Skip to main content
Log in

How Microbes Can Achieve Balanced Growth in a Fluctuating Environment

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

A microbial colony needs several essential nutrients in order to grow. Moreover, the colony requires these nutrients in fixed combinations, which are dictated by the chemical composition of its biomass. Unfortunately, ambient availabilities of the various nutrients vary all the time. This poses the question of how microbes can achieve balanced growth.

The present solution to this problem is novel in that the allocation of molecular building blocks among assimilatory machineries within the cell is regarded as dynamic. This paper shows that allocation can be adapted so as to achieve balanced growth, nearly regardless of environmental conditions. Moreover, it is shown that a feedback mechanism, which monitors internal stores, is able to achieve this allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Begon, M., J. L. Harper and C. R. Townsend (1990). Ecology: Individuals, Populations and Communities. Blackwell Scientific, Cambridge, second edition.

    Google Scholar 

  • Brock, T. D., M. T. Madigan, J. M. Martinko and J. Parker (1994). Biology of Microorganisms. Prentice-Hall International, seventh edition.

  • Burden, R. L. and J. D. Faires (1989). Numerical Analysis. PWS-KENT Publishing Company, Boston, fourth edition.

    Google Scholar 

  • Hanegraaf, P. P. F., B. W. Kooi and S. A. L. M. Kooijman (2000). The role of intracellular components in food chain dynamics. Comptes Rendus de l'Académie des Sciences III 323: 99-111.

    Google Scholar 

  • Herbert, D. (1958). Some principles of continuous culture. In: G. Tunevall (Ed.) Recent Progress in Microbiology. pages 381-396. Almquist & Wiksell, Stockholm.

    Google Scholar 

  • Kompala, D. S., D. Ramkrishna and G. T. Tsao (1984). Cybernetic modeling of microbial growth on multiple substrates. Biotechnology and Bioengineering 26: 1272-1281.

    Google Scholar 

  • Kooijman, S. A. L. M. (1993). Dynamic Energy Budgets in Biological Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mason, C. A., G. Hamer and J. D. Bryers (1986). The death and lysis of microorganisms in environmental processes. FEMS Microbiology Reviews 39: 373-401.

    Google Scholar 

  • Monod, J. (1942). Recherches sur la Croissance des Cultures Bactériennes. Ph.D. thesis.

  • Neidhardt, F. C., J. L. Ingraham and M. Schaechter (1990). Physiology of the Bacterial Cell. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Pavlou, S. and A. G. Fredrickson (1989). Growth of microbial populations in nonminimal media: Some considerations for modeling. Biotechnol. Bioeng. 34: 971-989.

    Google Scholar 

  • Pirt, S. J. (1965). The maintenance energy of bacteria in growing cultures. Proceedings Royal Society London B Biological Sciences 163 B: 224-231.

    Google Scholar 

  • Straight, J. V. and D. Ramkrishna (1994). Cybernetic modeling and regulation of metabolic pathways. Growth on complementary nutrients. Biotechnology Progress 10: 574-587.

    Google Scholar 

  • van den Berg, H. A. (1998a). A generic view of classic microbial growth models. Acta Biotheoretica 46: 117-130.

    Google Scholar 

  • van den Berg, H. A. (1998b). Modelling the metabolic versatility of a microbial trichome. Bulletin of Mathematical Biology 60: 131-150.

    Google Scholar 

  • van den Berg, H. A. (1998c). Multiple Nutrient Limitation in Microbial Ecosystems. Ph.D. Thesis, Vrijc Universiteit, Amsterdam.

    Google Scholar 

  • van den Berg, H. A. (1998d). Multiple nutrient limitation in unicellulars: Reconstructing Liebig's law. Mathematical Biosciences 149: 1-22.

    Google Scholar 

  • van den Berg, H. A., Y. N. Kiselev, M. V. Orlov and S. A. L. M. Kooijman. (1998). Optimal allocation between nutrient uptake and growth in a microbial trichome. Journal of Mathematical Biology 37: 28-48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, H.A. How Microbes Can Achieve Balanced Growth in a Fluctuating Environment. Acta Biotheor 49, 1–21 (2001). https://doi.org/10.1023/A:1010267821884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010267821884

Navigation