JOHAN VAN BENTHEM Logic Games are Complete
for Game Logics

Abstract. Game logics describe general games through powers of players for forcing
outcomes. In particular, they encode an algebra of sequential game operations such as
choice, dual and composition. Logic games are special games for specific purposes such as
proof or semantical evaluation for first-order or modal languages. We show that the general
algebra of game operations coincides with that over just logical evaluation games, whence
the latter are quite general after all. The main tool in proving this is a representation of
arbitrary games as modal or first-order evaluation games. We probe how far our analysis
extends to product operations on games. We also discuss some more general consequences
of this new perspective for standard logic.

Keywords: logic game, powers, dynamic logic, game algebra

1. Logical evaluation games

Many logical notions can be cast very naturally as two-player games. Exam-
ples are argumentation between a defender and critic of a claim (Lorenzen
games), model comparison between people disputing an analogy (Ehren-
feucht-Fraissé games), and perhaps most basically of all, semantical evalu-
ation of assertions made with respect to some given situation [13]. In this
paper, we concentrate on the latter games, extracting their general thrust.
The notion of game in what follows is standard. Games in extensive form
are trees whose nodes are possible states of play, with labeled arrows from
a node to its daughters indicating the available moves. Nodes are either ’in
play’, marked for the player whose turn it is, or end nodes, where the game
has ended successfully. But a game may also end ’'unsuccessfully’, with a
scheduled turn for a player without available moves. Game nodes may carry
information about further properties, such as players’ having won or lost in
end nodes, or markings for more finely-grained utilities. Moves encode local
actions for players in game states. More global patterns of behaviour are
defined as follows. A strategy for player % is a subtree of the full game tree in
which each turn for ¢ has a unique outgoing move, while at all other nodes,
the subtree retains all outgoing arrows from the original game tree.

Special Issue on Game Logic and Game Algebra
Edited by Marc Pauly and Rohit Parikh

Studia Logica 75: 183203, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

184

J. van Benthem

1.1. First-order evaluation games

Two players dispute the truth of a formula ¢ in some model M, starting from
a given assignment s sending variables to objects in the domain. Verifier
(V) claims that the formula is true in M, s, Falsifier (F) claims that it is

false.

a)
b)
b2)

c)
d1)

d2)

The rules of this game eval(¢, M, s) are usually stated informally:

If ¢ is an atom, V wins if the atom is true, and F wins if it is false,
For formulas ¢ V 1, V chooses a disjunct to continue with

For formulas ¢ A 9, F chooses a conjunct to continue with

With negations —¢, the two players switch roles

For an existential quantifier 321,V chooses an object d in M, and play
continues w.r.t. ¢ and the new assignment s[z:=d]

For a universal quantifier Yz, F chooses an object d in M, and play
continues w.r.t. ¢ and the new assignment s[z:=d].

To be more precise, one can define game trees for these evaluation games in
an inductive manner. Nodes are tuples of the form

(t, %)

where t is the current assignment, and v the remaining formula to be played.

a)

b)

eval(Pz, M, s) has top node (¢, Pz) : a turn for V.If M, s =Pz the
game moves to a single end node (t, -) which is a win for V. Otherwise,
the game stops in the top node with ’dead-lock’, which is a loss for V.
eval(¢ Vi, M, s) consists of disjoint copies of eval(¢, M, s), eval(¢,
M, s), put under one initial node (s, ¢ V v), which is a turn for V,
with actions ’left’ and ’right’ to the topnodes of the component games.
The game eval(¢ A, M, s) is similar, but starting with a turn for F.
eval(—y, M, s) is the dual of eval(y, M, s) reversing turn in-
dications and win-lose markings for the two players. Also, formu-
las in game nodes are syntactically dualized, interchanging conjunc-
tions/disjunctions, existential/universal quantifiers, and the polarity
of atomic formulas.

eval(3zy, M, s) starts with a top node which is V’s turn, followed
by possible moves to the top nodes of all games eval(¢, M, s[z:=d]),
where d runs over all objects in M. The game eval(Vzy, M, s) is
completely similar, but now starting with a turn for F.

This is just one possible definition, with some peculiarities. E.g., the clause
for atomic games has its rather technical format for later convenience. Also,

Logic Games are Complete for Game Logics 185

our simple clause for negation is different in character from the others, as
dual erases earlier information, so that game (-1, M, s) is not a precise
record of what has been played so far. Other options are possible, but the
present ones suffice for us.

Independently from such details of format, first-order evaluation games have
general game-theoretic features. E.g., they have a fixed finite depth for their
longest runs, bounded by the operator depth of the initial formula. This
makes them subject to Zermelo’s Theorem stating that

Each two-person zero-sum game of perfect information with finite tree
depth is determined: i.e., one of the two players has a winning strategy.

Thus, either V or F must have a winning strategy in an evaluation game.
This observation is one instance of a more general fact. Classical truth of
first-order formulas in a model amounts to Verifier’s having a guaranteed
win for the associated game:

PROPOSITION. The following two assertions are equivalent:

a) V has a winning strategy in eval(¢p, M, s)
b) M,skE¢

The proof is a straightforward induction on formulas — most easily, by
including the dual assertion for F . E.g., V has a winning strategy in the dual
game — iff F has a winning strategy in ¢). As another typical illustration, V
has a winning strategy in ¢ V 9 iff she has one in either subgame, whereas F
only has one if he can win both subgames. Through the Proposition, logical
laws now come to express game-theoretic facts. E.g., determinacy shows in
the validity of Ezcluded Middle ¢V —¢ for these games. This correspondence
will return in what follows.

1.2. Modal games

Evaluation games also work for extensions of first-order logic with second-
order quantifiers, or fixed-point operators (Note 1). They also fit weaker
languages, such as modal propositional logic, which will be used below, with

proposition letters p, g, ..., Boolean operators, and modalities ¢,

As above, game states are pairs (s, ¢), with s a state in the relevant modal
model M, and ¢ the current modal formula.

186 J. van Benthem

The new rules concern the modalities:

a) At (s, 0¢), V must pick an R-successor t of the current state s, and
the game continues w.r.t. (¢, ¢). If there are no R-successors, then V
loses the game right at this stage.

b) At (s, O¢), F must pick an R-successor ¢t of the current state s, and
the game continues w.r.t. (¢, ¢). If there are no R-successors, then F
loses the game right at this stage.

Modalities are like bounded quantifiers y(RzyA and Vy(Rzy—. Their moves
differ from those for quantifiers in first-order games, which can always be
performed. By contrast, modal games may have a player’s turn where no
strategy for that player can assign a move. Consider the model {1, 2} with
the relation {(1, 1), (1, 2)}. Evidently, in state 1, the modal formula ¢0OT
holds. Here is the game tree for this formula, indicating the player to move:

(1, OOT), V

(1, 0T), V (2, OT), V : dead-lock, loss for V

(1, T) : win for V

V has a winning strategy, even though she can never move in state (2, ¢ T).
The main Proposition remains as for first-order evaluation games. (Note 2.)

2. From logic games to game logics

Logic games, though serving specific aims, show a lot of general game struc-
ture. Pursuing this leads to much more general game logics. Henceforth, we
use 1, 2 for players of any game, with 2, j as variables for different players.

2.1. Actions and powers

Extensive game trees record all possible moves. But the Proposition made
a more global statement about strategies for players guaranteeing certain
effects - such as winning outcomes. Consider any strategy o for a player %,
defined as a subtree of the full game. This strategy enables player ¢ to make
sure, against every possible counterplay by the opponent, that the game
ends in a leaf of that subtree, and hence in a particular set O, of outcomes
for the total game. The family of these outcome sets for all i’s strategies
gives a player’s 'powers’ in the game:

Logic Games are Complete for Game Logics 187

piG s, X player 7 has a strategy for playing game G from state
s onward whose outcome set is contained in the set X

These power relations are generalized transition relations in an interactive
two-agent process, relating states to sets of states - rather than just states.

These state-to-set relations may also be defined more generally. The key
Proposition for evaluation games connected players’ powers inside a game
with ordinary assertions about states s on the model M. The latter serves
as an external game-board. Moreover, we had an obvious projection map F
from internal game states (s, ¥) to external board states s (Note 3). But
then, with any such map we can also define players’ powers on a game board:

piyF(s), A if py s, X for some set of game states X with F[X]CA

FACT. Players’ powers, defined either way, satisfy the following properties:

Cl) ifpy s, Yand YCZ, then ph s, Z Monotonicity
C2) if piG s,.Y and p’G s, 4, then Y, Z overlap Consistency
C3) if not ply s, Y, then ply s, -Y Determinacy

PRrOOF. C1 expresses that larger sets represent weaker powers. C2 says that,
if both players follow some strategy of theirs, an outcome must result. C3
says the special property of determinacy in abstract set-theoretic form. =

2.2. Game operations and algebra

Evaluation games bring out several completely general operations on games.
These include dynamic counterparts of the Boolean operations:

Choice Choice for some specified player. For instance, for player
1, GUH is the result of putting two disjoint copies of G,
H under a new root, giving 1 the choice which one to play.
GNH denotes the analogous construction for player 2.

Dual The dual G¢ reverses all turns and win/lose markings in G.

But there is a third general game operation operating in first-order evalu-
ation games. This is not the earlier object picking for quantifiers, which
is just a specific move in a special semantic setting. It is rather the glue
sticking a quantifier to its matrix:

Composition Composition G;H : first play game G, and then H, starting
from the states where the first game ended successfully.

188 J. van Benthem

E.g., a modal formula ¢Op composes three games: "V picks successor’ ;
'F picks successor’ ; ’atomic test’. We define this more precisely later on.

These operations support a natural algebra of games. E.g., it is easy to see
the intuitive validity of De Morgan laws on the game interpretation:

GNH = (GuH%)?

This is just one of many laws of game algebra, to be made more precise below.
On the present analysis, predicate logic is a general theory of sequential
game constructions, over two specific base games, viz. object picking and
fact testing. We will see some surprising consequences of this view later.
(Note 4.)

2.3. Game language

To study the above situation more generally, we adopt a perspective due to
[16], on the pattern of propositional dynamic logic. The language has both
propositions P and game expressions G, according to the following syntax:

P AtP |V | A |- | {G, i}P
G AtG|U | N |%|;]P?
That is, formulas are formed from atomic ones p, ¢, ... with Boolean opera-

tions, plus a game modality { G, i} P expressing players’ powers to achieve
a certain type of outcome state. Game expressions are formed from atomic
games g, h, ... using the above operations, plus an operation ? taking propo-
sitions to ’test games’. A first semantics for this language works as follows.
Game models are structures

M = (S, game, V)

with a set of states S, a function game(g, s) assigning concrete games to
every basic game expression at every state in S, and V' a valuation for atomic
propositions at states. The semantics interprets propositions in tandem with
a lift of game to arbitrary game expressions, following the given operations:

M, s ¢ game(G, 5, M)
The only non-routine clauses here are the following:
a) M,sE{G,i}¢ iff game(G, s, M) has a strategy for player 4
achieving a set of outcomes z s.t. M, z = ¢

b) game(4?, s, M) is a move by 1 to an end state if M, s = ¢,
and a dead-lock for 1 otherwise.

Logic Games are Complete for Game Logics 189

(Note 5). This modeling is still too detailed for many purposes. A more
convenient second semantics just looks at power relations over the game-
board, defined as earlier using a map F sending game states to board states:

(G S AN F[A4]CX

FAcT. These power relations satisfy the following inductive clauses

pIGUH s, Y iff pIG s, Yor pfq s, Y

p%‘UH s, Y iff p% s, Y and pfl s, Y

Pea 8 Y iff pe s, Y

pQGd s, Y iff pIG s, Y

pIG;H s, Y iff 3Z:pL s, ZAV2EZ ply 2, Y
p%;H s, Y iff 3Z:p% s, ZANV,EZ pY 2 Y

PROOF. These inductive clauses largely speak for themselves. Here is the
case of composition. Suppose that pb; g S, Y. This means that in game(G;H,
s, M), player 1 can force a set of outcomes A with F[A]CY - say, via a
strategy 0. Now, the restriction o|G of o to G played from s forces a set
of end positions U. From each of these, the remaining strategy o|H forces a
subset of A. But then, F[U] is the required set Z, using monotonicity to get
Py 2, Y for each state z€Z. Next, let 37 p1G s, Z NY z€Z: p}I z, Y. Then
1 has a strategy o for playing game(G, s, M) forcing an outcome set A with
F[A]CZ. By the second conjunct, 1 has strategies 7, in each game(H, z, M)
forcing sets B, with F[B,]CY. The composition of o and all 7, is a strategy
for playing G ; H forcing a set of outcomes mapped by F into Y. [

For determined games, it suffices to state the powers of player 1 only:

pGuH S, Y iff pea s Y orpas Y
pgd S, Y iff —pg s, S-Y
peg;H S, Y iff dZ:pg s, Z ANV2€Z:pg 2, Y

2.4. Logic over game boards

We now define our eventual game models as structures
M = (5, {p4| 9eBG}, V)

where S is a set of states,V is a valuation for proposition letters, and BG
is a set of basic games whose power relations p, are hard-wired into the
game board. Of the three conditions in Section 2.1, we impose one: upward
monotonicity (C1) - the other two will follow automatically for determined

190 J. van Benthem

games. Moreover, we now define power relations for all games using the
above inductive clauses. The semantics then becomes like that for dynamic
logic, with two special clauses:
a) M,sk{Gi}¢ iff 3X:phMs X andVeeX: M, z |= ¢
b) p;’f?/[5 Y if M, s|E¢andseY
We suppress the 7 henceforth, recording just one player in determined games.
Evaluation games provide concrete illustrations. In the first-order setting,
the game board consists of the variable assignments s into the given domain
of individuals. The power relations for Verifier in the two basic games are:
oy 8 X iff PM (s(z)) and s€X
pY s X iff for some d in |M|, s[z:=d]€eX
The earlier inductive clauses take care of all complex formulas. Modal games
have the modal model itself as a board, with basic power relations:
p;/ s, X if V(p, s)=1and seX
pg s, X iff for some ¢t with Rst, te X

The system resulting from the above general semantics is Dynamic Game
Logic (DGL) studied by [16] and [17]. Here is the basic result:

THEOREM. DGL is decidable, and its validities are axiomatized by

a) all valid principles of propositional logic: both azioms and rules
b) monotonicity: if ¢ — 1 is provable, then so is {G}p —{ G}y
¢) reduction laws for existence of strategies in compound games:

{GiH}p {GHH}¢
{GuH}Y¢ <« {G}¢V {H}¢
{G¢ o ~{G}—¢
{P?}¢ PA¢

These axioms encode basic reasoning about powers in games. (Note
6.) E.g., they formalize the proof of the Proposition for evaluation games
in Section 1. Inductive steps are provided by the above axioms, with the
base step just the definition of the win predicate for players in atomic games.

When games are not assumed to be determined, one can use a similar set of
DGL axioms, but now with a pair of modalities { G, 1}¢, { G, 2}¢ following
the earlier simultaneous decomposition of power relations for both players.

Logic Games are Complete for Game Logics 191

2.5. Game algebra

DGL can also express equivalence of two game expressions G, H by means
of validity of the assertion {G}p < {H}p. This says that

the power relations piG’M of G, H for both players as
defined above are the same on every game board M

This notion of equivalence can also be argued for on independent grounds.
It validates an algebra of game equivalence whose equational axiomatization
was first conjectured in [4]. The following result is from [12, 19], omitting
test games for convenience:

THEOREM. Game Algebra is aziomatized completely by means of

1) De Morgan algebra for choices and dual (Note 7)

2) G; (G;G") = (G;G@); G associativity
(GUG) ; " = (G;G")U (G;G") left-distribution
(G;G)¢ = G%; @4 dualization

3) GL G —- H;G<H; (G right-monotonicity

Typically though, right-distribution of composition over choice is invalid:
G; (HUK) = (G;H)U (G;K)
1’s choice for H or K on the left, but not on the right, may use the result of

G. As for the connection with the preceding game logic, all these algebraic
axioms may be derived from the given axioms of DGL.

3. From powers to evaluation games

In Section 2, game boards and power relations were presented as a general-
ization of evaluation games, culminating in general game logic and algebra.
Now, we go the other way, showing how all such general structures already
live inside evaluation games.

3.1. A simple representation

Though not strictly necessary for what follows, the following helps under-
stand our modus operandi. Determined two-player games assign families of
powers P; to their players %, subject to the constraints of Section 2.1:

Cl) if YeP; and YCZ, then ZeP;
C2) if YeP; and Z€Pj, then Y, Z overlap
C3) if Y¢P;, then S-YeP;

192 J. van Benthem

Now, these conditions are also all that must hold, witness the following

PROPOSITION. Any two families Py, Po of subsets of some set S satisfying
the three conditions C1, C2, C8 are the root powers in some two-step game.

PROOF. Start with player 1 and let her choose between the sets in P;. At
these nodes, player 2 gets to move, and can pick any member of that set.
Clearly, 1 has the powers specified in P;. Now for player 2. In the game
just defined, she can force any set of outcomes that overlaps with each set
in P1. But by C2, C3, these are precisely the sets in her initial family Ps.
E.g., if a set of outcomes A overlaps with all sets in P, its complement S-A
cannot be in that family, and so the set A itself is in Py, by C3. n

This representation allows the same outcome at different end nodes of the
game tree. Again there is some game-board flavour here, with an identifica-
tion map F . If one wants the outcomes unique on each branch of the game,
then the following strengthening of C2 is necessary and sufficient:

C2%) if YEP; and Z€Pj, then Y, Z overlap in just one point

3.2. Modal representation

In terms of powers, general games are still close to logical evaluation games.
As a result, basic game algebra coincides with the algebra of evaluation
games for ordinary predicate logic, or even propositional modal logic. The
following analysis, a stream-lined version of [6], was inspired by [16]. Con-
sider an arbitrary game board M = (S, {ps| 9€BG}, V). Now, define an
associated standard modal model as follows:

M* = (S U POW(S), {R,| geBG}, V)

whose states are all states in M plus all sets of such states. The binary
relations R4 hold only between state objects s and set objects X such that p,
s, X held in M. The binary relation € is standard set membership. Finally,
the valuation V makes proposition letters true only at those states s where
they were true in M. Think of M* as a two-sorted first-order version of M.

Next, we define a translation t taking (a) DGL formulas ¢ to modal formulas
t(¢), and (b) DGL game expressions G to game expressions t(G) whose
atoms are modal evaluation games. The latter may be viewed as generalized
evaluation games. In what follows, the modality Bl refers to all elements of
the current object:

Logic Games are Complete for Game Logics 193

t(p) = p

t(—¢) = -t(¢)

t(o V) = t(¢) Vt(y)
t({g}9) = QBIt(e)
t{GUH}p) = t({G}¢) V t({H}9)
t({Gl}¢) = -t{G}~9)
t{G;H}Yp) = t({G}HH}9¢)
t(g) = 6B
t(GUH) = t(G)Ut(H)
t(G4) = t(G)¢
t(G;H) = t(G);t(H)

A straightforward induction shows how this works:

PROPOSITION. The following pairs of assertions are equivalent, one for all
DGL formulas ¢, and one for all game expressions G:

a) M,sk¢ a) M¥* s t(¢)
i, M s, M
b) ch s, X b’) P:(G) s, X

PROOF. The heart of the matter is a fact which reflects the representation
of Section 3.1. The power relation for a game is exactly the same as that for
the associated evaluation game. If p;’M s, X, then Verifier can choose X in
the game for ®Bl, after which every move by Falsifier gives an object in the
set X. Thus, X is a power for V in the evaluation game. Conversely, if X
is such a power for Verifier, then there is an Rg-successor of s all of whose

elements are in X. But then also pz’M s, X, by monotonicity. u

Instead of the modal prefix ®Bl, the complete modal formula BT will work
just as well in games t(G) - where T is the game that always succeeds. Here
is some further information on this modal reduction.

PROPOSITION. For all game expressions G and modal power formulas ¢,
when interpreted in the obvious way in the model M* at any state s:

eval(t({G})p) = 1(G) ; eval(t(¢))
PROOF. The proof is again by induction. We do two illustrative cases.

a) eval(t({g}¢) = eval(6Bt(¢))
t(g) ; eval(t(e))

eval(t({G}H{H}¢)

t(G) ; eval(t({H}9))

t(G) 5 (t(H)seval(t(9)))

(t(G)5t(H)) ; eval(t(¢))

= t(G;H) ; eval(t(¢))]

i

b) eval(t({G;H }¢)

|

i

194 J. van Benthem

Finally, here is another way of thinking about the latter game. Confusing
formulas and evaluation games in a harmless manner:
PROPOSITION. t(G) ; eval(t(¢)) is the modal evaluation game for the for-
mula obtained by tagging on the formula ¢ behind all ’final occurrences’ of
an atomic game QB in the game expression t(G).
ProOOF. This is justified by the following set of validities in Game Algebra:

(GUH) ; K = (G;K)U (H;K)
(GiH); K = G;(H;K)
(G s H = (G; H%) [

3.3. General game algebra is algebra of evaluation games

The preceding reductions show how models for game logic and game alge-
bra can also be viewed as models for a standard modal language and its
evaluation games. Here is one striking consequence of this observation, and
the main result of this paper - inspired by the analysis of dynamic predicate
logic in [20] (cf. Note 8).

THEOREM. The following are equivalent for all game expressions G, H:

a) G = H is valid in general Game Algebra
b) G = H is valid in the algebra of modal evaluation games.

PROOF. From (a) to (b) is obvious. From (b) to (a), suppose the interpreta-
tions of G, H have different forcing relations on a game board M. Then, they
differ in powers at some state s, say: pl&/[s, X but not plf\l,/I s, X. Now take
some new proposition letter p and make it true only in the states of X. With
this valuation, M, s = {G}p, but not M, s |= {H }p. Then, as in Section 3.2,
there are two modal evaluation games having exactly the same operational
structure as G,H - with suitable modalities and proposition letters plugged
in for atoms - that differ on the game board for the model M*. [|

The point here is that game algebra of a very special class of logic games is
rich enough to give all the structure of general game algebra. This justifies
a certain pride of place for logical evaluation games in general game logic.

Similar observations may be made about a modal embedding of game logic.

FACT. Every modal power statement which is falsifiable for abstract games
can also be falsified on a game board for first-order evaluation games.

The reason is that the above reduction works just as well on models for
game logic - witness the connection with the p-calculus made in [16].

Logic Games are Complete for Game Logics 195

3.4. The link with first-order games

In an earlier version of this paper ([6]), a complex construction linked failures
of equations in game algebra to failures in first-order evaluation games. We
now analyze this in a modular way. The modal representation of Section 3.3
needs to be lifted to a first-order one. Now modal propositional formulas
¢ can be translated into formulas in a first-order language quantifying over
states, with modalities becoming bounded quantifiers:

Qp goes to Jy + Rzy: Py
Up goes to Yy« Rzy: Py

This translation works at the level of truth. But the two sorts of evaluation
games are different (cf. Section 1). Moves for modalities may result in dead-
lock, whereas those for quantifiers always succeed. The difference shows
in the games for ¢p and Jy(RzyAPy). (Note 9.) But in terms of power
relations from any state s, there is no difference. In the modal game for
Op, Verifier can force those sets X containing some R-successor ¢ of s which
satisfies p. Analogously, in the first-order game for 3y(RzyA Py), Verifier can
force those sets of variable assignments that contain some variant s[y:=d] of
s such that both Rs(z)d and Pd hold. This suggests the following formal
reduction. We translate the above modal counter-examples on models M*
to first-order evaluation games over a game board whose states are

assignments of S*-objects to the two variables z, y
Then atomic games are replaced, not by ®El, but by

dy 5 Rxy ; Vz 5 z€y
This makes all the state-change actions take place in the z-argument.
COROLLARY. First-order evaluation games are complete for Game Algebra.

(Notes 10, 11.)

4. Standard logic as game logic

The game connection does not just reinterpret existing logical systems, it
also suggests a fresh look at their architecture. Evaluation games are an
alternative semantics for first-order logic, providing much richer denotations
than standard truth values, or sets of assignments - which may be of use
for more intensional theories of propositions. (Note 12.) This suggests a

196 J. van Benthem

different philosophical look at first-order logic itself. With formulas viewed
as evaluation games, the key ingredient of Tarski semantics are its dynamic
procedures. These start from fact testing for atomic assertions and object
picking for quantifiers. Further game operations create complex procedures
out of these, via choice and dual (the Boolean structure) and sequential
composition (the hidden structure encoded in the gaps behind a quantifier
symbol). This changes our view of logical validity, as standard first-order
logic now becomes a mix of two things: some specific semantic operations on
particular models, plus general game structure that would make sense over
many other base repertoires of semantic actions.

More technically, in standard predicate logic, we take the meanings of the
usual logical constants (propositional connectives and quantifiers) as fixed,
and let the denotations of the other expressions vary over individual domains
and predicates. But in the new light, quantifier symbols are also variable
parts, that can be replaced by any game expression. E.g., the first-order
distribution law

Jdz (PzVQz) < 3z Pz vV Jz Qz

is not valid in this stronger sense, - as replacing '3z’ by Vz’ gives a counter-
example. Thus, the standard laws of first-order logic now fall into at least
three different levels, providing a fine-structure not normally observed:

a) General laws of game algebra

These hold under any substitution of concrete games for quantifier symbols
and of concrete statements for atomic subformulas. This may be viewed as
the game-theoretic core of first-order logic, which is decidable - because its
parent system of dynamic game logic is.

b) Special laws still exhibiting some general game-theoretic point

An example is the just-mentioned right-distribution of the existential quan-
tifier over disjunction. This is invalid in general game algebra - but it does
hold for all games in a broad natural class, viz. the ’distributive games’
where Verifier can force singleton sets of outcomes.

¢) Idiosyncracies of atomic games

An example is the idempotence of both quantifier and atomic fact games:
satisfying the equation G;G = G. It is the interplay of these three levels
which causes the undecidability of standard first-order logic - and a game-
theoretic ’deconstruction’ may help us understand this phenomenon better.

Logic Games are Complete for Game Logics 197

5. Extensions

With basic sequential operations, logical evaluation games are fully general
for game logic — at least, at the global level of players’ powers (Note 13).
How far does this observation generalize? Straightforward extensions in-
clude the use of ‘idle games’ T?, or arbitrary test games. More challenging
extensions come in different kinds. First, there are stronger sequential op-
erations, found in evaluation games for fixed-point languages like the modal
p-calculus. One example is the unbounded game iteration of [16, 17|, where
one of the players may open up to a finite number of new copies of the game.
Its complete game algebra, over the above repertoire, is still open. [11] shows
how arbitrary u-calculus evaluation games can be encoded in dynamic game
logic, which suggests that basic game algebra with analogues of Kleene it-
eration is a very powerful format. Fixed-point games crucially have infinite
runs as bona fide outcomes, which is another challenge to our analysis.

Another extension are parallel game compositions, allowing simultaneous
play of games. These have no evident counterpart in modal or first-order
evaluation games, but they may for more complex logical languages. Again,
some of these operations typically live in infinite games (cf. [1, 15]). In
particular, the connection remains to be understood between the dynamic
logic perspective of this paper and games for linear logic (but cf. [2]).

Finally, realistic game theory is replete with non-determined games, such
as card games, or real-life decision problems - whose players need not know
exactly where they are in an extensive game tree. Our general definitions
extend to this case, but what about more specific logic games of this sort?
A typical source of non-determinacy is imperfect information ([7]). This is
precisely the point of the IF-games of [14]. Extending our result would also
motivate the latter logic games as a 'universal format’ for basic game theory
allowing imperfect information. We include one foray in this direction as an
Appendix, not to end with just an empty litany of good intentions.

6. Coda on product games

We present one foray into parallel game operations - cf. [1, 2] for a systematic
take via linear logic. The best-known structures in much of game theory are
not the extensive trees of our paper, but strategic matrix games

player 1

a b

player 2 ¢ 1 2
d| 3 4

198 J. van Benthem

These represent two players moving in parallel, with four possible outcomes.
Occasionally, similar parallel phenomena occur in logic. An example is so-
called ’branching quantification’. E.g., a two-dimensional pattern like

Vzdy
> Rxyzu
Vz3u
lets choices for prefixes take place independently - bringing together the
results only at the end to evaluate the matrix assertion Rzyzu. Such games

involve a mild form of imperfect information: ignorance of others’ moves
played at the same time. We define this game operation more generally as a

product GxH

whose runs are pairs of separate runs for G, H with the product of their end
states as the total end state. In terms of powers, this works out as follows:

Py (5, 1), X iff 3U: piys, U, AV:piyt, V: UxVCX

This equivalence fails if players have access to earlier moves in both games
- which gives a much richer space of strategies in the product game. (Note
14.) Players’ powers in games G x H are no longer determined, but they still
satisfy conditions C1, C2 of Section 2.1. There is even an analogue of 3.1:

FAcT. Monotonicity and Consistency characterize powers in product games.

PROOF. [7] shows that these conditions are necessary and sufficient for play-
ers’ powers in two-move imperfect information games. But in fact, the rep-
resentation in the cited paper produces product games of the above sort! m

If outcomes are to be unique, as in matrix games, Consistency must be
strengthened to ensure singleton intersections between powers for the play-
ers. One can think of dropping Determinacy as providing much greater
flexibility in modelling behaviour of partially interacting agents. (Note 15.)

Next, as to game algebra over power models, we note some valid laws.

Ax(BUC) = (AxB)U(AxC)
(AUB)xC = (AxC)U(BxCQC)
(AxB)Y = AdxBd

These laws compute all powers for players in direct products of finite games.
There seem to be no significant interaction laws between the product X and
sequential composition ; - which reflects the complexity of iterated games.

Logic Games are Complete for Game Logics 199

OPEN PROBLEM. Azxiomatize the complete game algebra with product.

Again, this game algebra lives inside a richer language with a game forcing
modality. To state the minimum of product structure, one needs to assume
some kind of combination predicate Cz, yz on states: 'z is a pair of y, 2.
This supports some auxiliary product modalities for pairs of states:
M, s E$py iff Ty, 22 Cs, 2 AM,y=d AM, z =9
M, s =0¢ if Jy 22 Cysz2AM,yEdAM,zET
M,sE6p iff Fy 22 CyzsAMyEdAM,zET

Lacking determinacy, dynamic game logic needs modal operators {G, i}¢
with explicit player marking. Its valid principles will include, e.g.,

{Git¢ A{H, i} — {GxH, i}ody
{GxH, i}¢ — {G, i}0¢ A {H, i}0¢

This is not an automatic ‘reduction’ of the product modality, like in earlier
cases. We do not have an equivalence like {GXH}¢ — {G}OPN{H}$¢.
Derivations of our algebraic laws are not obvious, nor is completeness.

Finally, consider logic games as a candidate for representing general product
games. What would it mean to play say an evaluation game ¢ X 1?7 Consider
the above branching quantifier game. IF logic ([14]) is a generalized first-
order logic allowing for this type of meaning, via a ’slash formula’:

VzIyVz /{z, y} Ju /{z, y} Rzyzu

which suppresses all information flow between the two prefixes. (Note 16.)
In our game-algebraic language, this would be written as follows:

((Vz;3y) X (Vz33u)) 5 Rryzu?

Like standard first-order logic, IF logic is a mixture of general game algebra
and special facts about semantic procedures. Game-algebraic laws have IF-
instances that allow one to manipulate quantifier prefixes, such as

(Vz;3y) X (Vz3Vu)U(Fv;3u)) = (Vz;3y) X (V23Ve)) U ((Vo;3y) X (Fv;3u)

Also, valid principles of IF logic may be seen to be algebraic validities. E.g.,
the following nice quantifier exchange law is valid ([5]):

Vz3y/xz Rzy < IyVz/y Ry
In game-algebraic terms, this says that

(GxH); K=(HXG); K

200 J. van Benthem

This principle did not occur in our earlier list. Its core GXH = HXG
amounts to commutativity of state product: the order of composition in
pairs is irrelevant. But also, IF logic can detect invalid algebraic principles.
Here is an example refutable in general games:

(AXB) ; C = (4;C) x (B;C)

An IF-counterexample is 3zVy/x Rzy, whose evaluation game is not equiv-
alent to that for 3z Rzy X Vy Rzy. In all, product games can be analyzed
like the sequential ones we had before - but a complete extension of the
previous completeness and representation results is by no means obvious.

7. Notes

1) Evaluation games for fixed-point languages may involve infinite runs. This hap-
pens with games for the modal u-calculus that decompose fixed-point operators (cf.
[18]). Likewise, Ehrenfeucht-Fraissé games can have infinite runs, with bisimula-
tions or potential isomorphisms encoding winning strategies for the analogy player.
This requires analysis with runs, rather than end states, as outcomes of a game.

2) There are subtle differences here. The computational complexity of first-order
model checking is PSPACE in the size of the model and the input formula. But
the same task for modal logic takes only PTIME. This has to do with the size of
the game trees. Nodes in modal games do not involve assignments s that can grow
with the number of variables, and hence the size of the formula.

3) Another illustration of this dual perspective are graph games, where players
alternate in moving a pebble along the edges of some graph.

4) There are also natural non-sequential parallel game operations, of which we will
consider one example at the end. These arise only in ’non-standard’ first-order
logics, as in Hintikka & Sandu’s game-theoretical semantics (cf. Section 6).

5) Test games have some peculiarities. E.g., the general test game (—¢)? is not
the same as the game dual (¢?)%. If ¢ is true, in the former game, V is to move,
and ends in the first state (and dead-locks) - while in the latter, F is to move. This
difference carries over to the associated forcing relations. The success condition in
the former game for V is —¢p A z€Y, whereas in the latter, it is 7¢ V z€Y. We
will use test games only sparingly.

6) The dynamic game language also has a characteristic game bisimulation for
object-to-set transition relations, explaining when two game boards support the
same game assertions ([4, 9, 17]).

7) De Morgan algebra consists of the standard axioms for a distributive lattice plus
an idempotent negation (z%¢ = z):

Logic Games are Complete for Game Logics 201

Uz =z zNx =z

Uy = yUz TNy = yNz
zU(yUz) = (zUy)Uz zN(yNz) = (zNy)Nz
zU(yNz) = (zUy)N(zU2) zN(yUz) = (zNy)U(zNz)
(zuy)? = ziny? (zny)? = ziuy?

This is the working part of Boolean Algebra, without any special laws for 0, 1.

8) Dynamic predicate logic is an assignment-change semantics for first-order logic
based on dynamic logic of programs. Cf. [3] for a technical exposition, including
a short proof of the mentioned result from [20]. Game-theoretical semantics for
first-order logic is similar in spirit, but with transitions from input assignments to
output sets of assignments. The precise connection might run along the lines of
[10], which lifts dynamic semantics to a set change version.

9) This suggests genuine extra expressive power of bounded quantifiers in game
semantics - which remains hidden in standard logic.

10) One can also view this final step as an independent representation of game
models M. We take a new model whose states are pairs of objects (s, X), setting
Py (s, X) A (with A a family of such pairs) iff the original forcing relation p, holds
~in M between s and the set of left-projections of all pairs in A. The result is a
game-bisimulation between the two models.

11) To mimick modal evaluation operator by operator, another trick is needed. One
relates modal games over models M to first-order games over the same model, with
states {(z, s), (y, t)}, mapping the latter onto their z-value s in the modal model.
One then simulates a modality ¢ by means of 3y ; Rzy ; 3z ; z=y ; 3y ; T.

12) Games also look differently at standard first-order syntar. For, the natural
class of expressions to interpret is larger than the usual 'well-formed formulas’. It
also includes the latter’s combinations with game operations, plus free-standing
operators. Thus, the following is a perfectly fine game expression: Pz ; Jz ;
(RzyVPy) ; (VzAIz). This provides independent denotations for a much larger
class of discourse expressions. It also suggests that logical deduction might work
with other expressions than just well-formed formulas. Similar points occur in
dynamic semantics of natural language under the slogan of ’emancipation of syntax’.

13) There may yet be alternative roads to validating the title of this paper. At the
level of local actions, arbitrary finite games work directly as evaluation games! The
relevant recipe works up the game tree. Translate outcomes into unique proposition
letters. Write modalities ¢ for available moves a to nodes already described by
a formula - and put the disjunction of all these if player 1 is to move, and a
conjunction, otherwise. The evaluation game for the resulting formula on the given
game tree is essentially that game tree itself.

14) [9] has more details on product games that do allow interaction - including con-
nections with unbounded repetition games like infinite Prisoner’s Dilemma, which
arise as DGL game iterations of products G X H.

202 J. van Benthem

15) The result also says that perfect information games can be modeled as product
games, at least qua powers. Here is one, with player 2 having four actions:

1

N AN

AVANEVZ/\ WA

y z

16) IF syntax is much richer in general. E.g., a slash formula Vz3yVz Ju/z Rryzu
allows Verifier in the second prefix Vz3u access to what she has played in the first.
Its evaluation would be more like a product game allowing limited interaction.

References

[1] ABRAMSKY, S., 1996, ‘Semantics of Interaction: an Introduction to Game Semantics’,
in P. Dybjer and A. Pitts, (eds.), Proceedings 1996 CLiCS Summer School, Isaac
Newton Institute, Cambridge University Press, Cambridge, pp. 1-31.

[2] ABRAMSKY, A., 1997, Games in the Semantics of Programming Languages, invited
lecture, 11th Amsterdam Colloquium, Amsterdam.

[3] vAN BENTHEM, J., 1996, Ezploring Logical Dynamics, CSLI Publications, Stanford.

[4] van BENTHEM, J., 1999 onward, Logic in Games, electronic lecture notes, ILLC
Amsterdam & CSLI Stanford (printed version 2001).

[5] VAN BENTHEM, J., 2000A, ‘Hintikka Self-Applied’, to appear in L. Hahn, (ed.), Jaakko
Hintikka, Library of Living Philosophers, Southern Illinois University.

[6] VAN BENTHEM, J., 2000B, ‘Logical Evaluation Games are Complete for the Game
Algebra of Forcing Relations’, ILLC Amsterdam, the original version of this paper.

[7] VAN BENTHEM, J., 2001, ‘Games in Dynamic Epistemic Logic’, Bulletin of Economic
Research 53:4, 219-248.

[8] vAN BENTHEM, J., 2002A, ‘Extensive Games as Process Models’, Journal of Logic,
Language and Information 11, 289-313.

[9] VAN BENTHEM, J., 2002B, ‘Notes on Product Games’, manuscript, ILLC Amsterdam.

[10] vAN DEN BERG, M., 1996, The Dynamics of Nominal Anaphora, dissertation DS
1996-03, ILLC Amsterdam.

[11] BERWANGER, D., and E. GRADEL, 2002, ‘The Variable Hierarchy of the u-Calculus’,
Department of Informatics, RWTH Aachen.

[12] GoraNko, V., 2000, ‘The Basic Algebra of Game Equivalences’, Preprint 2000-12,
ILLC Amsterdam.

Logic Games are Complete for Game Logics 203

[13] HINTIKKA, J., 1973, Logic, Language Games, and Information, Clarendon Press,
Oxford.

[14] HINTIKKA, J., and G. SANDU, 1997, ‘Game-Theoretical Semantics’, in J. van Benthem
and A. ter Meulen, (eds.), Handbook of Logic and Language, Elsevier, Amsterdam,
pp. 361-410.

[15] W. HoDGEs, 1998, An Invitation to Logical Games, lecture notes, department of
mathematics, Queen Mary’s College, London.

[16] R. PARrikH, 1985, ‘The Logic of Games and its Applications’, Annals of Discrete
Mathematics 24, 111-140.

[17] M. PauLy, 2001, Logic for Social Software, dissertation DS 2001-10, ILLC Amster-
dam.

[18] C. STIRLING, 1999, ‘Bisimulation, Modal Logic, and Model Checking Games’, Logic
Journal of the IGPL 7, 103—-124.

[19] VENEMA, Y., 2003, ‘Representation of Game Algebras’, Studia Logica 75, 239-256.

[20] VISSER, A., 1995, ‘Relational Validity and Dynamic Predicate Logic’, preprint 144,
Logic Group, Department of Philosophy, Utrecht University.

JOHAN VAN BENTHEM

University of Amsterdam & Stanford University
Plantage Muidergracht 24

1018 TV Amsterdam

The Netherlands

johan@science.uva.nl

