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Abstract

Causal models show promise as a foundation for the semantics of coun-
terfactual sentences. However, current approaches face limitations com-
pared to the alternative similarity theory: they only apply to a limited
subset of counterfactuals and the connection to counterfactual logic is not
straightforward. This paper addresses these difficulties using exogenous
interventions, where causal interventions change the values of exogenous
variables rather than structural equations. This model accommodates
judgments about backtracking counterfactuals, extends to logically com-
plex counterfactuals, and validates familiar principles of counterfactual
logic. This combines the interventionist intuitions of the causal approach
with the logical advantages of the similarity approach.

Keywords: counterfactuals, causality, interventions, backtracking, structural
equations

1 Introduction

Consider the counterfactual Fine (1975) raises against the similarity theory of
counterfactuals: “If Nixon had pressed the button, there would have been a
nuclear holocaust.” Intuitively, this counterfactual is true, as Nixon pressing
the button would have caused a nuclear holocaust. This judgment, however,
conflicts with the most natural interpretation of the similarity theory of coun-
terfactuals. On this theory, following Stalnaker (1968) and Lewis (2013), a
counterfactual “If A had been the case, then C would have been the case,” writ-
ten A > C, is true if C is true in the closest or most similar world(s) where A
is true. Since a world where a nuclear holocaust occurs is intuitively less simi-
lar to our world than a world where something intervenes to prevent a nuclear
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holocaust, the similarity theory of counterfactuals seems to incorrectly predict
that this counterfactual is false.

Causal theories of counterfactuals can more easily explain judgments in cases
which conflict with intuitions about similarity.1 The causal account relies on
the concept of intervention: a counterfactual A > C is true if C is true when
one intervenes to set A true.2 For example, if a causal intervention had forced
Nixon to press the button, then a nuclear holocaust would have resulted, re-
gardless of how distant or dissimilar this “intervened world” is from the actual
world. Causal theories of counterfactuals also connect counterfactual language
with other aspects of human reasoning studied with causal models (Glymour,
2001; Sloman, 2005; Gopnik & Schulz, 2007) and with empirical work on coun-
terfactual inference.3

Despite the potential of causal theories of counterfactuals, many philosophers
prefer the similarity theory. Some reasons for this include that the similarity
theory applies to a broader range of counterfactual sentences and corresponds
nicely to counterfactual logics. One significant limitation of causal theories of
counterfactuals, particularly theories following Pearl (2009), is that they can-
not explain backtracking counterfactuals. These are counterfactuals where the
antecedent is the effect rather than the cause of the consequent, such as “If the
microwave had been on, it would have been plugged in.” Furthermore, most
causal theories of counterfactuals only apply to a logically restricted class of
counterfactuals, excluding counterfactuals with disjunctive antecedents (Hid-
dleston, 2005; Pearl, 2009; Halpern, 2013), and the most promising extension
to logically complex counterfactuals (Briggs, 2012) violates modus ponens, a
standard principle of counterfactual logic.

In this paper, I argue that we can overcome these limitations by invoking
a different theory of causal intervention. While most authors, following Pearl,
argue that interventions require changing the structural equations of a causal
model, I argue that we get better results for counterfactual truth conditions if
interventions instead change the values of exogenous variables. In particular,
I argue that a counterfactual semantics built on exogenous interventions can
analyze backtracking counterfactuals, extend to logically complex antecedents,
and validate familiar properties of counterfactual logic, including modus po-
nens. Thus, the exogenous intervention model can capture the intuitive appeal
of causal approaches to counterfactual semantics while retaining the logical ad-
vantages which come with theories built on similarity.

The paper is organized as follows. In Section 2, I introduce the formalism
of causal models and the notion of an intervention, highlighting how Pearl’s
approach fails to predict the expected truth values for backtracking counterfac-

1Even Lewis’s (1979) account of Fine’s example within the similarity theory invokes laws,
a central component of causal theories.

2See the classic works of Galles and Pearl (1998) and Pearl (2009), as well as more recent
work: Briggs (2012); Kaufmann (2013); Ciardelli et al. (2018); Santorio (2019).

3Economists, for example, use elements of causal modeling to make counterfactual predic-
tions for what would have happened if certain countries did not join the EU (Campos et al.,
2019) or if video game companies had not developed games exclusively compatible with one
platform (Lee, 2013).
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tuals and motivating exogenous interventions. In Section 3, I define exogenous
interventions more formally, characterizing the set of interventions which force
a counterfactual antecedent. I then use this to define a selection function for
counterfactual semantics which satisfies the axioms for a familiar logic of coun-
terfactuals, Pollock’s (1981) counterfactual logic SS, as demonstrated in the
Appendix. In Section 4, I discuss how one can use the exogenous intervention
framework to represent more restrictive semantic theories of counterfactuals,
like those based on similarity or those implementing a further minimality condi-
tion found in Hiddleston (2005). In Section 5, I discuss the differences between
exogenous interventions and Pearl’s model in greater depth, showing how one
can replicate many of Pearl’s predictions using exogenous interventions without
the logical limitations of his approach.

2 Causal Models and Interventions

Consider a familiar example from the causal modeling literature, discussed in
Pearl (2009): the firing squad. Here, a court is deciding whether to order the
execution of a prisoner. If the court orders execution, then the captain sends a
signal to two shooters, Shooter X and Shooter Y, who bring about the death
of the prisoner. We can formalize this scenario as a causal model: we have
five binary variables which take values 0 if the event does not occur and 1 if
the event does occur and four structural equations describing the dependencies
involved. We can write the components of the causal model as:

Variables: the court orders execution (C), the captain sends a signal (S),
Shooter X shoots (X), Shooter Y shoots (Y), the prisoner dies (D)

Structural Equations: S = C; X = S; Y = S; D = X ∨Y.

We can also illustrate the causal dependencies in a graph:

C

S

X Y

D

The structural equations, which represent the causal relationships in the
model, allow us to use causal models to evaluate counterfactual sentences. We
evaluate a counterfactual A > C in a causal model by intervening in the model
to set A true and seeing if this guarantees that C is true. Suppose that the
court did not order execution and that the prisoner lived, and consider the
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counterfactual “If X had shot, the prisoner would have died.” If we make an
intervention on the causal model to set X = 1, so that Shooter X shot, then
since D = X ∨ Y, D = 1, so the prisoner would have died; this renders the
counterfactual true in this model.

To give a formal account of interventions and counterfactual truth condi-
tions, we must define causal models more formally.4 A causal model M =
(U,V, fi) consists of a finite set of exogenous variables U, a finite set of en-
dogenous variables V = (V1, ...,Vn), and a set of structural equations F =
(f1, ..., fn), where for each i, vi = fi(pai, ui), where pai is an assignment to the
parents PAi of Vi and ui is the assignment to Ui ⊆ U, the unique minimal set
of exogenous variables needed for fi. Thus, each fi tells us the value of the
endogenous variable Vi given the values of Vi’s parents PAi and the exogenous
variables Ui. The assignment of parents PAi for Vi determines a graph G on V,
which we assume is a directed acyclic graph (DAG).

Since all endogenous variables have structural equations which depend on
the variable’s parents and exogenous variables, assigning values to all exoge-
nous variables is sufficient to determine the values of all endogenous variables
in the model. Thus, if we let U represent the set of possible values of the ex-
ogenous variables and V the set of values of endogenous variables, the set of
structural equations F forms a function from exogenous variable assignments to
endogenous variable assignments, F : U → V. Even though exogenous variable
assignments are crucial for understanding the different configurations consistent
with a causal model, the significance of exogenous variables is often overlooked
in causal theories of counterfactuals. In the firing squad example, the only ex-
ogenous variable is the court ordering the execution (C); once the value of this
variable has been settled, the values of all other variables are settled as well.5

The dominant causal approach to counterfactuals, following Pearl, proposes
that a counterfactual A > C is true when C is true after one has intervened
to set A true, where an intervention replaces the structural equations of the
original causal model to require that A is true. Consider again the counterfactual
“If X had shot, then the prisoner would have died.” On Pearl’s approach,
intervening to fix the antecedent replaces the structural equation X = S with
the structural equation X = 1. This intervention breaks the causal laws of
the model, rendering the antecedent fixed regardless of the values of the parent
variables. This is meant to capture the intuitive difference between intervention
and observation: intervention involves hypothetically changing the laws of the
model, while observation involves observing a realization consistent with the
laws (Hagmayer et al., 2007; Fisher, 2017a).

This approach to interventions, however, is limited in the kinds of coun-
terfactuals it can address. In particular, intervening by changing structural
equations cannot explain judgments for backtracking counterfactuals where the
consequent causes the antecedent. Consider the counterfactual “If X had shot,

4For more details on the formal background to causal modeling, see Pearl (2009).
5Technically, C is an endogenous variable with no parents. However, we often think of

these variables as being determined exogenously, so there is an exogenous variable UC such
that C = UC.
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the captain would have signaled for it.” Intuitively, this counterfactual is true:
if the causal model is correct, X only shoots if the captain signaled to, so X = 1
only if S = 1. This judgment involves reasoning backwards from effect to cause:
for X = 1 to have been true, S = 1 must have caused X = 1, since S = 1
is the only possible cause of X = 1 in the model. The philosophical literature
provides further examples of backtracking counterfactuals (Khoo, 2017), and ex-
perimental evidence suggests that many people accept backtracking readings of
counterfactuals (Rips, 2010; Gerstenberg et al., 2013). Backtracking counterfac-
tuals are especially compelling in cases where all possible causes are accounted
for, like “If the light had been on, the light switch would have been up” or “If
the microwave had been on, it would have been plugged in.”

Pearl’s approach to interventions, however, cannot explain backtracking
judgments: intervening on A by changing the structural equations for variables
in A can never change the factors upstream from A. For example, intervening
so that X shot changes the structural equation for X from X = S to X = 1,
leaving all variables upstream unchanged. Under this intervention, the captain
would still not have signaled and the court would still have not ordered execu-
tion, even though these changes are necessary for X to have shot. This applies
to other backtracking counterfactuals as well: on Pearl’s theory, intervening to
turn a microwave on does not require that the microwave be plugged in, so
Pearl’s theory offers no way to account for the truth of the counterfactual “If
the microwave had been on, it would have been plugged in.”

Backtracking reasoning involves keeping the laws, or structural equations,
of the causal model the same and instead reasoning about the variables in the
model which would have to change to make the antecedent true. Since all en-
dogenous variable values are determined by the exogenous variables, the only
way to change the values of endogenous variables without changing the struc-
tural equations is to change the values of the exogenous variables. This moti-
vates an alternative conception of intervention: an intervention is a change to
the values of exogenous variables in a causal model.6 For example, in the firing
squad case, C is the only exogenous variable, so the only way we can change
any variables in the model while keeping the laws the same is by changing C.
If we consider the exogenous interventions which set X = 1, our model tells us
that X’s decision to shoot is based solely on the signal S, and S, in turn, is
based solely on C, so the only way to intervene within the model to set X = 1
is to set C = 1. This allows us to recover the desired truth conditions for the
backtracking counterfactual “If X had shot, the captain would have signaled for
it”: intervening to set X = 1 involves setting C = 1, which sets S = 1, so the
counterfactual is always true. Exogenous interventions can handle both forward
and backtracking counterfactuals, challenging arguments that forward and back-
tracking reasoning arise from different causal procedures, such as intervention
and extrapolation (Lucas & Kemp, 2012, 2015; Lee, 2015).

With exogenous interventions, counterfactual truth conditions depend on the

6This approach to interventions is also introduced in LeRoy (2020), though not for the
truth conditions of counterfactuals.
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exogenous variables which are included in the model.7 Suppose, for example,
that we think it is more accurate to attribute to X the possibility of shooting
without receiving the signal. To account for this possibility, we should add an
exogenous variable UX to the causal model such that X = S ∨ UX, even if we
consider the activation of UX extremely unlikely. Exogenous variables like UX

are sometimes referred to as error terms because they introduce the possibility
of outcomes deviating from the expected course of events. With this additional
exogenous variable, intervening to make X shoot (X = 1) no longer requires that
the captain gave the signal (S = 1) or that the court ordered execution (C = 1),
as the exogenous intervention UX = 1 can cause X to shoot without the signal
to do so. Thus, while “If X had shot, the captain would have signaled for it” is
true in the original model, it need not be true in a model where X can choose
to shoot exogenously.8

This discussion motivates the approach to counterfactuals I will define in
the next section: A > C is true if any exogenous intervention (or way of setting
the exogenous variables in the model) fixing A leads to C.

3 The Exogenous Intervention Model

Before discussing how exogenous interventions can serve as the foundation for
counterfactual truth conditions, I will introduce the notion of a causal world,
allowing for the use of tools from the similarity theory of counterfactuals. Pearl
(2009) defines causal worlds, but makes little use of the notion in his analysis,
and the notion is largely left out of later causal theories of counterfactuals.
A causal world (M, u) is a causal model M paired with an assignment to all
exogenous variables, u ∈ U . Since all endogenous variables are determined by
an assignment u ∈ U , elements of U play the role of truthmakers for propositions
of variable assignments, and we can associate propositions built from variable
assignments with sets of worlds. Assuming the causal model is fixed across

7Determining the correct causal model for a situation is a challenging issue (Halpern &
Hitchcock, 2010; Woodward, 2016). While I will not address this issue directly, some concerns
which may be relevant for whether to include an exogenous variable are: the probability or
frequency of activation of an exogenous variable, whether the exogenous variable is activated
in the actual world, and whether the exogenous variable is made contextually salient.

8The fact that the exogenous intervention model can accommodate both forward and
backtracking readings of counterfactuals may also be useful for understanding backtracking
readings of forward counterfactuals. Suppose your friend Smith is on top of a building about
to jump, but steps off (Jackson, 1977; Khoo, 2017). On an ordinary forward reading, the
counterfactual “If Smith had jumped, he would have died” is true. Your friend Beth, however,
thinks Smith has no desire to die, so if he had jumped, there would have been a net or
something else intervening to prevent his death, so she claims, “If Smith had jumped, he would
have died” is false, offering a backtracking reading of the same counterfactual. Both judgments
are consistent with the exogenous intervention model, with different judgments resulting from
different causal models. Beth’s backtracking reasoning proposes that there is an inhibiting
abnormality preventing Smith from dying if he jumps, making the counterfactual false since
intervening to make Smith jump no longer leads to his death. On the usual forward reading,
there is no such inhibiting abnormality activated in the actual world, so the counterfactual is
true.
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worlds, we can simply treat the exogenous variable assignment u as the causal
world.9

If Vi = vi is an endogenous variable assignment, this determines a set of
possible worlds by [Vi = vi] = {u ∈ U : F(u)i = vi} ⊆ U , so u ∈ [Vi = vi]
iff Vi = vi is true when we plug u into the structural equations in M. Since
all variable assignments yield sets of possible worlds, any logical combination of
variable assignments also determines a set of possible worlds, where negation,
conjunction, and disjunction correspond to set-theoretic complementation, in-
tersection, and union, respectively. We refer to subsets of U , or sets of causal
worlds, as propositions. Counterfactual truth conditions will be defined for all
propositions, allowing the exogenous intervention model to incorporate coun-
terfactuals built from logically complex propositions.

For illustration, consider a modified version of the firing squad example
where both X and Y are able to shoot without receiving the signal. Here, we
have the exogenous variable UC representing whether the court orders execution
as well as exogenous variables UX and UY representing the decisions of X and
Y to shoot regardless of signal. The structural equations for X and Y shooting
are X = S ∨ UX and Y = S ∨ UY: the shooter shoots iff the captain signals
for it (S = 1) or the shooter makes the decision to shoot regardless of the
signal (UX = 1 or UY = 1). Thus, in the modified firing squad example, there
are three exogenous variables, UC, UX, and UY, with causal graph as above
and structural equations C = UC, S = C, X = S ∨ UX, Y = S ∨ UY, and
D = X ∨ Y. In this model, there are eight possible worlds corresponding to
the eight possible assignments to the three exogenous variables. Propositions in
the model correspond to sets of possible worlds: “The prisoner dies and either
Shooter X or Shooter Y does not shoot,” for example, is true in exactly two
worlds: (UC,UX,UY) = (0, 1, 0) and (UC,UX,UY) = (0, 0, 1).

Causal worlds allow for a convenient interpretation of exogenous interven-
tions. Interventions are manipulations to a causal model to set a given propo-
sition A true. In the exogenous intervention model, these manipulations are
variable changes: given a causal world u, we can manipulate the world so that
A is true by changing some of the exogenous variable values in u. However, not
all variable changes which make A true arise from direct manipulation of the
world to force A. Intuitively, when we think of an intervention in the world to,
say, make John’s shirt green, we do not think of changes to the world which also
make John taller. The additional variable change making John taller is irrele-
vant for the proposition we are intervening to set true, and therefore should not
be considered part of a causal intervention. This motivates the definition of an
A-intervention, which will be given more formally below: the A-interventions
in a world u are the variable changes which make A true without changing any
variables unnecessary for the truth of A. A similar condition restricting inter-
ventions on A to changes necessary to make A true appears in Pearl’s theory
of endogenous interventions on structural equations, where causal interventions

9Fixing the causal model poses problems for “counternomic” or “counterlegal” counter-
factuals, where the counterfactual requires breaking the laws of the causal model; see Fisher
(2017b).
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can only change structural equations for variables in A, leaving the equations for
variables independent of A unchanged. However, some differences arise between
these two conditions for causal intervention, as will be discussed in Section 5.

An intervention setting A true in u corresponds to changes to some of the
exogenous variables in u; making these changes to u results in an “intervened
world” in U . This defines a selection function f(A, u) consisting of all worlds
where we intervened on u to set A true. As in similarity accounts of counter-
factuals, for A > C to be true in u, C must be true in all worlds in f(A, u).
However, since f(A, u) is the set of all worlds where we have intervened to
make A true, this approach to counterfactuals preserves the interventionist in-
tuition of causal theories: A > C is true if C is true when we intervene to set
A true. The selection function is built solely from the causal notion of an ex-
ogenous intervention and does not introduce any similarity-based requirements
into the counterfactual semantics. However, since the exogenous intervention
model shares a formal structure with the similarity theory, one could consider
further restrictions on this selection function to focus only on, say, interventions
which change fewer variables or which do not change variable values too much.
Possible restrictions to the exogenous intervention model, including a restriction
motivated by Hiddleston’s (2005) theory, will be discussed in Section 4.

I will now define the set of A-interventions and the selection function for the
exogenous intervention model more formally. Suppose there are m exogenous
variables, so U = (U1, ...,Um), and let S ⊆ {1, ...,m} be a set of indices with
complement S. For any u ∈ U , let u|S represent the projection of u onto the
indices in S and US the set of all possible variable assignments to exogenous
variables indexed by S. A partial variable assignment rS is a variable assignment
to the variables indexed by S, or an element rS ∈ US. For a variable assignment
rS to the variables indexed by S and qS to the variables indexed by S, let rS

⊕
S qS

represent the unique complete variable assignment in U which restricts to rS on
S and qS on S.

We can then use a partial variable assignment rS to change variable values
in a world u. For rS ∈ US and u ∈ U , changing variables S to rS in u results
in the manipulated world u|rS = rS

⊕
S u|S. This is the world where we change

the values of u on S to the values rS, but leave all other variables unchanged.
We can then define the set of restricted variable assignments which make A true
in a world u:

Ru(A) = {rS : rS ∈ US & u|rS ∈ [A]}.
This is the set of partial variable assignments such that imposing these variable
assignments on the world u gives a world u|rS where A is true. As long as a
proposition A is possible, or has some world w ∈ [A] making it true, Ru(A) ̸= ∅
since w ∈ Ru(A) with S = {1, ...,m}; every element w ∈ [A] is in Ru(A) for
any u. However, as motivated above, we do not want all elements of [A] to
be A-interventions, so we must restrict attention to only the variable changes
necessary to bring about A.

We want the set of A-interventions in u to be the set of variable changes
in Ru(A) which bring about A without changing anything more than what is
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necessary to make A true. This means that, if iS is an intervention fixing A,
one should not be able to fix A while making a smaller subset of the changes
that iS makes. Otherwise, some of the variable changes required by iS would
be unnecessary to make A true, and, as argued above, we wish to only include
those changes which are directly relevant to realizing A. We can accomplish
this restriction by defining an order ≤ on Ru(A). Suppose rS1 , r

′
S2

∈ Ru(A)
assign variables S1 and S2. We say rS1 ≤ r′S2

iff r′S2
is an extension of rS1 , or

iff S1 ⊆ S2 and r′S2
|S1

= rS1
. We can now define the set of interventions which

force A, Iu(A), as the ≤-minimal elements of Ru(A):

Iu(A) = {iS ∈ Ru(A) : ∄rS′ ∈ Ru(A), rS′ ̸= iS, rS′ ≤ iS}.

We then define the truth conditions for a counterfactual: a counterfactual
A > C is true in a world u if C is true when we make all interventions from
Iu(A) on u. Thus, the set of worlds where a counterfactual A > C is true is as
follows:

[A > C] = {u ∈ U : ∀iS ∈ Iu(A), u|iS ∈ [C]}.
This can be interpreted as a selection function semantics by taking f(A, u) =
{u|iS} for all iS ∈ Iu(A). Note that these truth conditions apply to all propo-
sitions A and C built out of variable assignments, including disjunctions of
variable assignments and propositions built from complex combinations of log-
ical connectives. Furthermore, since we can now associate a counterfactual
A > C with the set of worlds where the counterfactual is true, [A > C], we can
ascribe truth values to right-nested counterfactuals A > C, where A is a non-
counterfactual proposition and C contains counterfactual terms without coun-
terfactual antecedents.10 This model also leads to familiar logical properties for
counterfactuals: as demonstrated in the Appendix, the selection function sat-
isfies the axioms of Pollock’s (1981) logic SS, including strong centering, which
entails that modus ponens applies to counterfactuals.

To see how these definitions work, recall the modified firing squad example
from above with exogenous variables UC, UX, and UY and structural equations
C = UC, S = C, X = S∨UX, Y = S∨UY, and D = X∨Y. Suppose that, in the
actual world, the court does not order execution and neither X nor Y choose to
shoot, so (UC,UX,UY) = (0, 0, 0). Consider the counterfactual “If X had shot,
the prisoner would have died.” This is true if any intervention making X shoot
ensures that the prisoner dies. There are two exogenous interventions forcing
X = 1: one can intervene so that the court orders execution (UC = 1), ensuring
that the captain signals (S = 1) and that X shoots, or one can intervene so
that X chooses to shoot regardless of the signal (UX = 1). Note that, while
other variable changes also set X = 1, they also make unnecessary changes:
any change to UY is unnecessary to set X = 1, and once either intervention
UX = 1 or UC = 1 is made, there is no need to consider a second variable
change (UC,UX) = (1, 1) to set X = 1 true. Thus, UX = 1 and UC = 1

10An example of a right-nested counterfactual will be discussed in Section 5. Note that
left-nested counterfactuals are often excluded from counterfactual analysis, c.f. Briggs (2012);
this issue is also discussed in Vandenburgh (2021).
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are the only two interventions setting the antecedent true in Iu(A). Then, for
X = 1 > D = 1 to be true, we need to verify that D = 1 is true in the two
intervened worlds where we intervene on (UC,UX,UY) = (0, 0, 0) by setting
UX = 1 and UC = 1. These intervened worlds are (UC,UX,UY) = (0, 1, 0) and
(UC,UX,UY) = (1, 0, 0): in both cases, X = 1, so since D = X ∨ Y, D = 1,
guaranteeing that the counterfactual is true, as expected.

The exogenous intervention model can also account for backtracking coun-
terfactuals, unlike Pearl’s interventions through structural equations. Consider
the backtracking counterfactual “If the prisoner had died, either X or Y would
have shot.” The exogenous interventions setting D = 1 are UC = 1, UX = 1,
and UY = 1. All of these interventions ensure that X = 1 ∨ Y = 1 is true:
UX = 1 sets X = 1, UY = 1 sets Y = 1, and UC = 1 sets both X = 1 and
Y = 1. Thus, X = 1 ∨ Y = 1 is true in all intervened worlds in the selection
function, so the backtracking counterfactual “If the prisoner had died, either X
or Y would have shot” is true. This verdict is intuitive: in the model, the only
way the prisoner could have died is if either X or Y shot the prisoner.

4 Restricting the Selection Function: Hiddle-
ston

The exogenous intervention model uses the causal notion of intervention to de-
fine a selection function for counterfactual semantics: A > C is true if C is true
in all worlds where one has set A true through an A-intervention. While the
structure mirrors that of the similarity theory of counterfactuals, the domain
for counterfactual evaluation is determined by causal considerations rather than
intuitions about similarity. Imagine that a student receives a score of 95/100 on
an essay, and consider the counterfactual “If the student had scored lower, she
would have scored 94.” Intuitively, this counterfactual is false, but a selection
function built on similarity might very well judge it true: the world where the
student scores 94 is closer to the actual world than worlds where the student
scores 93 or below, making it the unique closest world satisfying the antecedent.
However, this is not the case for the selection function in Section 3: the instruc-
tor could have intervened to set the score to any value, like 93 or 92, or even
65. These are all causal interventions, and the model in Section 3 invokes no
restriction on the selection function ruling out “more distant” or “less likely”
interventions.

While the exogenous intervention model from Section 3 includes all possible
exogenous interventions for the selection function, regardless of how significantly
the interventions change the actual world, it is straightforward to modify the
model to consider only a restricted set of interventions. If one has a distance
metric or similarity ordering on the set of causal worlds U , then one can restrict
the set of intervened worlds in the selection function from Section 3 to only
the closest or most similar worlds. While this procedure applies to any distance
measure or similarity ordering, I focus on causal restrictions to the set of relevant
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interventions rather than invoking intuitions about similarity, which can restrict
to too few worlds, as above, or lead to problematic judgments like in Fine’s case.

One such causal restriction comes from Eric Hiddleston, who argues that
counterfactuals should consider only interventions that occur as late as possi-
ble in the causal process. This requirement will also appear in the exogenous
interpretation of Pearl’s approach to interventions in the next section. Before
discussing how we can implement this restriction within the selection function
from Section 3, it is worth discussing how the formal set-up of the exogenous
intervention model differs from that of Hiddleston, which will highlight some
advantages which come from utilizing exogenous interventions.

Hiddleston’s theory follows the set-up of Section 2 with two fundamental
differences: he considers all variables as endogenous and he allows for indeter-
ministic structural equations such as Pr(Y = y|X = x) = p, where p ∈ (0, 1). To
see how Hiddleston’s framework works, consider his ceremonial cannon example.
Here, one lights a fuse (L), which has a 95% chance of setting off an explosion
(E), which causes a flash (F) and a bang (B). The structural equations, in
Hiddleston’s theory, are Pr(E = 1|L = 1) = 0.95, Pr(E = 1|L = 0) = 0, F = E,
and B = E with causal graph:

L

E

F B

Hiddleston evaluates a counterfactual A > C at u by considering whether C
is true in all models which are “minimal breaks” from the model in u, where
a break is a change in the values of endogenous variables consistent with the
causal laws. For example, in evaluating the counterfactual “If the flash hadn’t
occurred, the cannon would not have exploded,” causal breaks include the break
where the cannon is not lit (L = 0) as well as the break where the explosion does
not happen (E = 0). The former is consistent with the causal laws because L
has no parents, and so can be set without constraint, and the latter is consistent
with the causal laws because the law relating E and L is indeterministic: it is
perfectly consistent with the structural equations that the cannon is lit (L = 1)
but does not explode (E = 0).

Using indeterministic structural equations, however, can lead to too many
causal breaks to account for counterfactual judgments, especially for forward
counterfactuals. Consider the forward counterfactual “If the cannon had been
lit, then an explosion would have happened.” Despite the fact that the explosion
does not result from lighting the cannon 100% of the time, it is plausible that
this counterfactual is true: in all normal or typical situations, lighting a cannon
produces an explosion. For Hiddleston, however, this counterfactual must be
false, since there is always a possibility that the explosion does not result from
lighting the cannon. This problem arises for other counterfactuals as well: we
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often judge counterfactuals like “If I had gone to the bakery, I would have bought
bread” true, even though there is a small chance that the bakery is out of bread.

Exogenous interventions can capture the causal breaks Hiddleston is inter-
ested in, including those from indeterministic structural equations, without in-
troducing too much indeterminacy into forward counterfactuals. We can accom-
plish this by translating Hiddleston’s examples into the terminology of Section 2
in two steps. First, we can add an exogenous variable determining any variable
without parents: if PVi = ∅, we can add an exogenous variable Ui with the
same variable values as Vi such that the structural equation for Vi is Vi = Ui.
Second, we can account for indeterministic structural equations by introduc-
ing exogenous error variables, which capture ways in which causal outcomes
can deviate from the outcomes expected based on the parent variable values.
Common error terms for a binary variable include “unspecified inhibiting ab-
normalities,” or things which prevent the parents from activating the variable,
and “unspecified triggering abnormalities,” or things which trigger the variable
independent of the parents.11 For example, we can account for the indetermin-
istic relationship between L and E by adding an error variable U′

E representing
inhibiting abnormalities for the explosion, yielding a deterministic structural
equation E = L ∧ ¬U′

E which says that E is activated when L is activated and
L is not inhibited by U′

E. Here, the fact that lighting the fuse leads to an ex-
plosion 95% of the time corresponds to the fact that there is a 5% chance the
error variable U′

E is activated, or Pr(U′
E = 1) = .05. Thus, putting the ceremo-

nial cannon case into the terminology from Section 2, there are two exogenous
variables, UL and U′

E, with endogenous variables and causal graph as above and
with structural equations L = UL, E = L ∧ ¬U′

E, F = E, and B = E.
Using exogenous interventions in the translated causal structure avoids the

problem raised for forward counterfactuals with indeterministic structural equa-
tions. Recall the counterfactual “If the cannon had been lit, then an explosion
would have happened.” With indeterministic structural equations, this is always
false: there is always a 5% chance that an explosion would not have happened.
But with exogenous interventions, the counterfactual is true in worlds where the
error term U′

E is inactive, which is the normal situation occurring 95% of the
time, and the counterfactual is false in the outlier worlds where the error term is
activated. Thus, using exogenous interventions means that counterfactuals can
be true even with a small probability of something going wrong, a fact which is
important for a theory of counterfactuals to capture.12

11For Pearl’s discussion of error variables in Boolean models, see Pearl (2009, pp. 29).
12Note that Edgington (1995, 2008) argues that any universally quantified theory of counter-

factuals is unable to account for probabilistic exceptions, arguing instead that the acceptability
of a counterfactual A > C should be based on the probability of the consequent C conditional
on the antecedent A. Part of the motivation for this is that universally quantified theories
predict that a single improbable exception can completely falsify a counterfactual, while on a
probabilistic account, such an exception merely lowers the probability appropriately. However,
I think that the universally quantified theory is necessary to explain some intuitions about
counterfactuals, such as the unacceptability of certain counterfactuals with single improbable
exceptions like “If I had bought a lottery ticket, it would have lost.” Furthermore, I think
there are promising avenues for reconciling the universally quantified theory with intuitions
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Now that we have discussed the formal differences between Hiddleston’s
theory of causal breaks and exogenous interventions, we can introduce Hiddle-
ston’s additional minimality constraint. For Hiddleston, the only causal breaks
we should consider to set a counterfactual antecedent true are those making
changes to variables which are “as minor and as late as is lawfully possible”
(Hiddleston, 2005, pp. 643). The condition that changes are as minor as possible
is enforced by the notion of an exogenous intervention: exogenous interventions
are limited to variable changes which are necessary to set the antecedent true,
so no exogenous intervention could set the antecedent true with only a subset of
its variable changes. However, we have made no requirement that changes be as
late as possible in the causal process. Such a requirement could even be seen as
a natural generalization of the requirement that an intervention not change any
unnecessary exogenous variables: an intervention which is as late as possible
does not change any unnecessary endogenous variables.

Consider the following counterfactual: “If the flash hadn’t occurred, the can-
non would still have been lit,” and assume the world is such that the cannon
is lit and the flash occurred, represented as (UL,U

′
E) = (1, 0). Here, the two

exogenous interventions which could set the antecedent true are UL = 0, where
the cannon is not lit, and U′

E = 1, where an abnormality intervenes so that,
even though the cannon is lit, it does not explode and, consequently, there is no
flash. In the theory from Section 3, both of these are equally good exogenous
interventions fixing the antecedent, so the counterfactual is false, as the inter-
vention UL = 0 prevents the cannon from being lit. Hiddleston argues, however,
that the counterfactual should be true: the intervention setting UL = 0 is ear-
lier in the causal process and unnecessarily changes the value of the endogenous
variable L, so the only relevant intervention is U′

E = 1, on which the cannon
is still lit. I disagree with Hiddleston’s judgment in this case, as well as his
reasoning for restricting to interventions which are as late as possible: the most
likely explanation for why the flash would not have occurred is that the cannon
was not lit, so it seems misguided to remove this possibility simply because it
changes more facts in the actual world. However, Hiddleston’s constraint can
easily be incorporated in the exogenous intervention model if desired. We can
define an ordering ≤H on interventions Iu(A) such that iS ≤H i′S′ if the set
of endogenous variables iS changes in u is a subset of the set of endogenous
variables i′S′ changes in u. Enforcing Hiddleston’s constraint, a counterfactual
A > C is true in u if C is true in all worlds reached from u by a ≤H-minimal
A-intervention. This translation of Hiddleston’s theory into the exogenous in-
tervention framework highlights one way to restrict the framework from Section
3 with a more substantial requirement of minimality or similarity.

about the probabilities of conditionals and counterfactuals; see Egré and Cozic (2011) and
Vandenburgh (2020).
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5 Comparison to Endogenous Interventions: Pearl
and Briggs

I have argued that the ability to handle backtracking counterfactuals is a virtue
of the exogenous intervention model, and this virtue is shared by other models
where counterfactual intervention involves changing the values of variables, like
Hiddleston’s model. This, however, diverges from Pearl’s theory of counter-
factuals, where interventions change structural equations rather than variable
values and backtracking reasoning is excluded. For Pearl, the exclusion of back-
tracking reasoning is intentional: permitting backtracking reasoning in a theory
of interventions can lead one to ignore confounders and mistake correlation for
causation.

Consider the case of monetary policy, where a central banker considers lower-
ing interest rates to increase output and inflate prices. Typically, the monetary
policy decision is determined by the economic fundamentals, making the deci-
sion endogenous. Suppose a central banker ignores the economic fundamentals
and reasons: if I were to lower interest rates, then economic fundamentals would
be as they usually are when the central bank lowers interest rates, and output
and prices would therefore increase. This backtracking reasoning is clearly er-
roneous and confuses the correlation of monetary policy decisions and economic
effects with a causal effect of monetary policy on the economy. Instead, Pearl
argues, we should evaluate the consequences of a monetary policy decision by
taking the fundamentals as given, intervening to set the interest rates to a cer-
tain level, and seeing how (if at all) this affects the economy. Pearl’s approach
to interventions resolves the backtracking problem: the monetary policy deci-
sion can remain endogenous and we can (correctly) consider an intervention as
something which does not change the background fundamentals.

This is a serious obstacle to implementing a theory of counterfactuals which
can handle backtracking counterfactuals: in many decision environments, back-
tracking seems inappropriate. However, we can resolve this in the exogenous
intervention model by introducing additional exogenous variables. In the mone-
tary policy example, we can treat an intervention not as a break in the structural
equations, but rather as a change to an exogenous variable which influences
the interest rate directly without influencing the fundamentals. We can justify
adding this exogenous variable because, in order for there to be a real possibility
of intervening on an endogenous variable, there must be some way to change
the variable regardless of the value of its parents. This is precisely what an
intervention is, and also precisely what an exogenous variable represents. We
can think of this exogenous variable as an error term representing all possible
ways of influencing the endogenous variable not covered by the parent vari-
ables. Since causal models almost never list all possible influences, we expect
such an error variable to exist, even if we consider it negligible in most modeling
circumstances.

When considering monetary policy, for example, any input to the interest
rate decision which does not come from economic fundamentals can be consid-
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ered part of the exogenous error term. While in most circumstances we consider
this exogenous input to the interest rate decision negligible, we can certainly
add it to our model. Economists, for example, have tried to isolate situations
in which this exogenous variable is activated by identifying cases when central
banks make decisions which deviate from what is expected based on the eco-
nomic fundamentals.13 Models which consider such exogenous interventions a
salient possibility, such as models where the economy can be subject to a “mon-
etary policy shock,” even explicitly include an exogenous variable influencing
interest rate decisions.14 The fact that economists estimate this exogenous ef-
fect on interest rates and incorporate an exogenous variable representing it in
their models provides evidence in favor of adding this variable to the model,
allowing exogenous interventions to avoid the backtracking problem.

This argument extends to other cases where the backtracking problem may
arise: whenever one can intervene on a variable, one can add an exogenous
variable to capture this possibility. This is related to the procedure of adding
intervention variables to causal models in Meek and Glymour (1994), which
allows one to intervene by conditioning on variable values rather than by chang-
ing structural equations. One difference between exogenous intervention and
Pearl’s theory, however, is that Pearl allows for direct interventions on any vari-
able in a model, regardless of whether there is a real or salient possibility of
an exogenous influence on that variable (Pearl, 2009, pp. 361). For example, if
one has an unplugged microwave, Pearl’s theory allows one to intervene to turn
the microwave on without requiring that the microwave be plugged in (which
requires backtracking reasoning), even though there is no real or salient possibil-
ity of this occurring. While I think such cases motivate the need to incorporate
backtracking in counterfactual reasoning, as argued in Section 2, this is not
required by the exogenous intervention model itself: the notion of an exoge-
nous intervention is general enough to represent Pearl’s theory of “intervention
without manipulation.” Thus, exogenous interventions are more general than
endogenous interventions on structural equations: exogenous interventions can
imitate interventions on structural equations, but there is no way to modify
interventions on structural equations to accommodate backtracking reasoning.

To capture Pearl’s theory of interventions with exogenous interventions, we
would need to, first, add an exogenous influence to every endogenous variable
in the model and, second, restrict the set of interventions to those which do no
change any parent variables. For the first step, we can create a new causal model
where, for any endogenous variable which does not include the possibility of an
exogenous shock, we simply add an exogenous variable Ui = Vi∪{OFF}, where
Vi is determined according to its original structural equation when Ui = OFF
and Vi = Ui otherwise. For the second step, we can restrict to the ≤H-minimal
interventions in the new causal model. Thus, when evaluating a counterfactual
A > C in a causal model M, we can approximate Pearl’s predictions by looking
at the ≤H-minimal interventions in the expanded model M′ with additional

13One way of measuring this in the US is by noting when the Fed funds rate deviates from
futures on the Fed funds rate. See Kuttner (2001).

14See, for example, Christiano et al. (2005).
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exogenous variables. Since M′ includes exogenous influences for all variables,
there is an intervention in Iu(A) influencing the variables in A directly, and any
intervention changing variables upstream from A is an “earlier” intervention
eliminated by the≤H-minimality condition, so the only counterfactually relevant
interventions are those directly influencing variables from A, as in Pearl’s theory.

Even following these steps to approximate the predictions of Pearl’s theory,
however, some differences arise for logically complex counterfactuals. One dif-
ference involves counterfactuals where the antecedent A is actual. On Pearl’s
theory of interventions, even though A is true in the actual world, an inter-
vention setting A true still requires us to change the structural equations for
A. This leads to violations of modus ponens when Pearl’s theory is extended
to logically complex counterfactuals, as shown in Briggs (2012). On the exoge-
nous intervention model, however, the idea of intervening to bring about a fact
which is already true makes little sense: the only exogenous A-intervention is
the empty intervention. This property, corresponding to the logical principle of
strong centering, guarantees that modus ponens is valid.

Consider the modified firing squad case where X and Y can shoot indepen-
dently, without signal S. While one could add additional exogenous variables to
imitate Pearl’s predictions in more cases, I will focus on counterfactuals where
the model with the three exogenous variables UC,UX, and UY is sufficiently
rich. Consider the nested counterfactual “If X had shot, then if the court had
not ordered it, the prisoner would have died,” represented X > (¬C > D).15

Assume the world is (UC,UX,UY) = (1, 0, 0), where the court orders execution,
the signal is sent, X and Y both shoot, and the prisoner dies. The nested coun-
terfactual X > (¬C > D) is false in this world on the exogenous intervention
model: since X is true in the actual world, the only relevant intervened X-world
is the actual world, and in this world, the consequent is false, as the only inter-
vention UC = 0 setting ¬C true prevents the prisoner from dying. This verdict
is intuitive: the second intervention ensuring that the court did not order execu-
tion overrides the initial supposition that X had shot on the basis of the court’s
order, so the relevant intervened world is one where the court does not order
execution and X does not shoot, and, consequently, the prisoner does not die.
Furthermore, this counterfactual must be false for modus ponens to be true: if
X > (¬C > D) were true, then since X is true in the actual world, modus po-
nens entails that ¬C > D is true, but ¬C > D is false because the intervention
setting C = 0 also sets D = 0.16 In Briggs’ extension of Pearl’s theory, however,

15Adapted from Briggs (2012, pp. 150). For convenience, we use the variable names V as
shorthand for the proposition that the variable is activated, V = 1, and ¬V for the negation,
that V = 0.

16Note that some authors, like McGee (1985), argue that right-nested conditionals are
genuine counterexamples to modus ponens. These counterexamples are, however, framed as
indicative conditionals rather than counterfactuals, and counterfactual versions of these cases
may be less compelling. For example, McGee’s argument against modus ponens relies on his
claim that the following indicative conditional about the 1980 presidential election is true:
“If a Republican wins, then if Reagan does not win, Anderson will win,” as Anderson was
the leading Republican behind Reagan. However, the counterfactual “If a Republican had
won, then if Reagan hadn’t won, Anderson would have won” strikes me as false: the second
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the nested counterfactual X > (¬C > D) is true, violating modus ponens. This
is because intervening to set X true changes the structural equation for X from
X = S ∨ UX to X = 1: when we subsequently evaluate ¬C > D by replacing
C = UC with C = 0, the fact that the structural equation for X is still X = 1
ensures that D = 1, so X > (¬C > D) is true.

Another difference arises for disjunctive antecedents. Imagine, following an
example from Ciardelli et al. (2018), that a light L is controlled by two switches,
S1 and S2, where the light is on when both switches are in the same position
(i.e., both are up or both are down): L = (S1 ∧S2)∨ (¬S1 ∧¬S2). Imagine both
switches are up and the light is on, (S1,S2) = (1, 1), and consider the counter-
factual “If S1 or S2 had been down, the light would have been off.” Intuitively,
and based on the experimental responses presented by Ciardelli et al. (2018),
this counterfactual is true. This is explained by the exogenous intervention
model, as the exogenous interventions setting the antecedent true are S1 = 0
and S2 = 0, and in both intervened worlds, one switch is up and one is down,
so the light is always off. The combined intervention (S1,S2) = (0, 0) is not an
exogenous intervention setting the antecedent true because it makes irrelevant
changes: either changing S1 or changing S2 is sufficient to set the antecedent
true, so there is no need to consider the combined intervention.17 On Pearl’s
theory, however, there is no principle excluding the combined intervention for
disjunctive antecedents. While Pearl’s original theory does not incorporate dis-
junctive antecedents, Briggs’ extension of Pearl’s theory includes the combined
intervention, as does the theory in Santorio (2019) inspired by Pearl’s approach.
Thus, while the correct prediction follows directly from the exogenous interven-
tion model, it need not (and often does not) arise in models based on Pearl’s
theory of endogenous interventions.18

6 Conclusion

In this paper, I argued for the use of exogenous interventions to capture the se-
mantics of counterfactual sentences. On this approach, a counterfactual A > C
is true in a causal world u if C is true in all worlds formed by intervening to set A
true, where an intervention is a change to exogenous variables rather than struc-
tural equations. In contrast to competing models, this approach incorporates
both forward and backtracking counterfactuals, applies to logically complex an-
tecedents, and satisfies the axioms of a familiar counterfactual logic, Pollock’s

intervention cancels the first intervention, so the relevant intervened world is one where Reagan
hadn’t won and a Republican need not have won, and in this world, Carter could have (and
likely would have) won.

17This corresponds to the logical principle CS5′ satisfied by the exogenous intervention
model, as shown in the Appendix.

18Note that Ciardelli et al. (2018) argue that classical counterfactual theories built on se-
lection functions, like the exogenous intervention model, are also inadequate for explaining all
logically complex counterfactuals. For example, the counterfactual “If S1 and S2 had not both
been up, the light would have been off” is classically equivalent to the above counterfactual,
but is often judged false. However, some recent work suggests this can be addressed with a
more nuanced understanding of negation (Schulz, 2018; Romoli et al., 2022).
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SS. This approach can be extended by considering additional restrictions on the
selection function, as illustrated in the reformulation of Hiddleston’s theory in
Section 4, and can capture many of the intuitions of Pearl’s approach to coun-
terfactuals, provided the model includes sufficiently many exogenous variables.
Exogenous intervention therefore offers a flexible approach to counterfactual rea-
soning which can combine interventionist intuitions with the logical advantages
of the similarity theory of counterfactuals.
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455–476).

Lewis, D. (2013). Counterfactuals. Hoboken, NJ: John Wiley and Sons.

Lucas, C. & Kemp, C. (2012). A unified theory of counterfactual reasoning. In
Proceedings of the Annual Meeting of the Cognitive Science Society, volume 34
(pp. 707–712).

Lucas, C. & Kemp, C. (2015). An improved probabilistic account of counter-
factual reasoning. Psychological Review, 122(4), 700–734.

19



McGee, V. (1985). A counterexample to modus ponens. The Journal of Philos-
ophy, 82(9), 462–471.

Meek, C. & Glymour, C. (1994). Conditioning and intervening. The British
Journal for the Philosophy of Science, 45(4), 1001–1021.

Pearl, J. (2009). Causality. Cambridge: Cambridge University Press.

Pollock, J. L. (1981). A refined theory of counterfactuals. Journal of Philosoph-
ical Logic, (pp. 239–266).

Rips, L. J. (2010). Two causal theories of counterfactual conditionals. Cognitive
Science, 34(2), 175–221.

Romoli, J., Santorio, P., & Wittenberg, E. (2022). Alternatives in counterfac-
tuals: What is right and what is not. Journal of Semantics, 39(2), 213–260.

Santorio, P. (2019). Interventions in premise semantics. Philosophers’ Imprint,
19(1), 1–27.

Schulz, K. (2018). The similarity approach strikes back: Negation in counter-
factuals. In Proceedings of Sinn und Bedeutung, volume 22 (pp. 343–360).

Sloman, S. (2005). Causal models: How people think about the world and its
alternatives. Oxford: Oxford University Press.

Stalnaker, R. (1968). A theory of conditionals. In Ifs (pp. 41–55). New York,
NY: Springer.

Vandenburgh, J. (2020). Triviality results, conditional probability, and restrictor
conditionals. Available at https://philpapers.org/rec/VANTRC-4.

Vandenburgh, J. (2021). Conditional learning through causal models. Synthese,
199(1), 2415–2437.

Woodward, J. (2016). The problem of variable choice. Synthese, 193(4), 1047–
1072.

20



1 Appendix: Logic of Exogenous Intervention
Models

The exogenous intervention model defines counterfactual truth conditions in
terms of a selection function: a counterfactual A > C is true in a world u
if C is true in all worlds in f(A, u) reached from u through an exogenous A-
intervention. This model satisfies the axioms of Pollock’s (1981) counterfactual
logic SS, corresponding to six axioms for the selection function:

CS1: if w ∈ f(A, u), then w ∈ [A]
CS2: if u ∈ [A], then f(A, u) = {u}
CS3: if f(A, u) = ∅, then f(B, u) ∩ [A] = ∅
CS4: if f(A, u) ⊆ [B] and f(B, u) ⊆ [A], then f(A, u) = f(B, u)
CS5′: f(A ∨ B, u) ⊆ f(A, u) ∪ f(B, u)
CS6: u ∈ [A > C] iff f(A, u) ⊆ [C]

We verify that the selection function for the exogenous intervention model in
Section 3 satisfies these six axioms for Pollock’s logic SS below:

CS1: if w ∈ f(A, u), then w ∈ [A]

Proof. Suppose w ∈ f(A, u), so w = u|iS for some iS ∈ Iu(A). Since iS ∈ Ru(A),
u|iS ∈ [A] by the definition of Ru(A), so w ∈ [A].

CS2: if u ∈ [A], then f(A, u) = {u}

Proof. If u ∈ [A], then the empty intervention i0, which changes no exogenous
variables, is in Ru(A) since u|i0 = u ∈ Ru(A). Since i0 ≤ rS for every other
possible intervention rS ∈ Ru(A), i0 is the unique ≤-minimal element in Ru(A)
and the only element in Iu(A). Since f(A, u) = {u|iS : iS ∈ Iu(A)}, f(A, u) =
{u|i0} = {u}.

CS3: if f(A, u) = ∅, then f(B, u) ∩ [A] = ∅

Proof. If f(A, u) = ∅, then Iu(A) = ∅, so Ru(A) = ∅. Since [A] ⊆ Ru(A),
[A] = ∅, so f(B, u) ∩ [A] = ∅.

CS4: if f(A, u) ⊆ [B] and f(B, u) ⊆ [A], then f(A, u) = f(B, u)

Proof. Suppose f(A, u) ⊆ [B] and f(B, u) ⊆ [A]. To show that f(A, u) ⊆
f(B, u), we must show that, for all iS ∈ Iu(A), there is some jS∗ ∈ Iu(B) such
that u|iS = u|jS∗ . Suppose iS ∈ Iu(A). Since f(A, u) ⊆ [B], u|iS ∈ [B], so
iS ∈ Ru(B). Then there is a jS∗ ∈ Iu(B) such that iS extends jS∗ . But since
jS∗ ∈ Iu(B) and f(B, u) ⊆ [A], u|jS∗ ∈ [A], so jS∗ ∈ Ru(A). This means there
is an i′S′ ∈ Iu(A) such that jS∗ extends i′S′ . But since iS and i′S′ are both ≤-
minimal elements and i′S′ ≤ jS∗ ≤ iS, iS = i′S′ = jS∗ , so u|iS = u|jS∗ . Since we
have shown ∀iS ∈ Iu(A),∃jS∗ ∈ Iu(B) such that u|iS = u|jS∗ , we have shown
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that f(A, u) ⊆ f(B, u). The proof that f(B, u) ⊆ f(A, u) is parallel, showing
that f(A, u) = f(B, u).

CS5′: f(A ∨ B, u) ⊆ f(A, u) ∪ f(B, u)

Proof. Suppose u|iS ∈ f(A ∨ B, u), where iS ∈ Iu(A ∨ B). Since u|iS ∈ [A ∨ B]
by CS1, u|iS ∈ [A] or u|iS ∈ [B]. Suppose u|iS ∈ [A]. Then iS ∈ Ru(A), so there
is some jS∗ ∈ Iu(A) such that iS extends jS∗ . Since jS∗ ∈ Iu(A), u|jS∗ ∈ [A] ⊆
[A∨B], so jS∗ ∈ Ru(A∨B). This means there is some i′S′ ∈ Iu(A∨B) such that
jS∗ extends i′S′ . But since i′S′ ≤ jS∗ ≤ iS and iS and i′S′ are both ≤-minimal,
iS = i′S′ = jS∗ , so ∃jS∗ ∈ Iu(A) such that u|iS = u|jS∗ , so u|iS ∈ f(A, u)∪f(B, u).
If u|iS ∈ [B], a parallel proof shows that u|iS ∈ f(B, u) ⊆ f(A, u) ∪ f(B, u).
Therefore, f(A ∨ B, u) ⊆ f(A, u) ∪ f(B, u).

CS6: u ∈ [A > C] iff f(A, u) ⊆ [C]

Proof. Follows immediately from the definition of [A > C] in Section 3.

Pollock’s logic SS is slightly weaker than Lewis’s (2013) logic VC, which re-
places CS5′ with CS5:

CS5: if f(A, u) ∩ [B] ̸= ∅, then f(A ∧ B, u) ⊆ f(A, u).

The exogenous intervention model does not validate the stronger axioms of VC,
as it admits counterexamples to CS5 and the corresponding logical principle:

(A > C) ∧ ¬(A > ¬B) ⇒ (A ∧ B) > C.

We can see this with a standard counterexample found in Pollock and translated
to causal models in Hiddleston. Suppose three switches, S1, S2, and S3, control
two lights, L1 and L2, with structural equations L1 = S1 ∨ S2 and L2 = S2 ∨ S3.
The causal diagram for this model is as follows:

S1 S2 S3

L1 L2

Suppose all three switches are off (Si = 0) and, consequently, both lights are off
(Li = 0). The counterfactual “If L2 had been on, S1 would have been off” is true
since both interventions which set L2 = 1, S2 = 1 and S3 = 1, leave S1 fixed at 0.
Additionally, it is not the case that “If L2 had been on, L1 would have been on,”
since setting S3 = 1 is an intervention which fixes L2 = 1 without setting L1 = 1.
However, it is not the case that “If L1 and L2 had been on, S1 would have been
off.” Here, the two interventions setting the antecedent true are S2 = 1 and
(S1,S3) = (1, 1), and the latter intervention leaves S1 on, so the counterfactual
is false. This counterexample to the logical principle corresponding to CS5
shows that the exogenous intervention model does not validate Lewis’s logic VC
without additional restrictions on the selection function.
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