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DIGRAPH COMPETITIONS AND COOPERATIVE GAMES

ABSTRACT. Digraph games are cooperative TU-games associated to domina-
tion structures which can be modeled by directed graphs. Examples come from
sports competitions or from simple majority win digraphs corresponding to pref-
erence profiles in social choice theory. The Shapley value, core, marginal vectors
and selectope vectors of digraph games are characterized in terms of so-called
simple score vectors. A general characterization of the class of (almost positive)
TU-games where each selectope vector is a marginal vector is provided in terms
of game semi-circuits. Finally, applications to the ranking of teams in sports
competitions and of alternatives in social choice theory are discussed.
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1. INTRODUCTION

A directed graph or digraph is a pair (N, D) where N is a finite
set of nodes and D C N X N is a binary relation on N. Such
a digraph can represent various domination structures. As an ex-
ample we mention a sports competition in which there are teams
or players that play matches against one another. In that case the
nodes represent the teams that participate in the competition, while
(i, j) € D means that team i has won the match it played against
team j. A closely related economic example is a preference rela-
tion. In this case the nodes represent alternatives between which
an agent or a group of agents can choose. On the individual level,
(i, j) € D means that an agent prefers alternative i to alternative j
when comparing these alternatives pairwise (see, e.g., Sen (1979)).
On the group level, the digraph can represent the simple majority
win digraph corresponding to a preference profile which consists of
one preference relation for every individual in the group. Finally
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we mention that digraphs are also used to represent directed social
networks in, e.g., Gould (1987) and White and Borgatti (1994).

In the sequel we use the term digraph competition for a dom-
ination structure modelled by a digraph. The ‘strength’ of a node
in a digraph competition depends on all relations that are present
in the digraph. The strength of a team in a sports competition, for
example, depends on the results of the matches that it has played
itself but also on the results of other matches. Usually we want
to rank the teams knowing which team has ‘won’ the competition,
which one is second, and so on. In social choice theory we want to
know which alternative is the ‘most preferred’ by a society of indi-
viduals. The degree of preference for an alternative in a preference
profile depends on the positions of all alternatives in the preference
relations of the individuals. In directed social networks we want to
know whether a certain position in the network is more powerful
than another position.

The purpose of this paper is to evaluate or measure the strength of
nodes in a digraph competition by game theoretic means. Laffond,
Laslier and LeBreton (1993) evaluate this strength by using non-
cooperative zero-sum games. In this paper we apply techniques from
cooperative game theory. Our motivation is the following. Meas-
uring the strength of nodes in a digraph competition can be seen
as an allocation problem in which one has to distribute a number
of points such that the stronger the position of the node the more
points it gets. Cooperative game theory provides the tools to analyze
such allocation problems. To start, we initially assign one point to
each node. Measuring the strength of nodes then boils down to redis-
tributing these initial points. We analyze this redistribution problem
by assigning to every digraph competition a cooperative game with
transferable utility — or simply a TU-game — on the set of nodes
N. In the tradition of cooperative game theory we assign to every
subset of nodes E C N the number of points corresponding to nodes
on which there is no claim from nodes outside E, i.e., which are
not dominated by any node outside E. We refer to these games as
(conservative) digraph games. Such digraph games turn out to be
almost positive and hence convex.

Solutions for TU-games prescribe reasonable payoff distributions
for the worth of the ‘grand coalition’ N. Therefore, applying solu-
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tions to digraph games yields distributions of the total number of
points which can be thought of as measuring the strength of the
nodes in the underlying digraph competition. In this paper we ana-
lyze two important solutions for TU-games, namely the Shapley
value and the core. It is shown that the Shapley value of an arbitrary
digraph game, which by definition is the average of all marginal
vectors of the game, is also equal to the average of the so-called
simple score vectors of simple subdigraphs. Moreover, we show that
the core of a digraph game is equal to the convex hull of the set of
the simple score vectors. The proof of this result uses the corres-
pondence between these simple score vectors and selectope vectors
as defined in Hammer, Peled and Sorensen (1977), Vasil’ev (1981)
and Derks, Haller and Peters (2000). It is well known that each
marginal vector is a selectope vector and hence, in the context of
digraph games, a marginal vector is a simple score vector. We show
that digraph competitions for which each simple score vector is also
a marginal vector of the corresponding digraph game are exactly
those that do not contain an anti-directed semi-circuit. This result
is derived using a new general result on the coincidence between
marginal vectors and selectope vectors for almost positive games.
The outline of the paper is as follows. Section 2 defines digraph
games. Section 3 considers the Shapley value. Section 4 analyzes
the structure of the core and the relation between marginal vec-
tors, selectope vectors and simple score vectors. Section 5 discusses
applications. Finally, Section 6 considers possible extensions.

2. DIGRAPH GAMES

Since we assume the finite set of nodes N to be fixed, we represent
a digraph competition on N by its binary relation D C N x N. The
collection of all digraph competitions on N is denoted by DV. For a
digraph competition D € DY and i € N the nodes in Sp(i) := {j €
N|(, j) € D} are called the successors of i in D, and the nodes in
Pp(i) := {j € N|(j,i) € D} are called the predecessors of i in
D. For E C N we define Sp(E) := UiepSp(i) and Pp(FE) =
Uier Pp(i).

A TU-game on N is a pair (N, v) where the characteristic func-
tion v : 2Y — R is such that v(#) = 0. Since N is fixed we
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represent each TU-game on N by its characteristic function. We
denote the set of all TU-games v on N by G¥. In this section we
assign a cooperative game in GV to every digraph competition in
DN, So, in particular the set of players in such a game corresponds
to the set of nodes N. Since in game theoretic tradition coalitions
are assigned the worth they can guarantee themselves in total, we
propose to define a digraph game in a way such that to every coali-
tion E C N it assigns the number of successors of £ that have no
predecessors outside E.

DEFINITION 2.1. The (conservative) digraph game correspond-
ingto D € DV is the game vp : 2¥ — R given by vp(E) = #{j €
Sp(E)| Pp(j) C E}forall EC N.

Using unanimity games' ur, it is easy to see that a digraph game
can be expressed as follows.

LEMMA 2.2. Forevery D €DV it holds that vp = 2 ieSy () Y Ppi)-

‘By Lemma 2.2 each digraph game can be expressed as a positive
sum of unanimity games. Since all unanimity games are convex we
have the following corollary.

COROLLARY 1. For every D € DV it holds that vp is convex,
ie.,

vp(E) +vp(F) <vp(EUF)+vp(ENF)forallE,F C N.

It is well known that convex games have nice properties, in particu-
lar with respect to the Shapley value and the core.

3. THE SHAPLEY VALUE OF A DIGRAPH GAME

The shapley value is the function ® : G¥ — R¥ which assigns to
each TU- game the average of the marginal vectors of that game, i.e.,
d(v) = (#N ] ZHEH(N) m™ (v), where TT(N) denotes the collecuon
of all b]JeCtIOIlS w : N — {1,...,#N}, and for a bijection = €
[T1(N) the marginal vector m™ (v) € ]RN is given by:

mi (v) =v({j € Nz (j) < n(i)})
—v({{jeN|x(j) <m@)}) foralli € N.
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By M(v) = {m™(v)|mw € TI(N)} we denote the set of all marginal
vectors in v. By means of the digraph game we have assigned a
TU-game to every digraph competition D € DV . Since the Shap-
ley value assigns real numbers to all players in a TU-game, the
Shapley value of a digraph game can be seen as a function that
evaluates the strength of the nodes in a digraph competition. It turns
out that the Shapley value of the digraph game corresponding to
D € DV coincides with the B-vector® (D) which is given by
Bi(D) =Y jesp) wpayy foralli € N.

Moreover, it can be found as the average of the score vectors of all
simple subdigraphs of D. The score vector of digraph D is the vec-
tor o (D) € RY given by 0;(D) = #Sp(i) foralli € N. A digraph
A is a simple subdigraph of D € DV if A ¢ D and #P4(i) = 1
for all i € Sp(N). The collection of all simple subdigraphs of
D e DV is denoted by Sim(D). Score vectors corresponding to
simple subdigraphs of D € DY are called simple score vectors in
D.

THEOREM 3.1. For every D € DY it holds that

1
PWn) = gor s AESiZm(D) o (A).

Proof. Let D € DV. Since vp = > jesp(n) UPp(j)> additivity of
the Shapley value® implies that ®;(vp) = 3 jcs, vy Pips()) =
1
2 jesol) FPp (-
Since #Sim(D) = [1es, ) #Pp(h) and #{A € Sim(D) | j €
Sa()} = HheSD(N)\{j}#PD(h) for every (i, j) € D, it follows for
every i € N that

> | IT #Po

1 ieSp() \heSp(NM\{j
O (vp) = Z e _ J€Sp () \heSp(N)\{Jj}
jesoy " PY [] #Pom
heSp(N)
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1 , . .
= F5imD) .Z #{A e Sim(D) | j € S40))

JeSp(i)

1
-t Z #S4 (1)
#Sim (D) AeSim(D)

1
L Z oi(A). 0
#Sim (D) AeSimD)

EXAMPLE 3.2. Consider the digraph D = {(1, 1), (2, 2), (3, 3),
(1,2),(1,3), 2,3} on N = {1,2,3). The corresponding digraph
game vp is given by vp = u(1y + u(1,2) + u{1,2,3). For this digraph
d(vp) = (1%, %, %). This digraph has six simple subdigraphs which
are given by A1 = {(1, 1), (1,2),(1,3)}, A2 = {(1, 1), (1,2), (2,
3} Az = {(1, D, (1,2), 3,3)}, A4 = {(1, 1), (2,2), (1,3)}, As
={(1,1),2,2),2,3)}, A¢ = {(1, 1), (2,2), (3, 3)}, with simple
score vectors o(A1) = (3,0,0), 0(42) = 0(Ag) = (2,1,0),
o(A3) = (2,0, 1), c(4s) = (1,2,0), o(Ag) = (1, 1,1). Tak-
ing the average of these simple score vectors also gives ®(vp) =

5 51
(167 gyg)‘ O

4, THE CORE AND SELECTOPE OF A DIGRAPH GAME

The core of an arbitrary TU-game v € GV is given by Core(v) =
xeRY | Y,y xi=v(N)and 3, g xi > v(E) forall E C N}.
As stated in Section 2 each digraph game is convex. In Shapley
(1971) and Ichiishi (1981) it is shown that the core of a convex game
v equals the convex hull of the marginal vectors?, i.e., Core(v) =
Conv(M(v)). It turns out that the core of a digraph game vp also
coincides with the convex hull of all simple score vectors in D.
In the proof of this result we use the correspondence between the
convex hull of the simple score vectors in D and selectope vectors
of vp.

It is well known that a TU-game v € G can be expressed in
a unique way as a linear combination v = ZTC N Ay (T)ur of the
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unanimity games, where the dividends A,(T) are givenby A, (T) =
() if #T = 1, and Ay(T) = v(T) — Z;% Ay(F) if #T > 2

(see Harsanyi (1959)). A TU-game v € G is almost positive if
Ay(T) > Oforall T ¢ N with #T > 2. We denote the class
of almost positive games by gﬁ . Note that almost positive games
are convex. A selector on N is a function a: 2¥\{#} — N that
assigns to every non-empty coalition in N one of the players in that
coalition as a representative for that coalition. Let A(N) be the set
of all selectors on N. Given a selector @ € A(N) witha(T) € T for
all T C N the corresponding selectope vector is the vector s* € RY
givenby sf(v) =), rev  Ay(T), Le., it assigns the dividends of

ieT,a(T)=i
coalitions fully to their representative players.

By S(v) = {s*(v) | @ € A(N)} we denote the set of all selectope
vectors of v. The selectope is defined by Sel(v) = Conv(S(v)),i.e.,
the convex hull of the selectope vectors. Denoting the set of simple
score vectors in D by (D) = {o(A) € RY | A € Sim(D)},
it turns out that the set of selectope vectors is a subset of X (D).
Moreover, their convex hulls are equal.

LEMMA 4.1. Forevery D € DV it holds that (i) S(vp) C (D),
and (ii) Conv(S(vp)) = Conv(Z(D)).

Proof. To prove (i), take s%(vp) € S(vp) for some selector o €
A(N). Defining A € Sim(D) by Ps(i) = a(Pp(i)) foralli €
Sp(N) (,and P4(i) =@ fori € N \ Sp(N)), yields that si*(vp) =
#{j e N|i€ Pa(j)} = #Sa(i) = 0;(A) forall i € N, and thus
§*(vp) € (D). This proves (i).

To prove (ii) we distinguish two cases.

First, suppose there are no two nodes h, j € N, h # j, with
Pp(h) = Pp(j)and #Pp(j) = 2. Forevery 0 (A) € X (D) we can
then define a selector « € A(N) by a(E) = P4(i) if E = Pp(i)
for some { € Sp(N), and for all other coalitions take «(E) € E to
be an arbitrary player in E. Then g;(A) = #S4() = #{j € N |
i € Pa(j)} = s{(vp) forall i € N, and thus 0 (A) € S(vp). So,
2 (D) ¢ S(vp). With part (i) of the lemma it follows that (D) =
S(UD).

Second, suppose that there are two nodes h, j € N, h # |,
with Pp(h) = Pp(j), #Pp(j) = 2. Given (i), to prove (ii) it is
sufficient to show that Conv(2(D)) C Conv(S(vp)). We prove
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this by showing that every extreme point of Conv(X (D)) belongs
to Conv(S(vp)). Obviously, every extreme point of Conv(Z (D))
belongs to (D). Take x € X (D). It is sufficient to prove that x €
S(vp) or x is not an extreme point of Conv(X(D)). Equivalently, it
is sufficient to show that x ¢ S(vp) implies that x is not an extreme
point of Conv(X(D)). Therefore, assume that x € 2(D) \ S(vp).
Since, by assumption, there are no two nodes with the same set of
predecessors, there is an A € Sim (D) withx = 0 (A) and P4(h) =
i,Pa(j)=gfori,g € Pp(j),i # g.Define A, A" by A’ = (A \
{(&, NU{G, /)Y and A” = (A\{(i, WD U{(g, )}. Then A", A" €
Sim(D) and x = o (A) = 3(0'(A") + o (A4")) with 6 (A) # o (A").
So, x is not an extreme point of Conv(X(D)). O

A well-known result that has been shown be various authors (see
Vasil’ev (1981) and Derks, Haller and Peters (2000)) is that Core(v)
= Sel(v) if and only if v is almost positive. Since a digraph game
vp is almost positive we have Core(vp) = Sel(vp). With Lemma
4.1 this gives as a corollary that the core of a digraph game vp is the
convex hull of all simple score vectors in D.

THEOREM 4.2. For every D € DV it holds that Core(vp) =
Conv(Z(D)).

Since, in general, M(v) € S(v) for any v € GN, Lemma 4.1 in
particular shows that each marginal vector of a digraph game vp is
a simple score vector in D. The converse however need not hold as
is seen in the following example.

EXAMPLE 4.3. Consider the digraph game vp = u(y + uf1,2) +
u(1,2,3) corresponding to the digraph D of Example 3.2. Then
M(p) = {(1,1,1),(1,2,0), (2,0,1), (3, 0,0)}, while Z(D) =
M(vp) U {(2, 1, 0)}. The simple score vector (2, 1, 0) corresponds
to both Ap and A4 of Example 3.2. O

It turns out that equality between the set X (D) of simple score
vectors in D and the set M(vp) of marginal vectors depends on
whether or not the digraph competition D contains an anti-directed
semi-circuit, i.e., whether or not there is a sequence (i, rp, ..
i, r¢,i1), t > 2, such that

T
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()ire Nandr, € Dforallk € {1,...,1t},
(i) r =(i,i), andforallk e {1,...,¢ — 1},

| G, ik41) ifkisodd
=\ Geg1, ix) if kis even,

(iii) ix # ijifk # [ and k + [ is even (i.e., if k, [, k 7% [, are both
odd or are both even).

Note that these conditions imply that ¢t > 4, ¢ is even, and ry # r; for

k.l e€{l,...,t}, k # 1. The digraph D of Example 4.3 contains the

anti-directed semi-circuit (1, (1, 2), 2, (2,2), 2, (2, 3), 3, (1,3), D).

THEOREM 4.4. Let D € DN. Then M(vp) = (D) if and only
if D has no anti-directed semi-circuit.

Theorem 4.4 follows from the following more general result on the
relation between marginal vectors and selectope vectors for almost
positive TU-games. We know that if v € GV is almost positive
(and hence, convex) then Sel(v) = Core(v), i.e., Conv(S(v)) =
Conv(M(v)). However, as is illustrated by the almost positive di-
graph game of Example 4.3, almost positivity of v does not guaran-
tee that S(v) = M (v). It turns out that the class of games for which
these two sets coincide can be determined using the concept of a
game semi-circuit.

Letv € gff.Asequence (Ei,i1, ..., E iy, E),witht > 2,isa
game semi-circuit in v if

(i) Ex C N, #Er > 2 and Ay(Ey) #£O0forallk e {1,...,t},

() i;e E;NE,and iy € Ex N Egyqforallk e {1,...,r— 1},
(iil) #{ig, ..., i;} =#{E1, ... , E;} =1.

THEOREM 4.5. Letv € gi’. Then M) = S(v) if and only if v
has no game semi-circuit.

The proof of this theorem is postponed to the appendix. Here we
only show how Theorem 4.4 follows from Theorem 4.5 and Lemma
4.1.

Proof of Theorem 4.4. We distinguish the following two cases:

1. Suppose that there is a 7 C N with #T > 2 and A,,(T) ¢

{0, 1}. Then there are h, j € N, h # j, with Pp(h) = Pp(j)
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and #Pp(j) = 2. For g1, g2 € Pp(h), g1 # &2, it then follows
that (g1, (81, h), h, (82, h), 82, (82, J), J, (81, J), g1) is an anti-
directed semi-circuit in D.
To show that M(vp) # X (D) we construct an A € Sim(D)
satisfying:

(1) Pa(h) = g1,

(i) Pa(j) = g2,
(iii) P4() C {g1, g2} if Pp(i) N {g1, g2} # 0.
Then og,(A) > #Sp(g1)\Sp(g2) + 1 > #Sp(g1)\Sp(g2), and
similarly og,(A) > #5p(g2)\Sp(g1). Take w € IT(N). Suppose
without loss of generality that w(g1) < 7(g2). Then myg (vp) <
#5p(g1)\Sp(g2) < g, (A). Thus, M(vp) # %(D).

2. Suppose that A, (T) € {0, 1} forall T C N with #T > 2. Then
there are no two nodes 4, j € N, h # j, with Pp(h) = Pp(j)
and #Pp(j) > 2. In a similar way as done in the proof of Lemma
4.1.(it) it follows that for every 0 (A) € X (D), taking the selector
a € A(N) given by a(E) = P4(i) if E = Pp(i) for some
i € Sp(N), and a(E) € E for all other coalitions E, it follows
that 0;(A) = #S40) = #{j € N | i € Pa(j)} = s¥(vp) for
all i € N, and thus o0(A) € S(vp). So, (D) C S(vp), and
with Lemma 4.1.(i) it then follows that S(vp) = X (D). With
Theorem 4.5 it then is sufficient to prove that D has an anti-
directed semi-circuit if and only if vp has a game semi-circuit.
(Only if) Suppose that (i1, ri, ..., 0, 11, 01), ¢ > 4, t even, is an
anti-directed semi-circuit in D. Then (Eq, ji, ..., E%t, j%,, E))
with E; = Pp(in) for k € {1,..., %}, ji = imq1 for k €
{1,..., %t — 1}, and j%t = {1, 1$ a game semi-circuit in vp.

(If) On the other hand, let (Ey, i1, ... , E;, is, E1) be a game semi-
circuit in vp. Then we can take A € Sp (i) N Sp(iks1) for all
kell,...,t — 1}, and h;y € Sp(iy) N Sp(iy). (So, every E
corresponds to Pp(ht).)

But then (ji, r1,..., jor, 21, j1) With jox—1 = ix, jox = hy for
kef{l,....t}, rr = (j1, j;),and forall k € {1,...,t — 1},
7% = (Jk» Je+1) if k is odd, and ry = (Jr+1, Jk) if & is even, is an
anti-directed semi-circuit in D. O
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5. APPLICATIONS

As mentioned in the introduction, measures for evaluating the
strength of positions in digraph competitions can be applied to vari-
ous types of situations. Here we discuss two of them.

First, they can be applied in ranking teams in sports competitions.
To allow a draw as a result of a match we summarize the results of
matches in a sports competition between the teams in the set N by
digraph competition D € DN where (i, Jj) € D if and only if i
did not lose the match it played against j. Moreover, we assume the
digraph competition to be reflexive, i.e., ({,i) € D foralli € N.

EXAMPLE 5.1. At the UEFA European Soccer Championship
(EURO 2000) sixteen teams were initially divided into four groups
of four teams each. Group C consisted of Spain (Sp), Yugoslavia
(Y), Norway (N) and Slovenia (SI). The results of the matches yield
the digraph competition D = {(Sp, Sp), (¥, Y), (N, N), (81, Si),
(Sp,Y), (Sp, SD), (Y, N), (¥, SI), (N, Sp), (N, SI), (SI,Y), (S,
N)}. The UEFA ranked the teams by rewarding them with 3 points
for a win, 1 point for a draw and O points for a loss. This resul-
ted in the ranking: 1. Spain (6 points), 2. Yugoslavia (4 points),
3. Norway (4 points), 4. Slovenia (2 points). The ranking between
Yugoslavia and Norway (who have the same UEFA score) is based
on the result of the match between themselves. For the purpose
of this paper these two teams can be considered equally ranked.
If we apply the Shapley value to the corresponding digraph game
vp we obtain ®(vp) = (Psp(vp), Py(vp), Py(vp), Psi(vp)) =
1—12(13, 11, 13, 11). So, according to this ranking Norway would be
ranked higher than Yugoslavia, and would even be ranked equal to
Spain. One of the reasons for this is that in the UEFA ranking the
number of points assigned to a team only depends on the number
of matches this team won and lost. In the ranking by Shapley value
the number of points assigned to a team not only depends on how
many matches were won or lost, but also who were the opponents
from whom is won or lost. Clearly, a win against a team that won
many matches gives more points than winning from a team that won
few matches. In this example we see that Norway does better in the
ranking by Shapley value since it won the match from the ‘strong’
team Spain. O
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A second example is the application to social choice theory. Pref-
erences of an individual a over a set of n alternatives N = {1, ..., n}
can be represented by a preference relation > on N. We denote
i >, j if individual a weakly prefers alternative i to alternative
j. For a society consisting of m individuals a preference profile p
is an m-tuple of such preference relations. A social choice corres-
pondence assigns to every preference profile a non-empty subset of
alternatives which can be viewed as the ‘most prefered’ alternatives
by the society. A social choice correspondence is majoritarian if,
for every preference profile p on the set of alternatives N and set
of individuals A, it is based on the corresponding simple majority
win digraph D, C N x N given by (i, j) € D, if and only if
HaeAl|ix, jl=#aeA|j>,i} ie,in D, alternative
i dominates alternative j if i defeats j by simple majority vote.
Borm, van den Brink, Levinsky and Slikker (2000) show that the
social choice correspondence that is based on the Shapley value of
the digraph game vp, is a Pareto optimal refinement of the Top cycle
choice correspondence.

EXAMPLE 5.2. Consider the set of four alternatives N = {1, 2, 3,
4} and the set of three agents A = {a, b, c}. The preference profile
is described by the following three preference relations: (a) 1 > 2 >
3>40B)4>1>2>3,and(c)3 =4 > 1> 2 (wherei > j
means that { > j and not j > i). The simple majority win digraph
corresponding to this situation is D = {(1, 1), (2, 2), (3, 3), (4, 4),
(1,2),(1,3),(2,3),(3,4), 4, 1), (4,2)}. The Shapley value of the
digraph game Vp, = W{1,4) + uq1,2,4) + ¥(1.2,3) + #{3,4 is equal
to <D(vDP) = %(7, 4,5, 8). So, alternative 4 is considered to be the
unique best alternative. The top cycle consists of all four alternat-
ives, although alternative 1 Pareto dominates alternative 2(, i.e., each
individual prefers alternative 1 to alternative 2.) O

A related application is voting for candidates, for example elect-
ing presidents or chair persons. Each voter then has a preference
relation over the candidates. The Shapley value of the digraph game
corresponding to the simple majority win digraph of the preference
profile can be used in electing one candidate.

Finally, we mention the application of relational power measures
in social networks. Measuring power in social networks has been an
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important topic in the social network literature of the last decades. In
particular directed networks have been studied in, e.g., Gould (1987)
and White and Borgatti (1994). Both these papers concentrate on
betweenness measures of centrality in such networks. The Shapley
value of digraph games is treated as a degree measure of domination
in van den Brink and Gilles (2000).

6. CONCLUDING REMARKS

In the approach of measuring the strength of nodes in digraph com-
petitions using cooperative digraph games we started with assigning
to every node in a digraph competition an ‘initial’ value equal to
one. Thus, we assume that initially all nodes are equally important.
A possible generalization of this approach is to assign possibly dif-
ferent positive ‘initial’ values to the nodes, allowing them to differ
in importance ex-ante. For a weight vector § > 0 we thus obtain the
weighted digraph game corresponding to D € DV and § which is
given by

vps(E)= Y §;forall ECN.

jeSp(E)
Ppj)ICE

For the Shapley value of the weighted digraph game we find that

8.
®;(vps) = ) vr
jeso Hp ()

for all i € N. Moreover, it is equal to the average of the weighted
simple score vectors o (A, §) over all simple subdigraphs given by
0i(A,8) = Y ies5,y0; forall i € N. A special type of these
weighted Shapley values is the one that is obtained by the iterative
procedure that starts with initial input weights one, and in every step
takes the output scores of the previous step as new input weights.
Also Theorems 4.2 and 4.4 can be extended, i.e., Core(vp ;) =
Conv(X%(D, §)), and X(D, §) = M(vp ) if and only if there is no
anti-directed semi-circuit in D, with (D, d8) = {06(A,8) | A €
Sim(D)}.
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APPENDIX: PROOF OF THEOREM 4.5

Letv € ng . From Vasil’ev (1981) and Derks, Haller and Peters
(2000) it follows that M(v) C S(v). Thus we have to prove that
S() € M(v) if and only if there is no game semi-circuit in v.

Only if
Let S(v) C M(v). Also, suppose there is a game semi-circuit (Ey,
ity..., Er, iz, E1) in v. We show that this leads to a contradiction

by constructing a selector & on N such that there is no bijection
on N with s¥(v) = m™ (v).

Let I = {iy,...,i;}. Since Ey # E;, for k # [, we can consider

a selector a: 2V\{@} — N satisfying
() a(Ey) =iy forallk=1,...,t,and
(ia(EYe IiftENI #0.

Since all i € I get assigned the (non-negative) dividends of all
coalitions that contain i and no other player from /, and moreover,
every player iy € [ gets the positive dividend of coalition Ey we
have s (v) > ng”c_zvm Ay(E)foralli e 1.

Let 7 € [1(NV). Suppose without loss of generality that mw(h) =
miniel E(i).
Then mj (v) < nglcz\;'] Ay(E) < sp(v). Thus there isnow €

[T(N) such that s%(v) = m™ (v).

If
Suppose there is no game semi-circuit in v, and let «c: 2V\{@}) — N
be a selector. We show that there is a w € IT(N) such that s%(v) =
m™ (v).

We recursively define the sets Ly C N,k e NU{0}, by Lo =0
and for every k € N

k—1
Ly = {i EN\UL/

1=0

Forevery E € N with Ay(E) > Oand a¢(E) =i :
E\{i} ¢ (U/S L)

Let k € N be such that N\ (S} L; # @. We prove that L # 0.
On the contrary suppose that Ly = . Let N = N\ Uf:ol L.
Then, for every i € N thereis an E C N with Ay(E) > 0, ¢(E) =
iand E\{i} & U;‘;OI L. From this it follows that we can construct
a sequence of players (i1, i, ...) starting with i; € N and for every
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k € N take ixy1 € N such that there exists an E C N , Wit/l’\l
{igy ikr1} C E, Ay(E) > 0 and «(E) = ii. By finiteness of N
we will find that iy = i, for some s # ¢, thus creating a game
semi-circuit.

So, we conclude that there is an m € N such that the sets Ly, ... ,
L, form a partition of N consisting of non-empty sets only.

Now we construct a 7 € IT(N) such that m™ (v) = s%(v). If
i € Lyand j € L; with k < [ then take mw (i) < m(j). Consider
i € Ly for some 1 < k < m. By definition of the set Ly it follows
for E C N,i € E,a(E) #iand Ay(E) > 0, that «(E) € L, for
some t > k, and thus 7 (i) < w(a(E)). Define P*(i) = {j € N |
7(j) <m()}fori € N.Then, E C P*(i),i € Eand a(E) # i
implies that A, (E) = 0. But then

m¥ (v) = v(P” (i) —v(P" (D\(i})

= D AB- Y AE)= Y AyE)

ECP™(i) ECP™(iN(i} E;g;’(i)
= Y AE+ Y AfE)= Y AyE)
ECPT (i) ECP™(i) ECP®(i)
icE,w(E)y=i ieE ¢(E)#i ieE a(E)=i
= ) Ay(E)=57(v). O
ECN

a(E)=i
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NOTES

1. The unanimity game of coalition T e 2¥\{@} is given by ur(E) = 1 if
T C E, and ur(E) = 0 otherwise.

2. The B-measure is introduced as a relational power measure for (irreflexive)
directed networks in van den Brink and Gilles (2000).
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3. Additivity of the Shapley value means that for two games v, w € GV it holds
that @ (v+w) = ®(v)+& (w), where (v+w) € GV is given by (v+w)(E) =
v(E)+ w(E) forall E C N.

4, This convex hull is also known as the Weber set of v.
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