truth of the counterfactual
conditional “If the sun had existed at the time of X, then there would
have been five annual revolutions of the sun between the time of X and
the time of Y.” This cannot be a truth about possible worlds: there is a
possible world in which God creates the sun on the sixth day rather than
the fourth day, and for each number n there is a possible world in which
the sun actually has n annual revolutions between the time of X and the
time of Y.

Leibniz wrote a lengthy work, New Essays Concerning Human
Understanding, in which he disputes Locke’s Essay, paragraph by
paragraph. When the question is raised how we can meaningfully speak
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of something happening, e.g., three days before the creation of the sun,
Leibniz answers cryptically:

This vacuum which may be conceived in time, indicates ... that time ...
[extends] to the possible as well as to the actual.3!

But in the next chapter he adds something that shows he realized
more was at stake:

... if there were a vacuum in time, i.e.—a duration without changes, it
would me impossible to determine its length. Whence, it comes that ...
you cannot refute the one who would maintain that two worlds, the one
of which succeeds the other, touch as to duration, so that the one
necessarily begins when the other ends, without the possibility of an
interval.3?

This remark neatly focuses the discussion on the crucial point. For any
theory of time in the Aristotelian tradition, according to which time does
not exist independently of motion, there can be no such thing as empty
time. If nothing happens, no time elapses. And if we try to imagine an
interval of time during which nothing happens, we can succeed only by
cheating. We can cheat in one of two ways: we can draw an invalid
analogy to something picturable (a box with nothing in it, a road with no
one on it) or we can imagine ourselves living through the interval (in
which case the “clock” is the succession of our thoughts and feelings).

What then of the assertion that darkness was upon the face of the
Deep three days before there was a sun? Can this not be true? Leaving
out the option that other processes “keep time” instead of the sun, this
reduces to a question about the truth of the counterfactual that the sun
would have gone three times round the earth had it existed. Can this not
be true? Leibniz will have to say No, not in this case. The counterfactual
could be true only if other periodic processes mark out three days in the
interval, thereby making the counterfactual true.
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And this must be the general direction of Leibniz’s answer: a
counterfactual can be true, but only because some factual statement is
true. Thus, consider “If I were to open my drawer, I should see a bottle
of ink.” This is true because there is a bottle of ink in the drawer (and
because I have adequate eyesight, and so on). It would be quite difficult
to give a general account of the factual conditions that make
counterfactuals true or false. We want to say that what is meant is that
in any alternative possible world that is like this one in the relevant
respects and in which it is the case that I open the drawer, it is also the
case that I see an ink bottle. But then it is very difficult to specify what
these relevant respects are.33 In the example above, however, there are
ex hypothesi no relevant physical conditions such that if they stay the
same, and the solar system is also present, then exactly three
revolutions of the sun must occur in the indicated interval. In the
problem given, there are ex hypothesi no factual conditions that would
make the counterfactual true (other than facts about absolute time,
whose existence is what is in dispute here).

More succinctly, Leibniz need not give an account of how it is
possible for there to be empty time, since he can consistently deny that
there can be empty time. On the other hand, we must add that another
difficult question has been lurking just around the corner. It is the
question: Just how is the quantity of elapsed time related to the kind of
process that occurs? For example, what if there were no periodic
processes, only irregular ones? This kind of question we must postpone,
since no real clarity was achieved in this area until the time of Jules
Henry Poincaré.

After all these threads have been disentangled, Aristotle’s original
challenge becomes rather easy to meet. His question was: How can
there be a first instant, when we find that we cannot conceive of a first
instant? After Leibniz’s schooling of our imaginations, we immediately
ask what is meant here by “conceiving an instant.” What cannot be
meant is some fortuitous act of picturing, say, a point on a line. That
would at most amount to imagining something that purports to

37



represent time—and the question would then be whether it represents
time adequately. But then the only way to conceive of a time t is to
conceive of it as the time at which something, X, happens. And then the
assertion that for any t we can conceive of a t before ¢ amounts to: For
any event X we can conceive of an event X' happening before X. Instead,
Leibniz makes perfect sense of this by saying that we are considering an
(alternative) possible world in which X is preceded by X'.

3. Causation and Time Order

a. Physical Objects and Events

In the Scholium to the Principia Newton says: “All things are placed in
time as to order of succession, and in space as to order of situation.”34
The delightful simplicity of this statement is largely illusory; the use of
the blanket term “things” obscures many important distinctions. Some
things exist, other things happen, still other things obtain. Thus, the first
car I owned, Betsy, existed from 1950, when it was built, until 1962,
when it was wrecked. But it is not correct to say that Betsy “happened,”
or that Betsy “was the case,” or that Betsy “obtained.” Betsy is a
continuant, a physical object; events, not physical objects, happen, and
states of affairs obtain. What happens happens in time, and what exists
exists in time; but these two ways of being in time are different.

This was spelled out in detail by Aristotle, who of course used his
own theory of time to draw the distinctions.3> There are two important
senses in which something may be said to be in time. The first is that it
is measured by time (since time is the measure of movement, processes
are in time in this first sense). The second is that it is in the subject of
something which is in time in the first sense—that is, material objects
are in time in the second sense, for the subject of a process is such an
object. In this sense, something that is at rest is also in time, because a
thing cannot properly be said to be at rest unless it is capable of
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movement. For example, the number two is not in movement; neither is
it at rest; there is no sense in which it is in time.

This set of distinctions is adequate as far as it goes, but we must
consider events and states of affairs as well as processes.3¢ Consider the
sentences

(1) X was F while Y was changing from G to H.
(2) X exploded while Y was changing from G to H.

Here the clause of “Y was changing from G to H” describes a process.
But the clause “X was F” describes a state of affairs (X being F), or, if
you wish, it describes a state of X (its being F). The clause “X exploded”
describes neither a process nor a state, but an event (the explosion of
X). So what is asserted is that a certain state obtained (or that a certain
event happened) while the process in question took place. And so
temporal relations hold among events, states, states of affairs
(situations), and processes.

We can simplify this somewhat. To describe a situation or state of
affairs, we would simply describe the states of all the bodies involved in
that state of affairs. Hence, it is not really necessary here to discuss
states of affairs as well as states. Second, we say that a process occurs
when a body changes from being in one state to being in another state.
In doing so it will generally pass through some intermediate states.
Thus, in a process, a body passes through a series of successive states.
The process would be described if we specified this series of states.
Therefore, it does not seem necessary either to talk of processes in
addition to states.

What we have left now, among those entities which are the subjects
of temporal relations, are states and events. What is the difference
between these two? Certainly the word “event” connotes suddenness,
change, novelty; thus, P. Bridgeman writes:

Examination of usage shows that the “event” is a concept of great
generality, applying to many different sorts of physical situation.
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However, in all its usages it always has a temporal connotation and
implies a “happening” of some sort. We are not likely to speak of a
book passively resting on a table as an “event”....37

If we speak of an event only when a change occurs, it seems plausible to
say that an event is a change. Thus, the light is on until 8:08 P.M. and is
off thereafter: the going off of the light would be called an event. But
this is only one kind of event. Suppose that the light goes off at 8:08
P.M.,, but stays off only for a second. If events are changes of state, then
we would have to say that there are here three states and two events,
the events being the change from on to off and the change from off to on.
But we are much more likely to report that only one thing happened
(“Was it boring to sit in that room for an hour?” “Yes. All that happened
was that light was off for a second.”).

So at least some events are very short-lived states. Still, we must
consider that some events are changes of state: shall we have to count
these things among the basic entities related by temporal relations? But
a change of state is merely the limiting case of a process; it is a passing
through a series of states with only two members. So it is entirely
described when we describe this pair of states.3®8 This means that the
only events that we really have to consider are those that are short-lived
states. An interesting reversal of terminology has taken place in the
history of the theory of time. The issues that we have just discussed
become this clear only in the writings of Bertrand Russell, Alfred North
Whitehead, and Hans Reichenbach. And the term which they use for
what we have called states and events that are really short-lived states
is not “states” but “events.” We shall follow this convention, but at times
we shall have to point out that these events are states of objects.

Let us again consider the question What is in time? Directly in time
are those entities which are the basic relata of temporal relations:
events. Certain aggregates of simultaneous events are called states of
affairs, situations, or circumstances: these are also in time. Certain
series of successive events are called processes, and these are also in
time. The second and third cases concern complex entities that are said
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to be in time because their constituents are. Physical objects are
indirectly in time; they are said to be in time because events (which are
directly in time) happen to physical objects and, in the other
terminology, are states of these objects. Thus, my car Betsy existed in
time—from 1950 to 1962—because all the events that happened to it
(all its states) took place in those years.

We shall now take a closer look at the relations between objects
and events, partly to standardize our language a bit more.3°

A most important attempt to interrelate discourse about objects
and discourse about events was made by Reichenbach.#® He pointed to
a parallel between the attribution of some property to an object and the
assertion that an event occurred (a state obtained). Thus, the following
two sentences are in some sense equivalent:

(3) Elizabeth was crowned.
(4) The coronation of Elizabeth took place.

and so are the following two:

(5) The dynamite exploded.
(6) The explosion of the dynamite occurred.

As we consider more complex sentences, the translation from object
language into event language, and vice versa, becomes more
complicated too. Thus, determinations of time and place play a rather
independent role. Witness the following equivalence:

(7) Elizabeth was crowned at Westminster Abbey in 1952.
(8) The coronation of Elizabeth occurred at Westminster Abbey, in

1952.

Other adverbial modification introduce further complications, but
are not relevant here. Concentrating on simple sentences like (3), we
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also find, however, that English may have no idiomatic counterpart to
generate the event-sentence. Thus, for

(9) The ball was red yesterday.
we only have such contrived event-language equivalents as

(10a) The ball’s being red occurred yesterday.
(10b) A case of the ball’s being red occurred yesterday.

It is important to notice here that (10b) is a better paraphrase of (9)
than (10a). For suppose the ball was painted several times and was red
on Tuesday and Thursday but white on Monday, Wednesday, and
Friday. Then it would seem most natural to consider the ball’s being red
on Tuesday and its being red on Thursday as two distinct events. So one
case of its being red happened on Tuesday, or was the case on Tuesday,
another case on Thursday.

Sometimes English has idiomatic descriptions of events
(“coronation,” “explosion”) and sometimes it does not. Contrived
descriptions such as (10a) and (10b), however, can always be
manufactured. For this reason, Reichenbach offered the following
general pattern:

(11) “(The object) X has (the property) F at time t” is true if and only
if “A (case of) being F of X occurred at time t” is true.

Thus, the general way to describe an event is to say that it is a case of X
being F (supplying the relevant object and property terms) and that it
happened at time t (supplying the relevant date).

In addition to this we shall also observe the following terminology:

(12) A given eventY is a case of X’'s being F if and only if Y involves X
and Y involves F.
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This formulation is derived from the terminology according to which a
person or a car may be said to be involved in a crash or an accident. It
is, of course, contrived to extend the terminology in this way, but the
extension has many advantages. It is, in general, simpler to say that an
event involves a given property than to say that it is a case of something
or other’s having that property. It also gives a simple definition to an
important relation among events: genidentity. Two events are
genidentical if they happen to the same object, if they belong to the
history of one and the same object.

(13) Events X and Y are genidentical if and only if there is an object Z
such that X involves Z and Y involves Z.

The history of this object Z is then the aggregate of all the events in
which it is involved.

There are a number of question about events that are as yet
unanswered. For example, could there be events that do not involve any
physical objects? events that involve several objects? events that involve
relations among objects? Are event language and object language
equally rich? Could one theoretically dispense with either kind of
language? All are important questions from the point of view of
philosophy of science because of the predominance of both kinds of
discourse in discussions of physics and descriptions of the physical
world. Some of these questions will also become relevant to our
purposes, and we shall then discuss them; but other questions, more
peripheral to the philosophy of time and space, we shall leave
unanswered.*1

b. Leibniz’s Causal Theory of Time Order
Leibniz was the first major philosopher to grasp the importance of the
subject of order to the theory of time and space. He saw that the study

of order must underlie the study of magnitude or quantity; in this
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respect, he anticipated the direction of the development of modern
mathematics. His own theory of time and space is basically a theory of
temporal and spatial order.” For this, Clarke charged him with
irrelevance, for “Space and Time are Quantities; which Situation and
Order are not”.*2 It must be granted that Leibniz was not entirely
successful in his transition from order to metric, but he correctly
discerned the distinction between them.#*3

Unlike many of his contemporaries, Leibniz was still sympathetic
with much in the Aristotelian-Scholastic tradition. Hence, the question
before him was: How can the Aristotelian account of duration be
extended or generalized into an account of temporal order? We may
begin by speculating on the train of thought that let Leibniz from
Aristotle’s account to his own; then we shall restate his position
systematically. The former, it is hoped, will give some intuitive
motivation for the theory within the philosophical context of Leibniz’s
work, which a bare reading of his summary exposition will not provide.
The latter, on the other hand, will make his theory accessible to critique
from a contemporary point of view.

Duration, the quantity of time, is according to Aristotle the measure
of motion (in general, change) with respect to before and after. This
account presupposes the notions of measure or magnitude, physical
change or process, and temporal order. We may rephrase it as

The temporal magnitude (duration) of a physical change is its
magnitude with respect to temporal order.

The question that this raises is: Could the notion of physical change
utilized here be used, perhaps in conjunction with certain other
concepts, to give a similar account of temporal order? To answer this

" The main source for this, his essay The Metaphysical Foundations of
Mathematics, can be understood independently of his general metaphysics.
The interesting aspects of his theory that belong the latter discipline will not
be discussed here.
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question, the obvious point of departure is Aristotle’s description of
physical change. As we pointed out, this account presupposes the
notion of a physical substance (or object) subject to various
determinations that are divided into families of mutual contraries. This
contrariety is itself characterized by Aristotle in temporal terms:

(1) It is impossible that contrary predicates should belong at the
same time to the same thing.44

But there are two ways of looking at this characterization. We can think
of it as a specification or definition of contrary predicates in terms of
necessity and simultaneity. But we can also think of it as an account of
why certain predicates never do belong simultaneously to the same
thing. Thus, to the question

(2a) Why is nothing ever red and green (all over) at the same time?
the theory presented summarily in (1) gives the answer

(2b) It is impossible for this to be so, because red and green are
distinct members of a family of contrary predicates.

A possible objection to this answer is that the term “contrary” can only
be defined through (1); hence, the answer is circular. But that is a non
sequitur. We may grant that this is the only way in which “contrary”
could be defined here; as long as we do not define it, however, there is
no circularity. This kind of objection would be made more forcefully by
a philosopher who holds that terms have some definite meaning; that
among all the terms synonymous with a given term, one gives its “real”
meaning. The following passage from Kant’'s Inaugural Dissertation
appears to involve some such view:

So far is it from being possible that anyone should ever deduce and
explain the concept of time by the help of reason, that the very principle
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of contradiction presupposes it, involving it as a condition. For A and
not-A are not incompatible unless they are judged of the same thing
together (i.e. in the same time); but when they are judged of a thing
successively (i.e. at different times), they may both belong to it. Hence
the possibility of changes is thinkable only in time; time is not thinkable
through changes, but vice versa.*>

But to this we oppose the view that the terms of a natural language
do not have a unique and definite meaning: if one term can be used to
define another, then in general, the second can be used to define the
first. Any hierarchy of defining terms and terms defined is an artificial
construction. Of course, such a hierarchy of definitions may have an
important function: it may serve to make sense out of what is meant, it
may serve as an explication. But there is no term that cannot occur as
the subject of an adequate explication, as Kant apparently maintains
about the term “time.”

Returning to our speculation about Leibniz’s train of thought, we
notice that one and the same thing may be the subject of contrary
properties: such contrary determinations are jointly possible, provided
they are temporally separate. Their contrariety does not (unlike
contradiction) make the existence of one exclude the existence of
another; it separates them, however. And if they are separated, they
form a domain of distinct entities, and this domain may be ordered. The
domain is world history, and the order, time. This is the import of the
initial paragraphs of Metaphysical Foundations of Mathematics:

Given the existence of a multiplicity of concrete circumstances which
are not mutually exclusive, we designate them as contemporaneous or
co-existing. Hence, we regard the events of past years as not co-
existing with those of this year, because they are qualified by
incompatible circumstances.

Time is the order of non-contemporaneous things. It is thus the
universal order of change in which we ignore the specific kind of
changes that have occurred.*®
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Some circumstances are temporally separate because they are
actualizations of contrary possibilities; others because they are qualified
by such intrinsically incompatible circumstances. The use of the
concept of qualification certainly introduces a new element into the
theory into which we must further inquire below. But in the meantime,
how are these temporally separate circumstances ordered with respect
to each other? Leibniz answers this question with the first attempt at a
causal theory of time:

When one of two non-contemporaneous elements contains the ground
for the other, the former is regarded as the antecedent, and the latter as
the consequent. My earlier state of existence contains the ground for
the existence of the later. And since, because of the connection of all
things, the earlier state in me also contains the earlier state of the other
thing, it also contains the ground of the later state of the other thing,
and is thereby prior to it.4’

In other words, according to Leibniz the various circumstances or states
of affairs are related to each other as cause to effect, and by definition,
the cause is the earlier. After this summary introduction to his theory,
we turn to a systematic exposition of it.

In the passages cited above, Leibniz refers to circumstances. It is
clear that by this he means states of affairs, situations, states, and
events. Thus, we shall regard the relations among circumstances that he
introduces (mutual exclusion, or contrariety, and qualification) as
relations among events. In terms of these primitive notions, he lays
down (in effect) the following definition:

(3) Events are contemporaneous if and only if they are not contrary
and not qualified by contrary events.

By contrary events Leibniz evidently means events that correspond to
having contrary properties. In our terminology this means
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(4) Events are contrary if and only if they involve the same object,
but contrary properties.

Both contemporaneity and contrariety are meant to be symmetric
relations—that is, if X bears the relation to Y, then Y bears the relation
to X. According to Leibniz, time is the order of events that are not
contemporaneous. To define this order, he introduces an asymmetric
relation. This is the relation of causality, or (in his terminology) of
containing the ground for. Using this relation, he can define the relation
of temporal precedence:

(5) Event X is before eventY if and only if either X contains the
ground forY, or some other event Z that is contemporaneous
with X contains the ground forY.

The theory of time order is given by definitions (3) and (5), which
define the two basic temporal relations of contemporaneity
(simultaneity) and precedence (succession).

But a theory may be adequate or inadequate, even if it is presented
in the form of a set of definitions. In particular we should consider as
part of the theory the assertions that contrariety, qualification, and
causality are relations among events, the first two symmetric and the
third asymmetric.

We must now consider two kinds of questions about the theory.
The first kind of question arises if we take the basic notions of events,
contrariety, and so on, at face value and then ask: Under what
assumptions about the world will Leibniz’s theory of time order be a
correct account? And the second kind of question arises if we refuse to
take the basic notions at face value, and we ask for an account of them
also. We begin by considering the first question.

Under what conditions is Leibniz’s account adequate? Leibniz’s aim
is to define temporal relations among events in terms of certain other
relations. And so he must hold that these other relations obtain
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precisely in those cases in which we are prepared to say that the
respective temporal relations hold. Consider the relation of being
temporally separate (noncontemporaneity). At first glance, one might
say that surely two events need not be simultaneous, even if they are
not contrary, nor need they be respectively simultaneous with contrary
events. After all, what has their being simultaneous or not simultaneous
to do with their own character, or with the occurrence of other events?

Let us first take a simple case. We have in the history of the world
a short interval during which all events are compatible with one
another; yet some of the events occur later than others. Is this possible?
What it entails is that during this interval nothing changes, for change is
from some condition to a contrary condition. So the possibility of the
described situation presupposes that there can be a lapse of time in the
absence of change. And this is exactly contrary to the Aristotelian
tradition in the philosophy, which Leibniz attempts to maintain, that
time is not independent of change.

But surely change may be periodic; could we not have two states of
the world that are separated by some contrary state but are themselves
not contrary to each other? Here we may refer to Leibniz’s view that the
earlier state contains the ground for the latter. So if we have here an A-
state followed by a B-state, followed by an A-state, the first A-state is
such as to cause (or contain the ground for) a subsequent sequence of
states (a B-state, then an A-State, then ...). In this, the first A-state could
differ from the second A-state.

Suppose, however, that world history is entirely symmetric about
these two A-states—what then? It must be noticed first of all that our
hypothesis is now cosmological and that with respect to cosmological
questions it is often not easy to disentangle the empirical element from
the logical. Thus, a certain cosmological hypothesis may well be
possible relative to one philosophical position and absurd or
inconsistent relative to another. In the famous debate between Clarke
and Leibniz, Clarke asked Leibniz how he could give an account,
consistent with the relational theory of time, of the fact that the world
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could have been created two years before the actual time of creation.
Leibniz’s answer was that this is not a fact, that the hypothesis is absurd,
and that he only has to account for the feeling or impression that it
makes sense. The point is, of course, that relative to the theory of
absolute time shared by Newton and Clarke the hypothesis is possible,
and relative to the relational theory of time it is impossible. But in the
case of a cosmological hypothesis one cannot arrange an experimental
situation that would decide between these rival views.

Similarly, with respect to the cosmological hypothesis that two
states might fail to be contrary and have exactly similar sequences of
states preceding and succeeding them, one surmises that it is
incompatible with Leibniz’s views. But Leibniz did not explicitly
consider this hypothesis, so we can only speculate on what he would
have said. It does seem reasonable, however, to believe that he would
have appealed to the principle (now called Leibniz’s principle or the
principle of the identity of indiscernibles) that two distinct entities must
be unlike in some respect. A good example of his use of the principle
with respect to a cosmological hypothesis is found in his fourth letter to
Clarke, in a discussion of whether God could move the whole universe
forward.#® The application of this principle to hypotheses of symmetric
or periodic world histories, however, was not made until much later
(see Chapter III, Section 1).

Similarly, we may inquire into the presuppositions of the definition
of temporal precedence in terms of causality. As we have phrased
definition (5), its adequacy presupposes that whatever happens at a
given time t has some cause at each preceding time. Stated in the
terminology introduced by the definitions, this amounts to: If X and Y
are not contemporaneous, then either X is contemporaneous with some
cause of Y or Y is contemporaneous with some cause of X. Now a theory
is clearly not complete unless it postulates that the presuppositions of
its definitions obtain. (We shall call such postulates “postulates of
adequacy.”) That Leibniz clearly perceived the need for such a postulate
of adequacy for definition (5) is suggested by his assertion, in this
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context, that “the earlier state in me contains also the earlier state of the
other thing, [and hence] it also contains the ground of the later state of
the other thing, and is thereby prior to it.”4° And he must lay down
some such postulate of universal causality to rule out the possibility of
states that are not contemporaneous by definition (3), but that his
theory fails to define as either before or after one another. The question
is: Is this factual supposition warranted? But this question cannot be
answered unless we have a clear criterion for the relation of causality.
This brings us to the second line of questioning.

The preceding comments are based on a rough understanding of
what Leibniz means by “qualifies” and “contains the ground for.” These
terms are, however, not nearly so clear that we are inclined to maintain
this uncritical attitude. We can see that according to Leibniz if one event
qualifies another, then they are simultaneous. (Otherwise definition [3]
would not make sense.) But what else is meant if we say that X qualifies
Y? We can see two possibilities:

(a) X and Y are not to be regarded as independently existing events.
(b) X and Y are mutually independent, but bear to each other a
certain relationship, designated as qualification.

If (b) is intended, it is hard to see how Leibniz could defend himself
against a charge that either “qualifies” is but a new name for
simultaneity or he has postulated a new kind of relation whose sole
function is to help him avoid postulating absolute time.

On the other hand, if (a) is intended, the notion of qualification
must be further explicated. First, what might one have in mind when
referring to events that are not mutually independent occurrences? One
possibility is that this refers to the view that we may distinguish
between total states and partial states and that partial states are not to
be counted as distinct events, but either as aspects of total states or as
imperfectly described total states. On this view, the phrases “the car’s
being wet” and “the car’s having a momentum p” are but inadequate
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descriptions of total states of the car; they might, in fact, both refer to
the same state of the car (if the car were wet exactly when it had this
momentum). Thus, on this view, the two phrases do not refer to distinct
events (though they could be said to refer to distinct aspects of events).
And then the relation of qualifying could suitably be defined as being
aspects of the same total state. We might here ask for a criterion of
what is to count as a total state. For example, can we refer to the total
state of a leg of a table, or would any state of one of the legs be but an
aspect of a total state of the table? (This question could obviously be
posed for physical systems and their components in general.)>°

Another possibility is that the reference is to what one might call
“second-order” events: events that happen to other events, or involve
other events. Examples of these would be the observing of an explosion
and the photographing of an explosion. Both examples are most
naturally understood as referring to human acts: they are by someone.
The kind of relation that obtains when a person observes, photographs,
dislikes ... something is called an intentional relation. Intentionality is
clearly not a subject that belongs to natural philosophy, but the question
is whether there are not analogous relations in nature. If there are, then
we do have cases of events whose occurrence is not logically
independent: for example, the observation of an explosion could not
have occurred unless an explosion had occurred. There certainly have
been philosophies of nature according to which such interdependence
does obtain among physical events.

But I think it is also clear that in either case, a great deal of further
explication is needed. Within Leibniz’s natural philosophy we find
neither an explication of the relation of partial to total states nor of
second-order events. (Of course, Leibniz probably did not intend to
develop a separate natural philosophy, but regarded this as only a part
of a comprehensive metaphysical system. To turn to his metaphysics,
however, would lead us outside the scope of this inquiry.)

Similarly, Leibniz’s use of causal concepts cannot be satisfactory to
us today. The modern reader is at once reminded of Hume’s
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thoroughgoing and radical critique of these concepts. We cannot expect
Leibniz to answer Hume’s questions a half-century before they were
asked. But from a contemporary perspective, the reliance of Leibniz’s
theory of time on the rationalist theory of causation can only be
regretted.

c. Kant’s Analogies and Lechalas’ Theory

(i) Some Remarks on Philosophical Method

We have already encountered two paradigm examples of the
method of theory construction in philosophy: Aristotle’s construction of
a theory of duration and Leibniz’s construction of a theory of time order.
Theory construction, however, is not the only philosophical method.>1
We have also encountered several examples of what we shall call the
phenomenological method. We are here concerned not with the
phenomenological method as developed in this century by Edmund
Husserl and his students but with instances of the same general
approach found much earlier in the history of philosophy.

The first example of this method that we have seen was Aristotle’s
argument that time is not independent of change. This argument was
that we cannot experience a lapse of time except through an experience
of change. (For example, when Rip Van Winkle awoke, he was not
conscious of any major change and hence did not realize that much time
had elapsed since he last went to sleep.) Aristotle appeals to the
reader’s own knowledge of how he experiences the world. He asks the
reader, in effect, to try and imagine how he would experience duration
other than through experiencing change.

When it is admitted that we cannot imagine A (or experiencing A)
independently of B (or of experiencing B), it is concluded that the
concept of A and the concept of B are also interdependent. Why is this
conclusion warranted? It amounts to accepting the principle that what
we can and cannot imagine are indications of conceptual
interconnections—put it more grandiosely, of the structure of our
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conceptual framework. And this does not seem unreasonable as long as
we are merely inquiring into our own conceptual framework. For one
can hardly be said to have a concept of X unless one can imagine X or
think about X; conversely, if [ can imagine X and think of X, then /'have a
concept of X. This is still a very simple-minded presentation of the
method. The primary reference for a more sophisticated discussion is
Husserl’s work on eidetic abstraction and the method of free variation.>2
In the analytic tradition this method is discussed primarily in
connection with the subject of intension.>3 Examples of a very naive and
un-self-critical use of the method may be found in David Hume’s
Treatise of Human Nature.>*

The use of any philosophical method, however, must be hedged
round with cautions. There are two misuses of this phenomenological
inquiry that we must especially note. The first is the mistake of
unwarranted generalization. That [ cannot conceive something does not
mean that it is not conceivable; my imagination may need to be
schooled. Indeed, it is possible that no one today should be able to
conceive of a certain possibility and yet that it is conceivable: radical
changes may occur in our common conceptual framework. (There is of
course an ambiguity in “cannot conceive”: it may refer to one’s present
conceptual framework or may take into account the possibility of
conceptual change.) The second mistake is probably to be credited to
the historical influence of the geometrical method. It consists in
conceiving our conceptual framework as itself being a kind of tacit,
implicit, or unconscious deductive theory. If the structure of our
conceptual framework is like the structure of a deductive theory, then it
has a hierarchy of principles and a hierarchy of concepts. The first
hierarchy corresponds to the hierarchy of axioms and theorems, and the
second corresponds to the hierarchy of primitive terms and defined
terms. If our conceptual framework really has such a hierarchical
structure, then the proper object of philosophical inquiry is to lay bare
the basic principles and exhibit the basic concepts, which together
provide the foundation for our entire world picture.
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This conception, bolstered by the paradigm of Euclidean geometry,
has had tremendous influence on the development of Western
philosophy. But we can loosen its grip on our thought by taking a
further look at the development of mathematics. It is indeed true that
Euclidean geometry has axioms and theorems. But it is capable of
alternative axiomatizations—that is, we can choose some of its
theorems to serve as new axioms; then the old axioms belong to the new
body of theorems. Any subject presented in axiomatic form can, in
principle, be presented in many other axiomatic forms. Similarly, the
hierarchy of defining terms and defined terms is to a large extent
relative to our choice. Often, if A is definable in terms of B, then B is
definable in terms of A. All these alternative formal presentations are
equally adequate. And we can tell that they are equally adequate; hence,
our knowledge of the subject presented is essentially independent of the
manner of presentation.

This brings us to the second example of this method, which we
have encountered: Kant’s objection, in his Inaugural Dissertation, that
time order cannot be defined in terms of the incompatibility of certain
states of affairs, because the notion of simultaneity is part of the
meaning of this incompatibility. To this we object that simultaneous
and mutually incompatible are not conceptually independent, but that
this does not establish a hierarchy. It means that either is a candidate
for being defined (partly) in terms of the other. Which course of
definition we choose will depend on our immediate purpose. Since our
present purpose is the explication of the subject of time order, we shall
prefer to give a definition of “simultaneous,” if we can.

These remarks on method are relevant because we are about to
examine another instance of phenomenological inquiry. At least, this is
how we shall interpret Kant’s section “Analogies of Experience” in his
Critique of Pure Reason.>> We shall also see how such an inquiry may
provide the philosopher with the raw material for theory construction.
For a nineteenth-century French philosopher, Georges Lechalas, chose
this as his point of departure for a new theory of time order.
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(ii) The Analogies of Experience

Kant's answer to the general question What is the structure of our
experience? May be summed up thus: We experience ourselves as
perceiving other entities and ourselves together in a world, which has a
certain structure. The next question is then: What is the structure of
this perceived (phenomenal) world? To this, the Transcendental
Aesthetic gives the answer space and time—that is, we experience the
objects of (outer) perception as being all in space and all in time, as
spatially and temporally related to each other. But here we may ask:
What does it mean, for example, to say that we perceive things as
spatially related to each other? Kant’s answer here may be summed up
as follows: The subject has already a certain conceptual scheme, and he
organizes the data of perception within this scheme. What this answer
amounts to is explored in the Transcendental Analytic; and we shall
here look at a small part of the exploration that deals specifically with
time, the section titled “Analogies of Experience.”>¢

The principle of these Analogies is that objective experience “is
possible only through the representation of a necessary connection of
perceptions.” The perceptions themselves come in almost entirely
accidental order, so they could not automatically yield a coherent
picture of a world, such as we actually have. Specifically, the analogies
deal with time: we perceive events, and events are ordered in time.
Since we cannot perceive time itself, the mind needs certain rules
whereby it reconstructs this order. And these rules, or principles,
whereby the mind organizes what is perceives into a temporal
sequence, are the Analogies.

Time has three main aspects, says Kant: duration, succession, and
simultaneity (coexistence).

There will, therefore, be three rules of all relations of appearances in
time, and these rules will be prior to all experience, and indeed make it
possible. By means of these rules the existence of every appearance
can be determined in respect to the unity of time.>”
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What these three rules do, insofar as this is of interest to us for the
theory of time, is to relate these temporal concepts to other concepts
applying to the physical world: duration to substance, succession to
causation, simultaneity to reciprocal interaction.

First, we represent events to ourselves as all ordered in a temporal
sequence. But why do we not conceive of them as ordered in several
sequences, having no connection with each other at all? Kant's answer
is that we conceive of all events as involving objects and that objects
endure through change. Thus, a single object may be involved in many
events, and this is the reason we conceive of these events as all
belonging to a single sequence: the history of that object. An objectis a
continuant, an enduring substance, and the First Analogy says that all
change consists in alteration in the determinations of an enduring
substance:

Substances in the [field] of appearances, are the substrata of all
determinations of time. If some of these substances could come into
being and others cease to be, the one condition of the empirical unity of
time would be removed. The appearances would then relate to two
different times, and existence would flow in two parallel streams—
which is absurd.>8

The passage just cited does not rule out creation, but it only allows
the creation of all substances at once. It rules out the possibility that
any object should come into being after creation—on the ground that
the states of that object would not belong to the same world history.
This is a very implausible point: prima facie, those states would be
simultaneous with certain events in the given world history and
therefore also belong to the same world history. Suppose, however, that
all substances cease to be and other substances whose states are not
simultaneous with any states of the former come into being. The way in
which we have phrased this supposition suggests that the other
substances exist after the former. But closer scrutiny will show that this
is not entailed: there is no ground for asserting any temporal relation
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between the states of the former and those of the latter, except
nonsimultaneity. So there would be no way of ordering them all
together into a single world history. Since we suppose that such an
ordering is always possible, this supposition is absurd. But the removal
of the absurdity does not require the assertion that there is no coming
into being or ceasing to be of substances.

On the other hand, in many passages Kant uses the word
“substance” in the singular. So we may also understand it as a “mass-
term”; for example, as meaning matter. Then we may conclude with him
that, within world history, all matter does not cease to be and then come
into being again. This does not entail that some matter may not be
generated or destroyed.

Before going on to the Second Analogy, it may be well to reflect
once more on Kant’s aim. The world picture to which Kant addresses
himself is clearly not just the “manifest image” (as Wilfrid Sellars calls
it) formed by us in prescientific reflection. It is the world picture of the
physics of his day, which explains why he wishes to deduce that
“substance is permanent; its quantum in nature is neither increased nor
diminished.” This scientific world picture was conceived as being in
some sense necessary; its principles were not seen merely as accidental
truths. For this reason, the seventeenth-century rationalists had
attempted to infer some principles of modern physics from basic
metaphysical principles. (And in this they followed the Aristotelians,
who had attempted to do so for their physics.) Kant, on the other hand,
attempted to show that the basic principles of modern science
correspond to basic features of our conceptual scheme, which
determines the structure of any possible experience. It is not easy for us
to appreciate how strong a hold classical physics had on those to whom
it was contemporary. We are therefore unconvinced that Kant is
uncovering the sole conditions under which coherent, objective
experience is possible. But we may still agree with Kant about the
importance of the concept of substance or enduring physical object for
the characterization of the relational structure of events in time.
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The Second Analogy similarly connects succession with causation.
Kant feels he has demonstrated that whatever happens must be
conceived of as an alteration in the state of a substance. Now he asserts
that any such alteration takes place in conformity with the law of cause
and effect—the law that everything which happens “presupposes
something upon which it follows according to a rule.” As Hume’s
criticism had convinced Kant, this causal connection is not itself
perceived, just as time is not itself perceived.

In other words, the objective relation of appearances that follow upon
one another is not to be determined through mere perception. In order
that this relation be known as determined, the relation between the
two states must be so thought that it is thereby determined as
necessary which of them must be placed before, and which of them
after, and that they cannot be placed in the reverse relation.>®

This does not seem to add much, for us, to Leibniz’s discussion. The
further discussion of the concept of causation in this section of the
Second Analogy also touches on the subject of the continuity of change
and causal action, another feature of classical physics that Kant
considered conceptually necessary. But from our present point of view,
the most original aspects of Kant's discussion of time concern
simultaneity.

In the case of the Third Analogy it is instructive to look at Kant’s
statement in both the first and the second editions of the Critique of
Pure Reason:

All substances, so far as they coexist, stand in thoroughgoing
community, that is, in mutual interaction.6?

All substances, insofar as they can be perceived to coexist in space,
are in thoroughgoing reciprocity.t!

In the second edition, more emphasis is placed on how we perceive that
certain things (states of affairs) exist simultaneously. Sometimes we
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perceive both simultaneously, that is, our perceptions are simultaneous.
That is, of course, not enough for two perceived events to be
simultaneous: if we hear a thunderclap and see a bolt of lightning
simultaneously, and we also know that the storm is far away, we
conclude that the two events were not simultaneous. For we know that
sound does not travel as fast as light. But if we see two events happen,
and we judge them to be in nearly the same place, and the two visual
perceptions are simultaneous, we conclude that the events happened
simultaneously.

This discussion already shows that regard to causal interaction is
central to judgments of simultaneity. (In the case of seeing, Kant says,
“The light, which plays between our eye and the celestial bodies,
produces a mediate community between us and them, and thereby
shows us that they coexist.”¢2 In the case of hearing, the interaction
would be through sound waves.)

But there is also a more complicated case, namely, when we are
situated so that we cannot perceive both coexistents at once. Then, if
they are brief events, we cannot perceive that they are simultaneous.
But if they are objects, we can perceive that they do coexist throughout a
time interval.

Thus I can direct my perception first to the moon and then to the earth,
or, conversely, first to the earth and then to the moon; and because the
perceptions of these objects can follow each other reciprocally, I say
that they are coexistent. Now coexistences is the existence of the
manifold in one and the same time. But time itself cannot be
perceived....63

The problem is then: Why do I not instead arrive at the judgment that
the moon appears when I look in a certain direction and disappears with
[ turn my eyes to the earth? Kant's answer here is that by organizing
our perceptions into a world picture containing moon and earth as
enduring, coexisting substances, we are in a position to explain why the
perceptions can follow each other reciprocally.
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But he wishes to say more here: he wishes to say that we must
conceive of the moon and earth as being in reciprocal interaction, for
this world picture to be fully coherent. That does not seem to be
implied, however. The hypothesis of light waves connecting both the
moon and the earth with the perceiver seems to be sufficient to explain
his perceptions. But Kant is clearly after something more: he wishes to
exhibit a necessary ground for some law such as Newton’s law of
universal, mutual, gravitational attraction.

Here we move to an argument that was given more emphasis in the
first edition and returned to in a footnote at the end of the section.®* For
a collection of substances to form one world and be set in one time, it is
necessary that they be in continual interaction. Otherwise, the states of
one substance would form one time series and the states of another
substance would form another time series, and there would be no
objective way of correlating the two series.>

The unity of the world-whole, in which all appearances have to be
connected, is evidently a mere consequence of the tacitly assumed
principle of the community of all substances which are coexistent....
And if their connection ... were not already necessary because of their
coexistence, we could not argue from this latter, which is a merely ideal
relation, to the former, which is a real relation. We have, however, ...
shown that community is really the ground of the possibility of an
empirical knowledge of coexistence, and that the inference, rightly
regarded, is simply from this empirical knowledge to community as its
condition.6®

As we have said above, today we cannot see this as an uncovering
of necessary conditions of a coherent world picture. But we can agree
that Kant has ferreted out some crucial features of the world picture of
classical physics and has correctly drawn attention to their connection
with temporal concepts.
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(iii) Lechalas’ Causal Theory of Time Order

Lechalas took his departure from Kant’s “Analogies of Experience”
in an attempt to define temporal order by means of the concepts of
classical physics.?” Unlike Kant, he was not concerned with a possible
foundation for any coherent physics or with demonstrating that certain
features of extant classical physics have a claim to a priori certainty. He
was content to use the concepts furnished by physics, rather than to rely
on any philosophical framework. This makes his effort all the more
important, since the extant sciences provide a kind of “given” for
philosophy: for a philosopher, the conceptual framework of the science
of his day provides a subject more appropriate for analysis than for
criticism. Other philosophical systems, of course, are fair game. (Both
these points need to be qualified, but the distinction will be clear.)

We may begin by considering a crucial passage in Lechalas’ Etude
sur l'espace et le temps:

Concerning the world of material bodies, the principle of mechanical
determinism asserts that the state of a system of material points at a
given instant is determined by its anterior states and determines its
posterior states. For us, this law amounts to the assertion that the
states of this system determine each other and that the determining
states are called, by definition, anterior to the determined states—each
state of being, of course, at once determining and determined,
depending on whether it is considered in relation to one or another of
the various states.t8

Thus, Lechalas makes the following claim: Each state of a mechanical
system is determined or caused by other states of that system; also, it
determines certain other states. And this relation of determination is
such that the states that occur before a given state are exactly those that
determine it—and those that it determines are exactly those that come
after it. Moreover, this determination is described by the laws of
mechanics. Therefore, the temporal succession of the states of a
mechanical system is (implicitly) described by these laws.
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To make this more plausible, we may look somewhat more closely
at classical mechanics. It was found that the motions of bodies of
ordinary (“macroscopic”) size can be described very accurately if they
are regarded as collections of particles. These particles (called “material
points” by Lechalas) each have a certain mass, and at each instant, a
location, a velocity, and an acceleration. (The velocity may be defined as
the rate of change of the location, and the acceleration may be defined as
the rate of change of the velocity.) Finally, at each position a given
particle may be subject to certain forces (such as gravitational
attraction, which is exerted on it by other particles).

The motion of these particles is held to be governed by Newton’s
laws:

(1) A body continues in a state of rest or uniform motion along a
straight line, unless it is subject to a force.

(2) If a force acts on a body, then the body has an acceleration in the
direction of that force, and the magnitude of the acceleration is
directly proportional to the force and inversely proportional to
the mass of the body.

(3) The forces exerted by two bodies on each other are equal in
magnitude and opposite in direction, along the line joining their
positions.

The first law is also called the law of inertia, the second is more
familiarly presented as equating force with mass times acceleration, and
the last is popularly stated as “for every action there is an equal and
opposite reaction.”

A mechanical system is a collection of such particles, which exert
forces on each other (the internal forces of the system); there may also
be external forces on the system. In principle, the specification of these
forces and of the positions, masses, and velocities of the component
particles may be utilized to describe the trajectory of the body—given
only the above laws of motion for the particles. The state of a system at
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an instanttis to be given through a specification of the states of its
component particles at t. If the notion of a state is here to be such that
the laws of motion and the state at t together determine all subsequent
states, then the state of a particle must comprise its velocity as well as
its mass and position. (Moreover, we must know what forces are
operative at each relevant position.)

Returning to Lechalas’ theory, we may ask: Suppose that the states
of system S; are thus temporally ordered; and also the states of system
S,; how are the two temporal sequences to be related to each other? For
this we clearly need simultaneity. Following Kant, Lechalas sees
physical interaction and, specifically mutual gravitational attraction, as
the physical correlate of simultaneity.?® That is, at any given time ¢, the
body S; exerts a gravitational force on the body S,; similarly, S, exerts
an (equal but opposite) gravitational force on S;.

Suppose S; is a stone released near the earth, S,, at a distance d
from the center of the earth. Then the earth attracts the stone, and the
stone attracts the earth, with an equal force. The acceleration of the
stone is calculated by dividing the magnitude of the force by the stone’s
mass. Similarly, the acceleration of the earth toward the stone is
calculated by dividing the same magnitude by the earth’s mass. Since
the earth’s mass is much greater than the stone’s mass, the acceleration
of the stone will be much greater than that of the earth. As a result, the
stone and the earth approach each other. The magnitude of the forces is
a function of the distance between them and so will vary during this
approach. But at each instant, the force exerted on the stone by the
earth equals the force exerted on the earth by the stone. Lechalas’ aim is
to utilize this fact to define a relation of simultaneity between the states
of the two systems.

We shall now examine this attempt critically. Before we do, we
may note that in this attempt Lechalas’ aim was similar to that of
Leibniz. In fact, whereas Leibniz was the first to construct a causal
theory of time, Lechalas was the first to use the term “causal theory of
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time.” Whether Lechalas’ attempt is any more successful than Leibniz’s
remains to be seen.

The first major objection to Lechalas’ theory is that the language of
classical mechanics is a thoroughly temporal language. It is full of
temporal locutions—as our brief exposition above has already shown.
First, we mentioned that to specify the state of a particle, we must give
its velocity as well as its position, and we also said that the velocity may
be defined as the rate of change of the position. The latter definition
would use the notion of time: “rate of change” is the same as “rate of
change with time.”

In itself, this is not an insuperable obstacle to Lechalas: it means
only that he cannot define “velocity” in this manner. But of course, he
can take it as an undefined term. There are many terms in mechanics
that are defined by means of temporal locutions in the ordinary
development of the theory. That can be taken to mean simply that
Lechalas had in mind an alternative theoretical development of the
science of mechanics. In the nineteenth century the idea of such a
drastic reformulation of mechanics was not uncommon. For example,
the energetists wished to develop a theory in which energy was the
basic, undefined concept. Their efforts, however, were not successful
and are now all but forgotten; no alternative development of mechanics
that does without the use of an explicit time variable exists. This alone
is quite a drawback to Lechalas’ theory.

Second, let us consider his attempt to define simultaneity. This
relation is needed at this point if we wish to specify the state of a
complex system; for this would involve the simultaneous states of its
component particles. Now there is a mutual gravitational attraction
among the individual particles (or individual systems). Can this
attraction—the mutuality of instantaneously induced accelerations
among these bodies—be reconstrued as a relation among their states?

Lechalas’ expositor Henryk Mehlberg is of the opinion that this can
be done. He argues that if we wish to find the state of particle Y that is
simultaneous with the state E of particle X, then we simply measure the
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force with which Y attracts X at the moment of the state E. Among the
states of Y, the one in which the force by which X attracts Y is equal and
opposite to the aforementioned force is simultaneous with E.70

But this will not do. First, there is the glaring circularity in the use
of the phrase “at the moment of the state E.”7! Second, it is possible for
two bodies to attract each other with the same force at different times,
namely, if they have the same positions at those times. Third, if there
are more than two bodies in the world, the total force on X at a given
time is compounded vectorially from the forces exerted on it by all the
other bodies. Given the resultant force on X at the time of E, we cannot
determine the component force exerted by Y alone, unless we know
either the position of Y at that time or the positions of all the other
bodies at that time.

In other words, gravitational attraction (classically conceived)
cannot be used to correlate the histories of the various gravitating
bodies. This is a very important point, for it marks the failure of
Lechalas’ attempt to characterize simultaneity in terms of the concepts
of classical mechanics.

But let us momentarily grant Lechalas the notion of state of a
mechanical system. There is still the question In what sense can the
laws of mechanics be said to define the temporal order of the states of a
given system?

We might first understand this assertion of Lechalas’ to mean:
mechanics provides a description of certain physical relations that hold
among the states and that could be used to define their temporal
relations. But if that was Lechalas’ intention, it would have been his task
to show that the laws of mechanics have a certain “nontemporal core.”
That is, these laws are stated in temporal language; he would have to
show that they entail statements (expressed without the use of
temporal locutions) describing these physical relations. But this is not
something attempted by Lechalas.

There is, however, another way to understand this assertion.
Consider the totality of all states of a given system and consider all the
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ways in which these states may be arranged in a linear order. For many
of these orderings, the laws of mechanics will rule out the possibility
that they correspond to the actual temporal order of the states. (For
example, the laws rule out discontinuous motion.) The question is: Do
the laws rule out all but one of these orderings of the states? If so, that
one must also be the actual one, and then the temporal order of the
states may be defined as their only possible order not ruled out by the
laws of mechanics. The second way of understanding Lechalas is to take
him to be asserting that only one possible ordering of the states is
compatible with the laws of mechanics.”

Lechalas made no attempt to demonstrate that this is so. But more
important is the fact that even if this is correct, the result is a rather
wealk, if not trivial, theory of time order. Certainly, if classical mechanics
has this feature, its theoretical achievement is to be admired even more.
But could this feature be said, in any sense, to give us an explication of
temporal concepts?

In conclusion, we may say that Lechalas saw quite clearly what a
theory of time order had to achieve. He also decided, in my opinion
rightly, that such a theory ought to utilize the concepts of physics rather
than the concepts of any philosophical system. But his attempt failed:
the laws of motion cannot define temporal succession, and gravitational
attraction, classically conceived, cannot define simultaneity.

" Since these laws are time-reversible this would at least have to be a
betweenness-ordering, instead of a before-after ordering: alternatively, one
might perhaps add the second law of thermodynamics (see Chapter III,
Section 3).
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[II. The Problems of the Theory of
Time: the Nineteenth Century

In this chapter we continue our examination of the development of the
theory of time, concentrating on problems which became clear mainly
during the nineteenth century. Some of the work discussed, however,
was done during the twentieth century, our main criterion being that
the problems examined can be understood without reference to the
theory of relativity.

1. The Topological Structure of Time

a. Topological Questions

In section 2 of Chapter II we discussed the questions whether the world
could have a beginning (creation) and whether time could have a
beginning. We found that these were not entirely separate questions, at
least when the discussion began (in the tradition deriving from
Aristotle), and that the main issue became: Are these separate
questions, or not? A major position, represented by Barrow and
Newton, was that the questions are separate. But the arguments for this
position rested on a modal confusion, as was shown by Leibniz.

A question such as whether time has a beginning (or an end) is a
topological question. This terminology is derived from geometry, where
we may distinguish between questions of topological structure and of
metric. This distinction is a precise version of the well-worn distinction
between quality and quantity. That a line segment is twice as long as
another line segment, and that two triangles are congruent, are
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propositions concerning metric. Even the proposition that two triangles
are similar concerns the metric, for this proposition concerns the
equality of certain angles; and this equality is an equality of magnitude.

What constitutes a topological feature, then? A topological feature
is one that is preserved by a one-to-one continuous transformation. To
put it in visual terms, it is a feature that is preserved under any
deformation (stretching, twisting, smoothing out) that does not weld or
tear the figure or break connections. In the case of the triangle, the
obvious topological feature is that the triangle encloses a certain area: if
point A is inside the triangle and point B is outside the triangle (in the
same plane), then any line joining A and B (on the plane) must cut some
side of the triangle. You could stretch the plane, deforming the triangle
into a circle or a half-moon or a square, but the boundary would always
be between A and B.

Leibniz and Kant, as well as many other writers, stated explicitly
that the topological structure of time is that of the real line. That means
that time has no beginning or end and that it has only one dimension
(unlike space, which has three dimensions). A circle also has those
properties, however. Yet a line and a circle are very different even from
a topological point of view: in geometric terminology, a line is an open
curve and a circle is a closed curve. But both are unbounded: they have
no beginning or end.

The subject of Section 2 of Chapter II may therefore be
characterized as follows: Is there a connection between the topological
structure of time and the topological structure of world history? The
specific point debated was whether, if world history is bounded on one
end, then time is bounded on one end (where “bounded on one end” is
neutral between “has a beginning” and “has an end”). The issue
between the absolute and the relational theory of time is clearly the
more general question. If time flows on in its own, even tenor,
independent of the physical world (to use the flowery language of the
English physicists), then its topological structure is independent of
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world history. But if temporal relations are somehow constituted by
physical relations, this is not so.

The question of creation is a rather obvious one, given the Judeo-
Christian theological tradition. In the more secular spirit of the
eighteenth and nineteenth centuries, the unbounded time assumed by
Newton did not need to expect much opposition based on the
theological doctrine of creation. But given that time is unbounded, there
is still the question Is it topologically open or closed? Does time have
the topological structure of the real line or of a circle?

It might be thought that physics could settle this question readily.
In classical physics, one certainly takes real numbers to be the values of
the time variable. But this does not rule out that the real numbers are
not the only admissible values. Sometimes the physicist says: let t vary
from minus infinity to plus infinity. This means: lett take all real
numbers as values. But this does not rule out that the physicist is still
concerned only with a proper part of time. If he is, this could hardly be
expected to affect the experimental success of his science, which had
such a profound effect on modern philosophy. For any practical
application of this theory would certainly concern only a small stretch of
time.

If we admit that other values for the time variable (besides real
numbers) are not ruled out, then we must admit that time may be
topologically closed. For a line may be conceived of as a part of a circle,
namely, as a circle with one point missing. If the reader is not familiar
with this subject, he may have some objections. First, we must
emphasize that we are speaking from a topological point of view. If you
take one point out of a circle, you do not produce a straight line, but
being straight or crooked or curved is not a topological property.
Second, the line produced is finite if the circle was finite, but that kind of
finitude (having a finite magnitude) is not a topological property either.
Finally, if one imagines the point removed from the circle, it may at first
seem that what is produced is a line segment bounded on both ends.
This is not so; the line so produced does not have end points. We may
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illustrate this by referring to what happens if we remove the end points
from a line segment that does have them. Suppose each point is given a
real number, in the usual way, and suppose the line segment
corresponds to the interval [0,1]. This is a closed interval; taking away
the end points 0 and 1 produces the open interval (0,1). This interval
does not have end points. Similarly, if we had removed the point %2, we
would have produced two disjoint intervals [0, %2) and (Y2, 1], which are
each bounded by only one end.

But what of time order? If we take the before-after relation for
granted and make some plausible assumptions, then time cannot be
topologically closed. These assumptions are:

(1) Of any two events, either one is before the other or they are
simultaneous.

(2) If A is before B and B is before C, then A is before C.

(3) No event is before itself.

If we then represent instants by points on a circle, in the obvious way,
we see that all events are before themselves (by going all the way
around the circle) in contradiction with (3). And surely, principles (1)-
(3) hold. But this is not so incontrovertible a point either. For (1) refers
to all events and says that they are all placed in certain before-after
ordering. But any evidence we may have for this will concern only a
small part of world history: the part with which we are directly
acquainted or, if you wish, the part of which accepted scientific theory
now gives a fairly clear picture. But again, this part may not be all. The
phenomenological distinction between before and after may be a local
rather than a cosmic distinction. (We shall return to this subject in
Section 3.) On the other hand, one might hold that principles (1)-(3)
follow from the meaning of “before.” In that case, one faces the factual
question of whether world history really has this structure—unless one
holds to the absolute theory of time.
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b. Nietzsche’s Theory of Eternal Recurrence

Granted, then, the possibility that time may be topologically closed, what
could ever lead to the conclusion that in fact it is? It is at this point that
we must turn to the theory of eternal recurrence, the theory that each
state of the world recurs infinitely many times. Versions of this
hypothesis existed among the pre-Socratics, and the hypothesis was
again widely discussed during the nineteenth century. The best-known
nineteenth-century proponent of the theory was Friedrich Nietzsche.l

As we have stated the theory, it still allows various alternatives; for
example:

(1) Each state that occurs has already occurred infinitely many times.
(2) Each state that occurs will thereafter recur infinitely many times.
(3) Both (1) and (2).

Also, we implied nothing about the order of recurrence. Here an
especially interesting possibility is given by:

(4) The world process is periodic or cyclical.

What (4) adds is that not only the individual states but a certain
sequence of states recurs. This is suggested by the doctrine of
determinism that we encountered in Lechalas: the nature of a total state
of the world uniquely determines the sequence of states that follows it.
To distinguish (4) we shall call it a theory of cyclical recurrence.

How could one have empirical evidence for such a theory? The
situation is not fundamentally different from that for any cosmological
theory. If according to our physics, the physical world is ultimately
deterministic, and one had evidence for the hypothesis that present
conditions are such that this deterministic process will eventually lead
to the same state again, one would have evidence for cyclical
recurrence.?
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According to the theory of cyclical recurrence, then, world history
consists of a series of cycles, each exactly like the others in all respects.
But although this is a perfectly possible hypothesis vis-a-vis the
Newtonian, absolute theory of time, it was soon pointed out that it
conflicts with Leibniz’s point of view. This is brought out by a criticism
directed at Nietzsche by H. Bois:

By means of reasoning analogous to a well-known argument of Leibniz,
we may object to Nietzsche: your conception must result in a denial of
the reality of this succession of identical worlds, which you have
supposed to be infinite. The identical worlds, which according to you
succeed each other, are in themselves indiscernible from one another,
because they have no intrinsic differences. There will be no way in
which these worlds can be distinguished from one another, unless you
put a limit to the phenomena and to the worlds of the past, so that, for
example, a certain world can be called the first, the next the second, and
so on. But if one declares, as you do, that past time is infinite, ... then
each new one, no matter how far back one goes, is preceded by an
infinite number of identical worlds, just as it will be followed by an
infinite number of worlds in the future. These identical worlds ...
would differ only numerically, solo numero. It follows from this that,
for our reason, they are reduced to a single one and that the hypothesis
of Eternal Recurrence destroys itself.3

The argument proceeds by appeal to Leibniz’s principle of the identity of
indiscernibles and concludes that the theory of eternal cyclical
recurrence is inconsistent.* Two questions arise here: Is Leibniz’s
principle to be accepted? and Granted the soundness of the argument,
what must the structure of world history be, according to the Leibnizian,
when the factual conditions are those that lead the Newtonian to
conclude eternal cyclical recurrence?

Leibniz’s principle of the identity of indiscernibles states that if
entities A and B have all properties in common, then they are
identical—that is, then A and B are one and the same entity; the terms
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“A” and “B” have the same referent. One might understand this in a
trivial way: for example, by counting being identical with A as one of its
properties. But that is not how the principle is meant: the word
“discernible” is to be taken literally. We may best understand the
principle and its converse (if A is B, then A has all the properties that B
has) as together giving the meaning of the predicate “is identical with.”
Since their inception both the principle and its converse (which
logicians often call Leibniz’s law) have been attacked by philosophers.
This dispute should not be seen as a metaphysical debate; we can best
regard it as raising the question whether Leibniz’s principles provide us
with an adequate explication of the notion of identity.

A common argument against the identity of indiscernibles is that
we can easily conceive of a possible world containing two distinct things
that are alike in all respects (say, two perfect, black spheres).> And
surely conceivability implies possibility; therefore, the vaunted principle
is not a necessary one. But one must take great care in concluding that
something is conceivable. In some sense, I can conceive myself squaring
the circle—but that is not possible. In imagining the world containing
two spheres that are exactly alike, how do I “see” that they are distinct?
Possibly by reflecting that if [ were in that world, one sphere would be
to my left (I would then call it A) and one would be to my right (which I
could then call B). But the question is: Does this counterfactual
assertion express a property of the spheres? If the truth of this
counterfactual is adequate ground for the assertion that the spheres are
distinct, then (the Leibnizian would surely say) it describes a difference
between the two spheres that makes them discernible. If the latter is
denied, on the other hand, then how can the counterfactual support the
conclusion that the spheres are distinct?

We may give the argument another form to show that nothing
hinges on the trustworthiness of our imagination. The Leibnizian's
opponent may say: I have described a world, and the description is
logically self-consistent; therefore, it is a possible world. The
Leibnizian’s answer is then: That description is self-consistent only as
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long as you deny the principle of the identity of indiscernibles. The
opponent can then rephrase his appeal to a counterfactual conditional
by saying: But the world I described can be embedded in a world that is
possible also according to your principles; since the world I described is
produced merely by omitting something from the latter, possible world,
it must also be a possible world. Here the Leibnizian can answer: You
do not take relations seriously enough; relations to a third thing may be
all that distinguishes the two spheres. Therefore, this simple omission
may radically alter the structure of the possible world. (We might add
that the opponent is perhaps covertly thinking of this omission as an act
in time—that is, that the world originally described comes to be when
this third element is annihilated. But that would not be a case in point at
all, for then the two spheres would be distinguished through their past
history.)

Granting the soundness of Leibniz’s reply, we come to the second
question: Suppose, for example, that the accepted cosmological theory
implies a perfect determinism, and suppose we have reason to believe
that the world is in a state for which the theory predicts an eventual
return. Does Bois’ argument reveal an absurdity here? Not at all. The
Newtonian would conclude that the world history consists of an
unending series of cycles, identical except for their place in time. But if
the theory rules out a beginning, and indeed any asymmetry of past and
future cosmic evolution, the Leibnizian corrects the Newtonian: Only
one such cycle occurs; world history is finite.

We must emphasize, though, that our premises ruled out a
beginning or end. Hence, the conclusion that world history is finite must
be amplified to “finite but unbounded.” In other words, the conclusion is
that the order of the states of the universe is that of the points on a circle
rather than that of the points on a line.® And this conclusion is reached
via the relational theory of time, since the premise of an absolute time
would block the application of the principle of the identity of
indiscernibles.  Therefore, the conclusion is, identically, that the

75



topological structure of time is that of a circle rather than a line: time is
topologically closed.

Neither Nietzsche nor Bois conceived of this possibility. Charles S.
Peirce seems to have been the first to understand the conceivable
alternatives for the topological structure of time.”

This is, of course, a radical departure from the traditional concept
of time. And this departure does not hinge on the acceptance of such
speculative, questionable cosmological hypotheses as those we have
used to bring it out. Rather the important point is that for the relational
theory of time, the possibility of a topologically closed time exists. What
has been shown here is that from the original philosophical position that
time and world history are not independent, that the structure of time is
a function of the structure of the universe and the laws of its
development, this possibility follows.

c. Closed Time and Time Order

We recall that the efforts of Leibniz, Kant, and Lechalas to develop a
theory of time order did not succeed. It is important to point out that
the possibility of a closed time must change the aims of any such theory.
For the very relations of before and between do not make equal sense
here. Some of the properties of the relation before are:

If A is before B, then B is not before A (asymmetry);
If A is before B and B is before C, then A is before C (transitivity).

Such a relation can exist among the points of a circle, but only provided
we restrict its scope. For example we might add that in Figure 1, 4 is
before B, and B is before C, and A is before C, but no point is before any
other point except as we have not indicated. Indeed, we need only
exempt one point on the circle from this ordering to remain consistent.
For example, let us give a real number as coordinate to every point
except D, and say: X is beforeY if and only if c(X) is less than c(Y). We
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are still consistent. We can go D Figure 1
even further and give D the
coordinate c¢(D) = 5. But now
the question is: Why is D not
before A? The principle seemed
to be that X is before Y if you can
reach X from Y by going
counterclockwise along the
circle. But this rule does not hold
for D; D is a singularity. Were
we to say also that D is before 4,
we would have a contradiction: A
is before C and C is before D, so
A is before D. But we said that
before is asymmetric, and this contradicts the conclusion that D is
before A and A before D. Of course, the numbers we used as coordinates
are those in the interval (0,5] and these cor-respond to a line segment
bounded on one end, not to a circle. Before is a relation suited to an
open curve, not to a closed one.

A similar argument can be given for between. Intuitively, you
might say that B is between A and C because you can go from A through
B to C along the circle. But by that criterion, A is also between B and C.
Indeed, by that criterion, any point on the circle is between any two
other points. And the only way to remedy this is to pick arbitrarily a
point, say D, to be a singularity in the ordering. To say thatD is a
singularity, however, ipso facto implies that there is a more basic
ordering that is inadequately reflected in the between (respectively,
before) ordering.

But what ordering relation is more basic than before or between?
The answer is: the relation of pair separation. On the above circle, we
can say that the pair of points (4; C) separates the pair (B; D). Itis clear
intuitively that if you wish to go along the circle from B to D, you must
pass through either A or C.

C
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The order of points on a line is an order that may be characterized
in terms of between or before. (The difference between these
characterizations will be taken up in Section 3.) Equivalently, it can be
represented by giving each point a numerical coordinate, in such a way
that numerically less than corresponds to before and numerically
between corresponds to between on the line. This is the technique of
coordinatization: Each point P has a coordinate ¢(P), and Q lies between
P and R if and only if ¢(Q) is numerically between c(P) and c(R), that is,
c(P)<c(Q)<c(R)orc(R) <c(Q) <c(P). The coordinates used here
are real numbers, elements of the real-number system.

The order of points on a circle can be characterized in terms of the
relation of pair separation. The question is whether the technique of
coordinatization is also applicable here. Can pair separation be re-
presented by a mathematical relation? The answer is Yes: we must,
then, take as coordinates the elements of the extended real-number
system. These are just the real numbers, with one special element,
designated as . This symbol represents infinity, and the special
element is called the point at infinity. This is figurative language
however; we recall that topological questions are independent of
questions of magnitude.

When we assign coordinates from the extended real-number
system, it must be done in such a way that if P and Q separate R and S,
then their coordinates numerically separate the coordinates of R and S.
For example, 3 and 7 numerically separate 5 and 0, and also 5 and oo. In
Section 1d, we shall discuss these matters in more detail.

d. Coordinates for Closed Time

The order of points on a closed line was studied by Giovanni Vailati, who
laid down the following axioms for the relation of pair separation (we
write “S(x,y/z,w)” for “x and y separate z and w”):

(a) S(x,y/z,w) ifand onlyif S(z,w/x, y).
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(b) S(x,y/z,w) if and only if S(x,y/w, z).

(c) IfS(x,y/z,w), then itis not the case that S(x, z/y, w).

(d) IfS(x,y/z,w) and S(x,z/y,v), then S(x, z/w, v).

(e) Ifx,y,z, and w are distinct points, then x is separated from one of
the others by the remaining two.

The last condition rules out that the line has the form of a figure eight.
Note that if we use x, y, z, and w to refer to events rather than to points,
we should use “nonsimultaneous” rather than “distinct” above.

Turning now to the coordinates, in the extended real-number
system the numerical functions are extended to the special element co
through the equation

f() =lim,_, o f(7)

To define numerical pair separation, we need first the notion of the
cross ratio of four elements a,b,x,y of the extended real-number
system:

<
Q

R(a,b/x,y) = g s

<

We then say that the pair (a; b) numerically separates the pair (x;y) if
and only if R(a, b/x,y) is negative. When the elements of the extended
real-number system are used to coordinatize a closed curve, we speak of
nonhomogeneous coordinates.8

Two simple examples may help here: 1 and 2 do not separate 3 and
7 because R(1,2/3,7) = 5/3, which is not negative. But 1 and 3
separate 2 and o, because R(1,3/2,0) = —1, which is negative.

Finally, we may note that the points on an open curve can also be
ordered by pair separation. But then we can further define
betweenness in terms of separation. In the case of the real numbers, we
say simply that x is between a and b if R(a, b/x, ©) is negative. (Hence,
in our second example, 2 is between 1 and 3 according to our
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definitions, as it should be.) The easiest way to define betweenness on
an open curve ordered by Sis to assign its points real numbers as
coordinates in such a way thatS§ is reflected in the numerical pair
separation among these coordinates. Then we can say: Point w is
between points y and z exactly if its coordinate is numerically between
their coordinates.

2. Clocks and the Metric of Time

a. The Relational Aspect of Quantity

The Aristotelian theory of time was a theory of duration; Leibniz’s most
original contribution to the subject was to attempt a theory of time
order. Indeed, whereas Aristotle characterized time as a measure,
Leibniz said it was an order, the order of noncontemporaneous events.
But just how does a relational theory of time, designed to explicate
temporal order, deal with temporal magnitude?

The followers of Newton saw here a major objection to Leibniz’s
theory. In his Third Reply to Leibniz, Clarke says categorically that
“space and time are quantities; which situation and order are not.”? In
his Fourth Reply, he insists that Leibniz answer the objection; so Leibniz
does, though rather cryptically:

[ answer, that order also has its quantity; there is in it, that which goes
before, and that which follows; there is distance or interval. Relative
things have their quantity as well as absolute ones. For instance, ratios
or proportions in mathematics, have their quantity....10

The analogy to ratios is not that fortunate, and Clarke’s reply shows this
rather well (Leibniz died before he could write a sixth letter). But just
what did Leibniz mean by “order also has its quantity”?

A partial answer is given in a later paragraph in the same letter:
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The author objects here, that time cannot be an order of successive
things, because the quantity of time may become greater or less, and
yet the order of successions continue the same. [ answer; this is not so.
For if the time is greater, there will be more successive and like states
interposed; and if it be less so, there will be fewer....11

This answer does begin to refute the common opinion, voiced by
Clarke, that “the distance, interval, or quantity of time or space, wherein
one thing follows another, is entirely a distinct thing from situation or
order.”12 For if we have a number of things arranged in a row,
A4, ... A, we do get a notion of the magnitude by simply counting—the
magnitude of the interval between A; and A; being defined here as the
number of elements between 4; and A;. But this is certainly not a

sufficient answer. For there is first the possibility that each element has
an intrinsic magnitude (say, to the effect that A, is twice as big as A,).
And second, there is the possibility that the elements in question do not
form a discrete order but a continuum. This is particularly relevant to
the passage cited above: Leibniz held that change is continuous, so that
there really can be no question of counting the “states interposed.”

We find Leibniz’s final answer to this problem in the essay “The
Metaphysical Foundations of Mathematics,” written during
approximately the same period as the correspondence with Clarke but
not published until almost 200 years later. There Leibniz attempts to
reconstruct the foundations of geometry as a theory of relations and
order, and he clearly sees the problem of a transition to a theory of
continuous magnitude. First, he attempts to characterize the difference
between quantity and quality:

Quantity or magnitude is that determination of things which can be
known in things only through their immediate contemporaneous
togetherness (or through their simultaneous observation). For
example, it is impossible to know what the foot and yard are if there is
not available an actually given object applied as a standard to compare
different objects. What “a foot” is can, therefore, not be explained
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completely by definition, i.e, by one which does not contain a
determination of the same sort. For we may always say that a foot
consists of 12 inches, but the same question arises again concerning the
inch, and we have made no progress.13

Very important here is the insistence that a determination of quantity
presupposes an “‘immediate contemporaneous togetherness.” This
makes quantity a matter of comparison: any judgment to the effect “X is
this big” must be equivalent to some comparative judgment “X is this
much bigger than (as big as) a certain (standard) Y.” Second, Leibniz
insists that this comparison must be one made in coincidence, in
temporal and spatial togetherness. (Note that coincidence is a notion of
order.)

There are cases in which this presupposition of “immediate
contemporaneous togetherness” is automatically satisfied, namely,
when one of the two things compared is a part of the other:

If a part of a quantity is equal to the whole of another quantity, then the
first is called the greater, the second the smaller. Whence the whole is
greater than the part.1*

In this passage, the conclusion that the whole is greater than any of its
parts is deduced from the explicit principle “If a part of X is equal to Y,
then X is greater than Y” and the tacit principle “Everything is equal to
itself.” But suppose Y is not part of X. How can we arrive at the premise
that Y is equal to part of X?

Leibniz’s answer is that if Y is in coincidence with part of X, this
premise holds; but if this condition of coincidence is not satisfied we
must either bring X and Y into coincidence or use some external
standard and bring it into coincidence with each. It is important to
appreciate how this is an answer to the question What role can the
notion of quantity have in a theory that begins with relations and order?
For Leibniz is saying, in effect, that the study of quantity must also be a
study of relation—of the relation of equality of magnitude (congruence).
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This relation of congruence, plus the nonmetric part-whole relation, will
suffice to define greater than and also N times greater than. To get from
this point to such quantitative judgments as “The field is two acres
large” or “The process lasted two hours” one must choose a standard, a
unit measure; and this choice cannot be embodied in a nominal
definition, but must involve the exhibition or designation of some
empirical entity.

This reduces all questions about metric to questions about the
congruence relation. Here Leibniz insists that the determination of
congruence presupposes a coincidence (“immediate contemporaneous
togetherness”). It appears that Roger Boscovitch was the first to raise
questions about the fulfillment of this presupposition, in the form of the
question Are we justified in assuming that a wooden or iron 10-foot rod
is the same length after it has been moved?15

Consider in particular two successive periods of the same
pendulum. These, ex hypothesi, cannot enjoy such coincidences. Hence,
we must use some external standard, say, a clock—that is, we must
choose some periodic process to serve as standard, and define its period
to be of unit length. But which periodic process should we choose for
this? Is there a right choice or a wrong choice? Surely the question of
congruence will arise again for the successive periods of whatever
process we choose as standard—if the question of a right choice makes
sense here.

Leonhard Euler discussed this question in Réflections sur l'espace
et le temps.1® He proposed the following criterion: A process is truly
periodic if when we take it as marking the unit of time, then Newton's
first law of motion is satisfied. (This is the law of inertia, which states
that a moving body that is not affected by [unbalanced] external forces
travels equal distances in equal amounts of time.)

Newton’s mechanics constituted by this time (the middle of the
eighteenth century) a well-confirmed and highly respected scientific
theory. Hence, Euler seems to be proposing an objective, empirical
criterion, supported by exactly the evidence that leads us to accept the
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Newtonian laws of motion. But if we accept Euler’s criterion for the
suitability of a chosen clock, what happens to the law of inertia? We
have then agreed to choose our clocks in such a way that their findings
necessarily confirm this law; any putative counterexample to the law
will be viewed as proving that we used the wrong kind of clock. But
then this law is no longer a factual, empirical assertion: not the way the
world is but what we have decided to mean by “The clock runs evenly”
guarantees its truth.

Suppose we were to use a nonstandard clock that gives the reading
f(t) = uwhen our usual clock readst. If the function f is not too
complicated, we can easily rewrite the laws of motion in terms ofu
rather than t The old laws would be correct by the old clocks, and the
new laws by the new clocks. But, of course, the two sets of laws would
say objectively the same; only the language would be different. Then
why choose the former?

The first answer is the historical one that we have always regarded
certain processes as periodic and that these agree with each other and
hence provide a set of readily available clocks. That this does not
provide a sufficient explanation was emphasized by Poincaré.l” After
all, even if we do not have a clock that runs at the rate f(t), we certainly
could decide to use the variable u = f(t), rather than ¢, in theoretical
physics. Indeed, we might have good theoretical reasons for this:
reasons of simplicity and mathematical convenience. In a certain sense,
we actually do this, Poincaré pointed out: since Newton, we do not
consider the natural clocks (unquestioningly accepted before Newton)
as running exactly evenly. We correct them to offset the perturbations
due to external forces, to which science declares them to be subject.

Thus, astronomers correct their chronometers for temperature, air
resistance, and such, and accept the sidereal day (duration of the
rotation of the earth as measured by the apparent movement of the
stars) as standard. But this, too, they regard as not perfectly accurate,
because of the influence of the tides; Newtonian science declares that
the tides affect the constancy of the rotation of the earth. Why not
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retain the old clocks (accept the sidereal day as the real standard) and
correct the laws of dynamics? Because then our science would become
complicated beyond belief:

The definition implicitly adopted by the astronomers may be summed
up thus: Time should be so defined that the equations of mechanics
may be as simple as possible. In other words, there is not one way of
measuring time more true than another; that which is generally
adopted is only more convenient.18

The conclusion is, therefore, that quantity consists in certain relations,
especially congruence, and in particular congruence with a standard; the
choice of this standard is essentially conventional in the case of time.

b. Conventional and Objective Elements in Definition

The words in which Poincaré summarized his conclusion, “Time should
be so defined that the equations of mechanics may be as simple as
possible,” are perhaps somewhat misleading. The historical process is
rather that data are gathered from measurement by traditional clocks;
hypotheses are proposed to give a systematic account of these data; the
clocks are then corrected in accordance with these hypotheses, and the
data reinterpreted accordingly. (This aspect of scientific investigation is
sometimes called a hermeneutic circle or spiral. The interaction of
measurement and hypotheses in such investigation is especially
apparent in the procedure discussed by Adolf Gruinbaum.'®) To place
the condition on scientific hypotheses that they must not require a
reinterpretation of the data of measurement would indeed
overcomplicate the business of science. On the other hand, there is also
a law of diminishing returns for theoretical simplification.

But the important conclusion is that the assertion that two time
intervals are equal in magnitude makes sense only with reference to a
standard of temporal congruence, which must be independently
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specified. In that sense, this magnitude is not intrinsic in the way that
the number of marbles in a certain collection is an intrinsic feature of
that collection. The specification of a standard of temporal
congruence—a clock—is not itself a factual assertion. It does not mean
that the chosen clock is truly periodic—but only that it will be used, by
stipulation, as the standard for what will be called periodic.

Here, however, we must note a very important point about
stipulations or definitions. Even a purely stipulative definition may
have a factual presupposition. For example, a definition of the form

(1) By definition, X =Y if and only if Y has the property F

presupposes that there is at most one thing that has the property F. A
specific example of (1) is the following definition of a number n:

(2) By definition, x = n ifand only if x? = x5,

This has a false presupposition. For 02 = 03 (= 0), and also 12 = 13 (=
1). Therefore, this definition would lead us to the proof:

(3) 0=n
1=n
hence, 0 = 1

If we find that a definition has a presupposition, we may precede the
definition by a postulate or proof that the presupposition is true or
rephrase the definition to eliminate the presupposition. (This is a
subject in logic, and we need not go into it here.)

As Poincaré pointed out, the definition of temporal congruence
may also have such a factual presupposition.2?® Suppose the following
definition is proposed for the unit of duration:
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(4) One unit of time is, by definition, the magnitude of the time
interval that elapses between the emission and return of a light
signal that travels through a vacuum and is reflected by a mirror
exactly 1 meter from its source.

Such a light clock is easy to construct. But suppose we allow the clock to
turn on its axis, so that the light does not always travel in the same
direction. Better yet, let us have two such light clocks side by side, one
turned at an angle to the other. Will they agree? The above definition
presupposes that they will. This is an empirical assertion; in fact, it
contradicts the nineteenth-century theory of the existence of ether. An
experiment was devised by Albert A. Michelson and Edward W. Morley
to test this assertion; to everyone’s surprise the experiment confirmed it
(we shall discuss this experiment in Chapter V).

Let us give an exact statement of what is presupposed here: When a
certain kind of process is accepted as a standard of temporal
congruence, it is presupposed that if two members of this kind are
brought into coincidence they agree (“equivalence” in the sense of
Poincaré). This comparison of duration between coincident processes is
not conventional, as Leibniz already saw. In fact, it belongs entirely to
the subject of temporal order, for the assertion

(5) Process A and process B have the same duration.
is in this case equivalent to

(6) Process A and process B occupy the same time interval.
—that s,

(7) The beginnings of A and B are simultaneous, and the ends of A
and B are simultaneous.
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or, eliminating reliance on the before-after distinction,
(8) The extrema of A and B are pairwise simultaneous.

The conventional element that we emphasized above enters only when
the two processes are not coincident.

The conclusion is, then, that the time metric is conventional in that
we choose the standard of congruence (which may be an actual process
or kind of process, or else calculable in terms of an actual process and a
certain theory). But there is also an objective element; the choice of a
kind of clock may have certain factual presuppositions, which must be
true.

c. The Poincaré-Russell Debate

In 1897 Russell published his Essay on the Foundations of Geometry,
which was the subject of a critical review by Poincaré. Russell wrote a
reply, and Poincaré a rejoinder.2! It must be noted that Russell was an
idealist when he wrote the essay, but he was in complete rebellion
against idealism during this debate with Poincaré. Also, the debate
centered largely on space and geometry, but we shall attempt to ferret
out what pertains to time.

Russell states his views on time in Section 151 of the essay. This
section is largely a restatement of the views of Bernard Bosanquet. We
shall first summarize Bosanquet’s statement on the subject, to bring out
a first point of disagreement between Poincaré on the one hand and
Bosanquet and Russell on the other. Then we shall quote from the essay
to bring out a second point of disagreement.

Briefly, Bosanquet argues as follows: Measurement of duration can
only take the form of comparison with a clock—a process chosen as
marking equal intervals. If we have several candidates for such a
standard, the question which is the correct one is “unmeaning.” So far
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there is no disagreement with Poincaré. But then Bosanquet considers
the assertion

(9) There is no periodic process all of whose periods have equal
duration (after correction for external influences).

It follows from the above, he says, that this assertion is absurd. For if
time measurement can consist only in comparison with a standard, then
this assertion amounts to the proposition that no process is truly
periodic when compared with a further standard that ex hypothesi does
not exist.22

Bosanquet was arguing against the view that temporal magnitude
is something intrinsic and does not merely consist in the relation to a
stipulated standard of congruence. But the above argument goes too far,
from Poincaré’s point of view. According to Poincaré, we may choose
any metric at all for time, for the sake of theoretical simplicity. Here
Bosanquet appears to ignore the possibility that a measurement may
involve not only comparison but also calculation. When this fact is
noted, one can easily conceive a metric by which (9) is true.

For example, suppose that we have heretofore used a clock C, by
which each event X has a date (time coordinate) t(X). Now we adopt a
new form of time reckoning by which we give each event X a coordinate

t'(X) such that
t'(X) = log t(X)
and such that the magnitude of the time interval between X and Y is

1t'(X) — ' (V)]

There may well be no process whose periods are equal by this
definition. Yet the proposal is not at all absurd, since we have a
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straightforward way of determining temporal magnitudes: first, we use
the clock C, and then we calculate by the formula t’ = log t.

But if Bosanquet and Russell were to agree thatt’ provides an
acceptable metric, they would still not have committed themselves to
the point of view that any metric is in principle acceptable. Specifically,
they would not accept a metric that is explicitly dependent on temporal
position. Here we may quote Russell:

No day can be brought into temporal coincidence with any other day, to
show that the two exactly cover each other; we are therefore reduced
to the arbitrary assumption that some motion or set of motions, given
us in experience, is uniform....

But here ... another possibility is mathematically open to us, and
can only be excluded by its philosophic absurdity; we might have
assumed that the above set of approximately agreeing motions all had
velocities which varied approximately as some arbitrarily assumed
function of the time, f(t) say, measured from some arbitrary origin....
Such a hypothesis is mathematically possible, but it is excluded logically
by the comparative nature of the judgment of quantity, and
philosophically by the fact that it involves absolute time, as a
determining agent in change....?3

Russell’s logical argument from “the comparative nature of the
judgment of quantity” is essentially that of Bosanquet, which we have
just discussed.

Russell’s philosophical argument raises a different point: if by our
new time reckoning all processes speed up with time (for example),
then this acceleration must have a cause. Since the only correlated
variation is in temporal position, this cause must be time itself. But the
idea of a causally efficacious absolute time is absurd, according to
Russell. (At the very least, it would be an unwarranted assumption,
leading to all sorts of theoretical difficulties.)

The argument is predicated on the assumption that any
acceleration must have a cause. Well, did not Newton in his highly
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successful science of dynamics postulate exactly that? This must have
been the reason in Russell’s mind. But Newton only postulated that any
accelerations as measured by the clocks that he accepted are
proportional to unbalanced forces. If we switch to a new time metric,
say t' = f(t), then we have, in effect, switched to a different language to
report the same empirical facts. Newton’s second law of motion states
that acceleration measured by t = f~1(t) is proportional to an
unbalanced force. It does not say this for acceleration as measured by
t' = f(t).

For example, the usual definition for the metric of time will say:

For events X, Y such that t(X) < t(Y), the magnitude of the interval
(t(X), t(Y)) is
d(X,Y) = [t(Y) — t(X)|.

Suppose we decide to use the alternative metric given by

For events X, Y such that t(X) < t(Y), the magnitude of the interval

(t(X), t(Y)) is
d'(X,Y) = | t(x) + L=t

2 |'

By this new metric, all processes that are periodic by the old metric slow
down with time, up to a certain instant; after that they speed up with
time. Itis certainly not part of Newton’s dynamics that this acceleration
varies directly with a certain (unknown) force. If anyone adopts this
new metric, then he cannot find the correct consequences of Newton’s
laws until he has translated those laws into his new language (in which
“temporal congruence” has a new meaning).

This means also, of course, that the adoption of a new metric must
be accompanied by a specification of how to measure duration as
specified by it, and hence a translation into the old metric. Had Poincaré
emphasized this point more, Alfred North Whitehead, a later English
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critic, might not have thought that the following contradicts his point of
view:

. we have, in fact, presented to our senses a definite set of
transformations forming a congruence group, resulting in a set of
measure relations which are in no respect arbitrary. Accordingly our
scientific laws are to be stated relevantly to that particular congruence
group.?4

As we mentioned above, Russell debated these questions with Poincaré
at a time when he had definitely turned from idealism to realism. His
revolt against those whom he had followed before 1898 was so
enthusiastic that he “began to believe everything the Hegelians
disbelieved.”?5> Accordingly, his arguments there are not those which his
essay would lead us to expect. They are rather to the effect that
duration must be an intrinsic feature of a process and has nothing to do
with comparison. Since the Hegelians did not accept the reality of
Newton’s absolute time, Russell did; but after that “first fine careless
rapture” he gradually came to a more balanced view.2¢

3. The Anisotropy of Time

a. The Temporal Perspective of Past and Future

We are now going to discuss the very important, but elusive concept of
direction. If asked “In what direction is Boston?” I would answer
“North.” This would be a correct answer, because it is made in New
Haven. But if [ were asked the question while in Halifax, I would answer
“South.” So the notion of the direction of Boston is incomplete; for
example, it is elliptic for the direction of Boston from New Haven.
Furthermore, the directions north and south do not represent relations
between any two places, but only between places on the earth. For
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example, the question whether the sun is or is not north of the star
Sirius makes no sense. On the other hand, we could invent a system of
cosmic directions; it would require only that we choose some bodies as
points of reference, just as we choose the North Star as point of
reference for the earth. In fact when the earth was believed to be the
center of the universe, the geographic directions were extended to the
whole universe. There are vestiges of this in ordinary discourse (“The
sun rises in the east.”) and in astrology (“At the beginning of April, the
sun is in Aries.”).

In time there are also directions: past and future. If asked “In what
temporal direction lies the World War I1?” I can appropriately answer
“In the past.” The answer is correct in part because it is made in 1969,
but it would not have been correct in 1934. Therefore, the notion of the
temporal direction of X is incomplete; it is elliptic for the temporal
direction of X fromY.

We may note a lack of parallelism here in the English language: for
the case of time, we have a special locution when the direction is relative
to the utterance of the answer:

(1a) Boston is north of here.

(Boston is north of the place of this utterance.)
(1b) World War Il is in the past.

(World War Il is before the time of this utterance.)
(2a) Boston is north of New Haven.
(2b) World War Il is before the Korean War.

Note that in both (1a), subjective case for space, and (2a), objective case
for space, we use “north of.” But in (1b) we use “past” and in (2b) we
use “before;” we do not say “X is to the past of Y.”

This grammatical difference has often been thought to reflect a
difference in fact. Bergson accused earlier philosophers of having
spatialized time in thinking that time is somehow the dual of space. The
example above shows that temporal discourse is not merely dual to
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spatial discourse in English—but might this be a historical accident in
the development of the English language? (We could use “to the past of”
for “before,” after all.)

But consider the following:

(3a) When persons P; and P, say “here” at one and the same time,
they do not in general refer to the same place.

(3b) When persons P; and P, say “‘now” at one and the same time,
they do refer to the same time.

Does this not show a disanalogy? Does it not show that “now” is
somehow the same for everyone, in a sense in which “here” is not? But
(3b) does not deny the dual of (3a). The dual of (3a) is

(3c) When persons P; and P, say “now” in one and the same place,
they do not in general refer to the same time.

And that is perfectly true. Consider a polite conversation (in one place)
in which no two people speak at the same time.

Another idea for a factual disanalogy between time and space is
that we can move in space: we can be south of Boston and, through
some exertion, come to be north of Boston. But we cannot be after
World War II and come to be before World War II: time travel is not
possible.

This idea needs to be disentangled; especially since, as any reader
of science fiction knows, time travel certainly appears to be conceivable
(although the notion has also generated some paradoxes). The above
argument seems to involve another failure to dualize correctly. Let us
begin with

(4a) At t4, P, was north of Boston, and at a later time t,, P; was south
of Boston.
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This assertion expresses the fact that P, moved from one place to
another. Now the dual of this is not the absurd

(4b) At t;, World War II was in the past for P;, and at a later time t,,
World War Il was in the future for P;.

Rather, the dual of (4a) is

(4c) In place q;, World War II was in the past for P;, and at another
place g, to the north of g;, World War II was in the future for P;.

And sentence (4c¢) would be true, for example, if P; lived in Boston until
1939 and lived in New Haven from 1946 on. What is confusing is only
that motion, which is change of place with time, does have an important
place in our ordinary conceptual scheme, but the dual notion of change
of time with place is very contrived and has no place in our ordinary
conceptual scheme.??” Of course, there must be a reason for that;
perhaps the reason is that we are not actually able to engage in time
travel of the (nontrivial) sort described in science fiction stories.

Be that as it may, the objective before-after direction appears much
more important to us than any direction in space. And so the question
very naturally arose: Is there not a physical basis for this direction?

We have seen that Leibniz thought of before as a basic temporal
relation, to be explicated on the basis of the cause-effect relation. Were
such an attempt successful, no separate physical basis need be found for
temporally between or simultaneous, for these can be defined in terms
of before. In this century, Reichenbach made the same attempt. He
agreed that we cannot be as uncritical about the notion of cause as
Leibniz had been; after all, we must face Hume’s criticisms of this
notion. Accordingly, Reichenbach attempted to explicate the notion X is
the cause of Y; he used for this a method he called the mark method.
Since the method was entirely unsuccessful, we shall not stop to
consider it here (although we shall return to it briefly in Chapter VI).
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If it is not possible to find a physical counterpart to the before-after
relation, we can still proceed as with space—that is, we can take for
granted the relation of between (or of pair separation), hope to find a
physical counterpart for it, and then introduce temporal direction in the
way in which the geographical directions are introduced for things on
the surface of the earth. This would mean that we would use points of
reference in time, just as we use the North Star; for example, we could
stipulate that the birth of Christ is before the death of Christ. (This
would accord with common usage, as the reader may check for himself.)

But here an interesting question was raised by philosophers of
science. In physics, the directions north and south do not appear,
because no specific body or place on earth plays a role in physics.
Similarly, neither the birth and death of Christ, nor any other events,
play a role in physics; hence, the conventional definitions of before
would not be possible there. But the before-after relation does appear
in physics. Does that not show that temporal directions are not
analogous to direction in space?

What it suggests is that a definition of temporal direction is
possible, which makes no essential reference to a conventionally chosen
point of reference. How would such a definition proceed? It would have
to point to some asymmetry in natural processes, in the historical
development of the world. For example, suppose there is some natural
process X whose instances X; always have the form

Xi = (A;B;C;Dy)

and never occur in the reverse (D;C;B;A;). Then, supposing that
temporal betweenness is given, we might define:

E is before F if and only if there is an instance X; = (4;B;C;D;) of X
such that F is between E and A4;, and 4; is between F and D;.
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(This definition has a factual presupposition; the reader should try to
ferret this out.) A process such as X is called irreversible. Are there
irreversible processes? Of course: sickness, old age, death, combustion,
digestion—there are many examples of common processes that we
cannot reverse.

But returning to physics, the question is whether these processes
simply do not occur in the reverse or whether they cannot, as a matter
of physical impossibility. Presumably, if the laws of physics do not rule
out the reversibility of such processes, then for all we know their
reverse might eventually occur.”

Here it is found that the laws of mechanics do not entail the
irreversibility of any process. (This is true not only for classical but also
for quantum mechanics and relativistic mechanics.) But in another
branch of physics, thermodynamics, which studies such prima facie
irreversible processes as combustion, mixing, and chemical reactions,
we might expect to find such asymmetry implied.

The problem whether such asymmetries exist is known as the
problem of the anisotropy of time (sometimes “direction of time” or
“arrow of time” or even “flow of time”; these terms are rather
misleading). Space is considered to be isotropic because we do not
believe there is any pervasive or systematic asymmetry in the spatial
structure of the universe. If, similarly, our physics does not imply any
pervasive or systematic asymmetry in the temporal evolution of the
universe, we shall hold time to be isotropic also. In that case, the
relations of before and after, the temporal directions of past and future,
will have essentially no more importance than the relations defined by
the compass. They will then be definable only through points of
reference conventionally chosen, and important only in view of the local
conditions of our epoch. And they will appear in physics only because of

“ This argument is not quite correct. Cosmology might lead to the conclusion
that even if all natural processes are reversible as far as physical laws are
concerned, the boundary conditions are nevertheless such that world history
has a certain asymmetry. But cosmology was still a speculative subject.
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the convenience of relating the time variable to clocks in common use.
On the other hand, if our physics does entail such a pervasive
asymmetry, then we shall hold time to be anisotropic.

A final word before we turn to thermodynamics: with this
discussion we shall enter the twentieth century. But most of the
discussion (and all of that part with which we are concerned) is
independent of the peculiarly twentieth-century developments in
physics (relativity and quantum theory).

b. Thermodynamics and Physical Irreversibility

(i) Phenomenological Thermodynamics

Thermodynamics was developed in the beginning of the nineteenth
century, especially through the work of Nicholas Leonard Sadi Carnot.
Any physical theory deals with physical systems, and we speak of a
mechanical system when the theory is mechanics, a thermodynamic
system when the theory is thermodynamics, a biological system when
the theory is biology, and so on. A thermodynamic system is just a
system regarded from the point of view of thermodynamics. And that
means: characterized in terms of the properties that are studied in
thermodynamics. The same holds for the notion of thermodynamic
state: the thermodynamic state of a gas at the time t is given by
specifying the pressure P, its volume V, and its temperature T at time
t —because those are the physical magnitudes dealt with in
thermodynamics.

Thermodynamics took over some concepts from mechanics,
particularly the concept of work. Work is defined precisely in
mechanics as the product of force and distance. For example, suppose |
push an object for a distance of 1 yard. Depending on the weight of the
object, I have to exert more or less force. The more force I exert, the
more work I do. If I now push another object with the same force, but
through a distance of 2 yards, again I do more work. The amount of
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work done equals the force exerted multiplied by the distance through
which the object is moved.

Work is one way in which the state of a system may be changed.
Suppose [ have a gas in a container with a piston, and I push the piston
with a certain force through a certain distance. Then, I have performed
a certain amount of work on the gas (the system) and thereby changed
its state (its volume is decreased and its pressure increased). Another
way to change the state of a system is by applying heat to it. If I put the
container of gas above a flame, then a certain amount of heat is applied
to it, and its state is changed (its temperature and its pressure both
increase). The third important concept of thermodynamics is energy.
Energy is, essentially, the ability to do work. Suppose I heat the gas in
the container with the piston and then let go of the piston. The gas then
pushes the piston up. The reason is that heating the gas gave it more
energy, and it was then able to do work (to move the piston through a
certain distance).

The energy that a system has is a function of its state. And here we
may state the first law of thermodynamics, which has two parts:

(1a) In an isolated system, the sum of all forms of energy remains
constant.

(1b) In a closed system, the increase in energy (through a change of
its state) is equal to the work done on the system plus the heat
absorbed by it:

AU = AQ + AW

Here closed means that no matter can enter or leave the system;
isolated means that neither matter nor energy can enter or leave the
system; and AU, AQ, and AW stand for the increments in energy, heat,
and work, respectively. (The reader may note that [1a] is a corollary of
[1b].)

It is important to note that in (1a) we said “all forms of energy.”
There is mechanical energy (that of a coiled spring or a moving
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flywheel), thermal energy (that of a hot radiator), chemical energy, and
so on. Consider the following examples: (i) Two metal bars at different
temperatures are brought together and then isolated from their
surroundings; their temperatures become the same (somewhere
between their original temperatures). (ii) A rotating flywheel comes to
rest due to the friction in its bearings; the temperature of the bearings
and wheel rises (the mechanical energy of the wheel is converted into
thermal energy by the friction).

These are examples of transitions inside isolated systems. It is
noteworthy that the reverses of these processes do not occur. (Of
course, we could draw off the heat from the flywheel and its bearings,
and set it in motion again. But this can be done only by breaking the
isolation and allowing the system to interact with other systems.) But
why do these reversed processes not occur? The total energy of the
isolated system remains the same; therefore, the reverse process would
not violate the first law. There must be some further principle that
determines the direction in which a process can take place. Although
our two examples are quite dissimilar, is there some feature that they
have in common?

To put the question very precisely, Given two states of an isolated
system, is there a criterion for determining whether some possible
process leads from one to the other? This question could be answered if
there were some property of the state that is different at the beginning
and end of a possible process. This property cannot be the energy, since
that remains the same in an isolated system. But such a property was
found: it is called the entropy.

If a system receives a quantity of heat AQ while it is at a
temperature T (on the absolute scale), its entropy is increased by

Now the second law of thermodynamics says that
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(2) No change occurring in an isolated system can result in a decrease
in the entropy of the system.

Thus, some processes in an isolated system will lead to states of the
same entropy, and others will lead to states of higher entropy. In the
latter case, the reverse is not a possible process.

Thus, in example (i), let the bars be B; and B, at temperatures
T, > T,. Then B, gives up a certain amount of heat AQ, and B, has an
increment of AQ, and B; an increment of —AQ. Let S; be the entropy for
B; and S, be the entropy for B,. Then, by the definition of the increment
of entropy we have:

ASl = ﬂ and ASZ = A_Q

T, 2
The total change in the entropy of the complex isolated system
comprising B; and B, is then

Hence, in this change the entropy increased, and the second law
predicts, apparently quite correctly, that the reverse process cannot
occur.

The entropy of a system is to some extent reflected in the form of
the energy that it has. When mechanical energy is transformed into
heat, as in example (ii), the entropy always increases. Hence, heat is
called low grade energy; mechanical energy is high grade (electrical
energy is also high grade and chemical energy medium grade). We
make this more intuitive as follows: If the heat generated by the friction
in example (ii) were used to drive the flywheel (via a steam engine), it
could not make the flywheel go as fast as it originally did (no matter
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how efficient the steam engine). For this reason, Kelvin called the
second law the principle of the degradation of energy. If this law is
entirely correct, the universe must be slowly dying a heat death: all
forms of energy will finally be converted into heat, and the world will
reach thermal equilibrium, from which it can never emerge. That would
certainly make time anisotropic.

(ii) Thermodynamics and Statistical Mechanics

The hypothesis was offered as early as the seventeenth century
that the peculiarly thermodynamic properties of heat and temperature
were somehow related to molecular motion. There were, however, a
number of factors that made scientists in the nineteenth century regard
the hypothesis as unfruitful: first, the success of the “phenomenological”
methods; second, the undesirability of postulating hypothetical entities
such as molecules; and third, that similar mechanistic hypotheses
concerning electrical, magnetic, and chemical phenomena were quite
unsuccessful. But this hypothesis continued to be explored and turned
out to be particularly fruitful in gas theory; by the end of the nineteenth
century, thermodynamics could be said to have been reduced to
statistical mechanics.

In this connection, consider the perfect gas law:

PV = RT

(here R is a constant [the gas constant]). The quantities of pressure, P,
and volume, V, are also encountered in mechanics. In mechanics we can
deduce a relation between the pressure and volume of the gas, and the
mean Kinetic energy E of the molecules of the gas:

py = 2NE
3
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(here N is the number of molecules in one gram molecule of the gas
[Avogadro’s number]). From these two equations we can immediately
deduce

RT = 2NE
3
that is,
2NE
T =22
3R

which expresses the temperature of the gas in terms of the Kkinetic
energy of the molecules. In other words, a non-mechanical property of
the gas as a whole has been expressed as a function of a purely
mechanical property of its constituent molecules.

Of course, a volume of a gas has a lot of molecules, all rushing here
and there in a most disorganized way. It is not feasible, therefore, to
apply the laws of motion directly to this very complex system, which is
why statistical methods were developed at this point. The fulcrum for
the application of this method is provided by the gquasi-ergodic
hypothesis. This was merely a plausible hypothesis in the nineteenth
century; it was proved to follow from the principles of classical
mechanics in the twentieth century.

To explain the quasi-ergodic hypothesis we must explain the
notions of microstate and macrostate. A single molecule has a position g
and momentum p; together, these quantities specify its states. We are
given the microstate of the gas (at a time t) if we are given the state of
each of its constituent molecules, to within a certain small range. Its
macrostates are simply what we called its thermodynamic states before.
We can determine a macrostate by means of our measuring
instruments: we can measure the pressure and volume of a gas, and also
its temperature (or, if you wish, the mean kinetic energy of its
molecules). We cannot measure the position or kinetic energy of the
individual molecules.
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The quasi-ergodic hypothesis is a postulate guaranteeing that each
of the microstates is equally probable—that is, if the system is isolated
and left alone, then it will in the long run spend equal time in each of its
possible microstates. (And which microstates are possible is
determined only by the requirements, that the gas remain in the
container and its total energy remain constant.) This result is
independent of its initial state, and nothing is said here about entropy.
How can this be in accord with the second law of thermodynamics?

To answer this question we must know what corresponds to
entropy in statistical thermodynamics. There are many more
microstates than macrostates, in the sense that our crude instruments
can (in principle) distinguish between any two macrostates but not
between any two microstates. So if we know that the gas is in
macrostate M, we do not yet know which microstate obtains; we know
only that it must be one of a class K(M). Now, the magnitude of K (M)
varies drastically from macrostate to macrostate, which means that
some macrostates are much more probable than others. For example,
let there be m microstates. Then, by the quasi-ergodic hypothesis, each
microstate has a probability of 1/m. If K(M) has i members, then the
probability of M is i /m.

In other words, the probability of M varies directly with the
number of microstates that belong to K(M). Now, the statistical concept
of entropy is such that the entropy of a state corresponds to its
probability. Thus, the more probable a state, the higher its entropy, and
vice versa. This turns out to correspond to the earlier, thermodynamic
concept of entropy in all relevant respects.

The most probable states are the equilibrium states. If a system is
in equilibrium, and you check it at some time later, the likelihood is that
it is still in equilibrium (since no other state is more probable). If the
system is not in equilibrium to begin, other states are more probable,
and the likelihood is that later it is found in a more probable state—that
is, in a state of higher entropy. This is the statistical version of the
second law of thermodynamics.
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Thus, the reduction of thermodynamics to statistical dynamics
leads to a revision of the second law:

(3) A change occurring in an isolated system will most probably lead
to a state of greater or equal entropy.

But “most probably” is not “certainly”; and the following also holds:

(4) In the long run, decreases in entropy are as frequent as increases
in entropy.

The apparent conflict between (3) and (4) seems to create a paradox.
Indeed, this is often referred to as Loschmidt’s paradox, after the
scientist who pointed this out. But there is no real contradiction here.?8

(iii) Entropy and Temporal Anisotropy

The second law of thermodynamics, as originally formulated,
would have been eminently suited to a definition of temporal direction.
Suppose that the order relations between and simultaneous have been
explicated or are taken for granted. Then we may define a state of a
system X to be an exhaustive class of simultaneous events involving X.
And we may define later than as follows: if S; and S, are states of X and
the state S, is of higher entropy than S;, then S, is later than S;—and
furthermore, if S; is between S; and S,, then either S; or S, is later than
Ss3.

But the statistical reformulation of this second law is not suited to
this task. Indeed, it entails that low-entropy states devolve most
probably into higher-entropy states. But this fact is deduced purely on
the basis of the absolute probabilities of the macrostates. Hence, we can
also deduce that a low-entropy state is most probably also preceded by
a high-entropy state. Therefore, we cannot simply define later than as
the direction of change to higher entropy in most cases.
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But how is this to be reconciled with the fact that we witness only
changes to higher entropy in natural processes? Ludwig Boltzmann,
who developed the statistical concept of entropy in the late nineteenth
century, said that the original acceptance of the phenomenological
second law reflected only local conditions. And he immediately drew
the conclusion that there is no physical counterpart to the before-after
relation for the universe as a whole. Thermal equilibrium is the most
probable state; hence, the universe as a whole is in thermal equilibrium.
What we witness here is only a local disturbance:

Then in the universe, which is in thermal equilibrium throughout and
therefore dead, there will occur here and there relatively small regions
of the same size as our galaxy (we call them single worlds) which,
during the relatively short time of eons, fluctuate noticeably from
thermal equilibrium.... For the universe, the two directions of time are
indistinguishable, just as in space there is no up and down. However,
just as at a particular place on the earth’s surface we call “down” the
direction toward the center of the earth, so will a living being in a
particular time interval of such a single world distinguish the direction
of time toward the less probable state from the opposite direction (for
former toward the past, the latter toward the future).2?

This was, of course, speculative cosmology; moreover, the reference to
living beings and their sense of before and after is given in the manner
of a fable or myth, a heuristic device.

Twentieth-century writers have, on the whole, agreed to the
soundness of Boltzmann’s reasoning. The asymmetry in natural
processes with respect to past and future, so evident in our experience,
is not entailed by the laws of physics alone, but is in part due to the
boundary conditions in our galactic era. This admission does not mean
that there might not be a pervasive asymmetry in the history of the
universe as a whole, but it certainly prevents us from considering such
an extrapolation necessary.
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A major contribution to the discussion of temporal anisotropy is
the notion of branch system, introduced by Reichenbach and developed
by Griinbaum.3? We say that a system “branches off” when it has been in
interaction with its environment and then becomes isolated. Normally,
this isolation is not perfect; and normally, the branch system leaves
even this relative isolation again in a fairly short time. An example is a
rock on the earth heated by the sun during the day, but isolated from
this solar radiation during the night. Even the statistical version of the
second law entails that

(a) If the branch system is in equilibrium initially, it is most often still
in equilibrium when its isolation ceases.

(b) If the branch system is not in equilibrium initially, its entropy
increases most often during its isolation.

Here, we cannot add to (b) that its initial state is also preceded by a
higher-entropy state, because the branch system simply did not exist as
an isolated system before that initial state. So here we have a definite
statistical asymmetry. That such branch systems are constantly being
formed all around us is, of course, a boundary condition and not the
consequence of a law.

Once we settle for this kind of de facto asymmetry due in part to
boundary conditions, other examples of physical irreversibility may be
found. 31 In addition, we may consider whether these factual
asymmetries do not, in fact, extend throughout the history of the
universe. This is a question to be settled relative to a cosmological
theory—an area of physics in which theories have not as yet enjoyed
conclusive success.

On the other hand, there are many ways for us to coordinate
temporal direction with features of the physical world, as we have seen
in Section 3a. Hence, when Boltzmann, on the basis of his reformulation
of the second law of thermodynamics, called the temporal directions of
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before and after “a mere illusion arising from our specially restricted
viewpoint,” his position was more audacious than tenable.32

4. What Time Is

a. Time and the Mind

The question “What is time?” has a presupposition: that there is such a
thing as time. As we argued in Chapter I, we might refuse to accept this
presupposition, refuse to give a direct answer of the form “Time is ..."
and instead maintain that time is not a kind of thing at all.

And there is a certain danger in accepting the presupposition. We
mightbe led by it into a conceptual muddle such as the following:

If time is a thing (of any kind), then we can conceive of there being
nothing except just that thing. Therefore, the existence of time is
independent of the existence of anything else. Hence, Newton’s
idea of absolute time must be right after all.

We have already encountered a number of fallacies involving the
notions of conceivability and possibility, and the argument above will
not convince anyone who is on his guard here. In other words, we need
not be misled if we accept the question “What is time?” as not being
mistaken.

The attempts to give a direct answer to this question may throw
some further light on our temporal concepts. We recall that Aristotle
defined “time” as “the measure of motion with respect to before and
after.” This, we decided, is an adequate definition only of duration, since
it takes temporal order for granted. Butin any case, it is a direct answer
to the question “What is time?” Aristotle immediately went on to ask an
important question concerning the entity time, thus conceived: Is this a
mental entity or could it exist independent of the mind?
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Whether if soul did not exist time would exist or not, is a question that
may fairly be asked; for if there cannot be someone to count there
cannot be anything that can be counted, so that evidently there cannot
be number; for number is either what has been, or what can be,
counted. But if nothing but soul, or in soul reason, is qualified to count,
there would not be time unless there were soul, but only that of which
time is an attribute, i.e. if movement can exist without soul, and the
before and after are attributes of time, and time is these qua
numerable.33

(Here we may read “measure” for “count” and “number.”) It may be
recalled that Aristotle’s main argument for his definition of time, which
entails that it is not independent of motion, was a phenomenological
argument. Thus, the question of mind dependence arose at the very
outset, as Aquinas pointed out.34

Aristotle’s answer to this question is not entirely clear. The
translation above suggests that in the absence of mind there would be
no time, only movement. Aquinas, however, read this as a position that
was considered but rejected by Aristotle. It is clear, however, that there
is an important modal fallacy in the argument, as pointed out by
Aquinas.

But perhaps the conditional proposition which he gave first is true; that
is, if it is impossible for there to be someone who numbers, then it is
impossible for there to be anything numerable.... But it does not follow
that, if there is no one who numbers, then there is nothing numerable,
as the Philosopher’s objection proceeds.3>

In a world in which there are no beings capable of measurement, a
process might still have a certain duration (as compared to another
process) in the sense that if there had been measuring beings, they
could have ascertained this fact. This is the conclusion pointed to by
Aquinas. (But this conclusion uses counterfactual notions, which are the
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subject of philosophical dispute even when no obvious fallacy is
involved.)

The subsequent history of the question contains instances of all the
possible positions that can be taken. Maimonides firmly maintained
that time is dependent in its existence on the existence of motion, but
not on anything else (including mind). Avicenna argued, however, that
time does not exist except in the mind because the relations of before
and after are constituted only by memory and expectation. Duns Scotus
attempted a synthesis: Insofar as time is an aspect of movement it is
independent of mind, because movement is; insofar as time is a
measure, its existence is dependent on the existence of a being able to
measure.3® René Descartes and Benedict de Spinoza maintained that the
distinction between movement and time is a distinction of reason alone
and that time is only “a mode of thinking.”37 Barrow and Newton went
to the opposite extreme; Leibniz, on the other hand, maintained that
time was an ideal entity, and he appears to have a conceptualist
position. A new synthesis was attempted by Immanuel Kant. We see
here an almost paradigm example of the thesis-antithesis-synthesis
dialectical movement in the history of philosophy. We shall now take a
brief look at Kant’s attempt to provide a synthesis of the positions of
Leibniz and Newton, restricting our attention to natural philosophy and
to Kant's early writings.

b. The Kantian Concept of Time

Leibniz, we recall, defined “time” as “the order of noncontemporaneous
events.” This is also a direct answer to the question “What is time?”
Leibniz elaborated on it by saying that time was something, an ideal
entity.38 Newtonian absolute time would be a concrete entity, just as the
earth, the galaxy, and the fixed stars are concrete entities. Numbers,
relations, and mathematical constructs are ideal entities. Corresponding
to any collection of physical objects are such ideal entities as its number
and spatial configuration. Corresponding to any collection of events are
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such ideal entities as its number and its temporal order. When this
collection comprises all events, its temporal order is just time itself.

Leonhart Euler raised two main objections to this position.3° The
first is that time has parts (the year 1748, the twentieth century, and so
on). But how can an order have parts? Note, furthermore, that these
parts are themselves ordered by the familiar temporal relations (the
year 1748 is before the twentieth century). Is time, then, also the order
of the parts of time—and if so, does this not lead to a vicious circle? The
second objection is that any conceived event is conceived of as being
located in time: time is the location not only of all actual events but of all
possible events. If time is simply the order of all actual events, how can
it provide a location for the merely possible events? These objections
made a great impression on Kant, and he always considered them to
have been correct, although he did not remain a Newtonian.

Both of Euler’s objections are puzzling, despite their intuitive
appeal; and we shall do well to see how Leibniz might have answered
them. The first objection is the less difficult of the two, because of the
possibility of rephrasing all assertions about the parts of time. For
example, instead of saying “It happened on such and such a day” we
could say “It happened during such and such a revolution of the earth,”
since the days are marked by these revolutions. Even the Newtonians
admit that we can refer to, or describe, a specific part of time only
through reference to the events occurring in it. Second, all the parts of
time are indexed by coordinates (dates). Thus, paraphrases in terms of
these coordinates are also available. The Newtonian might say that the
time variable t of physics ranges over absolute instants, but the
Leibnizian can hold that ¢ ranges over the real numbers used as time
coordinates. (He would then have to show that the use of these
coordinates does not commit him to the existence of absolute instants,
but he has that task in any case.)

The second point, that possible events are to be conceived of as
located in time, Leibniz fully granted.
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The void which can be conceived in time, indicates, like that in space,
that time and space apply as well to possible as to existing things.

Time and space are of the nature of eternal truths which concern
equally the possible and the existing.40

But precisely what is meant by this will be clear if we remember
Leibniz’s answer to Barrow’s argument concerning the possibility of
creation. Consider two possible states of affairs:

England is separated from the Continent by a sea.
England is not separated from the Continent by a sea.

Of these one is actual, the other merely possible. According to Leibniz,
this means that the one is the case in that possible world which is the
actual world, and the other is the case in some other possible world.
Certainly, both could not be located in the same possible world. That
both must be conceived of as being located in time means that
whichever world is actual, its states of affairs have a temporal order, and
that is time. So if some other possible world is conceived of as actual,
time is conceived to be the temporal order of its states; hence, those
states are conceived of as being in time. (One might say: Each possible
world has its time, and time simpliciter is the time of the actual world.)

Kant objected that this is not how we think of it; we do not think of
time as possibly having been different from what it is, but only of the
order of events or states in time as possibly having been different—and
mutatis mutandis for space. Kant generalized this by saying that there is
a certain general form that any possible world must have; a possible
world is just this necessary general form filled out by certain contingent
contents. Time and space are but aspects of this form. In his Inaugural
Dissertation, he characterized this general form as “the principle of
possible interactions”:
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... the bond constituting the essential form of a world is regarded as the
principle of possible interactions of the substances constituting the
world. For actual interactions do not belong to essence but to state.*!

Later, Kant characterized this general form of the physical (i.e., for him,
phenomenal) world as being made necessary by the a priori principles
of our understanding. These principles determine the structure of our
conceptual scheme, and hence, how we conceive of the physical world.
A similar position concerning the general form of any possible world
appears in Wittgenstein's Tractatus Logico-Philosophicus (though
Wittgenstein does not ask whether this general form is made necessary
by principles governing our understanding).

2.013. Each thing is, as it were, in a space of possible states of affairs.
This space I can imagine empty. But I cannot imagine the thing without
the space.

2.0131. ... A speck in the visual field, though it need not be red, must
have some color: it is, so to speak, surrounded by colour-space. Tone
must have some pitch, objects of the sense of touch some degree of
hardness, and so on.

2.022. It is obvious that an imagined world, however different it may
be from the real one, must have something—a form—in common with
it.

2.0251. Space, time, and colour are forms of objects.

2.11. A picture presents a situation in logical space, the existence and
non-existence of states of affairs.#2

Thus, the assertion that something is of a certain kind entails that there

is a set of families of properties such that this thing is characterized by
one member of each family:
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X is a medium-large physical object entails that X is somewhere in
space, has some color, some texture, some shape, and ... X is an
event entails X is somewhere in time, and....

The collection of these families of properties determines the logical
space of that kind of thing. (Each family by itself, or each subcollection
of these families, determines a subspace of that logical space, which may
itself be called a logical space. Thus, Wittgenstein speaks of the “colour-
space.”)

As we indicated above, the critical philosophy developed by Kant
turned questions of natural philosophy into questions concerning
consciousness and the understanding. Thus, in the “Transcendental
Aesthetic,” time is characterized as “a necessary representation that
underlies all intuitions” and as “a pure form of sensible intuition,” “the
subjective condition under which alone intuition can take place in us.”3
But if we remain on the level of natural philosophy—a shallow level of
analysis for those who prefer to turn to a transcendental critique of our
conceptual scheme—the foremost question is about the form of this
pure form of intuition. The question “What is time?” requires us—if we
accept its presupposition—to objectify this form of our intuition and to
describe it as a form, as opposed to a condition of sensible perception.
But this concern is more characteristic of the Inaugural Dissertation,
and of the Tractatus Logico-Philosophicus, than of the Critique of Pure
Reason.

Remaining, then, on the level of natural philosophy, we may sum up
as follows: time is a logical space, a subspace of the total logical space of
events. But what is a logical space? Wittgenstein gives the example of
the color spectrum: the logical space of colored things. But what exactly
is the color spectrum? It is merely a strip or line segment with
markings, whether drawn on paper, merely imagined, or produced on a
scale on the wall by means of a light source and prism. What it does is to
give a picture, to a desired degree of accuracy, of the part of our
conceptual scheme that concerns colors. (“Why can’t a thing be red and
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green all over?” “Because ‘red’ and ‘green’ are the tags of different parts
of the spectrum, and an evenly colored surface has a unique location on
the spectrum.”) To put it more generally: The color spectrum is a
segment of the real line being used to represent the meaning relations
among the color words.

A further point must be noted: The color spectrum also represents
all possible relations among things with respect to color. Whether two
colored patches match, for example, is uniquely determined by their
location in the color spectrum. It has been suggested that the converse
is also the case: what color a thing has is uniquely determined by what
matching relations it bears to all other colored things. But then “all
colored things” must be understood to refer to all such possible things.
For surely it is conceivable that certain shades of color are not the color
of any actual thing. In this sense, the color spectrum accommodates all
possibilities; in Leibniz’s phrase, it concerns “equally the possible and
the existing.”

Analogously, we can reconstruct the view that time is an ideal
entity, but nevertheless an aspect of the form of any possible world, as
meaning that time is a logical space pertaining to events. Its structure is
to mirror our conceptual scheme insofar as it concerns temporal
properties and relations. Here, the real line (taken either as a geometric
or a number theoretic construct) suggests itself as being capable of this
function. Thus, Kant writes:

We represent the time-sequence by a line progressing to infinity, in
which the manifold constitutes a series of one dimension only; and we
reason from the properties of this line to all the properties of time....4*

In other words, the position we are presently discussing is that time is a
logical space and that a logical space is, in general, a mathematical
construct used to represent conceptual interconnections among a family
of properties and relations—and furthermore, that this logical space
(time) is the real line being used to represent all possible temporal
relations among events and the conceptual interconnections among
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these relations. (Thus, simultaneity is represented by identity of
location on the real line, and the fact that temporal precedence is
incompatible with simultaneity is reflected by the incompatibility of <
and =.)4>

Clear appreciation of this view is found in the philosophy if science
developed by the Neo-Kantian school. In a section entitled “Die Zeit als
mathematische Gebilde,” Paul Natorp writes:

If one considers time as it appears in the basic science of nature—the
pure theory of motion, or mechanics—one finds it represented there as
a fixed, unchanging, unique ordering, in which all natural objects must,
as it were, take their place and which they must run through. ...
According to this conception, the temporal order coincides exactly—
insofar as its mathematical properties are concerned—with the one-
dimensional, straight, sequential ordering of the numbers. In all
respects, time appears as the real line in the equations of motion of
mechanics and in the whole of physics.4®

In other words, the customary formulation of Newtonian mechanics
presupposes that temporal relations among events can be represented
by the relations on the real line. The use of the time variable t in
physics, which ranges over the real number continuum, is based on an
assumed isomorphism between the system of temporal relations among
events and a system of relations on this continuum.

But of course, the real line cannot be used to represent the totality
of temporal relations adequately, unless this isomorphism really exists.
Here we have a significant objection to the position that time is the
logical space that we have just seen described. For we recall that the
theory of closed time, which must certainly be taken seriously as a
conceptual alternative, leads to the conclusion that this isomorphism
does not exist. It leads to the conclusion that not the real line but a
topologically closed curve (or the extended real-number system) is
needed to represent the system of temporal relations. This certainly
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shows that the position we have extracted from the writing of Kant,
Natorp, and Wittgenstein is too narrow.

This is, no doubt, due to the presumption that we can a priori
determine the structure that time must have or a necessary form that
any possible world must have. If the necessary principles determining
the form of the world are not vacuous tautologies, then we can conceive
their violation—and what, then, is the basis of their necessity? The
answer of the Critical Philosophy is, of course, that the transcendental
method may ferret out synthetic (nontautological) and yet a priori
necessary conditions for the possibility of any experience or coherent
thought of the world. Today, there is basic agreement among most if not
all philosophers that a transcendental proof of this sort is after all not
feasible. Such agreement does not establish that the proof is not
feasible; according to the rationale of the inquiry, however, the final lack
of success of the Critical method is good reason to explore its
alternatives.

On the other hand, there is much that is valuable in the Kantian
position. In Section 4c we shall try to show in what sense it is still
possible (and illuminating) to regard time as a logical space.

c¢. Time as a Logical Space, and the Structure of Events

We characterize the notion of logical space by saying that a logical space
is a certain mathematical construct used to represent certain conceptual
interconnections. By representing real things (instances of those
concepts) by means of elements of this mathematical construct (their
“locations”) we also represent relations among those things. The notion
of logical space plays an important role elsewhere in philosophy of
science, and also in the philosophy of logic, and it seems worthwhile to
inquire further into how time might be considered a logical space.

If we do consider time, then we must distinguish clearly between
the total relational structure of events that is world history, and time.
Even if we use only the temporal relations to define the former
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structure, it will not be time. Rather, it is a structure that is presumed to
be adequately represented by our logical space. This does not mean that
our logical space must be a mathematical construct isomorphic to the
actual temporal structure of events. It is necessary only that the latter
can be embedded in the former. Thus, the totality of all colored things
and the color relations (of matching, contrasting, and so on) among
them probably do not yield a structure isomorphic to the color
spectrum. Such isomorphism obtains only if for every color on the
spectrum there is a colored object that has this color.

Should we then say that the logical space must be such that the
corresponding real structure must necessarily be embeddable in it? The
answer can be given only through a distinction concerning the concept
of necessity. If what is intended here is logical necessity, the answer
ought to be negative. For we are concerned with the idea of time as it
appears in our common conceptual framework and in the conceptual
framework of the physical sciences. There can be no guarantee—and
here we differ emphatically with Kant—that any conceptual scheme or
theory must be such that the actual world fits it. If this turns out not to
be so, then we hope eventually to change our theories for the better.
But the possible change in theory that our dialogue with the world may
eventually occasion cannot be foreseen; its only bounds are those of
logical consistency and necessity. Therefore, our task as philosophers of
science cannot be to elaborate a framework within which the scientist
can remain no matter what the vicissitudes of experimental evidence.
On such a subject, our position could be tenable only if it were trivial.
Our task is, rather, to elucidate and further to articulate the conceptual
scheme of accepted scientific theories. (And since we are presently
concerned only with the macrophysical world, that means classical and
relativistic physics.)

So to the above question we must answer: Yes, the actual temporal
structure of events must necessarily be embeddable in our logical space.
But necessity here must be construed not as absolute logical necessity
but as necessity relativized to the scientific theories that we accept.
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Here, however, we must consider a serious challenge: Why should
we not content ourselves to describe the actual structure of events
insofar as such a description is possible on the basis of accepted
theories? And why should that structure not be called “time”? Indeed,
there is a good precedent for this. Russell’s theory of time proceeded in
exactly this manner: Time is the series of instants, and instantis defined
in terms of the notions of event, (temporally) overlaps, and (temporally
wholly) precedes.*’ The definitions are as follows:

X is an instant. X is an exhaustive class of mutually overlapping
events.

Event E is atinstant X: E is a member of X.

Instant X is before instant Y: some member of X (wholly) precedes
some member of Y.

Will the series of instants thus defined have any of the properties
we wish to ascribe to time? Not necessarily; but this just means that we
might find out that the structure of world history is not as we have
heretofore conceived it. To ensure that the appropriate kind of series
has been defined we must introduce some empirical assumptions about
events to the effect that there are “enough” events distributed
“randomly enough” with respect to the temporal relations. For example,
to secure the conclusion that no instant has a next instant (just as there
is no rational number next to %2), Russell assumes:

It is impossible for an event to cease just before another begins (in
the sense that if E covers a stretch of time just before E’, there must
be an instant X such that both E and E' are at X).

“Whether this is the case or not,” Russell writes, “is an empirical
question; but if it is not, there is no reason to expect the time series to be
compact.”48
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This certainly presents a challenge to the position that time is a
logical space. However, it is not really a challenge of the sort provided
by an alternative answer to the same question (“What is time?”). Events
are located in time, and the structure of world history is set in time, and
we conceive world history to be set in this same time regardless of the
form it actually takes. This is, of course, the Kantian objection to
Leibniz’s theory. To say that time is the actual structure of world
history is really to say that our concept of time (as opposed to our
concept of world history) is mistaken or superfluous. This is a perfectly
possible position, but it is the position that “What is time?” is a question
mistaken in intent. Only confusion can result if we say: Yes, time exists,
but it is really the actual temporal structure of the totality of events; it
was a mistake to conceive of the latter as simply one of many possible
such structures in time.

Our conclusion is that it is not necessary to say that there is such a
thing as time, but that if we do, the best possible answer to the further
question what kind of thing it is, is that it is a logical space. First, this
notion has sufficient flexibility to escape the criticism of the Kantian
position that it is too narrow. For in answer to the development of
physical science, we might take as our logical space the real line, or
some segment of the real line, or the extended real-number system.
This change would have been made definitively if in an accepted
cosmological theory the time variable t came to range not over the real-
number continuum but over one of these other mathematical structures.
Then, we would say that time has a beginning or time is topologically
closed. Now we say that the possibility that time has a beginning or that
time is topologically closed cannot be ruled out, because we see that
physical science might lead to such a conception of actual world
structure that we might make the corresponding conceptual
transition.#®> The necessity, which Kant perceived, of time having the
structure of the real line is only the necessity of a conceptual scheme
that developed with the success of Newtonian physics. But this
necessity is still with is in the sense that we have not accepted an
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alternative; only, recent cosmological speculation, and the violent
demise of the classical framework (in some important respects) have
greatly increased our tolerance of ambiguity at this point.

Finally, the view that time is a logical space allows a “Scotist”
synthesis on the question whether time is a mind-dependent entity. A
logical space is a mathematical construct used to represent ...; and that
means, of course, used by us. If we users and representators did not
exist, neither would there be something being used to represent. The
real line cannot be used to represent the actual temporal structure of
events unless the latter can be embedded in it. This is purely and
entirely an objective question of empirical fact. But neither can the real
line thus be used unless there are those capable of using it. Hence, in
that case the logical space time (which is something used to represent
something else) could not then exist.

But this sense in which there would be no time were there no
beings capable of reason, is innocuous. It is the sense in which there
would be no food were there no organisms, and no teacups if there were
no tea drinkers.>0 There could be things that look like what, in our
world, teacups look like. There could be things that could be used to
drink tea from (buckets, shells, and so on). But teacups are the things
that we use to drink tea, and in that sense they are as much a cultural
object as chess or the Polonaise.
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[V. The Classical Problems of the
Theory of Space

In this chapter we address philosophical problems concerning space
that arose before the advent of the theory of relativity. In some
respects, these problems roughly parallel those of the theory of time; to
stave off boredom we shall concentrate on those aspects that are
peculiar to space.

1. The Absolute and the Relational Theory of Space

a. The Views of Newton and Leibniz

In the Scholium to the definitions in his Principia, Newton introduced
the concept of absolute space, in which “all things are placed ... as to
order of situation.” “Absolute space,” Newton writes, “in its own nature,
without relation to anything external, remains always similar and
immovable.”l Newton’s position became enormously influential, as did
his theory of absolute time; one of his followers, John Keill, summarized
the conception aptly as follows:

We conceive Space to be that, wherein all Bodies are placed ...; that it is
altogether penetrable, receiving all Bodies into itself, and refusing
Ingress to nothing whatsoever; that it is immovably fixed, capable of no
Action, Form, or Quality; whose Parts it is impossible to separate from
each other, by any Force however great; but the Space itself remaining
immovable, receives the Successions of things in motion, determines
the Velocities of their Motions, and measures the Distances of the
things themselves.?
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Thus, Newtonians explain their concept of space by saying that space is
very much like a material body, of a very ethereal kind, but not entirely.
The main disanalogy—that bodies are in space but that it is nonsense to
ask where space is—they do not grant: parts of space “are, as it were,
the places of themselves as well as of all other things.”3

Leibniz’s conception of space as relational, that is, as not itself a
concrete entity, is opposed to this. Newton grants, of course, that
motion can be relative, that is, the distance (or some other spatial
relation) between bodies may change with time; this we call motion.
But Newton holds, and Leibniz denies, that when that happens, at least
one of the bodies is in absolute motion, that is, motion relative to space
itself. Leibniz’s most famous statements of his position are found in his
fifth letter to Clarke.

47. I will here show how men come to form to themselves the notion of
space. They consider that many things exist at once and they observe
in them a certain order of co-existence, according to which the relation
of one thing to another is more or less simple. This order, is their
situation or distance. When it happens that one of those co-existent
things changes its relation to a multitude of others, which do not
change their relation among themselves; and that another thing, newly
come, acquires the same relation to the others, as the former had; we
then say it is come into the place of the former.... And supposing, or
feigning, that among those co-existents, there is a sufficient number of
them, which have undergone no change; then we may say, that those
which have such a relation to those fixed existents, as others had to
them before, have now the same place which those others had. And
that which comprehends all those places, is called space.*

The phrase “that which comprehends” is of course not too perspicuous,

but Leibniz makes it quite clear with an analogy to genealogical
structure:
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In like manner, as the mind can fancy to itself an order made up of
genealogical lines, whose bigness would consists only in the number of
generations, wherein every person would have his place: and if to this
one should add the fiction of a metempsychosis, and bring in the human
souls again; the persons in those lines might change place; he who was
a father, or a grandfather, might become a son, or a grandson, etc. And
yet those genealogical places, lines, and spaces, though they should
express real truth, would only be ideal things.>

No one, of course, would suggest that there exists an absolute
genealogical space in which persons are placed as to order of kinship,
except in the sense that the kinship relations define a certain
mathematical structure. But Newton holds that the case of space proper
is quite different, and we shall now examine his arguments to support
this view.

b. Newton’s Arguments for Absolute Space

Newton'’s term “absolute motion” refers, by definition, to motion relative
to absolute space. Hence, if Newton can establish that there is absolute
motion, then we must grant him that there is absolute space. This
provides Newton with his basic strategy, summarized by him as follows:

It is indeed a matter of great difficulty to discover and effectually to
distinguish the true motions of particular bodies from the apparent....
Yet the thing is not altogether desperate; for we have some arguments
to guide us, partly from the apparent motions, which are the differences
of true motions; partly from the forces which are the causes and effects
of the true motions....6

What can Newton possibly have meant by arguments “from the
apparent motions, which are the differences of true motions”? If A and
B are in relative motion with respect to each other, then there can be
nothing with respect to which both A and B are at rest. But from this we
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certainly cannot conclude that either A or B is then in motion with
respect to absolute space, unless we first assume that absolute space
exists. Certainly, within Newton’s theory the conclusion follows, but
only via the principle that is in dispute here.

The arguments “from the forces which are the causes and effects of
the true motions” concern accelerated motion. For Newton’s laws say
that a body not subject to forces persists in whatever state of motion
(uniform, rectilinear) it has, but that (absolute) accelerations are caused
by forces. Thus, the second argument is apparently that if two bodies
accelerate relative to each other, this is caused by a force acting on at
least one of the bodies and that body is also accelerating relative to
absolute space.

The question here is what the status is of the assertion “Absolute
acceleration is caused by a force.” Leibniz failed entirely to see any
cogency in this argument because of his different evaluation of the
status of that principle. For him, it was an assertion in Newtonian terms
of a fact that could be stated, insofar as it had any empirical relevance,
also in his terms. In his fifth letter to Clarke, Leibniz grants that if two
bodies are in relative accelerated motion, this is caused by a force, and
that we may be able to distinguish by measurement the body on which
this force is impressed.

[ find nothing in ... the Scholium ... that proves, or can prove, the reality
of space in itself. However, I grant there is a difference between an
absolute true motion of a body, and a mere relative change of its
situation with respect to another body. For when the immediate cause
of the change is in the body, that body is truly in motion....”

Later commentators suggest that this admission is fatal to Leibniz’s case,
because, after all, if there is absolute true motion then there is absolute
space. But Leibniz explains here very clearly that what he means by
true motion is not what Newton means by absolute motion. By “X is in
true motion” Leibniz means that X is in some relative motion, which is
caused by a force impressed on X. How could we tell that the force is
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acting on X rather than on some other body? This leads us to Newton’s
last argument.

When a body is truly accelerating, this is accompanied by certain
force effects. If a driver accelerates his car, he feels the effect in his
stomach and shoulders; if a coin is placed on a smooth rotating disc, it is
flung off; if a pail full of water is made to rotate, the surface of the water
becomes hollow. This last example, of the centrifugal-force effects
accompanying rotation, is Newton’s. Moreover, he gives the following
example:

... if two globes, kept at a given distance one from the other by means of
a cord that connects them, were revolved around their common centre
of gravity, we might, from the tension of the cord, discover the
endeavor of the globes to recede from the axis of their motion, and from
thence ... compute the quantity of their circular motions.8

So Newton explains that we can detect absolute rotation by
detecting centrifugal forces—and in general, absolute acceleration by
accelerative forces. How would Leibniz analyze Newton’s argument?
For him, it would have the following structure:

(1) Absolute motion is motion relative to absolute space. (Definition)

(2) True motion is motion caused by a force on the body in question.
(Definition)

(3) Centrifugal-force effects imply the existence of a force that is
causing rotational motion.

(4) Centrifugal-force effects imply true rotational motion. (From [2]
and [3])

(5) A body is in true motion if and only if it is in absolute motion. (A
principle of Newton’s theory)

(6) Hence, centrifugal-force effects imply absolute motion.

Leibniz accepts (3) as correct, ordinarily (the qualification will be
discussed below). And he would grand that the argument above is valid.
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But the most important premise, (5), Leibniz does not grant. And
certainly, Newton has given no explicit reason why (5) should be
accepted.

We qualified Leibniz’s acceptance of (3) by the term “ordinarily.”
The reason for this is that in this connection, the Newtonians liked to
talk of an extraordinary case, the case in which the system exhibiting the
force effects is alone in the universe. With reference to the example of
the globes, Newton says: “And thus we might find the quantity ... of this
circular motion, even in an immense vacuum, where there was nothing
external or sensible with which the globes could be compared.” This is
very important, for the spatial relations between the two globes do not
change; hence, if there is nothing else, the situation involves no change
of spatial relations at all. If it still involves motion, then it follows that
motion is not essentially a change of spatial relations.

Here the Leibnizian has a dilemma. He can say that (3) holds only
if there is something to be moved relative to, to put it colloquially. Or he
can deny that in the absence of other bodies the globes would exhibit
any force effects.

For Leibniz, force was such a basic notion and so clearly
independent of all spatial and kinematic notions that it seems most
plausible that he would have chosen the first alternative.? This
alternative was first fully elaborated by George Berkeley. In his
Principles of Human Knowledge (1710) he made clear the exact
distinction we draw between true and absolute motion. In his De Motu
(1721) he clearly explains what we here call the “first alternative”:

59. Then let two globes be conceived to exist and nothing corporeal
besides them. Let forces then be conceived to be applied in some way;
whatever we may understand by the application of forces, a circular
motion of the two globes round a common center cannot be
conceived....10

Thus, if with Leibniz we grant the reality of forces, then we would have
to say only that centrifugal forces cause (1) the familiar force effects,
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such as the tension in the cord joining the globes; and (2) change of
spatial relations with respect to other bodies, not similarly affected, if
any.

A more up-to-date Newtonian might argue that if such effects
occurred in the absence of other bodies, then Newton’s theory puts us in
a position to explain their occurrence, through the hypothesis of
absolute motion. But for Newton himself, forces were causes of
motions, tensions, and deformations, and motions were not the causes
of any of these other phenomena. Hence, Newton could not have offered
the fact of motion as explaining the effects, but only as suggesting an
explanation in terms of force, via the principle that accelerations only
occur when there are forces present. Berkeley disagreed with both
Leibniz and Newton; he regarded the notion of force as merely a
technical or conceptual device. So for him rotations and centrifugal
effects always accompany each other—as a brute fact of common
experience—and no conclusion whatever can be drawn about what
would happen if the world were very different than it is.

Almost 200 years later, Ernst Mach elaborated both this Berkeleian
view of forces and what we have called the “second alternative”—that is,
he simply denied that the effects that accompany acceleration in our
experience would occur in the absence of other bodies.1! It is east to
see, however, that either alternative provides a way out of Newton’s
argument. Hence, neither need be embraced in toto by the Leibnizian.
He may answer the Newtonian simply: Force effects may not occur at all
in the absence of other bodies, but if they do our physics is not
weakened in any way by holding that they can indicate motion only if
there are other bodies; in fact, this will follow from the definition of
motion as change of spatial relations among bodies.

c. The Relational Theory of Space and the Laws of Motion

From our present vantage point, it is easy to underestimate the
enormous influence of Newton’s mechanics on the eighteenth and
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nineteenth centuries. The laws of motion were stated in terms of
absolute space; moreover, they were true and perhaps necessarily true;
therefore, the theory of absolute space must be true. This is, essentially,
the argument propounded in Euler’'s Réflexions sur [l'espace et le
temps.12

The weak link here is obviously the premise that the laws of
motion, as stated, are true. An opponent such as Leibniz or Berkeley
need not disagree with Newton on any experimentally verifiable
assertion. The evidence for the laws of motion could only be that they
“save the phenomena,” that is, they agree with the experimental facts.

That absolute space is in some sense not the direct object of any
observation Newton granted without reserve. For this reason, he had to
introduce the notion of a relative space, or, as we would now say, a
frame of reference:

But because the parts of space cannot be seen, or distinguished from
one another by our sense, therefore in their stead we use sensible
measures of them. For from the positions and distances of things from
any body considered as immovable, we define all places; and then, with
respect to such places, we estimate all motions, considering bodies as
transferred from some of those places into others. And so, instead of
absolute places and motions, we use relative ones....13

Of course, absolute space coincides with one of these (possible) relative
spaces—but which one? To answer this question we must be able to
find a body absolutely at rest. Whereas absolutely accelerated motion
can, according to Newton, be distinguished experimentally from
absolute unaccelerated motion, however, the latter cannot thus be
distinguished from absolute rest.14

It seemed clear already in Newton’s time that the fixed stars
provide a reference system that is experimentally indistinguishable
from that of absolute space. These frames are called inertial frames, a
notion apparently not systematically elaborated until the end of the
nineteenth century.’> Hence, what was more natural for Newton’s
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opponents to suggest than that the notion of absolute space may be
replaced everywhere in mechanics by that of the frame of reference of
the fixed stars? One drawback is that further experimental evidence
might show, for example, centrifugal forces in bodies not rotating
relative to the fixed stars. But that is only a practical difficulty; to
accommodate the new evidence a new frame of reference might be
chosen in which the fixed stars move ever so slightly. All an opponent of
Newton needs is some frame of reference that can take the place of
absolute space in mechanics. To this argument Euler brought an
objection of principle:

If they say that it is with respect to the fixed stars that the principle of
inertia must be explained, it would be very difficult to refute them since
the fixed stars ... are so far from us. But it will be a very strange
principle of metaphysics and contrary to others of its dogmas to say
that the fixed stars direct bodies in their inertia.1®

In other words, if we replace the notion of absolute space by that of the
frame of reference of the fixed stars, we shall explain the occurrence of
centrifugal-force effects by the fact of rotation relative to the fixed stars.
But how could the stars cause these effects?

This argument is altogether unfair. Leibniz would attribute both
the rotation relative to the fixed stars and the centrifugal-force effects,
to a force acting on the body, just as Newton would. True, Berkeley (and
later, Mach) would not postulate such forces, but neither are they
compelled to postulate a causal efficacy in the fixed stars. The argument
to which Euler is objecting is entirely general with respect to inertial
frames and involves no empirical hypothesis at all.

We may give Euler’s objection a slightly different form by saying
that Newton’s opponents must give to inertial frames the privileged role
that Newton gave to absolute space. Just what would explain this
privileged status of the inertial frames of reference among all the
possible frames of reference?
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The answer is that, essentially, the inertial frames do not have a
privileged status at all. The laws of motion are a set of statements about
mass, motion, and force; therefore, they will be true in some frames of
reference, in none, or in all. As it happens, they are true in some frames;
these we call the inertial frames. We find Newton’s laws of interest
because they are approximated in some frames of reference that are of
interest to us (because they are relatively easy to identify: the earth, the
sun, the fixed stars). The aim to have a physical theory in which the
laws hold for every frame of reference has been a major motivation in
the development of the theory of relativity; and this aim has often been
portrayed as the development of a new philosophical basis for the
theory of space in physics. But it is misleading to think of the relation
between physics and philosophy in such simple terms. Specifically, the
fact that the laws of a given theory hold only in some frames of
reference, can, as such, imply nothing about the status of these frames in
nature.

2. The Development of Modern Geometry

a. Euclidean Geometry

Since antiquity, the ideal of a rigorous science has been that of an
axiomatic system, and this has been due in no small measure to the fact
that Euclid had succeeded in developing geometry axiomatically.
Indeed, philosophers were wont to speak of the axiomatic method as
that of an exposition more geometrico.

Euclid’s Elements begins with the introduction of the basic terms of
geometry. It is true that he attempted to define each of these in more
familiar terms, but that is helpful only in that it gives the reader an
intuitive guide to their use. Next, Euclid lists the basic principles of the
discipline; here, he draws a distinction (no longer in use) between
axioms and postulates. The axioms are principles that concern
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“common notions,” that is, notions not peculiar to geometry.
Specifically, the axioms concern the notion of magnitude, and say, for
example, that equality is transitive (If x = yand y = z, thenx = z) and
is preserved by the addition of equals (If x =y and z = w, then
X+z=y+w).

The postulates concern distinctively geometric notions. There are
five, and in modern idiom™ they may be stated as follows:

(D) Ifx and y are distinct points, there is a straight line incident with
both.

(I1) Any finite straight line (segment) is part of a unique infinite
straight line.

(IIT) If x is a point and r a finite distance, there is a unique circle with
center x and radius 7.

(IV) Any two right angles are equal.

(V) If a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two
straight lines, if produced indefinitely, meet on that side on
which the angles are less than two right angles.

Note that we now usually say “line segment” rather than “finite line,”
reserving the word “line” for something infinite. If we adopt this policy,
then postulates (I) and (II) say that on any two distinct points there is a
unique straight line. Assumptions now usually made explicit include, for
example, that each line segment contains at least two points and that
when two lines meet, they meet in a point. Then it follows from
postulates (I) and (II) that two lines cannot meet in more than one
point; hence, they cannot enclose an area.

To understand postulate (IV) we must note that Euclid thought of
geometric figures as movable; he considered them equal (“congruent”)
if they could be placed in complete coincidence with each other. There

" Le., with some modern improvements, eliminating ambiguities. The fifth
postulate has been left as nearly in Euclid’s phrasing as possible, however.
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is clearly a presupposition here (of which postulate [IV] is meant to
guarantee the truth)—namely, that if two figures can be brought into
coincidence in one position, this is also possible in any other position.
This assumption was first made wholly explicit by Hermann von
Helmholtz and became known as the principle of free mobility (we shall
discuss this in more detail in Section 2d).

The fifth postulate has a long and interesting history, which seems
to have been due largely to the prevalent view that postulates ought to
be self-evident principles. Apparently, the first four postulates seemed
self-evident to everyone, and the fifth did not. To allay the doubts, there
were many attempts to prove that it followed, in fact, from the first four
postulates, and therefore did not need to be self-evident. It is rather
difficult to see how the fifth postulate came to be thought of in such
different terms from the others. One suggestion is that the fifth
postulate is less intuitive, because if the sum of the interior angles is
very little less than two right angles, the meeting point is so distant that
our intuition ceases to guide us. After all, it is argued, any area
comprised in direct experience is relatively small; extrapolation from
experience beyond such relatively small areas must therefore be risky.
But this argument will not do; the other postulates go beyond
experience in just the same way. If that were the explanation, why no
doubts about the uniqueness of an infinite line containing a given finite
segment? or about circles with arbitrarily great radii?

Whatever the explanation, it remained a great comfort that Euclid
was able to deduce from postulates (I) to (IV) the result that if the
interior angles do equal two right angles in sum, then the lines are
parallel (i.e., they do not intersect). So if [ is a line and x a point not on [,
then there is at least one line I’ through x that is parallel to [. But is
there more than one? The most famous attempt to produce a negative
answer is that of the Italian priest Girolamo Saccheri, in his work
Euclides ab omni naevo vindicatus ... (Euclid cleansed of all blemish ...)
published in 1733. Ironically, Saccheri’s attempt is famous because it
comes so near to showing that the fifth postulate cannot be deduced
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from the first four. Saccheri investigated the possibility that more than
one parallel to [ can be drawn through a point not onl. He called this
the acute-angle hypothesis, and although he tried, he could deduce no
explicit contradiction from it. But its consequences were so strange to
him that he concluded that “the hypothesis of acute angle is absolutely
false; because repugnant to the nature of the straight line.”17 At the
beginning of the nineteenth century, several mathematicians were
willing to take this repugnancy in stride, and non-Euclidean geometry
was developed.

b. Non-Euclidean Geometry

The part of Euclidean geometry not dependent on the fifth postulate
came to be called absolute geometry. This is the part that follows from
postulates (I) to (IV), and it comprises specifically the first twenty-eight
theorems. By adding postulate (V), absolute geometry is extended into
Euclidean geometry. By adding a denial of postulate (V), it can be
extended into hyperbolic geometry.

Hyperbolic geometry, the first non-Euclidean geometry, was
developed independently by Karl Friedrich Gauss, Janos Bolyai, and
Nikolai Lobachevsky in the early nineteenth century. The specific
alternative of the fifth postulate that it employs is

(V*) Through a point x not on line [, there is more than one parallel to
L.

If the words “more than” are omitted, we have an equivalent to the fifth
postulate, as we saw in Section 2a.

Prominent among the theorems of absolute geometry is Euclid’s
theorem 17:

The sum of any two angles of a triangle is less than two right
angles.
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Clearly, the fifth postulate adds to this: And if the two base angles of a
three-sided figure have a sum less than two right angles, the figure is a
triangle. One can then prove that the sum of all three angles in the
triangle is exactly that of two right angles. In hyperbolic geometry, the
corresponding theorem is that in any triangle the sum of the angles is
properly less than that of two right angles.

The term “absolute geometry” was somewhat ill chosen, for not
very long after the development of hyperbolic geometry, Bernhard
Riemann developed a geometry that also conflicts with absolute
geometry. This geometry was called spherical geometry; and it rejects
postulate (II) as well as postulate (V). The specific variant of postulate
(V) that it employs is

(V**) There is no line parallel to any other line.

From our discussion of postulate (II), however, it will be remembered
that we now have a further choice. Shall the intersection of two lines be
unique? For spherical geometry, postulate (II) is replaced by

(IT*) Any two lines have two distinct points in common.
Elliptical geometry, on the other hand, supplements postulate (V**) with
(IT**) Any two lines have a unique intersection.

Finally, Sophus Lie proved that in metric geometry, only four geometries
are consistent with the principle of free mobility: Euclidean, hyperbolic,
spherical, and elliptical.

The rise of non-Euclidean geometry marks also the advent of
metamathematics: the study of properties of axiom systems, such as
consistency. After all, that no contradictions were found in the
development of the non-Euclidean geometries was no guarantee that
there really were none. The first significant contribution to the subject
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was made by Eugenio Beltrami (1868), who gave an interpretation of
hyperbolic geometry in Euclidean geometry. The importance of this is
that any inconsistency in hyperbolic geometry would also show up in
Euclidean geometry. Hence, if Euclidean geometry is consistent, so is
hyperbolic geometry.

Beltrami singled out a certain kind of surface in Euclidean space
and showed that the theorems of hyperbolic geometry can be
interpreted as true statements concerning such surfaces. Somewhat
later Poincaré simplified Beltrami’'s work a good deal, and we shall
briefly describe Poincaré’s version of the consistency proof for
hyperbolic geometry.18

Let the line [ separate a Euclidean plane into two parts: a lower
part and an upper part. Let us call the points in the upper part (which
does not contain l) the U-points. The U-lines will be the upper halves of
lines perpendicular to [ and of circles whose centers lie onl. Now
distance is redefined in such a way that any point on [ is infinitely far
from any U-point. By this new metric, then, each U-line is infinitely long.
In fact, all the postulates of absolute geometry are satisfied, if we take
the points and lines to be exactly the U-points and U-lines. In addition,
through each U-point x outside a U-line ' we can draw more than one
U-line that does not intersect it in any U-point. Thus, the specific
alternative to the fifth postulate that characterizes hyperbolic geometry
is also satisfied.

The consistency proof for spherical geometry is simpler. Here, the
model is a Euclidean sphere, the model’s points being simply the points
on the surface of the sphere, and the model’s lines being the great circles
on that sphere. Finally, a model for elliptic geometry is found by
redefining distance on this sphere in such a way that spherically
diametrical points are identified.1?
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c. Geometric Transformations and Coordinates

In Euclidean as well as non-Euclidean geometry, we are concerned with
both order and metric relations: we speak of one point x lying between
two other points y and z, but also of the distance Xy between x and y.
Other geometric notions are not as easy to classify. For example, with
“line” we mean “straight line”: lines are to be distinguished from other
curves. Does this distinction belong to the subject of a geometric order
or can it be made only in terms of the shortest distance between two
points?

In the nineteenth century, a whole series of geometries was
developed, which is more basic than Euclidean geometry because it
involves fewer basic concepts. Thus, in affine geometry, the notions of
distance and perpendicularity do not appear, in projective geometry
neither these nor parallelism appears, and in topology (analysis situs)
even the notion of line does not appear.

We have here the notion of one geometry being more basic than
another in the sense that it involves fewer, more basic, concepts. How
can these be constructed? What is the criterion according to which one
family of geometric properties and relations is more basic than another
such family? The answer was provided by a new approach to geometry
initiated by Felix Klein in 1872.

Klein suggested that Euclidean geometry treats only certain
properties of geometric figures as relevant or essential and regards all
other properties as somehow irrelevant. For example, if we have a
triangle and turn it upside down, any property of it that is changed by
this operation is not a property dealt with in Euclidean geometry. One
such inessential property would be “its vertex is 3 meters above
sealevel.” Another such property would be “its center is 3 millimeters
east of its vertex.” There are, of course, many other properties a figure
may have that are equally inessential from the point of view of
Euclidean geometry. Thus, whatever properties change when a figure is
transposed from a green blackboard to a black blackboard, or to paper,

137



are inessential. But if we flatten out an equilateral triangle in such a way
that its vertex angle becomes greater than 90°, the transformation is not
considered inessential in Euclidean geometry.

Klein’s proposal was that each geometry G is characterized by a
unique family T of transformations and deals with exactly those
properties and relationships that are not changed by these
transformations (in mathematical jargon: that are invariant under these
transformations). And we may call G; more basic than G, if the family
T, is a proper part of the family T5.

We can now answer the questions that led us to this subject.
Projective geometry is less basic than topology, and affine geometry is
more basic than Euclidean but less basic than projective geometry. The
associated families of transformations may be roughly characterized as
follows:

Topological transformations leave invariant the property of being a
continuous region.

Projective transformations are topological transformations and
leave invariant the property of being a line and the relations of pair
separation on a line.

Affine transformations are projective transformations and leave
invariant the relation of being parallel.

Euclidean transformations are affine transformations and leave
distances invariant.

Hyperbolic geometry may also be presented as subgeometry of
projective geometry,2? but we shall not go into this now. Instead, we
turn to the analytic presentation of geometry, in which the notion of
transformation can be given a precise meaning,.

Let us begin by assuming as basic concepts those of continuous
region and line. This takes us beyond topology, but not beyond
projective geometry. We note that both continuous regions and lines
are classes of points, and that we can talk of classes, and parts of classes,

138



without introducing any geometric notions at all. We are now going to
define order on a line, in two steps. Since we do not want to exclude
spherical geometry, in which all lines are closed, the order relation on
which we concentrate is that of pair separation.”

Definition: A segment of a line is any part of a line that it has in
common with a continuous region.

Definition: If points x,y, z, and w are on line [, then S(x,y/z,w) on
[ if and only if every segment of [ that contains both x and y also
contains either z or w, but not both.

We may postulate that S has all the properties definitive of the pair-
separation relation—which indeed it will, if “line” and “continuous
region” are given their usual geometric sense (see Chapter IlII, Section
1d).

If space is only one-dimensional, the assignment of coordinates is
now easy. For then space is itself just a line, and we can define a
coordinate assignment to be an assignment of elements of the extended
real-number system in such a way that pair separation is reflected in a
negative cross ratio.

If the line is open, the between relation is not vacuous:

Definition: Point x is between z and w on [ if and only if every
segment of [ that contains z and w also contains x.

In that case, a coordinate assignment must simply assign real numbers
to all the points in such a way that numerical betweenness among the
coordinates reflects the defined betweenness relation among the points.

“In projective geometry, lines are also closed; the transition to affine
geometry is effected by calling certain points “ideal” or “at infinity”; parallel
lines can then “intersect at infinity.” (Recall the use of a line “at infinity” in
Poincaré’s consistency proof for hyperbolic geometry.)
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If the space is two-dimensional, the case is somewhat more
complex. For simplicity, we shall suppose all the lines to be open. We
shall not suppose, however, that they are straight lines or that we have a
notion of parallelism. There are still several ways in which to proceed,
and we may choose one that is perhaps the most intuitive.

We begin my choosing two families of lines, F and G, such that

(a) Iflis in F, it does not intersect any member of F, but does
intersect each member of ¢ (in a unique point).

(b) Iflis in G, it does not intersect any member of G, but does
intersect each member of F.

(c) Each pointis the intersection of one line in F with one line in G.

The two families form a grid. We now choose one line in F and call it the
X -axis, and one line in G, the Y-axis. The points on each of these axes are
assigned real numbers in just the way that a one-dimensional space is
coordinatized. Let us stipulate that the intersection of the X-axis and
the Y-axis receives the number zero in both cases. We now assign each
point p a pair (x, y) of coordinates as follows:

(d) The line in G that lies on p intersects the X-axis in the point that
received x;

(e) The line in F that lies on p intersects the Y-axis in the point that
received y.

If we wish to coordinatize a three-dimensional space, we must of course
use three families, F, G, and H, and assign triples of coordinates. (Note
that the assumption of the existence of a grid is nontrivial.)

At this point we can make the notion of transformation precise in
two distinct but equivalent ways. This equivalence is very important,
because for some problems the first point of view is natural, whereas for
others the second point of view is appropriate.
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(1) A transformation is a mappingt of each pointp into a unique
point t(p). For example, if t is an affine transformation and the
line on p and q is parallel to the line on p’ and ¢, then the line on
t(p) and t(q) is parallel to the line on t(p") and t(q").

(2) A transformation is a mapping t of each triple of coordinates
(x,y,z) into a unique triple of coordinates t(x,y,z) = (x',y', z").
For example, if t is a Euclidean transformation, then the distance
between (x4, y1,21) and (x5, y,, Z,), defined in the usual way, is
the same as the distance between (x;',y,’,z;") and (x,', y,', z,").

Thus, from the first point of view, a transformation moves the points
around; it moves p into the place formerly occupied by t(p), t(p) into
the place formerly occupied by t(t(p)), and so on. From the second
point of view, the points are not being moved at all; they are just being
assigned new coordinates. (In that case, we speak of a change in the
frame of reference: the situation has not changed, but our point of view
has.)

Of course in case (1) we could instead say: There is really no
motion involved; p just receives as new coordinates those that formerly
belonged to t(p). And in case (2) we could say: There really is a motion
involved; the system of axes has been rotated, reflected, or otherwise
displaced—so that the X-axis is now where the Y-axis used to be, for
example. Hence, the two points of view are equivalent.

d. Metric Geometries

In Section 2c we concentrated on order relations and noted only that a
notion of distance must be introduced if we wish to pass from an affine
to Euclidean geometry. Of course, the non-Euclidean geometries
discussed in Section 2b also utilize the notion of distance. They cannot
be obtained by adding to affine geometry, however, for in affine
geometry one has the axiom that through a point outside a line [ there is
exactly one line ' parallel to [.21 This is characteristic of Euclidean
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geometry. But when we discussed the introduction of coordinates we
did not assume anything about parallelism. We turn now to a different
development in geometry in the nineteenth century, one that concerns
the geometries in which the concept of distance is utilized (metric
geometries).

In 1854, a brilliant young mathematician presented his dissertation
(for his Habilitation) at the University of Gottingen. His name was
Bernhard Riemann, and the now famous dissertation was called “On the
Hypotheses Which Lie at the Foundations of Geometry.”22 In this work,
Riemann presented the general concept of a manifold: the spectrum of
color hues is a one-dimensional manifold, and space, as ordinarily
conceived, is a three-dimensional manifold. The term “manifold” is not
much in use anymore; today we speak of spaces instead of manifolds.
Riemann defined an n-dimensional space to be one in which each
position can be characterized by a set of n coordinates. Thus, he
envisaged spaces of more than three dimensions.

Given such a space, Riemann asked how the parts may be
compared as to magnitude. Here he distinguished two main cases: the
discrete and the continuous. In a discrete space, the elements in two
regions may be counted and the two numbers compared in the usual
way. In the discrete case, we may say that the space has an intrinsic
metric, because counting provides us with a unique natural means of
comparing magnitudes. But in the case of a continuous manifold, there
is no such natural way of comparing the magnitudes of disjoint parts.
The metric for a continuous space must be extrinsic, that is, introduced
“from outside.”?3 This subject, of the metrics that may be introduced
into a continuous space, was Riemann’s major topic of concern.

We introduce a metric by defining the distance between two points
in terms of their coordinates. Using d(p, q) to stand for the distance
between the points p and g, the following conditions must be satisfied:

(@) d(p,p) =0
(b) Ifd(p,q) = 0,thenp =g (sometimes omitted)
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(c) d(p,q) =d(q,p)
(d) d(p,q) +d(q,7) = d(p,7)

These conditions are satisfied by the Euclidean distance function:

d(p,q) =/ (x' —x)2 + (y' — y)? where p and q have coordinates
(x,y) and (x',y")

but there are many other distance functions, all of which satisfy the
conditions above. And this provides a new approach to the non-
Euclidean geometries.

Here I wish to point out first that the concept of distance provides a
powerful tool in the construction of geometries, for the metric
geometries can be developed with only point and distance as basic
notions. For example, in Euclidean geometry, we can define “p,q, and r
lie on the same line” as d(p,q) +d(q,r) =d(p,r) and “line I’ is
perpendicular to line I"” using Pythagoras’ theorem. Then, we can
choose three mutually perpendicular lines as axes, with their
intersection as origin, and assign coordinates using distances from this
origin.

So we can define a metric space simply as a collection of points
with as metric a distance function on that collection. The appropriate
choice of collection and distance function leads, then, to Euclidean
geometry, or hyperbolic geometry, or spherical geometry, or elliptical
geometry.2¢ Each of these geometries can be axiomatized by spelling
out the exact appropriate conditions on the concept of distance.

As Riemann pointed out, however, it is also possible to introduce
metrics that lead to still different geometries. But as we mentioned in
Section 2b, Lie proved that in these further geometries the principle of
free mobility does not hold. We are now in a better position to
understand this principle.

Helmholtz concerned himself with the question of exactly what
principles are common to Euclidean and to non-Euclidean metric
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geometries. He arrived at four axioms, which we shall here
summarize.2>

() The space of n dimensions is an n -dimensional extended
manifold, in the sense of Riemann.

(IT) There exist movable rigid bodies: between the coordinates of
any two points in a rigid body there must be an equation that
expresses a constant relation between the two points and that is
the same for congruent pairs of points.

(IIT) Rigid bodies have complete free mobility: any single point can
pass freely from any position to any other position, and a body
can move with a point subject to the constancy of relations noted
in the previous axiom.

(IV) Rotation in one direction brings a rigid body back into its
original position. (Monodromy)

The language of these axioms is imprecise, even for an informal
exposition, and it must be admitted that Helmholtz’s work had a number
of weak points.

To what, exactly, does this notion of free mobility amount? Recall
that the plane of spherical geometry is geometrically like the surface of a
Euclidean sphere. Suppose that a triangle of a certain size and shape is
constructed at the equator. Then we can construct a similar and equal
(i.e., congruent) triangle at its north pole or anywhere else on it. For
which great circle is the equator is purely a matter of convention. Now
Riemann’s new geometries are such that their planes are geometrically
just like very differently curved surfaces—for example, the surface of an
egg. Such a surface is not everywhere the same: it is not a matter of
convention which part of the egg is the sharper pole and which the
flatter pole. And on such surfaces we may not be able to construct one
triangle at some point and a triangle congruent to the first at any other
point. If we construct a triangle at the flatter pole of an egg, and then a
triangle with equally long sides at the sharper pole, their angles will not
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be equal. To put it another way: you cannot slide the first triangle into a
position at the sharper pole without wrinkling it.

The conclusions drawn by Helmholtz were made precise and
rigorously proved by Lie, who replaced the intuitive terminology of rigid
bodies by that of continuous transformations which preserve
congruence.?¢ He then showed that his precise counterparts to
Helmholtz’s axioms allow for the four “ordinary” metric geometries and
exclude all others.

3. The Physical Basis of Spatial Relations

When non-Euclidean geometries had been developed, the obvious
question was: Which geometry is the correct one? Certainly, at first
sight, this is a straightforward question. In Euclidean geometry, the sum
of the interior angles of a triangle is 180°, in hyperbolic geometry it is
less than 180°, and in spherical geometry it is more than 180°. So
Lobatchevsky suggested that measurements should be made to
determine which alternatives actually obtain. Since the discrepancy
increases with area, it is important to choose a “large enough” triangle.

For this reason it was proposed that the evidence, if obtainable at
all, should come from stellar parallax measurements. The idea here is to
sight a star from two different positions on earth, A and B: the angles of
the lines of sight at A and B are the bases of angles of a large triangle;
the distance between A and B is the length of the base of a triangle. This
information may be used to compute the sum of the interior angles; for
example, if the angles at A and B equaled 180°, spherical geometry
would be right.

It is important to see what is being assumed about the physical
relations that correspond to the geometric concepts. First, a star is
sighted, that is, a light ray from that star falls on the telescope. This ray
provides the line of sight, and it is assumed that this line is straight
(except for refraction by the atmosphere, perhaps, for which we may
correct). So we have first the principle
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(1) The path of a light ray in vacuo is a straight line.

Second, we must measure distances (the distance between A and B;
also, distance measurements may be used to find the angle between the
line of sight and the line AB). There we use a calibrated rigid body,
which we move from place to place to serve as standard. In doing so, we
are going by the principle that this body remains the same size (except
for distortions by temperature and such, for which we may correct):

(2) A rigid body free of distorting influences remains the same size
when transported.

What is the status of principles (1) and (2)?

This question was discussed at length by Poincaré. We have
already considered the more general philosophical points to be made on
this subject in connection with clocks, in Chapter IIl. In the present
context, Poincaré argues that which geometry is the correct one is not a
matter of experiment at all. If parallax measurements were not to show
an interior-angle sum of 180°, two courses would be open to us: “we
might either renounce Euclidean geometry, or else modify the laws of
optics and suppose that light does not travel rigorously in a straight
line.”27

Thus, Poincaré says that principles (1) and (2) are purely
conventions. Measurements cannot disclose that they are correct, for
they provide the standard of measurement. Whether we wish to accept
them is a matter of decision, and the importance of simplicity and
technical convenience in science, rather than truth, is relevant to this
decision.

This is not to say that there are no questions of fact involved in the
decision; as we pointed out before, even conventions may have
empirical presuppositions. For example, it is here presupposed that the
path of a light ray from A to B will be the shortest path as measured by a
ruler. Also, if a ruler shows rigid stick X to be 1-meter long, and rigid
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stick Y to be 1-meter long, then it should be possible to bring X and Y in
exact coincidence.

Helmholtz also argued very graphically that whether “our” space is
Euclidean is not a factual question.28 He asked his audience to think of
the image of the world in a convex mirror. “The image of a man
measuring with a rule a straight line from the mirror would contract
more and more the farther he went, but with his shrunken rule the man
in the image would count out exactly the same number of centimetres as
the real man.”29 So if it were theoretically useful, we could consistently
look upon the space in which we live as being the space behind the
convex mirror, but we would have to ascribe to our bodies the kind of
distortions that we now see in such a mirror—just as Poincaré pointed
out that we might have to ascribe curved trajectories to light rays if we
wish to retain Euclidean geometry.

What this amounts to, of course, is that we may choose alternative
metrics for space. Given some such metric, the size and shape of what
we now call solid bodies may vary with position. But our present metric
is such (by principle [2]) that the size of such a body varies only if it is
subject to a distorting force. So if we choose an alternative metric, are
we not postulating the existence of new forces, which cause the
geometric distortions of the (formerly called “solid”) bodies?

Of course, the answer is No: when we choose a metric, we only
choose a way to describe the world; we do not postulate the existence of
forces. In classical physics, all distortions of an iron rod are correlated
with forces; if we choose an alternative metric, this physics must be
redeveloped in such a way that this is no longer the case. For a long
time, this was not seen very clearly; Reichenbach introduced the notion
of universal forces to accompany, in appropriate manner, the choice of
any metric,3% and in his preface to Reichenbach’s book Rudolf Carnap
praises this idea highly. That its introduction is in fact based on a
mistaken question (“What causes these distortions?”) is shown in detail
by Griinbaum.3! But the issue is similar to the one between Russell and
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Poincaré with respect to alternative metrics for time (see Chapter III,
Section 2c), so we shall leave it here.

Today we generally distinguish between a mathematical geometry
and a physical geometry. A mathematical geometry is a purely abstract,
deductive system, with nothing to say about physical relations. It can be
turned into a physical geometry by adding such principles as (1) and
(2); so a physical geometry is a rudimentary physical theory.

Principles such as (1) and (2) were called coordinative definitions
by Reichenbach.32 This term is somewhat misleading, because a
definition is supposed to have the form “... if and only if ...” But (1) has
the form

(1") If ABC is the path of a light ray, then it is a straight line.
A definition would have to go further than (1), to say something like

(1™) The path ABC is a straight line if and only if it is the path of a
light ray.

But this would imply that there are no straight lines in the dark. Also, it
would imply that there are no straight lines that pass through opaque
objects. So we need something like

(1"") The path ABC is a straight line if and only if it could be the path
of a ray of light.

This is not a very pleasing development, since this version makes use of
the counterfactual sense of “could”; as we have already mentioned, there
are many philosophical puzzles about this. But this is not the only place
where we appear to need the counterfactual conditional: the same
problem arises with respect to (2). For an object is 1-meter long not
only if it is brought into exact coincidence with the meter standard kept
in Paris, but if this could be done.
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Tentatively, we may conclude the following: A mathematical
geometry describes what we have previously called a logical space. The
coordinative definitions place or map physical objects and relationships
in this space. But they cannot do this with complete definiteness unless
we allow them to rely on counterfactual assertions. This is a problem
that we shall examine in more detail, and in a more contemporary
setting, in Chapter VI.

4. The Dimensionality of Space

Space has three dimensions; but what does this mean? And why is it so?
The first question had no adequate answer until this century; the second
has a long and interesting history, and is still the subject of some
puzzlement. Nor were the two questions always clearly distinguished.
Here we shall follow two approaches to the subject of dimensionality:
we shall consider the purely geometric relationships that define
dimensionality, and then we shall inquire into the physical basis for
these relationships.

a. The Concept of Dimensionality

The discussion of dimensionality begins in antiquity, but we may
conveniently begin with Leibniz.33 In the Theodicy, Leibniz says that in
geometry we can prove that there are only three straight lines
perpendicular to one another that can intersect at one and the same
point and that this shows that space has necessarily exactly three
dimensions.3* What is of interest to us here is the implied definition: A
space is n-dimensional if we can draw n lines perpendicular to each
other at a given point. This definition works only for metric geometry,
of course, since it uses the notion of the magnitude of an angle.

As we noted above, Riemann defined an n-dimensional space as
one in which each position can be uniquely characterized by justn
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coordinates. If we consider only Cartesian coordinates, then this
definition is the same as Leibniz’s definition. But of course Riemann
assumed the coordinates to have been introduced before the metric, so
his definition is more general.

But Riemann’s definition is not adequate as it stands. For we now
know that there are just as many points on a line as there are on a plane.
So to each point on the plane we can assign a unique point on the line.
The single real-number coordinate of the second point can now be
assigned to the first point, and thus, we have coordinatized the plane by
means of numbers rather than pairs of numbers.

The objection to this procedure is obvious: we expect more of
coordinates than that they provide each point with a unique label. If we
draw any continuous curve in the plane, the coordinates of its points
should also form a continuum. Will the nonstandard coordinates of the
preceding paragraph have this property? That the answer is No was
proved in 1911 by the Dutch mathematician L. E. ]J. Brouwer.3> He
proved that there is no continuous one-to-one transformation between
Euclidean spaces of different dimensionality. So if we insist that an
assignment of coordinates reflect the topological properties of the
space, then Riemann’s definition may still serve.

But if dimension is a topological invariant, then the detour via
coordinates is superfluous and dimensionality should be defined in
topological terms. This was first done by Poincaré. By a cut Poincaré
means a collection of points removed from a continuous region. It may
happen that a cut divides the continuum into disjoint continuous
regions. If a continuum C can be divided by a cut that does not itself
form a continuum, then C is one-dimensional. If a continuum is not one-
dimensional, but can be divided by one-dimensional cuts, then it is two-
dimensional—and so on. For example, a line can be divided by the
removal of a point, a closed curve by the removal of several points, a
plane by the removal of a line, and so on.36

This definition was not adequate to all cases and Brouwer replaced
it by a new definition in 1913. Essentially, he used the notion of a
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boundary that separates two continuous regions: a boundary is such
that any continuous path from one region to another must pass through
it. This is, of course, very much like Poincaré’s cut. The definition was
further improved by Karl Menger and Paul Urysohn in 1922.37

b. The Physical Basis of Dimensionality

What are the physical relationships that correspond to the geometric
feature of dimensionality? There have been two approaches to this
question, roughly paralleling the two stages in the development of the
geometric concept; the first approach concentrates on numerical
magnitudes, and the second on more basic features of the physical
world.

The first approach was initiated by Kant in his early essay
“Thoughts on the True Estimation of Living Forces” (1747). After
pointing out that Leibniz’s remarks in the Theodicy cannot, without
circularity, be taken to show that space could not have other than three
dimensions, Kant speculates on the physical basis of dimensionality.38
His speculation has an extremely contemporary ring to it; no similar
ideas were developed until Riemann’s work a century later. Kant's
theory is that the structure of space has as its physical basis the forces
that bodies exert on each other. He maintains that the three-
dimensionality of space is due to the fact that these forces vary inversely
with the square of the distances between bodies. Here he is clearly
thinking of Newton’s famous law of gravitation, which asserts this of
gravitational attraction. Kant adds that this law is not a necessary one—
God could have chosen another—and “from a different law an extension
with other properties and dimensions would have arisen.”

But what is the connection here? This was answered in detail by
Friedrich Ueberweg in his System der Logik (1882).3° Let us assume
that every point at a given distance r from the body receives a
proportional part of the total force it exerts on all the points at that
distance. In a plane the locus of equidistant points is the circumference
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of a circle, with its magnitude proportional to r. In a three-dimensional
space, this locus is the surface of a sphere, its magnitude proportional to
r2. Thus, if the total amount of force exerted does not change with the
distance, the force exerted on any given point will vary inversely with
the distance in a two-dimensional space, with the square of the distance
in a three-dimensional space, and so on.

A similar, but less specific, answer utilizes the following theorem of
mechanics: A circular or nearly circular orbit about a force center is
stable when the force is inversely proportional to the mth power of the
distance if and only if mis less than three.#0 So if space had four
dimensions, gravitational attraction would presumable be inversely
proportional to the cube of the distance, but no planets would orbit the
sun.

A still more sophisticated, and less specific, answer utilizes a
theorem about the possibility of wave propagation such as that of light.
The theorem implies that the transmission of waves of this sort, in the
manner postulated by the theory, is possible only if space has an odd
number of dimensions.4!

The objection to this approach is that dimensionality is not a metric
but a topological feature of space. Hence, the features of the physical
world pointed out above are simply not basic enough to shed much light
on the dimensionality of space. As Russell pointed out, a small
inaccuracy might exist in the accepted law of gravitation and remain
undetected, but not so in the principle that space is three-dimensional.#2
There is, however, one variant of this approach that relies on the metric
concept of congruence, but is not such that Russell’s remark applies.

This variant was also due to Kant, though he does not seem to have
thought of it in this way. In his early essay “On the First Ground of the
Distinction of Regions in Space” (1768), he points out that if two figures
drawn on a plane are equal and similar, they can be superimposed (are
congruent); but this is not so for solids.#3 For example, if we draw a left
hand and a right hand on a paper, and cut out the right hand, we can
turn it upside down and superimpose it exactly on the left hand. But
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there is no way of putting a right-hand glove on an actual left hand.
Kant did not see this, at the time, as having to do with dimensions. The
point is, of course, that the paper right hand cannot be superimposed on
the left hand by means of motions in the plane. What is needed is a
rotation through the third dimension. In general, n-dimensional mirror
images can be superimposed only by means of a rotation in (n + 1)-
dimensional space.#4

Although this argument relies on the metric notion of congruence,
the point it makes is much more fundamental than that of the others,
because some of its main features are topological. We can divide the
Euclidean transformations into those that move figures through a
continuous path and those that do not. Thus, a rotation can be regarded
as the result of a series of successive transformations, each of which
moves the figure only infinitesimally. But a reflection—the kind of
transformation that produces mirror images—cannot be thought of in
this way. A reflection is defined by the fact that it leaves a certain plane
unaffected and transposes all figures from one side of that plane to the
other. If we were to try to trace a continuous path that a figure follows
to become its own mirror image on the other side of the plane, the path
would have to be through that plane. (The plane is a boundary between
the two regions, in Brouwer’s sense.) But that would mean that the
transformation is affecting some of the points of that plane; and it
cannot put those points back into their own place by means of a
continuous rigid motion, without placing the figure back where it was
also. This is just an intuitive, pictorial exposition, but it may help to see
the topological distinction between a reflection and a rotation. The
effect of a reflection can be achieved through a continuous motion if
there is a way to get “around” or “over” the dividing plane, but that
requires a fourth dimension.

The second approach to the physical basis of dimensionality,
finally, means to rely only on topological features. It was apparently
developed only by Reichenbach.*> The basic idea is that all causal
interaction satisfies the principle of action by contact: all causal effects
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move through a continuous path in space, with a finite velocity." This
means that a true “locked-room murder” is excluded as impossible. I
can step over the boundary of a closed curve, but I cannot step over the
boundary of a closed volume. Reichenbach sees this not as an empirical
truth but as a basic feature of what we mean by “our” space or “real”
space:

The principle of action by contact can be satisfied only for a single
choice of the dimensionality of the parameter space; this particular
parameter space in which it is satisfied is called the coordinate space or
“real space.”46

That the principle of action by contact cannot be satisfied for more than
one choice of the dimensionality follows from the fact that there is no
continuous one-to-one transformation between spaces of different
dimensionality, according to Reichenbach.

In my opinion, Reichenbach’s is the correct approach, since it is
concerned only with topological features. But there are several
problems. The first is that his answer is not really complete unless he
gives a (nonspatial) description of the relationships that may constitute
a causal process. There is some indication, however, that he is willing to
replace the general, and at least vague, notion of causal process with
that of light signal and/or genidentity connection. Second, his criterion
does not necessarily rule out all but one dimensionality for space, unless
either every continuous path is actually the locus of some causal process
or we allow him also to rely on possible causal processes. For it is
possible for a continuous transformation to change dimensionality,
provided it is not a one-to-one transformation.

There is also another problem, which no one has tried to answer as
far as [ know. Our space is three-dimensional; therefore, it certainly has

“To define this we need clocks (a metric for time) and the requirement that
in any spatial metric, there is a nonzero distance between distinct points: no
specific spatial metric is presupposed.
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room for two-dimensional beings. So why aren’t there any? Or couldn’t
we tell, even if there were? And about the possibility of a fourth
dimension I think we feel puzzled in much the same way as about time
travel. We can imagine phenomena that would be explained, prima
facie, by the hypothesis that there is time travel, or travel through a
fourth dimension. But I am inclined to think that we would prefer
almost any hypothesis to either of these, because I cannot see how we
could possibly plot the correct trajectory of some object outside our
own space-time (as opposed to postulating that it must have some such
trajectory). Poincaré, however, announced with great confidence that
physicists would always prefer Euclidean geometry to any other, so [ am
not inclined to make this a prediction.
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V. The Impact of the Theory of
Relativity

In the development of the theory of time and space before 1900, the
relational theory (though philosophically the more attractive) was left
with a major unsolved problem. This is the problem of providing an
explicit theory of temporal and spatial order; that is, of exhibiting
explicitly the physical relationship among events that supposedly
constitute their spatiotemporal relations. Leibniz constructed such a
theory, but it was based on the rationalist theory of causality; after
Hume, the presumption that time order can be defined in terms of
causation could not seem plausible. Kant addressed himself to this
problem in the Analogies, but the answer there is too general to be
considered more than programmatic. When Lechalas attempted to
provide cash value for this approach, he failed—and not because of
simple or superficial problems.

1. The Revolution in the Theory of Time and Space

In setting a problem, as in asking a question, we may be subject to
certain presuppositions, and these presuppositions may not be satisfied.
The possibility of a topologically closed time must convince us that the
search for a physical correlate for the before-afterrelation (as ordinarily
conceived) may have such a mistaken presupposition. Indeed, this
applies also to the case of temporal betweenness, as we have seen. And
even if time is open, so that we must find a physical basis of temporal
betweenness, there may be no physical anisotropy of the kind needed to
give an entirely nonconventional definition of before. But by 1900,
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these presuppositions had been made explicit, and the formulation of
the problem of time (and space) order can take them into account.

The great importance of Albert Einstein’s development of the
theory of relativity, for our subject, lies in two facts: (1) it exhibits a
similar factual presupposition in the problem of finding a physical
correlate for simultaneity, and (2) it exhibits such an intimate
interdependence of temporal and spatial relations that time and space
can no longer be treated as essentially independent subjects.
Philosophers were not long in appreciating the revolutionary nature of
this development, and the consequent construction of the causal theory
of time and space-time must be considered one of the major
contributions of twentieth-century philosophy of science.

It is clear then that anyone who wishes to grasp the twentieth-
century development of the philosophy of time and space must acquaint
himself with the elements of the special theory of relativity. (The
general theory of relativity is also of importance for this subject, but we
shall not go beyond the special theory.) Since this theory is concerned
with the relations between different frames of reference, and our own
experience as well as classical physics leads us quite naturally to
conceive of the world from the perspective of a single frame of
reference, acquainting ourselves with the theory necessitates the
rethinking of many basic concepts.

Fortunately, the fifty years devoted to philosophical and logical
investigation of the special theory of relativity have brought us to the
point where its elements can be presented quite simply. This discussion
will not teach any relativistic kinematics or dynamics, and many
standard questions are ignored. There are, after all, many popular
presentations of the subject. Only what is absolutely essential to the
theory of time and space will be presented here.
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2. The Classical Point of View and the Lorentz
Hypothesis

a. The Michelson-Morley Experiment and Length Contraction

Classical physics accounted for the phenomena of sound as being
occasioned by waves propagated in air. This account is, of course,
subject to experimental verification: wavelike propagation follows
different laws from, say, propagation by traveling particles. When
Christiaan Huygens’ theory that the propagation of light is also wavelike
had found acceptance, physicists postulated an all-pervasive, space-
filling medium as the carrier of light waves. This medium was called the
ether.

Given the Newtonian theory of absolute space, it makes sense to
ask: Is this ether at rest or in motion? The propagation of a wave in a
river is different from that in a pond, due to the current; it is not difficult
to appreciate that experimental evidence can be relevant to this
question. It was found that the hypothesis that the ether is in absolute
motion would contradict the experimental results. Hence, it was
concluded that the ether is at rest with respect to absolute space. (This
is a good example of how experimental findings are used to provide
answers to theoretical questions. Only the presupposition of our
question—that everything is either in absolute motion or at absolute
rest—justifies the conclusion “at rest” from the denial of “in motion.”)

So the ether is at rest, and light is propagated in it; and the obvious
(and simplest) hypothesis is that its speed relative to the ether has some
uniform value ¢ (independent of how the light was produced). This is
then also its absolute velocity. The earth on the other hand travels in an
elliptical orbit around the sun; hence, its absolute velocity must be
different at different times. This means that the relative velocity of light
with respect to the earth must also be different at different times.
Therefore, the absolute motion of the earth must be detectable, simply
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by detecting this variation in the relative velocity of light with respect to
the earth. An experiment was devised for this purpose by James Clerk
Maxwell and first carried out with sufficient precision by Michelson and
Morley in 1887.1

Before discussing this experiment and its surprising outcome, it is
well to inquire whether it could possibly show conclusively that the
earth is in absolute motion. The reasoning in the preceding paragraph is
predicated, after all, on the prior conclusion that the ether is at rest with
respect to absolute space. It must be noted that this very conclusion
concerning the ether provides an out for the relational theory of space.
The Newtonian has deduced that the ether has absolute velocity zero;
hence, “absolute velocity v” is equivalent to “relative velocity v with
respect to the ether.” Thus, the Newtonian analysis of the velocity
variable v as ranging over the values of relative velocity with respect to
absolute space could now be paralleled by an analysis in terms of
velocity relative to the ether. Given an all-pervasive stationary ether, it
would seem that the hypothesis of absolute space may become
superfluous. Thus, if the outcome of the experiment were to agree with
the Newtonian’s expectations, its lesson would nevertheless be
ambiguous.

The basic structure of the Michelson-Morley experiment is quite
simple. A ray of light falls on a semireflecting mirror 4, set at such an
angle that half the ray is reflected toward mirror B and half is allowed to
pass on to mirror C. Mirrors B and C reflect those half rays. AB and AC
are equal and perpendicular to each other, so it follows that if the
apparatus is at rest in the ether, the two half rays return to A
coincidently.

Suppose, however, that the apparatus is moving to the right, with
velocity v relative to the ether and AB perpendicular to the direction of
motion. In the time it takes the light to go from A to B, the apparatus
will have shifted a bit. And it will shift the same amount during the
return of the light from B to A. Let A now indicate the position of the
mirror at the beginning, and A’, A” the subsequent positions; similarly
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for B,B’',B" and C,C’,C" (see
Figure 2). The light now
makes the journey AB'A”
rather than ABA, a distance 2L’
rather than 2L. Since L’ is
greater than L, this trip should
take longer. A careful
calculation shows that this
difference has a result that the
two half rays should not return
coincidently at the
semireflecting mirror.

Case 1. The apparatus is
at rest relative to the ether.
Then both half rays take for
their round trip the amount of
time

1) At ==

|

C

Figure 2
Y
CI CN

Case 2. The apparatus moves through the ether at velocity v in the

direction AC.

a. Since AB is perpendicular to the direction of motion, the relative
velocity with respect to the apparatus of that half ray is no different. But
as we have seen, it has to make a longer round trip AB'A" = 2L’. So its

round-trip time is

2L
(2) A =—

(o}

To see how this differs from At, we must evaluate L' in terms of L. Let

AA" = A'A" = k. Then by Pythagoras’ theorem, we have
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(3) (L)? = L? + k?

But of course, 2k is the distance that the apparatus moves during the
interval A, while it is moving at velocity v. Hence,

vA1
2

(4) k=

From (2) and (4) we conclude that k = v(L'/c). Therefore, (3) leads us
to

5) W =17+ (5) v?

, L
6) L' = J1-(w2/c?)

Together (2) and (6) yield

(7) Ay = —= = At————
L™ c/1—w?/er)y T J1-w?/c?)

which is somewhat greater than At.

b. The other half ray must travel the same distance as before; its
relative velocity with respect to the apparatus is affected by the latter’s
motion, however. On the trip outward, the relative velocity is
diminished to ¢ — v; on the return trip it is increased to ¢ + v. Thus, the
round-trip time is

To evaluate this in terms of At, we see from (1) that we must isolate a
factor 2L /c. This is done as follows:
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2Lc
2L
c(1-(w?/c?))

(9) 4, =

(10) A, = At (m)

Note that this is greater than At, but also greater than A;: from (7) and
(10) we get

1
(D)8 =& iy

Thus, At is less than A; and A; less than A,, in each case through

multiplication with the factor 1/,/1 — (v%/c?).

What we have just calculated is the classically expected outcome of
the Michelson-Morley experiment: the two half rays do not return
coincidently to the point of origin. But in fact, the experiment had a
different outcome: the half rays did return coincidently. The experiment
was repeated, and similar experiments were devised to check it; in each
case, the result was negative. No variation on the relative velocity of
earth and light could be detected. The earth’s supposed velocity relative
to the ether appeared to be inconsistent with the experimental results.

There were, of course, many theoretical attempts to save the ether
hypothesis.2 Only one of these is now important: the attempt of G. F.
Fitzgerald and Hendrik Lorentz. Fitzgerald pointed out that the null
result of the Michelson-Morley experiment would follow from the
hypothesis that the arm AC lying along the direction of motion,

contracts by a factor of\/l — (v?/c?). Then its length is not L but
L\/l — (v?/c?) and the evaluation of A, yields not (9) but
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—(p2 /c2
(12) Az _ 2(L\1—-(v4/c*))c

c2—p2

)4
¢ \J1-(v?/c?)) 1

It would be ad hoc simply to accept this hypothesis in order to account
for the outcome of the Michelson-Morley experiment. But Lorentz
developed a theory of atomic structure that had this length-contraction
hypothesis as a deductive consequence.3 This had to be considered an
important point in favor of Lorentz’s theory of the atom.

b. The Fizeau Experiment and Time Dilation

It is clear that the contraction hypothesis, and hence Lorentz’s theory,
entails that the results of length measurement are systematically
mistaken. In any measurement of spatial magnitudes, the measuring
rod contracts along the direction of its absolute motion, by a factor
dependent on its absolute velocity—and this absolute velocity
apparently cannot be determined, just because of this contraction.

We may well ask what happens to time measurement. It will be
recalled that Poincaré’s light clock resembles one arm of the Michelson-
Morley apparatus (see Chapter IlI, Section 2b). The complete apparatus
consists of two Poincaré light clocks, which are coincident but
differently oriented. The presupposition of a definition of a unit of
duration in terms of this light clock was that coincident light clocks of
the same construction should agree. And this is exactly the actual
(though unexpected) null outcome of the experiment. We might sum up
the matter as follows: classical theory said that the use of the light clock
for duration measurements is based on a mistake presupposition;
Lorentz’s theory, because it entails the contraction hypothesis, says that
on the contrary this presupposition is satisfied. Thus, we must also be
prepared for this hypothesis about spatial magnitudes to have
significant consequences for the theory of time measurement.
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A typical mechanical clock is a mechanism known as a harmonic
oscillator. Lorentz showed that it followed from his theory that such a
clock slows down when in absolute motion, by a factor depending on its
absolute velocity.* The hypothesis that this is so, is known as the
hypothesis of time dilation. To see exactly how much a moving clock
must slow down, we shall consider an experiment that has the effect of
comparing a light clock with a standard (mechanical) clock. If there is a
discrepancy between the two, this discrepancy might be used to confirm
the hypothesis of the earth’s motion through the ether—in exactly the
way that a discrepancy between two differently oriented light clocks
was supposed to do in the Michelson-Morley experiment. The
experiment to which we refer was designed by Armand Fizeau; this
could not be carried out with sufficient precision until fairly recently,
but Lorentz correctly predicted its outcome.>

Light is passed through a toothed wheel A across a distance L to a
mirror B, which reflects the rays back to A. The speed of the toothed
wheel is adjusted so that the returning light comes through a succeeding
tooth. The speed of the wheel is measured by means of a standard
clock; hence, we know the magnitude At of the time interval for one
tooth to replace another at the position in question. As long as the
apparatus is at rest in the ether we have, as before

(13) At ==

Since an ordinary clock has allowed us to measure At, and we
presumably know L, this result can be used to calculate c. Now suppose
the apparatus has an absolute velocity in the direction AB. Then, on the
classical theory the round-trip time changes from At to

(14) A=—+—==2(——)

c+v  c-v c \1-(v?%/c?)
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and on Lorentz’s theory, which incorporates the contraction hypothesis,
it changes to

—(v2/c2 — (2 /2
(15) A,:Ll(v/c)_l_Lw/l (v?%/c?)

c+v c—v

2L 1
T c (\/1—(v2/c2))

In either case, the round-trip time is a function of the absolute velocity v.
Hence, if our standard mechanical clocks (used to measure the speed of
the toothed wheel) give the correct result, and the apparatus is rigidly
affixed to the earth, and the earth’s relative velocity with respect to the
ether is different at different times of the year, this variation in the
round-trip time will be detectable. But Lorentz correctly predicted that
this variation (and hence, the earth’s motion through the ether) could
not be detected. According to Lorentz, the actual round-trip time is, of
course, A, as given by (15), but the clock’s measurement will show the
result At. From (13) and (15) we deduce

(16) At = A'(1 - (v%/c?))

so that the clock must have slowed down by a factor of\/l — (v?%/c?).

c. The Lorentz Transformations

The hypotheses of length contraction and time dilation together entail
that measurements by different observers (in uniform motion relative
to each other, and not subject to forces of the kind that Newton
attributed to absolute acceleration) will give systematically different
results. We now face the following theoretical question: Given two
observers A and B such that B’s velocity relative to A is v, what is the
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relation between their respective measurement results? The solution to
this problem is given by the Lorentz transformations.

We suppose that the observers A and B use their measuring rods
and clocks to assign a date (time coordinate) and also three space
coordinates to each event, in the usual manner. Let us uset,x,y,z for
the coordinates assigned to an event by A, and t’,x’,y’,z’ for those
assigned by B. For simplicity suppose that they choose the same origin
for their coordinate system: the event with the coordinatest =x =y =
z =0 also has the coordinates t'=x'=y"'=2z =0. Again, for
simplicity suppose that B moves along A’s X-axis; that is, the y and z
coordinates are always they same as the y' and z' coordinates:

A7) y' =y
z' =z

Then the Lorentz transformation in addition expresses t’ and x’ in terms
of t and x:

t—xv/c?
J1-(v?%/c?)
, x—vt

RG]

(18) t' =

Note that v here is the relative velocity of B to A4, but c is the absolute
velocity of light. If we decide to choose our units such that c = 1, the
Lorentz transformations take a very simple form:

, _ t—xv

A9) "= 7=
X = x—vt
=

The results of the measurements of distance and duration clearly vary
from observer to observer, if the observers are in relative motion. A
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second, equally important question is: Is there any quantity that is not
thus relative to the frame of reference?

This is the question for a quantity that (unlike duration and
distance) is invariant under the Lorentz transformations. There is such
a quantity, namely, space-time interval. Let events X and Y be separated
by a time interval At and by a space interval Ad (as measured, in each
case, in the frame of reference of a single observer A). Then, the space-
time interval s(X,Y) separating X and Y has the magnitude

\/(At)2 — (Ad)?. (This definition presupposes, of course, that this
magnitude is independent of the choice of a frame of reference;
otherwise, we would have to say that this space-time interval has this
magnitude in A’s frame of reference.)

Using the Fizeau experiment, we can calculate the speed of light
relative to the apparatus; this turns out to be the same value c
regardless of its state of motion. In other words, the speed of light is the
same in each frame of reference. This fact is related to the invariance of
the space-time interval as follows. Suppose a light signal leaves att = 0
the origin of a frame S that is at absolute rest, and attis found at
(x,v,z). Letc be its absolute speed. Then it has traveled a distance ct.
But also, it has traveled the distance from (0,0,0) to (x,y, z): a distance

equal to /x2 + y2 + z2. So we have

(20) ct = \/x2 + y2 + 722

Making no assumption about the relative speed of light with respect to
any other frame of reference, we can still choose the absolute speed c to
equal 1 in our system of units in this frame. Hence, (20) yields

(21) t = /x2 + y2 + 72

or
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(22) t> =x*+y* +2z°

But then the space-time interval between the events X att = 0 and
position (0,0,0) and the event Y at t and position (x,y, z) is

(23) \/tz—(x2+y2+zz)=m=0

Of course, we can duplicate this calculation for any two events in the
path of the same light ray: the space-time interval between them,
reckoned in the frame S, is always 0. Now the Lorentz transformations
entail that the magnitude of the space-time interval will be the same in
any other (unaccelerated) frame S’. So we always have the result

(24) s(X,Y) = (At)> — (Ad)* =0

for such events X and Y; regardless of the frame of reference, |At| =
|Ad|. Now |At] is the duration of travel and |Ad| is the distance covered;
so the speed must be |Ad/At| = 1 in other frames also.

In other words, the Lorentz transformations explain how (or why)
the speed of light is found to be the same in all frames of reference.
They explain this in the sense that they entail that result; for anyone
who accepts the Lorentz theory, the sameness of the velocity of light in
every frame of reference is exactly what is to be expected.

3. Einstein’s Critique of Simultaneity

Lorentz’s theory was, of course, explicitly based on the Newtonian
interpretation of physics in terms of absolute space. At the same time,
the physics envisioned by Lorentz is an extension of classical physics—
an extension so designed that the unexpected experimental results of
the late nineteenth century are accommodated. The relativistic physics
developed by Einstein is not merely an extension of the classical theory;
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it is a different theory whose predictions of experimental outcomes
differ at certain points from the classical expectations. But like
Lorentz’s theory, it has the virtue of predicting the null outcome of the
Michelson-Morley and Fizeau experiments. Indeed, it entails that
different inertial frames (the frames of reference of observers not
subject to absolute acceleration, according to the classical view) are
related to each other through the Lorentz transformations.

Most presentations of the special theory of relativity begin with a
principle such as the following: The laws of physics are the same in all
inertial frames (restricted principle of relativity). Since we are not
interested in presenting relativistic physics, but only in explaining
Einstein’s concepts of time and space, we shall proceed differently. We
shall reconstruct Einstein’s exploration of the concept of simultaneity.é
Doing so nevertheless leads, as we shall see, to a deduction of the
Lorentz transformations.

Consider two observers, each of whom can tell the order of events
in his own history. Suppose event X happens to the one and eventY to
the other. Under what conditions are X and Y to be regarded as
simultaneous?

A first answer might be in terms of perception: If the first observer
perceives Y happening just when X happens to him, the two events are
simultaneous. But this is quite incorrect, given that the velocity of light
and sound is finite: If the observer seesY, and Y is a distance d away,
and the light has moved from Y to his eyes at an (average) speed c, then
Y happened a time interval of magnitude d/c before he sees it.

The second answer simply corrects the oversight pointed out
above: Let the observer measure the distance d and one-way speed of
light ¢, and he can allow for the time it takes light to travel from the
event to his eye. Now the important question is: How can the observer
determine the one-way speed of light (or of sound, or whatever other
signal is used; the problem will be similar)? Recall that in the
Michelson-Morley experiments only the round-trip time of a reflected
signal was directly measured. If we are also given the distance, we may
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calculate the average round-trip velocity. But what is the one-way
velocity? Is it the same as the round-trip velocity? Certainly not,
according to the classical theory. There we said that the speed of light in
the Fizeau apparatus was ¢ + v one way and ¢ — v the other way, where
v is the absolute velocity of the apparatus. And now we are properly
caught: the Lorentz transformations guarantee that this absolute
velocity cannot be determined. But of course, what the classical theory
says is not of interest to us now, except to show that knowing the round-
trip velocity does not guarantee knowing the one-way velocity. We
must fine some experimental method for determining this one-way
velocity.

To measure a velocity we must be able to measure distance and
duration. Suppose the signal travels from A to B. Then to find its
velocity, we require the time at which it leaves 4, the distance it covers,
and the time at which it arrives at B. The time? Well, the time as
reckoned by a given clock. Unfortunately light signals are so fast that we
can’t move a single clock from A to B between the emission and arrival
of a single light signal. Then, let us use synchronized clocks: begin by
placing two equivalent clocks at 4, synchronizing them, and then move
one of them to B. Recall that two clocks are equivalent if once they are
synchronized they remain synchronized for as long as they are left
coincident. We must now worry about what happens after these
synchronized equivalent clocks are taken out of coincidence: does travel
affect the second clock? According to Lorentz it does, of course; a clock
slows down when it is in absolute motion. We cannot appeal to the
notion of absolute motion here, but we can postulate the following
verifiable effect of the time-dilation hypothesis: when the clocks are
brought into coincidence again, they are no longer synchronized. This is
the clock postulate: If two equivalent clocks are synchronized at 4 and
are brought to B in such a way that either

(a) they arrive coincidently at B, but after traversing paths of
different lengths
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or

(b) they traverse paths of the same lengths, and their departures but
not their arrivals at B coincide,

then they will be found notto be synchronized once they are together at
B. Note that the Lorentz hypothesis of time dilation is formulated in
terms of the notion of absolute velocity. The clock postulate is a
consequence of that hypothesis, but it is also a purely empirical
assertion, whose formulation needs no recourse to absolute notions.

Could transported equivalent clocks be used in some other way to
define simultaneity?? That the answer could be affirmative is suggested
by the fact that in Lorentz’s theory, the exact discrepancy between
moving clocks can be calculated from their velocities. But this overlooks
the main problem that confronts us here: how to compare clocks that
are apart spatially. Suppose that the clock postulate does not hold—that
synchronized equivalent clocks are always found to be synchronized
once they have been brought in coincidence again. Then what is the
significance of asserting that they were also in agreement while they
were apart? This assertion may seem intuitively to have an objective
sense: they can “equally,” “at the same rate,” even when they were apart
spatially (they did not, for example, speed up on the outward journey
and slow down on the return journey). But in fact we have no more
objective basis for this than for the correlate assertion that on a round
trip the velocity of a light signal on its journey equals its velocity on the
return journey.

The upshot of this discussion is that we have no way of
determining one-way velocities—and hence simultaneity—unless we
first have a way of synchronizing clocks that are apart spatially.

To see how in principle this might be done, we must once more
have recourse to round-trip times. Let us suppose that a light signal is
sent from A to B. Let E, R, and F be the following events:
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(E) emission of the signal (at A),
(R) reflection of the signal (at B),
(F) arrival of the signal (at A).

If x is an event, let t(X) be its date (time coordinate) in A’s frame of
reference. A knows t(E) and t(F). What date should he assign to R?
We don’t know yet, but at least we must have t(R) between t(E) and
t(F). Now let us send a faster signal, adjusting its emission E' (after E)
in such a way that its reflection R’ at B is coincident with the event R (as
an observer at B can determine). That the signal is of a faster kind
means simply that

t(E") > t(E)
t(F") < t(F)

And we must also say that t(R') = t(R), and a reflection is, of course,
between an emission and a return: t(E') < t(R') < t(F'). Putting this
information together, we see that

t(E') <t(R) < t(F"

which is a more precise determination of t(R) than we obtained from
the use of the first signal.

Thus, using ever faster signals, our determination of t(R) will
become ever more precise. So, by the use of ever faster signals, we can
synchronize clocks at A and B to within any degree of accuracy. (That is,
the mere requirement that causes be temporally before effects yields a
unique simultaneity relation.)

This procedure presupposes, however, that there is no upper
bound to signal velocities. And Einstein denies this presupposition: he
asserts that no signal is faster than light. This is the limiting postulate:
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If a light signal S; and another signal S, are emitted coincidently at
A and both reflected from another body B, and both return to A4,
then that return of S; is temporally between the joint emission of
S; and S, and that return of S, at A.

The conclusion drawn by Einstein is as simple as it is revolutionary:
There is no physical basis for the relation of simultaneity between
events that are spatially separate.

But we are still left with the problem of assigning a time coordinate
t(R) to the event R, in A’s frame of reference. If our first signal was
already a light signal, then all the information we have is

(25) t(E) <t(R) < t(F)
If there is no physical basis for determining t(R) more precisely than
this, all we can do is introduce a convention. This convention must take
the form of choosing a value € and laying down the definition

(26) t(R) =t(E) + €[t(F) — t(E)]
This value € must satisfy

(27) 0<e<1
Otherwise, (26) is inconsistent with (25). Apart from that, the choice of
¢ is purely conventional: it may be a constant, or a function of £¢(F), or a

function of 4, and so on (conventionality of simultaneity).
Einstein made the stipulation

(28) ¢ =§

This mean that t(R) is exactly halfway between t(F) and t(F); in other
words, in any frame of reference, the one-way speed of light is set (by
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this convention) equal to its average round-trip speed. This has the
practical advantage of being a very simple convention. It also has the
consequence that one and the same pair of events may be simultaneous
in one frame of reference (in the sense of receiving the same time
coordinate) and not in some other frame of reference (relativity of
simultaneity).8

To illustrate this relativity of simultaneity, we shall outline a well-
known thought experiment.? A train is moving along a station platform.
A conductor C is on the train, a station-master M sits on the platform.
Let the relative velocity of the train with respect to the platform be v.
The stationmaster has placed mirrors at A and B. When the conductor C
is coincident with M, M sends out a light pulse. He notices that its
reflections from A and B return to him coincidently; in accordance with
stipulation (28), he regards the two reflections as simultaneous.

Of course, the reflections do not return coincidently to the
conductor, who has moved a bit in the meantime. (He is moving toward
B; hence, the reflection from B reaches him before it reaches M. By the
same token, the reflection from A will reach him after having passed M.
Since these two reflections coincide at M, the latter reaches the
conductor after the former.) So in accordance with stipulation (28), the
conductor concludes that the two reflections are not simultaneous. The
two reflections are simultaneous in the frame in which M is regarded as
at rest; they are not simultaneous in the frame in which C is regarded at
rest—given, of course, the definition of “simultaneous” by means of
Einstein’s stipulation (28).

4. Duration in the Special Theory of Relativity

a. Clocks and Duration

By definition, what a clock measures is duration (quantity of time). But
of what does it measure the duration? As Leibniz already pointed out,
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measurement is directly of the relevant quantity in an entity coincident
with the instrument. So if a clock is rigidly affixed to a body, then it
certainly measures the duration of a process in that body or to which
that body is subject. For example, suppose that a car is equipped with
both an odometer and a clock. If we wish to know the distance covered
by the car during a given journey, we note the initial and final readings
of the odometer. If we wish to know the duration of the journey, we
note the initial and final readings of the clock. Of course, this is not only
the duration of the journey made by the car but also the duration of the
journey made by the clock. So the clock measures the duration of any
process to which it is itself subject, and in addition, that of any process
undergone by a body with which it remains coincident during that
process. (Note that during is a concept of temporal order; in addition,
the notion of simultaneity between spatially separate events is not
involved in our discussion.)

In classical physics it is furthermore assumed that a clock measures
the duration of any other process with which it is in coincidence at the
beginning and at the end. Thus, suppose that the car goes from New
York to New Haven and that the clock is detached and flown to new
Haven, where it is present at the arrival of the car. Then from the
classical point of view, its initial and final readings also determine the
duration of the car’s journey.

Given the clock postulate, however, we cannot consistently make
this assumption. For this postulate entails that clocks moved the same
distance at different speeds will not agree. Of course, we need not retain
the Leibnizian notion that the clock which remains with the car gives the
“uniquely true” measure of the journey’s duration. We may simply say
that the duration relative to the one clock is such and such, and the
duration relative to the other clock is so and so. Clocks in relative
motion with respect to each other simply do not agree. But as a matter
of terminology, the readings of the clock in the car are said to measure
the “proper time” of the processes to which the car (or the clock itself) is
subject. What we wish to discuss now is how the readings of clocks in
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motion relative to each other are related. To do this, we shall have to be
more explicit on the subject of frames of reference.

b. Frames of Reference

A frame of reference is simply an assignment of time and space
coordinates to all events. This assignment must of course respect, first
of all, the temporal and spatial order relations among these events.
Second, we must be concerned about the metric. In the special theory of
relativity, space is assumed to be Euclidean, so there must be a certain
agreement between what yardsticks show and the distance formula

(29) d(X,Y) = \/(x1 — %)%+ (V1 —¥2)% + (21 — 2,)?

where X and Y have the spatial coordinates (x4, y4,21) and (x5, y5, Z,),
respectively. Finally, in the special theory of relativity we are concerned
only with inertial systems—that is, if such a distance measurement is
made in a system, it concerns us only provided the system is free from
those force effects that Newton thought revealed absolute acceleration.

We shall now describe a specific frame of reference S. It is the
frame that belongs to a particular inertial system A. Rigidly attached to
Ais a standard clock €. The family of standard clocks we shall not
define. Of course, we assume that any two standard clocks are
equivalent in the usual sense that if they are synchronized, they then
remain synchronized for as long as they remain coincident. We draw a
line (world Iline) to represent the history of A (see Figure 3).

In S, every event E has coordinates (t, x,y, z), t being its date or
time coordinate and x, y, and z its space coordinates. The system 4 is at
restin S, so every event involving A has the same space coordinates. We
choose A as the spatial origin—that is, each event involving 4 has the
space coordinates (0,0,0). Of course, the time coordinate of such an
event is the reading of the clock C coincident with that event. The
reading 0 of C marks the origin of the frame of reference, (0,0,0,0).
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To determine the date of an event not involving A, we shall use
Einstein’s stipulation (28) and formula (26). Thus, if the emission of a
light signal has coordinates (0,0,0,0) and its return to A has (2t, 0,0,0),
then the time coordinate of its reflection Y is t. To determine the spatial
distance of Y from A (rather, from the event W involving A which also
has time coordinate t), we need a further convention. This convention
is simply that the speed of light will be used as a unit:c = 1. The
distance in question is, of course, half the time interval of the found trip
of the signal, divided by c:

d(Y, W) = %(Zt—o) _t

c Cc

which, due to our convention is justt. Choosing the X-T plane to pass
through Y, its spatial coordinates are (x, 0,0) with x = ¢.

Of course, this method of measuring distance by means of a clock
and light signals cannot be guaranteed a priori to yield the same results
as those of measuring rods. That this is nevertheless so in an inertial
system is asserted by the special theory of relativity.10

c. The Duration Postulate

To determine the relationships among moving clocks, we consider two
inertial frames S and S’. Let S be defined by the body A and clock C (in
the sense used in section 4b) and S’ by body A" and clock C'. In frame S
we measure the velocity of A'; say it is v. (Of course, the velocity of A in
S is just 0, so the relative velocity of A and A" in S is v.) For convenience,
we suppose that A’ remains in the X-T plane of system S. We postulate
that the velocity of A" in S is constant, so that its path in S is a straight
line.

To begin, we suppose that A and A’ are in coincidence exactly when
their clocks C and C' both read zero. In other words, the coordinates
(0,0,0,0) are assigned to the same events in both systems. We shall
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draw the X - and T -axes of the T-axis
system S, and also the world line of
the body A’ (which is, of course, the
T'-axis of system S’: see Figure 3).
The body A emits a light signal
(event E) that is reflected from A’
(event Z) and returns to A (event
F). What is the time coordinate
t=t(Z) of Z in system S? By
formulas (26) and (28) we find:

(30) t =t(E) +3(t(F) — t(E))
Let us introduce the symbol d to

denote half the time interval (by
clock C) between FE and F:

(31) d = X(t(F) — t(E))
Then we have:
(32) t(E)=t—d

t(F)=t+d
t(Z) =t

We have stipulated that body A’ moves only along the X-axis (its world
line is entirely in the X-T plane). Therefore, the spatial coordinates of Z
are (x, 0,0) for some value of x. What is this value? Well, the light signal
traveled at speed ¢ = 1 for an interval t — (t — d) = d to reach A’ (path
E to Z). Therefore, the distance isd/c = d/1 = d. The coordinates of Z
are therefore (¢, d, 0,0).

Now we can calculate the velocity v by which A’ moves relative to
A. At time 0, A’ was in coincidence with A (distance zero). At time t, it
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had moved to a point at a distance d from A. Hence, in the amount of
time (t — 0) it moved a distance (d — 0). Its velocity therefore equals

(33) vz%ordzvt

The question we now wish to have answered is: What is the
reading of the other clock €' when it is coincident with Z? (In other
words, what is the time coordinate t’ of Z in the system §'?) This is an
empirical question, which cannot be answered on the basis of our
previous postulates.

The answer given by the special theory of relativity may be
expressed as follows:

(34) Duration postulate A clock measures the space-time intervals
along its own world line.

Since C’ reads 0 when it is coincident with 0 and t" when it is coincident
with Z, this means thatt’' — 0 = t’ equals the magnitude of the space-
time interval between 0 and Z. As measured in the system S, that

interval has the magnitude Vt? — d?. So for the case illustrated in
Figure 3, the duration postulate means that

(35) t' =Vt? —d?

which, recalling (33), is the same as tv1 —v?. Since c =1 by our
conventions, this consequence coincides with the Lorentz time-dilation
hypothesis (see Section 2b).

Note that the postulate would lead to contradiction if space-time
intervals along world lines had different values in different frames of
reference. The postulate says that the magnitude of such an interval
between two points on a single world line (of an inertial system) is the
same in each frame of reference. The more general invariance
assertion—that the magnitude of any space-time interval is the same in
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all frames of reference—follows from the Lorentz transformations,
which we deduced in Section 5.

Figure 3, however, illustrates only one situation: the case in which
C and C' are not at rest relative to each other. If they are at rest relative
to each other, but apart spatially, their world lines never intersect.
Hence, we cannot find an event O belonging to both world lines that will
serve as the origin for both frames of reference. In that case, how is t’
related to t? Let signals be emitted from A (events E and F) to arrive at
A’ (eventsY and Z); lett(Y) =tandt(Z) =t + a. What the duration
postulate says here is that |t'(Z) — t'(Y)| equals the magnitude of the
spatiotemporal interval between Y and Z. As measured in system S, that
magnitude is

\/(1:+a—t)2—(d—al)2 =Vaz=a
In other words,

t"(Z) —t' (V)| = [t(Z) — t(Y)
for any two eventsY and Z on the world line of the clock C'. If we
assume that the two clocks agree on the “direction” of time (i.e,
t(Y) < t(Z) if and only if t'(Y) < t'(Z)), then this can also be expressed
by saying

There is a constant factor k such that, for any event X on the world
lineof C', t'(X) = t(X) + k.

Then we can say that C and C’ are synchronized if and only if this factor
equals zero.
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5. The Lorentz Transformations as a Consequence of
Einstein’s Assumptions!!

A proper time interval along the world line of a body is measured by a
clock rigidly attached to that body. In Figure 3, we see three such
proper time intervals marked: OF, OF, and OZ. (The first and second
are measured by clock C, and the third by clock C'.) Because E,Z, and F
are the emission, reflection, and return of a light signal, we shall
designate them as follows:

(OE) firstinterval of emission
(0Z) firstinterval of reception
(0Z) second interval of emission
(OF) second interval of reception

This terminology is used because so far as present considerations are
concerned, Z might as well be the reception of one signal (emission E)
as the emission of a second signal (reception F). We shall try to show
that the ratio of interval of reception to interval of emission is the same
for both cases. Since O has the time coordinate 0 in all cases, this
means:

(36) Lemma1l t'(Z)+t(E)=t(F)=+t(2)

Using the conventions of Section 4c (t(E) =t—d,t(F) =t+d, t(Z) =
t), this means:

tr t+d

(37) t—-d  tr

That is just the same as

(38) ()= (t+d)(t—ad)
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hence the same as
(39) (t")? =t?—d?

But of course, (39) follows directly from the duration postulate, (34);
hence, our lemma is proved.

Now we shall prove that this ratio is a function only of the relative
velocity v. This means that it will be the same for any one-way signal
sent from A to A’ or from A’ to A.

M _ V1tv
(40) Lemma 2 0B — Vi

Again using our conventions, we can express this as

tr_ \1+v
(41) t-d Vi-v

The postulate of duration allows us to express the left-hand side as

47 tr_ Nt2-d? __ J/(t-d)(t+d)
(42) t-d  t-d t—d

hence,

tr_ Vt+d
(43) 2= Vt—d

Now we use our previous result, (33), to express d as vt, thus rewriting
the right-hand side of (43)

44 tr Nttvt  Jt(1+4v)
(44) t-d Vt-vt Jt(1-v)
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Canceling the factor v/t on the right-hand side, we deduce (41); thus, our
second lemma is proved. These two lemmas will make the deduction of
the Lorentz transformations very simple.12

As usual, we shall focus our attention on events in the X-T plane, so
that we have at once the transformations

T-axis

y' =y
z' =1z

T’-axis

This lack of generality will only avoid
inessential complications. Let us then
consider an event W with coordinates
(t,x,y,z) in S and (t',x',y',z") in §’.
We also draw the paths of light signals
that connect A,A’,and W (see Figure
4). By convention we introduce two W
symbols d and d' just as before, so that
we have:

(45) d = 1/2(¢(Fy) — t(EL))
d' =1/2(t'(F) — t'(E3))
t(Ey)) =t—d
t(F)) =t+d
t'(Ey)) =t' —d
kt'(F,) =t +d'

And just as before we deduce the
spatial distance of W from A, and from
A’, and hence its spatial coordinates

(46) x=d
xI:dl

Figure 4
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Our task is now to express t’ and x’ in terms of t and x.
We do this by using lemmas (1) and (2) concerning the ratio of
interval of reception to interval of emission:

t’(Ez) N 1+v

For signal E; E5: (ED — Vice
For signal F, F;: ;'((I:z)):\/g

Using (45) and (46) these equalities can be expressed equivalently as

4Dt —x =(t—x )Jg
(48) t'+x'=(t+x )\/F

Adding the quantities on either side of the equality signs, we obtain:

1+v

(49) (t'—xD)+ (' +x)=(t—x )J_

+ (t+x )\/_

which is just

2t 22XV
V12

(50) 2t’

Dividing both sides by 2 we obtain the Lorentz transformation for the
time coordinate (see Section 2¢)

t—xv

O ¢ =7=3

On the other hand, by subtracting the sides of equality (47) from those
of (48), we obtain:
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o V1—v__ . V1i+v
(52) 2x—(t+x)m (t x)m

which, after division by 2 yields the Lorentz transformation for the X-
coordinate (see Section 2c¢)

x—vt

1—-v?2

(53) x' =

Thus, we have shown that the Lorentz transformations can be deduced
from the duration postulate (in the context of Einstein’s other
assumptions).

6. Space-Time and the Minkowski Diagram

In the classic treatment of space, each event received a triple (x, y, z) of
real numbers as its space coordinates. Therefore, the logical space in
which, classically, all spatial relationships are represented, is the set of
all triples of real numbers. The assignment of coordinates involves, of
course, the choice of an origin and a choice of units, as well as of the
orientation of the X-axis, and so on. In other words, it involves the
choice of a spatial frame of reference.

We have now been following the procedure of assigning each event
a quadruple (¢, x,y,z) of real numbers as its space-time coordinates.
Thus, the logical space in which, for us, all spatiotemporal relationships
are represented is the set of all quadruples of real numbers. An
assignment of space-time coordinates involves the choice of a total
frame of reference, and we are focusing our attention only on those for
which this choice is an inertial frame. In addition, we have stipulated
that the coordinatizations should satisfy Einstein’s convention ¢ = 1/2
and the convention (for units of measurement) that c = 1.

The various magnitudes that may be measured in a given frame of
reference may be the same in all frames (invariant) or different from
frame to frame (relative). For example, two events that are separate
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spatially may be simultaneous in one frame and not in another. We
illustrated this with the story of the conductor and the stationmaster
(relativity of simultaneity). The most important invariant magnitude is
the space-time interval s between two events. This interval is given by
the equation s? = t2 — d?, where t is the difference between the times
of the two events, and d the spatial distance between them. Here t and
d are measured in a given frame S, and we know that simultaneity is
relative, so the magnitude of t will vary from frame to frame. But the
magnitude of s will not vary. This has the immediate corollary that the
magnitude d varies from frame to frame (relativity of length).
Spatiotemporal relationships
may be depicted in a Minkowski
diagram.'*> The events in the his-
tory of a body A are represented
by the points on a vertical (solid)
line, the world line, of A. This
world line also provides the time
axis of A’s frame of reference. We
choose some point on it as origin
and draw a horizontal line
through it to represent one of the
spatial dimensions. Light rays
coincident with that origin appear
as (solid) lines at a 45° angle to
these axes. The broken lines
represent the time and space axes
of another frame of reference in
motion with respect to A’s frame.
The light rays through the
point O divide the diagram into
three regions: absolute future,
absolute past, and absolute
elsewhere (see Figure 5). The

elsewhere X

Figure 5
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region absolute elsewhere can be characterized in two ways:

(a) E is in the absolute elsewhere of O if and only if it is impossible
for any signal to have its departure coincident with E and arrival
coincident with O, or vice versa.

(b) E is in the absolute elsewhere of O if and only if the square of the
space-time interval between E and O is negative.

Here (a) expresses the limiting nature of the velocity of light. On the
other hand, (b) defines the region in terms of the invariant relationship
given by the space-time interval. It says that |d| is greater than [t]| for
such events: their separation is spacelike. To put it another way: there
is some alternative frame of reference S’ such that O and E both lie on
the X'-axis (are simultaneous in S").

The absolute past and absolute future constitute the light cone of O.
An event in the light cone of O has a timelike separation from O—that is,
for some alternative system S’, they happen in the same place but not at
the same time. Furthermore, there is no alternative system S’ in which
that event and O are simultaneous.
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VI. The Causal Theory of Time and
Space-Time

As we have already noted, at the end of the nineteenth century, a great
problem in the theory of time was the problem of temporal order—of
providing a theory that would exhibit the physical basis for temporal
relations. There was a similar problem for the theory of space, but it
seemed reasonable to expect that such an account in terms of the
behavior of light rays and material bodies could be made precise, given
only a precise theory of time order and the necessary effort.

1. The Philosophy of Time and Space in the Twentieth
Century

The advent of the theory of relativity drastically changed the conception
of these problems, but at the same time it provided the necessary
clues—and the stimulus—for their solution. We cannot hope to recount
the whole story of the philosophy of time and space in our century in
one short chapter. Instead, in this section we shall give an outline of the
most important developments and in the remainder of the chapter we
shall follow only a single strand, which leads to a solution to these
problems.

One of the first to attempt a comprehensive analysis of temporal,
spatial, and spatiotemporal relations within the special theory of
relativity was Alfred A. Robb. At the same time as Einstein and Robb,
Whitehead was developing a comprehensive theory of time and space,
which was, however, in basic disagreement with Einstein’s critique of
simultaneity. Russell had attempted a thorough logical analysis of the
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foundations of (classical) physics in his Principles of Mathematics
(1903). His view on time and space as developed there are basically
Newtonian. He became converted to a relational theory of time and
space through the influence of Whitehead and published it in Our
Knowledge of the External World (1914). Whitehead published his own
theory in three books on natural philosophy (1919-1922). By this time
Whitehead had developed a theory of relativity that was an alternative
to Einstein’s and apparently not in conflict with the observational data.l
It seems that Russell came to agree more with Einstein; in any case, his
analysis of space-time structure in The Analysis of Matter (1927)
concerns the foundations of Einstein’s theory of relativity. Here Russell
mentions explicitly a debt to the work of Robb.

While Robb, Whitehead, and Russell were engaged in a
philosophical and logical analysis of the theory of relativity and space-
time structure in England, the rapidly growing school of logical
empiricism (or logical positivism) was doing so on the Continent. Here
we must mention especially Moritz Schlick, Carnap, Reichenbach, and
Henryk Mehlberg. The logical empiricists have the reputation of being
decidedly ahistorical, but in this case the reputation does not seem
deserved. Like their English colleagues, they studied the work of
Poincaré as well as Einstein; and furthermore, the work of Helmholtz
and Mach. Reichenbach wrote a book concerning Kant’s theory of time
and space— Relativity and A Priori Knowledge (1920)—and a paper on
Leibniz’s theory and his debate with the Newtonians.2 Russell’s writings
were extensively studied among the logical positivists; also, Carnap
mentions Whitehead’s theory of space-time structure in connection with
an exposition of his own.3 Mehlberg’s encyclopedic Essai sur la théorie
causale du temps (1935-1937) includes lengthy discussions of Newton,
Leibniz, Kant, Lechalas, as well as the later writers.

Reichenbach became the major philosopher of science to write on
the philosophy of time and space with the publication of Axiomatik der
relativistischen Raum-Zeit-Lehre (1924), The Philosophy of Space and
Time (1928; English translation, 1958), and The Direction of Time

189



(1956). His work was continued by Griinbaum in Philosophical
Problems of Space and Time (1963) and Modern Science and Zeno’s
Paradoxes (1967).

2. Reichenbach’s Causal Theory of Time Order

We can distinguish roughly between an early formulation and a later
formulation of Reichenbach’s theory. The former is developed in
Axiomatik der relativistischen Raum-Zeit-Lehre* and in The Philosophy
of Space and Time, the latter in his posthumously published work The
Direction of Time.

a. The Early Formulation

To define the temporal order of events, Reichenbach introduced several
basic relationships among events. The first is genidentity: E is
genidentical to E' if they involve the same object. The second is
causation. A light signal, for example, is a causal chain, because in
Reichenbach’s terminology the emission of such a signal is one of the
causes of its eventual reflections and final absorption; each reflection is
also one of the causes of later reflections and final absorption.

In The Philosophy of Space and Time, Reichenbach introduces his
theory of time order with the following passage:

IfE, is the effect of E;, thenE, is called later thanE,. This is the
topological coordinative definition of time order.>

Of course, the italicized sentence does not have the correct form for a
definition of “is later than.” Nor should it: certainly, it is possible for
some event E to be later than E; without being one of its effects. But the
definition will do for all those pairs of events that are causally
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connected, that is, that belong to the same causal chain. In the
Axiomatik we find a more general definition, which amounts to

(1) E, is later than E; if and only if it is physically possible for there
to be a chain s4, 55, ..., Sy such that for each i, from 1 to k — 1, s; is
a cause of s;,¢; and such that E; coincides with s; and E, with s;.6

This general definition makes use of three basic concepts: causation,
coincidence, and physical possibility.
We must carefully distinguish two senses of “coincides” here:

(a) (spatial) coincidence among bodies (body A; coincides with body
A, attime t)

(b) (spatiotemporal) coincidence among events (event E; coincides
with event E,)

In (1), “coincides” has sense (b); thus, one of Reichenbach’s basic
concepts is a spatiotemporal concept. (Note that sense (b) cannot be
defined in terms of sense (a).)

The use of “physically possible” refers to the limiting nature of the
velocity of light. Some pairs of events belonging to different world lines
cannot be connected by a causal chain, because such a connection would
be tantamount to a signal faster than light. Hence, the following defined
relation only partially correlates the temporal order of events on
different world lines:

(2) E; and E, are indeterminate as to time order if and only if neither
is later than the other.

Hence, as we saw in Chapter V, there is a certain amount of arbitrariness

in the assignment of time coordinates, even with respect to order. But
we can lay down the exact conditions under which a coordinate
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assignment reflects the topological relationship induced by possible
connections through causal chains:

(3) An assignment t of real numbers to events is a topologically
admissible coordinatization if and only if
(a) if E; and E, coincide, t(E,) = t(E,);
(b) if E, is later than E;, t(E;) < t(E,)

This has as consequence that if E; and E, do not coincide, t(E;) = t(E,)
only if E; and E, are indeterminate as to time order. It also means that
any two admissible coordinate assignments will agree for the order of
events on the same world line—at least, Reichenbach assumes that if E;
and E, are genidentical, then they either coincide or are causally
connectible. Finally, note that Reichenbach is clearly assuming that time
is topologically open—that is, that there are no closed causal chains.
This is an assumption that he discusses and that he says is empirically
well confirmed, though not logically necessary.

The major criticisms of this theory center on Reichenbach’s use of
the notion of cause. Since Hume, no philosopher can afford an uncritical
use of this notion. But even if one takes the view that the notion of
causal connection is prephilosophical and that the question is not
whether there are causal connections but how they are correctly
described, Reichenbach faces a problem. For he relies explicitly on the
asymmetry of such connections, on the distinction between cause and
effect. If he wishes to say, like Leibniz, that by definition the “earlier”
one of a causally connected pair is the cause, then he must provide a
criterion for distinguishing the cause from the effect.

Reichenbach recognized this problem and attempted to provide
such a criterion. He gave this criterion—now usually called the mark
method—the following formulation:

If E; is the cause of E,, then a small variation (a mark) in E; is
associated with a small variation in E,, whereas small variations in E,
are not associated with variations in E;.”
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Suppose for example that | throw a stone across a creek. Let E; be
the event of my throwing the stone and E, the event of the stone landing
on the other side of the creek. If we mark the stone with chalk during
event E;, a chalk mark will be present on the stone during event E,. But
if we mark the stone with chalk during E, it does not follow that a chalk
mark appears on the stone during E;. From this we may infer, by
Reichenbach’s criterion, that E; is the cause and E, the effect.

The mark method was extensively—and [ think conclusively—
criticized by Mehlberg and Grinbaum.® The criticisms attempt to
establish that a tacit use is made of concepts of time order in the use of
the mark method. The most important of these criticisms is that the
marking process used must be irreversible; if, for example, the chalk can
be rubbed off at some point on the stone’s trajectory that links E; and
E,, the criterion does not work. But when is a marking process
irreversible? When its effect (the mark) cannot be destroyed or deleted
without destroying the subject or giving the subject some other mark,
which means that the subject cannot exist in the state preceding the
marking at some time after the marking. There seems to be no way of
distinguishing irreversible and reversible marking processes without
using the notion of later, or temporally between, or some similar notion
of temporal order. Hence, the mark method cannot be used in the
definition or explication of (the whole of) temporal order.

Although this is the major criticism of Reichenbach’s early theory,
it is also important to point out that his use of the notion of
spatiotemporal coincidence limits that theory. It was Reichenbach’s
avowed aim to give a purely causal or physical account of space-time;
yet one of his primitive relations is a spatiotemporal relation.

b. The Later Formulation
In his later work, Reichenbach distinguished clearly between time order
and the anisotropy of time (what he called the “direction” of time). The

relation is later than was henceforth to be defined in terms of temporal
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betweenness and certain factual asymmetries in actual (betweenness-
ordered) series of events. The reader is already familiar with this point
of view from our discussion in Chapter III, Section 3.

What we must explore, then, is Reichenbach’s later account (in The
Direction of Time) of temporal betweenness. As before, Reichenbach
regards genidentity as a species of causal connection and also calls the
emission, absorption, and intermediate reflections of a light signal
genidentical with each other. Besides genidentity, approximate
spatiotemporal coincidence is a basic notion. There are two further
basic notions that we shall mention shortly.

With our attention restricted to genidentity (and signal) relations
(as opposed to causal connections in general), we can introduce the
derivative notion of a causal net, so called because it can be drawn like a
net. Lines in the net represent genidentity chains, and knots in the net
represent spatiotemporal coincidences among events. As before,
Reichenbach says that closed causal chains (“time travel”) may be ruled
out on empirical grounds. He does admit here the possibility of closed
time, though this possibility is not reflected in the formulation of the
theory.

On a single world line (“genidentity chain,” “causal chain”) the
events are ordered by the relation of approximate coincidence. If X is an
event on the world line W, let us call U a neighborhood of X if it contains
X, and all members of U are in approximate coincidence with X. Then if
U;,U,, U; are neighborhoods of X;,X,,X;, and U; overlaps U,, U,
overlaps U;, and U; does not overlap U;, then X, is between X; and X5.
We may call this relation among X;,X,,X; —the having of
neighborhoods, thus related—Iocal betweenness. Betweenness
simpliciter on the world line can be defined in terms of local
betweenness.

Within a net we may also find cases of local betweenness, which
correlate the order on several world lines with each other. The easiest
way to use approximate coincidence to order a whole causal net is
simply to assign each event X a coordinate t(X) such that

o«

194



(4) IfY, but not Z, is in approximate coincidence with X, then t(Y)
should be numerically closer to t(X) than t(Z) is:

[£(X) —t(V)| < [t(X) —t(Z)|

Then  numerical betweenness
among the coordinates can be used
to define betweenness among the
events.

But this immediately shows
up an important problem, which
leads to the introduction of a
further basic notion. Suppose that
of all the events on world line W,
only X is in  approximate
coincidence with some event (say
X") on world line W' (see Figure 6).
Then we have no way of deciding,
by the criterion above, between the
following two kinds of coordinate
assignment:

Figure 6

(D tX) =¢e(X")

t(Y) =t(Y")
t(Z) =t(Z")
(D) t(X) = t(X')
t(Y) =t(Z')
t(Z) =t(Y")

As we have drawn the picture it would seem that assignment (I) is
correct and (II) incorrect. But up to this point in Reichenbach’s account
we have no objective basis for distinguishing between the represented
situation and the alternative possible situation in which the processes
Z'X'Y" and ZXY are “counterdirected.” Reichenbach’s solution is to
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introduce the concept of local comparability of time order. Whatever
the exact reconstruction of this concept, it allows us to distinguish the
two kinds of situations represented by coordinate assignments (I) and
(ID).

Even now, however, the set of basic notions is not sufficient. For if
it is merely possible for some world line or causal chain to have some of
its (noncoincident) members coincide with X and Y, then X and Y are
temporally separate. The mere fact that actually X and Y are not thus
connected does not entail that they are indeterminate as to time order;
for this they are to be not connectible. Hence, Reichenbach introduces
as final basic notion that of being possibly connected by a causal chain
(causally connectible).

Reichenbach’s later theory is certainly an improvement on his
earlier theory. Yet we can point out some features that are not entirely
satisfactory. To start with the least important one, the fourth basic
relation (causal connectibility) makes the third (local comparability)
redundant. To show that the situation is as represented by (I) rather
than (II) it would be sufficient to point out, for example, thatY and Z’,
but not Y and Y’, are causally connectible (see the dotted lines in Figure
6). We may also point out that, just as in the early theory, use is made of
an irreducibly spatiotemporal relation (approximate spatiotemporal
coincidence).  Finally, the formulation of the theory given by
Reichenbach does not apply directly to the case of closed time.

3. Grunbaum'’s Causal Theory of Time Order

In Philosophical Problems of Space and Time, Grunbaum decided to take
explicitly into account the possibility that time is topologically closed.’
He also eliminated the use of a primitive notion of spatiotemporal
coincidence. But his formulation of the theory encountered certain
difficulties, and he offered a new formulation in Modern Science and
Zeno's Paradoxes.
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a. The First Formulation

The basic notions used by Griunbaum in his first account were those of
genidentity, physical necessity (or physical possibility—these two
notions are interdefinable), and k -connection. Two events are k-
connected if they are genidentical or are an emission, absorption, or
reflection of the same light signal; or if they are coincident with two thus
connected events. (Note that the last explanation is only a heuristic
comment; in the theory itself, “coincidence” would be defined in terms
of “k-connection,” not vice versa.) So except for the terminology, his
basic notions are essentially those used by Reichenbach (except for
“coincidence”). Griunbaum’s definition of “topologically simultaneous”
shows that this is exactly what Reichenbach meant by “indeterminate as
to time order.”

(5) Events X and Y are topologically simultaneous if and only if it is
physically necessary that X and Y are not k-connected.

Besides these similarities, we also find that Grinbaum had adopted
Reichenbach’s basic strategy: to define temporal order on each world
line individually and to correlate the separate orderings by means of
topological simultaneity.

The basic difference between Griunbaum and Reichenbach appears
in Grinbaum’s definition of temporal relations on a given world line.
First, Griinbaum does not use coincidence for this purpose. Second, he
defines pair separation rather than betweenness, in order to cover the
case of closed time. His definition uses the notation “n(E L E'M),” which
may be read as “events E and E’ are temporally separated by L and M.”

(6) n(E L E'M) if and only if E # E', L and M are genidentical with E
and E’, and, given the actual occurrence of E and E', it is
physically necessary that either L or M occur in order that E and
E’ be k-connected.
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If the world line is open, betweenness can be defined in terms of
separation.

At first sight, the use of the notion of physical necessity in (6)
cannot be objectionable if we accept its use in (5) as correct (as
Reichenbach certainly had). But in fact, the modal construction in (6) is
much more complicated than in (5) and leads to certain difficult
questions of interpretation. In Philosophical Problems of Space and
Time Grinbaum discusses an objection raised by Abner Shimony.10 Let
us suppose that time is open, and X occurs between B and C, but 4 not
between B and C, all on the same world line. For simplicity, let us
suppose that A occurs before B, B before X, X before C. It now appears
that Griinbaum must hold that if X had not occurred, B and C would not
be genidentical. This is certainly so if X is simply “deleted,” but what if
another event had occurred in the place of X?

To give an example, suppose I wake up, shave, and go to work.
Then on Griinbaum’s account, my shaving is temporally second in this
sequence, because if [ had not shaved, my waking and my going to work
would not be k-connected (hence, not genidentical). This certainly so if
my not shaving prevents me from going to work, in which case the third
event would not have happened at all. But [ might simply have trimmed
my beard instead of shaving it off and gone to work defying the
bourgeois fashion.

An answer to this criticism would be that we are assuming a
perfectly deterministic universe so that, given two events (“total
states”) on a world line, the rest is fixed. (This also requires the world
line to be one of an isolated system, of course; also, it must be time-
reversible determinism, since we are really concerned with between,
not with before.) But if we assume such determinism, then if A does not
occur on the world line, this may be either because the system ceases to
exist then (so that B and C do not exist either) or because another event
A’ occurs in its place. In the latter case, B and C cannot both occur also,
for the possibility of both sequences ABC and A'BC contradicts the
assumed determinism. The conclusion would be that the occurrence of
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A is also necessary for the k -connection of B and C; hence, by
Griunbaum’s definition, 4 is also between B and C.

Grunbaum first attempted to answer this further criticism by
drawing a distinction between “necessary for the occurrence of” and
“necessary for the k-connection of,” and this was indeed an adequate
answer to the objection as first presented. When the question is raised
(as we have done) whether the world is deterministic or
indeterministic, this distinction no longer disarms the objection.
Grunbaum saw this very well, of course, and hence worked out a second
formulation.

b. The Second Formulation

In the second formulation of his causal theory of time, Griinbaum used
the notion of physical necessity only in the definition of topological
simultaneity—that is, this modal notion appears only in the use of the
concept of a pair of causally (non)connectible events. He also uses the
notions of genidentity and k-connection again. Finally, he now assumes
that the spatial ordering of events is given.!l In the context of special
relativity, this may be taken to be the space of some inertial frame of
reference or other.

We shall now use the notation “dn(E X E'F)” for “X and F
temporally separate E' and E.” The definition proceeds in two steps.
Let E, X, E', and F be distinct events on a spatially non-self-intersecting
world line W.

(7) The set K of events on a world line W continuously k-connects E
and E’ if and only if
(a) E and E' belong to K, and
(b) the spatial positions of the members of K form a continuum.
(8) dn(E X E'F) if and only if every class K that continuously k-
connects E and E’ on W is such that either X or F belongs to K.
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This gives the temporal order on spatially non-self-intersecting world
lines; the relation of topological simultaneity can then be used to
“transfer” this order to other world lines.

This revision certainly removes the last difficulty with the causal
theory of time order. It is to be granted, however, that this has been
done at the cost of assuming a certain spatial ordering of events as
given. There is, as far as we know, no independent explication of this
spatial order that could be used to extend this theory of time order into
a complete causal theory of spatiotemporal order. Thus, the hope of a
complete explication of space-time in terms of physical relations among
events is here renounced.

It is not a requirement of a theory of time that it be also a theory of
space or of space-time. Thus, it cannot be an objection to Griinbaum’s
account of temporal order that it appeals to spatial relations among
events (especially as this account occurs in a discussion of Zeno’s
paradoxes, and the published account does not claim to present a
comprehensive theory of time order, but only of the denseness of this
order). In Section 4, however, we shall find that the theory is capable of
a significant simplification and that in this simplified form it no longer
relies on any purely spatial or spatiotemporal concepts.

4. Systematic Exposition of the Causal Theory of Time
Order

In the formulations of the theory of time order by Reichenbach and
Grunbaum we can discern a single basic strategy. This strategy consists
in first explicating the time order of events on a single world line and
then explicating the time order of all events by correlating the world
lines (through the relation of causal connectibility). If we wish to cover
the case of a universe in which only one continuant exists—in which
case there would be only one world line—this strategy is the only
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possible one. But in fact, the aims of a theory of time do not make it
essential that this case is covered.

This suggests an alternative strategy: explication of the time order
of events on any world line (in part) through their relations to events on
other world lines.'? This is the strategy that we shall adopt here; it leads
to a basic simplification of the theory. The primitive terms we shall
need are common to all the formulations that we have examined thus
far: event, genidentity, and causal connectibility. As before, we shall
restrict our attention to events that involve a single body. We shall not
regard a light signal as a body; its emission and absorption are causally
connected, but not genidentical with each other in our sense.

As in our account of Reichenbach’s and Grinbaum’s formulations
of the theory, we shall proceed by giving definitions. The reader is now
quite familiar with the notion of a definition’s presuppositions; he will
see that our postulates are postulates of adequacy for our definitions,
and are intended to guarantee these presuppositions.

Postulate I  Genidentity is an equivalence relation (reflective,
symmetric, and transitive; binary) among events.

Definition 1 A world line is a class W of events any two of which
are genidentical with each other, such that any event not in W is
not genidentical with all the members of W.

Here we call a relation among events binary if it always relates a pair of
events, reflexive if every event bears the relation to itself, or symmetric
if the following holds:

If X bears the relation to Y, then Y bears the relation to X.

and transitive if the following holds:

If X bears the relation toY, and Y bears the relation to Z, then X
bears the relation to Z.
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Note that postulate (I) entails that each event belongs to exactly one
world line.

Postulate II There are at least two mutually disjoint world lines.

The next two postulates concern causal connectibility, a notion we
described explicitly in Section 3a, using Grunbaum’s terms “k -
connection” and “physically possible.” (The only difference is a
linguistic one: in our formulation “causally connectible” is not a defined
or complex predicate, but a simple predicate.)

Postulate III  Causal connectibility is a binary reflexive and
symmetric relation among events.

Postulate IV 1f two events are genidentical, then they are causally
connectible.

Postulates (III) and (IV) are mainly concerned with making our
usage of the terms explicit. The theory would not flounder if we decided
to use “causal connectibility” to denote a relation disjoint from identity
and genidentity; our present use would still be definable as the
disjunction “causally connectible or identical or genidentical.” But
whichever usage is adopted, it needs to be made explicit.

Definition 2 Two events are topologically simultaneous if and
only if they are not causally connectible.

Definition 3 Two events are coincident if and only if: any event is
causally connectible with the one if and only if it is causally
connectible with the other.

Note that coincidence does not entail genidentity; two bodies might,
after all, touch each other. We may also note that, in our usage,
coincidence does not imply topological simultaneity; this usage,
however, is again primarily a matter of choice of linguistic convention.
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We shall now introduce a convenient fiction: Every body exists, and
has existed, as long as every other body (hence, “as long as time,” or at
least, as long as the world).

Postulate V  If event E is not on world line W, then W contains
events E' and E"' such that E and E' are topologically simultaneous
and E and E"' are causally connectible.

To dispense with this idealization would make our theory more
complicated, but not essentially so.

By the postulates and definitions above, the class of events in W
that are topologically simultaneous with E is not empty exactly when E
is an event not in the world line W. This is a very important kind of
class; we shall call it a simultaneity class (of E on W).

Definition 4 The simultaneity class of E on W —in symbols,
“SimW (E)"—is the class of all events in W that are topologically
simultaneous with E.

Postulate (V) then says that each world line is entirely covered by
simultaneity classes. This postulate helps us to define a continuous part
of a world line.

Definition 5 The class of continuous parts of a world line W is the

smallest collection of parts of W such that the following holds:

(a) if E isnot on W, Sim W (E) is a continuous part of W;

(b) if X; and X, are continuous parts of W and overlap, then their
common part is a continuous part of W;

(¢) if X; and X, are continuous parts of W and overlap, then their
sum is a continuous part of W.

The next postulate is motivated by the consideration that we conceive of
world lines as not containing temporal gaps.
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Postulate VI If E and E' are events in the world line W, then there
is a continuous part P of W to which E and E’ both belong (P
“connects” E and E").

Now we can define temporal pair separation on a world line in the way
this is done in Grinbaum’s second formulation of the theory.

Definition 6 If events E, X, E’, and Y all belong to world line W,
then X and Y temporally separate E and E'—in symbols, “S(X,Y/
E,E"Y”—on W if and only if every continuous part of W that
connects E and E’ contains either X orY.

Here we must say something about the possibility that time is
closed.13 At first sight, any two events are causally connectible if time is
closed, for it seems that we could send out a signal so slow that it goes
all the way “around time” before it arrives at its destination. In this way
we could have a light signal from A to A" and back (emission E,
reflection R, absorption F) and a slow signal emitted from A’
coincidently with R, but arriving locally between E and F.

We have two alternatives: we can admit that this is so or we can
show why we can allow it to be ruled out (as is done by Postulate [V]).
In the first case, the situation is rather like that for open time without
the assumption that nothing can go faster than light. From a logical
point of view, this problem is just as interesting, but we are not inclined
to consider it, since contemporary physics does make this assumption.
If we try to state this assumption in nonmetric terms, we arrive at a
principle that does eliminate the difficulty raised in the preceding
paragraph. The assumption that light provides a limiting velocity for
signals will be stated first in terms of before, then in terms of between,
then in terms of pair separation.
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before If the emission of a light signal from 4 is coincident with
the emission of some other signal from A, then the arrival of the
light signal at A is before the arrival of that other signal A’.
between If a light signal travels from A to A" and back, and some
other signal between A and A" has one terminus coincident with
the reflection of this light signal, then its other terminus is not
between the emission and absorption of the light signal.

pair separation If a light signal travels from A to A" and back, and
other two signals have termini coincident with the reflection of this
light signal, then their termini do not separate the emission and
absorption of the light signal.

The last formulation rules out the possibility of going all the way
“around time” in such a way that one thing or signal would exist at two
places at the same time or establish a signal connection “faster” than
light.

It is now advantageous to begin to formulate our ideas in terms of
coordinates. We shall leave open the possibilities that time is both open
and closed. But we shall not admit such possibilities as that “time
travel” exists or that time has the topological structure of a figure eight.

Definition 7 A functiontis a (topologically) admissible time-

coordinate assignment if and only if

(a) t maps all events either onto the real-number system or onto
the extended real-number system;

(b)if E, X, E', and Y belong to the same world line W, then t(X) and
t(Y) numerically separate t(E) and t(E") if and only if X and Y
temporally separate E and E' on W;

(c) if E and E’ are coincident, then t(E) = t(E");

(d) if E and E’ are not coincident, then t(E) = t(E") only if E and E’
are topologically simultaneous.
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(To say that t maps all events onto the real numbers means that each
real number is the coordinate of some event. We are clearly using the
idealization (or assumption) of point events, events that “last no more
than an instant.”) Clauses (a)-(d) exhaust the conditions we can place
on such coordinate assignments in accordance with the preceding
discussion. But what if the facts are such that there are no admissible
time-coordinate assignments in the sense of the definition above? This
question necessitates a further postulate of adequacy. We shall use a
strong postulate, which also has other important consequences.

Postulate VII FEither all admissible time-coordinate assignments
map all events onto the real-number system or all admissible time-
coordinate assignments map all events onto the extended real-
number system, but not both.

The logically minded reader will note that this postulate entails that
there is at least one admissible time-coordinate assignment in the sense
defined (otherwise, both disjuncts would be true). Also, it entails that
every world line is topologically open or topologically closed and does
not have the topological structure of a figure eight: for example, if W is a
figure eight, it is not the case that for all x,y,z, and w on W, either
S(x,y/z,w) or S(x,w/z,y) or S(x,z/w,y)—but this is a property of
numerical pair separation. Finally, this postulate rules out the deviant
possibility of some world lines being open and some closed. (The last
consequence may be viewed as part of our fiction that each world line
lasts “as long as the world.”)

5. Extension to a Theory of Space-Time

We turn in this section to the introduction of the time metric and spatial
relations. This is a subject to which the philosopher has little to
contribute beyond the clarification of the foundations of relativity
theory recounted in Chapter V. What is needed is an exposition of how
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the transition can be made from the causal theory of time order to the
theory of space-time implicit in the theory of relativity.

In the special theory of relativity, a certain class of physical systems
have a special status: the inertial systems. When a clock is rigidly
attached to an inertial system—or is an inertial system—we shall call it
an inertial clock. What is a standard clock? In principle, one may choose
as standard clocks any family of clocks that are mutually equivalent in
Poincaré’s sense. But this criterion may leave us with several
candidates for this status.l* The practice is to count as standard what
are known as “mechanical clocks”: simple harmonic oscillators.1> In
addition we require them to be inertial clocks.

A standard clock measures space-time intervals along its own
world line; if we take its position as the spatial origin of the frame of
reference, it measures time intervals along its own world line. This is
not so much a fact as a stipulation (in part) of the time metric we shall
accept—as, of course, is done in the special theory of relativity.

To make this precise, let C be a standard clock, and X and Y events
on the world line of C. We shall use “C(X),” “C(Y)” to denote the
readings of C coincident with X and Y, respectively. We can then state
our stipulation as follows: t is an assignment of time coordinates
determined by C only if t(X) = C(X) + k for all events X on the world
line of C, for some constant k.

If Z is an event not on the world line of C, what conditions should
we place on t(Z) in this case? We shall use the Einstein convention
discussed in Chapter V. If W is the world line of C, we consider the class
of numbers t(X) for the events X belonging to SimW (Z). These form an
open interval (t;,t,) of real numbers. We now stipulate

t(Z) =t, + 22

where t; < t, (thatis just how we chose the names “t;” and “t,”).
Now we define a metrically admissible assignment of time
coordinates to be a topologically admissible such assignment that is
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determined by some standard clock €. This finishes the job of
introducing a time metric. But a metrically admissible assignment of
time coordinates still represents only part of an inertial frame of
reference. In such a frame, every event has spatial coordinates as well
as a time coordinate.

Spatial relations obtain between events that happen at the same
time. The special theory of relativity postulates that these relations,
among all the events at a given time, are correctly described in
Euclidean geometry. Second, Euclidean geometry can be axiomatized
using the notion of distance as only primitive term (see Chapter 1V,
Section 2d). So now we must simply define the distance between two
events happening at the same time; this last qualification means: two
events that are assigned the same time coordinate. Well, if they both
belong to the same world line, the distance between them is zero. If
they do not belong to the same world line, we shall define the distance
between them (as in Chapter V) by saying that in an inertial frame the
velocity of light is arbitrarily set equal to one.

To state this precisely, we shall now describe the conditions under
which such an assignment F of temporal and spatial coordinates will be
called a frame of reference (determined by a given clock C).

First, let t be the metrically admissible assignment of time
coordinates determined by C. Then the time coordinate of an event X in
Fist(X). Second, every event on the world line W of C has spatial
coordinates (0,0,0). Third, if X and Y have spatial coordinates (x,y, z)
and (x',y’,z") , the spatial distance in F between them is
Jox—x)2+ @y —-vy)2+(z—2z")%, and we must place further
conditions on that magnitude.

First, if Y but not X is on the world line of C, then (x',y’,z") =
(0,0,0) and the distance betweenY and X in F, that is, \/xz + y? + 772,
must equal (1/2)|t, — t;|, where the time coordinates of the events in
SimW (X) form the interval (¢4, t;).

Now let W’ be a world line of a standard clock whose distance from
W is constant and let X but not Y lie on W'. Then the distance between
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XandYinFis (1/2)|t, — t;| where the time coordinates of the events
in SimW'(Y) form the interval (t;,t,). We have not defined all distances
yet, since not every place is the locus of a standard clock. But the most
we can do is to require the spatial metric to satisfy this condition. (This
is all that can be meant by the frequent idealization of supposing every
place to have a clock attached to it.)

To complete our job we should now postulate that this condition
allows the distances to satisfy the relevant postulates for Euclidean
geometry, and then stipulate that F is an inertial frame of reference if, in
addition, these postulates are satisfied.

It is easy to see that the choice of a family of standard clocks
amounts, at the same time, to a choice of a “direction of time”: any two
such clocks “run in the same direction,” because otherwise they could
not be equivalent in the sense of Poincaré. We must add the duration
postulate, and we must also postulate that each standard clock has in
each frame of reference a constant velocity. This entails that points on
the world line of an inertial clock lie on the same straight line in any
frame. The importance of this is that if C' is an inertial clock not at rest
in F, a Euclidean transformation of the spatial coordinates in F suffices
to make the X-axis of F coincide with the line of motion of C'. This is a
necessary preamble to the deduction of the Lorentz transformations in
the way this was done in Chapter V, Section 5. The deduction there
pertains to a simple case. But we can always obtain this simple case by a
Euclidean transformation of the spatial coordinates and a displacement
of the temporal coordinates (“resetting the clock”). For the sake of
brevity, we shall call this whole transformation Euclidean.

We must be very clear about exactly what is established in this way
and what we intend to accept as convention. First, if two frames are
determined by clocks C and C’, such that C'is at rest in the frame
determined by C, then a simple calculation from the duration postulate
shows that the coordinates of actual events in the frame determined by
C' result from those they have in the frame determined by C by means of
a Euclidean transformation. Second, suppose that C’is in motion in the
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frame of C. Then the calculations in Chapter V, Section 5, show that the
coordinates of actual events in the frame determined by C’ result from
the coordinates these events have in the frame determined by C by
means of Euclidean and Lorentz transformations.

These results we take as our reason to define an admissible frame
of reference to be one that is determined by a standard (inertial) clock
or to result from such a frame by means of Euclidean and/or Lorentz
transformations. This is, in part, conventional, because not every place
is equipped with a standard clock. But the objective factual
presupposition—that coordinates of actual events in frames determined
by standard clocks are thus related—has been shown to be satisfied.

We are now justified in claiming that the causal theory of time
provides a foundation for the special theory of relativity, in the sense
that it can be axiomatically extended into a complete theory of the
space-time of special relativity.16

6. The Role of Idealization and Modal Concepts

a. Pointlike Particles and Events

When we say that the position of a body or event in space is represented
by a triple (x, y, z) of real numbers, or in time by a single real number ¢,
we are obviously idealizing. For any actual body has a certain finite
volume, so that its location is not a point but a three-dimensional region
in space. Similarly, common examples of states and events last a certain
finite amount of time; their location in time is properly represented by a
finite interval on the real line.

What, then, is the relevance of a theory treating of pointlike bodies
(particles) and events? (The same question may be asked, of course, for
particle mechanics and geometrical optics.) The answer has two parts;
both are variations on the theme that we deal with a model of the
subject we study and that this is a proper method of inquiry.
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The first part of the answer is that a problem about, say, the motion
of actual bodies may be approximated by an analogous problem about
point particles. For example, the motions of moon and earth can be
roughly approximated by a model of two point particles m; and m,,
such that m, has the same mass as the moon and is located at the
moon’s center and m, similarly represents the earth.

The second part of the answer is that a problem about, say, the
motion of an actual body may be treated quite precisely (without
approximation) by regarding the body as an infinite system of point
particles of constant configuration, occupying the same volume as that
body. The laws governing such a system are deducible from the laws
governing the individual particles, and the relations among these
particles.

In other words, the idealization involved in limiting our attention
to point particles in mechanics is but a method used to arrive at (what
we assert to be) an adequate model for the behavior of actual bodies—
and, mutatis mutandis, for events.

Too much hinges on the relation between model and actuality in
this answer for it to satisfy the philosopher as it stands. It needs an
underpinning in the form of a thorough discussion of the relation in
question and of the use and role of models. In this context the important
point concerning these misgivings, however, is that they concern a
general problem in no way peculiar to the philosophy of time and space.
In this respect, we can feel quite sanguine about our use of these
idealizations.

Could we have developed the theory of time, say, on the premise
that all events have finite duration? An admissible coordinate
assignment would then have to assign a finite interval of coordinates to
events. Whitehead and Russell did approach the matter in this way. But
they postulated that every finite part of an event is itself an event and
that any sum of events that touch each other is an event, as well as
various other facts about the cardinality and distribution of events.17 In
my opinion, these postulates are no more plausible than the postulate
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that every event is made up of pointlike events. (The latter postulate
would at once solve the problem of how the point-event model is related
to actual events.) Under these circumstances, I prefer to use the punctal
model and leave open its relation to actual events.18

b. Axiomatization and Explication

In our final version of the causal theory of time the only primitive
concept added to the framework of objects and events is causal
connectibility. According to our theory, this relation is equivalent to a
certain spatiotemporal relation among events, in the sense that the
following is a theorem:

(9) X is causally connectible with Y if and only if X and Y are either
spatiotemporally coincident or temporally separated.”

Because of this, we have to defend ourselves against the charge that the
causal theory of time and space is trivial, because it has simply given a
new name (“causally connectible”) to the spatiotemporal relation
described in (9).

What does this criticism entail? If it is correct, we may have
succeeded in developing a relational theory of space-time, but not a
causal theory thereof. For we have not postulated the existence of
absolute time or of instants—but the causal theory goes beyond the
relational theory precisely in the claim that all spatiotemporal relations
can be defined in terms of physical relations. And whatever physical
relations may be, they are not specifically temporal or spatial.

Now, “X and Y are causally connectible” means “It is physically
possible that X and Y are causally connected.” We shall therefore have

" We chose causal connectibility rather than topological simultaneity to
contain the relation of coincidence; this is obviously not essential, but it is a
convenient convention.
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to consider both the notion of physical possibility and the notion of
causal connection. The former we shall postpone until Section 6c; the
latter we shall consider now.

Given the devastating criticism that notions of causality have
suffered at the hands of modern philosophers, the argument that
“causally connected” expresses a physical relation may not seem an easy
task to prove. And we should certainly be in a predicament if we had to
provide a general account of the notion of physical relation in the course
of such an argument. But I think the situation is rather less precarious.
For in the causal theory of space-time, the term “causally connected” has
a very restricted use. Its use does not involve any general notion of
causality; “X is causally connected with Y” is used as equivalent to
“Either X and Y belong to the history of one and the same object, or
belong to the history of one and the same signal, or are coincident with
some pair of events thus connected.” Genidentity and signal connection
are relations too basic in the conceptual scheme of physics and too
empirical in their significance to be denied the status of physical
relation, it seems to me, even in the absence of necessary and sufficient
criteria for the applicability of the term “physical relation.” From this
we draw the following conclusion: “causally connected,” and hence
“causally connectible,” have a meaning that is not specifically
spatiotemporal. Therefore, we are not guilty of the sleight of hand of
developing a causal theory of time by giving a new name to a basic
spatiotemporal relation.

But we must face another criticism: “causally connected” does not
mean simply “genidentical or signal connected”; it also applies to pairs
of events that are spatiotemporally coincident with another pair of
events thus connected. Hence, part of the meaning of “causally
connectible” is purely spatiotemporal. This we counter by saying that
the equivalences in question hold within the context of our theory, in
which “coincident” is defined in terms of causal connectibility. But one
may hear the criticism: However you define your notions, the meaning
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of “causal connectibility” cannot be given without the use of
spatiotemporal terms.

This is a very old kind of argument; it is essentially Kant's
argument against Leibniz, which we discussed in Chapter II, Sections 3b
and 3c(i). Our position here is that within natural language there is no
defining-defined hierarchy and that there is no such thing as “the”
meaning of a term, although there are meaning relations (inclusion,
equivalence) among terms. Within a specific formulation, some terms
are defined and others undefined, but the status of being defined is not
invariant under transitions to other formulations of the same theory.
The claim of the causal theory of time is not that spatiotemporal terms
are defined, but that they are definable, in terms of causal connectibility.
(And causal connectibility is definable in terms of spatiotemporal
coincidence, plus some other notions; this no one denies.) Formulations
of theories are, in a sense, artificial, since they must rely on a choice of
primitive terms (and of axioms) that is to some extent arbitrary. But a
dictionary (say, of English) is circular and should be, for natural
languages there are no inherent definitional hierarchies.

What, then, is the status of (9)? Itis an equivalence following from
the definitions in our theory, but it is more than that. No matter how we
choose our definitions, (9) should follow as a theorem (with the
qualification given in the footnote)—that is, we accept (9) as one of the
criteria of adequacy for any formulation of the theory. Our adherence to
(9) is a linguistic commitment, based on our acceptance of the basic
theses of the causal theory of space-time, transcending the adherence to
any particular version of this theory.

c. Causal Connectibility and Space-Time

The term “causally connectible” is called a modal term because it
expresses a possibility (of actual connection). “Causally connected” is
the corresponding nonmodal term. The reason for using the modal term
is simple: the seemingly insuperable difficulties involved in making do
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with nonmodal terms. The most important point here is that it is purely
contingent whether there are any actual signal and genidentity
connections in any given part of the universe. One might postulate that
there are enough such connections to define temporal order for all
events (given, one must assume, some other relations). And this
postulate might be made plausible by accepted physical theory. In a
philosophical account, however, one prefers to make as few empirical
assumptions as possible.1?

But the meaning of modal terms itself needs philosophical
explication; this is generally agreed. If we take “X and Y are causally
connectible” to be equivalent to “It is physically possible for X and Y to
be causally connected,” we must face the demand for an explication of
physical possibility. But here we are in a quandary. For the attempted
accounts of physical possibility are along the following line: Something
is physically possible exactly if it is not ruled out by physical laws. The
only way, however, in which physical laws can rule out that the emission
and absorption of some signal should coincide with X and Y,
respectively, is on the basis of the relative spatiotemporal positions of X
and Y —or so it would seem.

What we really have here is a counterfactual conditional:

X is causally connectible with Y if and only if a signal emitted
coincidently with X would arrive coincidently with Y, or
conversely.

In other words, we have again arrived at a general problem (the
problem of counterfactuals) transcending the problems of space and
time proper. But on this problem some philosophers have taken the
stand that in philosophical accounts one should eschew modal qualifiers
and counterfactual connectives (“possibly,” “if ... were the case”)
altogether. In using “connectible” are we not courting the danger of
violating philosophical standards of clarity?
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To answer we may first point out that there are many philosophers
who hold that common modal discourse is as intelligible as any (without
thereby denying the desirability of an account, of course). Second, we
may refer to the writings of a major critic of modal discourse, W. V. O.
Quine, to show that we are certainly not violating his standards. Quine
demands that the language of science or philosophy contain only the
standard logical and mathematical words, plus a set of nonlogical
predicates (corresponding to the English form of “is” followed by an
adjective or “is a” followed by a noun), and no modal qualifiers,
counterfactual “if ... then ...”s, and so on. For our purpose, however, the
crucial passage is the following:

From recent paragraphs it becomes evident not only that the
subjunctive [i.e. counterfactual] conditional has no place in the austere
canonical notation for science, but also that the ban on it is less
restrictive than would first appear. We remain free to allow ourselves
one by one any general terms we like, however subjunctive or
dispositional their explanations.?9

In other words, Quine’s demand for austerity does not rule out our use
of “connectible,” provided only that we do not use its longer equivalent
“possibly connected” (except in informal commentary). In this we are
able, and happy, to oblige him. I suspect Quine was driven to this
concession by the impossibility of drawing a distinction between terms
that are truly modal and terms equivalent in meaning to some modal
construction. One less committed to austerity, or more impressed by
the resources of natural language, might have abandoned all opposition
to the use of modal constructions at this point (though not the hope for
their explication, of course).

It seems, therefore, that, as presently formulated, the causal theory
of time meets the standards of clarity currently imposed. But after
having said this, I would like to argue that we can look upon our use of
the counterfactual notion of connectibility as a dispensable convenience
rather than as a necessity. In view of the difficulties that have been
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pointed out, this position is perhaps somewhat audacious, and the
reader will recognize that the status of the causal theory of time does
not hinge on the success of my argument here.

To put it baldly, the structure of actual physical connections does
not determine, as far as we can see, the spatiotemporal relations among
actual events—as these are usually conceived. So we use a relation of
connectibility to define these relations, after having laid down suitable
postulates on the relational structure of connectibility. But these
postulates are calculated to make the structure of temporal relations, as
defined, isomorphic to the (extended) real-number system, for example.
My proposal is therefore that we look upon the use of the connectibility
relation as simply having the purpose of describing the logical space in
which, we assert, all relational structures of actual connections can be
embedded. This means that we think that the relation of connectibility
is not needed to describe the actual world. It means also that the
postulates on connectibility that we lay down just express a belief
concerning the actual connections we may encounter, and nothing more.

If this position is accepted, it follows that our construction of the
theory of time and space has been calculated to provide intuitive
content for its notions rather than to provide a concise theoretical
development. For on the present position, the causal theory of time may
be summed up as follows: Whatever actual physical connections there
are must be reflected in the logical space; a certain mathematical
structure is such that whatever actual physical connections there are
can be reflected in it in this manner; and we choose this mathematical
structure as the logical space time. The postulates on connectibility only
helped to single out the mathematical structure in question in a
heuristic manner.

This position is attractive to me because it is a “conceptualist”
rather than a “realist” position on the subject of the truth of
counterfactual assertions, at least as they appear in the theory of time
and space.?! Itis also in greater harmony with the conception of time as
a logical space, it seems to me, though the “realist” position can also
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accommodate this conception. But I also think that the position is not
worthwhile on its own, that is, unless it can be extended into a tenable
theory of counterfactuals in general.
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Postscript (1984)

Writing the lecture notes which became this book, at Yale during my
first two years after graduation, I was unblushingly conscious of my
philosophical bias. The relational theory of time and space I saw as a
great achievement of modern philosophy, intimately involved in its
extrication from pre-Kantian metaphysics, yet part of a tradition
reaching back through the seventeenth century and into the Aristotelian
natural philosophy. At that time, I had not yet come to appreciate
properly the tension between empiricism and realism. [ came to
understand that, in part through reflection on the challenge of the new
advocacy of absolutism in the philosophy of time and space by my
contemporaries.

In the next few pages I shall address not so much the primary
intended reader who seeks an introduction to time and space, but the
reader ready to evaluate this book. There will be three parts: 1) a
discussion of the relational theory of time and space-time developed
here in connection with the current opposition between empiricism and
scientific realism; 2) a number of specific points of criticism concerning
the body of the text; and 3) a brief look at the philosophical literature
after 1970, with a supplemental bibliography.

1. Whatis space-time?

In a recent essay, Brian Ellis argues that the empiricist position I
advocate against scientific realism in The Scientific Image is a logical
extrapolation from my views on time and space (Ellis, 1985). I think
this is correct, and indeed that I arrived there in part because of new
challenges posed for the relational theory of time and space.

219



In one straightforward sense, [ do not believe that time, or space, or
space-time exists. First, there do exist physical entities, events and
processes, which stand in various relations to each other, and thus
constitute a complex relational structure. In addition there are
mathematical structures, which we use to represent (aspects of) this
physical world. But there is no third entity—no space-time, in which the
physical events and processes are located, and which is in turn variously
represented by the mathematician’s constructs. Secondly, the question
of “what is X?” can still often receive a good answer even after we assert
that X does not exist. In our case, the best answer is, in my opinion, that
time is the mathematical structure used to represent temporal relations
among events; that space-time is similarly the mathematical structure
used to represent spatio-temporal relations.

Defense of this view, which has thus two parts, must also come in
two parts. When I wrote this book, there had not yet appeared the
writings of John Earman, Clark Glymour, Graham Nerlich, Michael
Friedman, David Malament, John Winnie, Arthur Fine, and Henry Field
(to name a representative sample) who all disagreed in some way or to
some extent, with the relational view. Earman stated his own
disagreement bluntly: this view obscures “what I take to be one of the
main lessons of relativity theory; to wit, space-time is just as ‘real’ and
‘concrete’ as, say, physical objects” (Earman, 1971, p. 521). This is a
disagreement with the first part of what I said above; let me concentrate
on this here and leave the second part to the next section (in connection
with Massey’s remarks on the idea of logical space).

I came to see this disagreement as part of a large-scale
disagreement in philosophical views of science. Let me begin with the
question of how to think of a scientific theory. One view, still often
called the received view, is in part that a scientific theory is to be
thought of as an axiomatic theory, and acceptance consists in believing
that the axioms and all their consequences are true. It is not difficult to
see that anyone thinking about the general theory of relativity will
suspect that, if it were given a fairly traditional looking but exact
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axiomatization (looking a little like Newton’s Principia rewritten by
Hilbert, say) it would begin with axioms attributing certain
characteristics to space-time. Saying that the axioms are true would
imply that this entity exists. (Analogy: saying that Zermelo-Fraenkel set
theory is true implies that the axiom “There is a set which has no
members” is true and therefore that the null-set exists.)

Looking however at how relativistic theories are presented by the
very authors I named above (I think here especially of Glymour and
Friedman, about whose approach I wrote a long letter to Adolf
Grunbaum in 1974, on this very topic) this ‘received view’ of theories
does not seem to fit very readily. In these foundational discussions,
presentation of a space-time theory T would proceed roughly as follows:
a (T) space-time is a four-dimensional differentiable manifold M, with
certain geometric objects (defined on M) required to satisfy the field
equations (of T), and a special class of curves (the possible trajectories
of a certain class of physical entities) singled out by the equations of
motion (of T). In other words, presentation of the theory consists in the
description of a class of mathematical structures, the models which that
theory ‘gives us’ for representing the world.

Seen this way, acceptance of the theory undoubtedly involves belief
that at least one of these models provides an adequate representation.
But what is adequacy? One view would be that there must be an exact
match between the world and one of these models, with each element in
the model having some corresponding element of reality. (Likely this is
the only construal that identifies the theory’s providing some adequate
model with the theory’s being true.)

But I offer a different view of science, and of acceptance of theories.
If [ say, without qualification, that I accept the theory, I certainly convey
my belief that it is successful. But what counts as success depends on
the aim; indeed, the aim of an enterprise is to be identified through the
relevant criteria of success. And I take the aim of science to be empirical
success—success in the representation of empirical phenomena. Now it
is possible that all empirical phenomena have their counterparts in
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some model of general relativity, even if not every element of the model
corresponds conversely to some element of reality—indeed, even if
space-time itself is not a real thing in addition to material objects and
events.

The paper that raised the issues most acutely for me was one of
Glymour’s (Glymour, 1972; circulated in draft form 1970), in which he
established that general relativity has empirically indistinguishable
models. We already knew that the assertion that space is locally
Euclidean implies very little about its global topological structure (two-
dimensional examples include the surfaces of a sphere, torus, and Klein
bottle). General relativity begins by postulating that the special theory
of relativity holds locally; what does this imply about the global
topological structure of space-time? Again, very little. The field
equations too specify only a local relation between the components of
the metric and the energy-momentum tensors. Glymour argues
convincingly that there must be topologically distinct cosmological
models which are empirically indistinguishable (see the further
discussion in Glymour 1977 and Malament 1977). Tests, after all, will
give direct information about local relations among quantities only.

This raised two problems for me. The first concerned the program
of the causal theory of time (a specific variant of the relational theory).
Its concepts pertained all in the first instance to local structures. While
global topological structure was discussed (the issue of closed time), I
could now see unsuspected limits to that discussion. If time is really
closed, for example, then any mapping of events into an open time, with
local temporal order preserved, must inevitably place far apart some
events which really occur closely together. Concentration on this
classical dilemma had therefore avoided the problem now raised by
Glymour for the space-time of general relativity. But I had already
modified the program of the causal theory of time, perhaps rather
drastically, by the introduction of the idea of logical space, (see next
section) which in principle allows a good deal of leeway between
physical reality and theoretical model. It was appropriate therefore to
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turn to the second, more general problem: how shall we view theories
which have distinct but empirically indistinguishable models? Thinking
about this I came to the conclusion that this problem is not at all
peculiar to general relativity, but is the traditional problem of
empiricism in the philosophy of science, here posed in a spectacular
new form. This was the subject of the 1974 letter to Grinbaum; and
what [ described here in the preceding paragraphs about theory
acceptance was the answer [ had begun to elaborate.

2. Specific problems in the text.

Various authors have made specific objections to parts of this book, in
articles and reviews (see the supplementary bibliography below). The
most important of these, for me, are those in Gerald Massey’s valuable
review; especially his doubts about the notion of logical space and its
use here. I shall take up the main issues raised, in the order in which
they relate to the text.

Chapter Two. On pages 19-20 [13]", explaining Aristotle’s theory of
change, I talk about families of mutually contrary properties. “The
unnecessary, obscure and dubious thesis is advanced that all the
members of such a family must possess the same degree of determinacy
or definiteness” (Massey, 1974, p. 90). 1 agree. The idea of equal
determinacy is obscure, and I thank Massey for pointing out that it is not
needed here.

On pages 26-27 [19-20], as I said myself, my construal of Aquinas’
discussion of the beginning of time was probably less than charitable.
Aquinas probably did not reify imaginary time to quite such an extent;
nevertheless I am not sure that he himself was altogether clear on this.
To say with Massey that “Aquinas grounds the intelligibility of ‘before’

“Numbers in brackets next to references to pages in this .PDF edition refer to
the corresponding pages in the (first) two paper editions: Random House,
1970, and Columbia University Press, 1985. - Ed.

223



and ‘beyond’ in what can be imagined, but not by appeal to a ghostly
imaginary time that eludes the grasp of Aristotle’s theory” (Massey, p.
91) may attribute to Aquinas the clarity that in my opinion was not
reached till Leibniz.

Massey also points out, however, some defects in my discussion of
Leibniz (pages 33-34 [26]) on this same subject. The fault I see, upon
reflection, lies in my choice of the examples:

If he had been there, he could have done it.
If he had been there, he would have done it.

of which the first has more than one reading. The reading I gave it made
it an example of the logical form

If A then possibly B.

a conditional assertion of possibility. That this logical form is not that of
the counterfactual conditional expressed by the second example, Massey
no doubt agrees. The word “could” should perhaps be replaced by
“might.” This does not remove all difficulties. I say for instance that the
second example implies “If he was there, he did it.” In the logic of
counterfactuals which Robert Stalnaker and Richmond Thomason were
developing at Yale when I arrived there in 1966, the implication holds,
but the English sentences undoubtedly have readings for which it does
not. I would not revise my presentation of Leibniz’s crucial logical
insights at this point but I would today not be quite so cavalier in linking
the logic to natural language.

Chapter Three. Earman (1971, p. 517) criticizes my presentation
of topology on pages 68-69 [59] for carelessness, saying that I could
easily have explained the proper concepts of (open sets and)
homeomorphisms. That is true enough, but I feel unrepentant here as
well as about my somewhat careless remark, on page 176 [158], that the
special theory of relativity is only concerned with inertial systems. I
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admit to oversimplifying the presentation a little in these cases, but not
harmfully so.

More serious perhaps is Nerlich’s doubt that “the beginning
student will get much sense of what a highly interesting package is
being sold” in my discussion of the conventionality of the metrics of
duration and spatial extent. (Nerlich, 1973, p. 82). Nerlich adds “This is
a simply astounding idea, unheard of outside philosophy, yet the student
may fail to see how much his preconceptions are being affronted by van
Fraassen’s theory. I suspect that this is because van Fraassen scarcely
regards it as a theory but rather as enlightened common sense.” Well, |
regarded it as established in the philosophical discussion of this subject,
stretching from Leibniz via Bosanquet, Russell, Poincaré and Riemann to
Reichenbach and Griunbaum. I still regard it so. But I don’t think I can
be said to have presented it without argument. It is true that until I
discussed these issues with Nerlich in Adelaide in the spring of 1974, |
had not appreciated the extent to which these conclusions go against the
grain of common sense.

Massey expresses puzzlement about the concept and the use of
logical space in Chapter Three, section 4 “What Time Is.” To my mind
this is the central section in so far as my own contribution is concerned,
and I indicated this by recapitulating it in the last two pages of the book.
Massey has two queries. The first concerns the role of necessity: on
pages 117-118 [104-105] I tried to provide a sense in which it is true to
say that the logical space must be such that the corresponding real
structure is necessarily embeddable in it. Secondly, Massey points out
that if time is the mathematical structure we use to represent temporal
relations among events, and our choice of structure for this use depends
on the physics to which we subscribe, then this choice may vary, and so
time itself may change. (In his words: “if these theories change, so
might physical time which presently is the real number line” ... [Massey,
p. 92].)

I can begin by making a simple logical distinction, which is however
not sufficient as a complete defense. Sometimes a church is
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deconsecrated and sold for secular use; then it is no longer a church; but
the referent of “it” in the preceding clause is still the same entity, it has
not changed. Similarly it is entirely accurate to say at each point in our
history: time has such and such a structure, and that will not change.
These assertions will be correct despite the fact that the structures
referred to and structural characters attributed are different at different
times. But these remarks defuse only the less threatening aspect of
Massey’s remarks, and do not go to the heart of the matter.

Russell identified time with the relational structure constituted by
actual events and what he took to be the temporal relations among
them. This was like the view I interpret Leibniz as giving us. Time is the
temporal order of actual events. Since this order-structure is different
in different possible worlds, time is different there. I quoted (on page
112 [99]) several remarks of Leibniz which could be interpreted as
indications of a different view; especially his statement in the New
Essays:

The void which can be conceived in time indicates, like that in space,
that time and space apply as well to possible as to existing things.

We can reconcile these remarks (as [ showed) with Leibniz’s main view.
But they sound like the view I attribute to Kant: we conceive of time as
one, as an individual, in which we conceive all events, possible as well as
actual, as being located. If we think of different world histories, we
think of them as unfolding in the same time. And when we chart
different courses of events we chart them in our own time: Hugo could
have murdered Hoederer this morning, he may do so tonight. We
conceive of all events as necessarily located in time, as necessarily
having some definite location there, whatever it be.

Kant too had the problem of reconciling these facts about how we
conceive the world—our conceptual phenomenology—with a
philosophical conscience that would not allow recourse to pre-Critical
metaphysics. With this conscience, the easy reconciliation offered by
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reification of time as an entity, the solution of absolute time, is not
acceptable.

Has this Problematik changed radically with the advent of general
relativity, in which space-time cannot be viewed as an independent
arena able to contain different distributions of matter and energy? Let
me come back to that at the end of this section. Note only that in special
relativity, Minkowski space-time still has this matter-independent
character, in which we conceive different patterns of events as locatable.

For Kant, the problem posed itself as a need to illuminate the
phenomenology of consciousness, without recourse to a metaphysics
pretending to knowledge beyond the reach of experience. For us, the
same problems recur in the need to explicate natural language. Time is
to be conceived of as an individual, Kant said; “time” is a singular term,
purporting to carry singular reference, we say. The idea of logical space:
that our language use is governed by certain models, and that the
primary interpretation of language is in these models (with reference
sometimes established via the further relations of these models to
reality) is the idea I proposed to satisfy this need without recourse to
metaphysical realism.

Viewed thus, the problems to which Massey points are instances of
a more general problem. I tried somewhat unsuccessfully to come to
terms with this general problem in Chapter Six, sections 6b and 6c
(pages 212-218 [193-198]). In my papers on modality and logical space
(see Chapter Three, note 45 and Chapter Six, note 21) I had gone some
way toward a non-metaphysical account of modal discourse, but the
modal notion of causal connectibility has some special difficulties. As I
explained in my comments on Bressan and Suppes at the 1972
Philosophy of Science Association (van Fraassen, 1974), this sort of
modality is not even touched by the idea that necessity consists in being
implied by a law. For the purported fact that two individual events e
and e’ are connectible is, in the absence of information about their
relative spatiotemporal location, not deducible from any general fact. (I
raised a similar problem about Bressan’s modal “correction” of Mach’s
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treatment of mass, and later about singular probability statements.)
Preoccupation with Quine’s demands for linguistic austerity perhaps
obscured, for me as well, the new direction indicated by the idea that the
causal theory should say only that the structure of actual causal
connections can be embedded in the relevant logical space. I now see it
as typical of modal and causal discourse that it receives its full
interpretation only in the logical space (or somewhat more
sophisticated models) and need not be understood in terms of reference
and extension.

Chapter Four. 1 agree with Nerlich that the brief exposition of
Klein’s Erlanger Program on pages 137-138 [122-123] could bear
improvement, and I regret this the more because I now regard this
Program as of great general significance. Massey notes the need for a
technical correction: the definition on page 139 [124] allows broken line
segments to count as segments, which then makes the subsequent
definition of pair separation defective. If [ rewrote this more thoroughly
now I would perhaps take Earman’s advice and give a more thorough
and precise presentation of topology to begin. But the following repair
will do: define a segment of a line to be a continuous region which is
part of a line.

Earman disagrees that one key to the dimensionality of space lies
in Kant’s discussion of incongruous counterparts. Personally I still think
so, and do not think that examples of non-orientable spaces defeat the
value of his insight. The point is perhaps that Earman and I view this
topic differently (see his op. cit. pp. 517-518) in that he takes the
question to be what could explain the three-dimensionality of space
(perhaps nothing could, he says) while I (and I think Reichenbach whom
I followed here) was interested in isolating physical correlates to such
features of space. (I think there is a similar difference in the questions
addressed that may account for his dissatisfaction with the discussion of
the anisotropy of time.)

Chapter Six. Massey’s review points out and remedies a defect in
Grunbaum’s second formulation of the causal theory of time. The
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remedy (which will make the problem apparent) is to “stipulate that the
set of spatial positions of events of the complete, spatially non-self-
intersecting set W be topologically equivalent to a Euclidean line
segment.” Massey also points out about my own formulation (Chapter
Six, section 4) that in Definition 6 (page 204 [186]) it is necessary to
stipulate that E, X, E’, and T are mutually distinct. And he adds that
Postulate II (page 202 [184]) can be weakened without loss to assert
only that there are two distinct world lines.

In Chapter Six I also indicated how the causal theory of time can be
extended to a theory of space-time. The concept of space-time in
question is that of the special theory of relativity, and the general model
of the world used here is the simplistic one of point-like events. Nerlich
(1973, p- 83) comments on this: “The causal theories of time and space-
time foist extraneous punctiform, materialistic metaphors onto the
axiomatic foundations of the relativity theories in a way which, I believe,
obscures their real nature.” I was sensitive to the simplistic
representation of nature utilized here, and defended its use in Chapter
Six, Section 6a. The idea was certainly not to advocate a certain
metaphysical world picture, but only to investigate the relations
between the relevant concepts in a sufficiently simple setting. The
virtues and also the pitfalls of this procedure are of course evident.

Earman (1971, p. 521) writes “it simply will not work within the
context of general relativity. In the first place, a causal theory of time
will not be very interesting unless it can provide a causal analysis of the
concept of spatio-temporal coincidence of events without appealing to
the concept of space-time point. Van Fraassen offers such an analysis
(page 202 [184]) but it fails for certain relativistic space-times....” 1 did
not, of course, purport to carry through this analysis for general
relativity.  Above, in connection with the issue of empirically
indistinguishable space-times with different global structure, I indicated
that [ see very serious obstacles to such a project. I myself have not
embarked on it, nor do I know any new attempts along this line. On the
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other hand, I do not see that the impossibility here asserted has been
established.

General relativity may indeed have so changed even the concept of
space-time in physics as to make all previous philosophical analysis
inapplicable. The space-time of special relativity, as I said above, was
still correctly conceived of as an independent arena, in which the
pattern of events of our actual total world history (whatever it be) is
located. The conception, as the earlier ones of time and space, was that
of a general form in which any physically possible world fits. Not only
the topological structure but also the metric was fixed beforehand, in
the theoretical models, the same regardless of what happens in nature.

In general relativity, it is no longer so. The models of this theory do
not have a common space-time; they are space-times, and as its
aficionados never tire of pointing out, exhibit an astonishing variety of
structures. So the idea that space-time is the logical space we use to
represent spatio-temporal distributions of matter-energy is, with its
presuppositions that the two structures are independent, an
anachronism. Michael Friedman, in his excellent discussion of these
issues (from an absolutist point of view) says mildly:

The debate between the absolutist and the (ontological) relationist
depends on a distinction between matter on the one hand and space-
time on the other, between the set P of concrete physical events and the
manifold M of all actual and possible events, between points in M that
are “occupied” and points in M that are “unoccupied.” Before
proceeding, it is worth seeing how this distinction itself becomes
problematic with the development of relativity theory (Friedman,
1983, p. 221).

He states his debt to David Malament for emphasizing this problem
correctly, and considers it to be of central importance, though he does
not take it to undermine the absolutist-relationist debate definitely. For
the idea of space-time as a logical space, nevertheless, the problem
might indeed be thought devastating.
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The problem may not be a problem for philosophy alone. In
quantum mechanics we have come to think of the world as irreducibly,
irremediably indeterministic. Quantum mechanics and special relativity
have been successfully combined. It makes sense—prima facie, and also
sub specie special relativity—to ask what is the probability of one sort
of event happening in one spatiotemporal region, given that another
sort of event happens in another region. But, prima facie at least, the
question presupposes just that assumption of independence between
physical phenomena and space-time we have found in jeopardy—the
idea of space-time as an arena in which different worlds could unfold.
How do you write an indeterministic theory in general relativistic form?
These reflections suggest that the problems are not merely technical but
may derive from deep, unresolved conceptual questions.

Let me, however, make a suggestion. In some easily recognizable
way, our concepts of time and space have become ever more abstract.
In the Aristotelian concept of space, there are privileged directions
which have disappeared, are absent, have been “abstracted from,” in
that of modern science. In the Newtonian combination of space and
time there are still privileged states of motion, which have disappeared
in that of special relativity. In discussions of general relativity, “space-
time” refers always to a differentiable manifold with at least a metric
tensor defined on it. May it not be possible to fashion a concept of
space-time from which all the variable features, differing from model to
model, have been abstracted? A space-time which has neither this
metric nor that, neither this global topological character nor that? [ am
speaking here of a mathematical construct which at present does not
exist (and as is of course always the case at such a point) cannot be
conceived of at present except in trivializing terms. But perhaps the
charge that general relativity has left our conceptions of space-time
behind has a double edge. Perhaps the adequate new conception has
not yet been born, perhaps in retrospect these discussions in the second
half of the twentieth century will be seen as contributing to its creation,
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and perhaps it will, at the level of the most basic philosophical
questions, be relevantly like earlier conceptions.

3. Recent Developments.

My own fascination with time and space began as a student, and for my
graduate work I went to Pittsburgh to study this subject with Adolf
Grunbaum. My dissertation, several papers, and this book were
therefore in the first instance contributions to the literature centering
on Griunbaum’s work in this area. His own writings on this subject,
including replies to critics, were extensive; the main reference to this
period is now the second, revised and enlarged edition of his
Philosophical Problems of Space and Time which appeared in 1973.
Unlike my own more modest efforts, this book contains a great deal
about the general theory of relativity as well. Grinbaum wrote
extensively on this subject thereafter; see especially his “Absolute and
Relational Theories of Space and Space-Time” (1977).

Major monographs to have appeared in this subject area include in
addition those by Sklar (1974), Nerlich (1976), Field (1980), Newton-
Smith (1980), and Friedman (1983). There have been several
important collections of papers as well, notably P. Suppes (ed.) Space,
Time, and Geometry (1973), R. Swinburne (ed.) Space, Time, and
Causality (1983), and ]J. Earman, C. Glymour, and ]. Stachel (eds.)
Foundations of Space-Time Theories: Minnesota Studies in the
Philosophy of Science (1977). The books that I have listed are the best
introduction to current work in this part of the philosophy of science;
they and articles cited above will be found in the Supplementary
Bibliography.
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