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Preface

On the occasion that the Officers’ Meeting and the Board Meeting of
ICIAM (International Council for Industrial and Applied Mathematics)
was held in Shanghai from May 26 to May 27, 2006, many famous in-
dustrial and applied mathematicians gathered in Shanghai from different
countries. The Shanghai Forum on Industrial and Applied Mathemat-
ies was organized from May 25 to May 26, 2006 at Shanghai Science
Hall for the purpose of inviting some of them to present their recent
results and discuss recent trends in industrial and applied mathematics.
Sixteen invited lectures have been given for this activity. This volume
collects the material covered by most of these lectures. It will be very
useful for graduate students and researchers in industrial and applied
mathematics.

The editors would like take this opportunity to express their sincere
thanks to all the authors in this volume for their kind contribution. We
are very grateful to the Shanghai Association for Science and Technol-
ogy (SAST), Fudan University, the National Natural Science Founda-
tion of China (NSFC), The China Society for Industrial and Applied
Mathematics (CSIAM), the Shanghai Society for Industrial and Applied
Mathmatics (SSIAM), the Institut Sino-Frangais de Mathématiques Ap-
pliquées (ISFMA) and the International Council for Industrial and Ap-
plied Mathematics (ICIAM) for their help and support. Our special
thanks are also due to Mrs. Zhou Chunlian for her efficient assistance in
editing this book.

Rolf Jeltsch, Ta-Tsien Li, Ian H. Sloan
April 2007
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On the Martingale Representation Theorem
and on Approximate Hedging a Contingent
Claim in the Minimum Deviation Square

Criterion

Nguyen Van Huu
Vietnam National University, Hanoi
Vuong Quan Hoang

ULE Belgium.

Abstract

In this work we consider the problem of the approximate hedg-
ing of a contingent claim in the minimum mean square deviation
criterion. A theorem on martingale representation in case of dis-
crete time and an application of the result for semi-continuous
market model are also given.

Keywords Hedging, contingent claim, risk neutral martingale
measure, martingale representation

1. Introduction

The activity of a stock market takes place usually in discrete time. Un-
fortunately such markets with discrete time are in general incomplete
and so super-hedging a contingent claim is requires usually an initial
price two great, which is not acceptable in practice.

The purpose of this work is to propose a simple method for approxi-
mate hedging a contingent claim or an option in minimum mean square
deviation criterion.
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Financial market model with discrete time:

Without loss of generality let us consider a market model described by
a sequence of random vectors {S,, n=0,1,--- , N}, 8§, € R, which are
discounted stock prices defined on the same probability space {{1, T, P}
with {F,,, n=0,1,.--, N} being a sequence of sigma-algebras of infor-
mation available up to the time n, whereas “risk free” asset chosen as a
numeraire ST = 1,

A Fpy-measurable random variable H is called a contingent claim (in
the case of a standard call option H = max(S,— K, 0), K is strike price).
Trading strategy:

A sequence of random vectors of d-dimension v = (y, n=1,2,---,N)
with 7, = (9,92, ,79)7 (AT denotes the transpose of matrix A ),
where i is the number of securities of type j kept by the investor in the
interval [n—1, n) and 4y, is F;,_; -measurable (based on the information
available up to the time n — 1), then {7,} is said to be predictable and
is called Portfolio or trading strategy .

Assumptions:
Suppose that the following conditions are satisfied:

(i) ASp = Sp — Su_1, H € La(P), n=0,1,---, N.

(ii) Trading atraltegy ~ is self-financing, ie. 57 _ 74,1 = ST_, 4, or
equivalently 57 _ Ay, =0foralln=1,2,.--,N.
Intuitively, this means that the portfolio is always rearranged in
such a way its present value is preserved.

(iii) The market is of free arbitrage, that means there is no trading
strategy v such that 47 Sy '= 718 €0, ywSy 2 0, P{ynSy >
0} = 0.

This means that with such trading strategy one need not an initial cap-
ital, but can get some profit and this occurs usually as the asset {5,} is
not rationally priced.

Let us consider

N d
Gn(v) =D mAS, with 7AS, = Y 1iAS].

fe=1 =1



-
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Lhis quanlily s called the guin of the strategy +.
The problem is o find a comstaul cand v = (v, n=1,4% .- &) an
that
el —o— G (¥ —+ min_ i11)

Problem (1.1) have been imvestigated by severaul wnthors such 2 H
Folmer, M Schweizer. M. Schel, M. L. Nechaey with o« = [, How
ever, the solution of prohlem (1.1) s very complicated awd dilliculs for
application if {5, } 17 not a {F,}-martingale uander P, evon o o = 1,
By the fundamental theorem of financial matheimatbics, sioee Lle mar-
ket iz of Tee arbitrage, there exiats a probahbility measure € -~ I* such
that under ¢, {5a} iz an {F. }martingale, ie. Fg(S.|F,) = 8, aud
the measure ¢ i= called risk newival wmartingale profability rmeasmre.
We try to find ¢ aod - =0 LLat

P — ¢ — G’.ﬁ..rl:“,.';l:lz P I0IR OVET Y. (1.2]

Definition 1.1 [+'] = (77ic)) minimizing the cxpeetation in (1.2)
is called ¢ optimal strategy in the minimum mean gguar: deviation

(MMELDY) eriterion corresponding Lo e inilial capitsl e

The solution of Lhis problem s very simple and the eonstresion of
the (roptimeal siralegy is easy ko irnplement in practice.
Motice that i Ly — oG}/ then

Eq(H —e— Gui{7)) = Ep[{ll —c - Gy )*Ly]

can be considered as an weighted capeetation under P of (H — e ()2
with the weight L. 'Lhis is similer fo the pricing assel based onos rigk
nenbral martingale measure )

In this wirk we give a solution of the problem [1.2) and a Lheorsn
on martingale roprespntation in the case of discrete time.

It i worth to notice that the authors M.Schweiser, M.Schal, M. L.
Mechaey eonsidered only the problem (1.1} with 5, of cne-dimeonsion
and M.Schweiaer need the addisional assumptions that {5} satislics
non-dereneracy condition in the sense that thare exists a constant § in
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(0,1) such that

(E[ASn|Fa-1])® < ¢E[(AS,)*|Fu-1] P-as. foralln=1,2,--- N,
and the trading strategies +,'s satisfy:
E[Tﬂﬂ'gll]z < O

while in this article {5, } is of d-dimension and we need not the preceding
assumptions.

The organization of this article is as follows:

The solution of the problem (1.2) is fulfilled in paragraph 2. (Theo-
rem 2.1) and a theorem on the representation of a martingale in terms of
the differences AS,, (Theorem 3.1) will be also given (the representation
is similar to the one of a martingale adapted to a Wiener filter in the
case of continuous time).

Some examples are given in paragraph 3.

The semi-continuous model, a type of discretization of diffusion model,
is investigated in paragraph 4. =

2. Finding the optimal portfolio

Notation. Let ) be a probability measure such that Q) is equivalent to
P and under @ {S,, n=1,2,--- , N} is an integrable square martingale
and let us denote En(X) = Eq(X|Fy), Hy = H, H, = Eg(H|F,) =
E,(H); Var,_1(X) = [Covy-1(X;, X;)] denotes the conditional variance
matrix of random wvector X when F,,_, is given, I' is the family of all
predictable strategies .

Theorem 2.1 If {S,} is an {F, }-martingale under Q then
Eq(H — Hy— Gn(7"))? = min{Eq(H —c—Gn(7))* : v €T}, (21)
where ~ i3 a solution of the following equation system:

[Varn—1(ASn)lvm = En-1((AHWAS,)  P-as, (2.2)



138 Nguyen Van Huu

Proof: At first let us notice that the right side of (2.1) is finite. In fact,
with 7, = 1 for all n, we have

N d .
Eg(H — c— Gn(v))® = Eq (H-.:- ZEJS,{) < oo.
n=1j=1

Furthermore, we shall prove that v*AS,, is integrable square under Q.

Recall that ( see [Appendix A] ) if ¥, Xy, X5, , X4 are d + 1 inte-
grable square random variables with E(Y) = E(X;)=--- = E(X ) =0
and if ¥ = by X) 4+ baXa 4 -+ + baX, is the optimal linear predictor of
Y on the basis of Xy, Xs,--- , X4 then the vector b = (by, b, - ,!ld}T i5
the solution of the following equations system:

Var(X)b = E(Y X), (2.3)

and as Var(X) is non-degenerated b is defined by

b= [Var{X)| " E(Y X), (2.4)
and in all cases
bE(YX) < E(Y?), (2.5)
where X = (X;, Xz, -+, X3)7. ,
Furthermore,
Y —¥L, ie EX;(Y -F)]=0,i=1,--- k. (2.6)

Applying the above results to the problem of conditional linear prediction
of AH,, on the basis of AS}Y, ASZ, ... ASY as F,, is given we obtain from
(2.3) the formula (2.2) defining the regression coefficient vector v*. On
the other hand we have from (2.3) and (2.5):

E(12A85,)* = EE. 1 (73AST AS.T) = E(v, Vare_1 (A8, )T
= E{T;En—l{ﬁ'ﬂnﬂsz}} = E['ﬂﬂn}i = o0,

With the above remarks we can consider only, with no loss of generality,
trading strategies -+, such that

En-1(1mA8n)? < 0.
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We have:

Hy=Hy+AH+--- + AHy
and

En-1(AH, — vTAS,)? = E\ 1 (AH,)? = 297 By ((AHLAS,)
ﬂIEn—] {ﬁ-s“ﬂs:']'-fn B

This expression takes the minimum value when v, = 7,.
Furthermore, since {H, — ¢ — Gn(7v)) is an {F,}- integrable square
martingale under @,

N 2
Eq(Hy — ¢~ Gn(1))* = Eq [H" —e— ) (AH, - -r.,aSnﬂ

n=1

N B
= (Ho— ¢ + Eq | S (AH, - rmas..a]
=1

N -
= (Ho—cf* + 3 EQ(AHn = 1aAS,)

n=1

(for AHy — 4nAS, is martingale difference)

N
= (Ho — ¢)* + Eq 3 En1(AH, — A5, )

n=1

N
> (Hp — ¢)* + Eg E En1(AH, — v, AS,)?

=1

N
= (Ho —¢)* + Eg ) _(AHn — Y, A8,)?
=1

N 3

Y (AH, - 17AS,)

me=]

> Bq(Hn — Ho — Gal7"))".

= (Hy —¢}“ + Eg

So Eg(Hy —c—Gn(7))* 2 Eq(Hn — Ho— Ga(7"))* and the inequality
become the equality if ¢ = Hy and 5 = +*. (|
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3. DMartingale representation theorem

Theorem 3.1. Let {H,, n=0,1,2,---}, {8, n=0,1,2,---} be ar-

bitrary integrable square random variable defined on the same probabahiy
space {10,D, P}, EF = oS, -+, 8:). Denoting by II(S, P) the set of
probability measures (@ such that Q ~ P and that {S,} is {F5} integrable
square martingale under Q, then if F = VL Ff, Hy, S, € L2(Q) and
if {H,} is also a martingale under @@ we have:

1.H, = H¢+i1‘kﬂ.ﬂh+ﬂn a.8., (3.1)
k=l
where {Cy} is a {F¥} = Q-martingale orthogonal to the martingale {S,.},
e, En_1(([ACLAS,) =0, for all n = 0,1,2,---, whereas {v,} is
{F3_,}- predictable.

2. Hn=Ho+ 3 mASk:=Ho+Gul(y) P-as. (3.2)

k=1
Jor all n finile iff the set II(S, P) consists of only one element.
Proof: According to the proof of Theorem 2.1, putting

ACy = AHp — 1{ASy, Co =Y AC, Gy =0, (3.3)
k=1 .
then AC, LAS), by (2.6).

Taking summation of (3.3) we obtain (3.1).

The conclusion 2 follows from the fundamental theorem of financial
mathematics. O
Notice 1. By the fundamental theorem of financial mathematics a se-
curity market has no arbitrage opportunity and is complete iff TI(S, P)
consists of the only element and in this case we have (3.2) with v defined
by (2.2). Furthermore, in this case the conditional probability distribu-
tion of 8, given F¥ | concentrates at most d + 1 points of R? (see [2],
[3]), in particular for d = 1, with exception of binomial or generalized
binomial market models (see [2], [7]), other models are incomplete.
Notice 2. We can choose the risk neutral martingale probability measure
(2 so that @@ has minimum entropy in II{S, P) as in [2] or @ is near P as
much as possible,
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Example 3.1. Let us consider a stock with the discounted price 5; at
t=0, 5 att =1, where

45:/3 with prob. gy
S1=45 with prob. p2, p1,p2,p3 >0, m4+p+p3=1

Suppose that there is an option on the above stock with the maturity
at £ = 1 and with strike price K = S;. We shall show that there are
several probability measures @@ ~ P such that {S;,5:} is, under @, a
martingale or equivalently Eg(AS,;) = 0.

In fact, suppose that @ is a probability measure such that under Q 5;
takes the values 45,/3, Sp, 250/3 with positive probability q1, g2, gs,
respectively. Then Eg(AS)) =0 & So(q1/3 = g3/6) = 0 2q; = g3, 50
Q is defined by (g1, 1 3q1, 2q1), 0 < g3 < 1/3.

In the above market, the payoff of the option is

H = {S[ o H].g. = {&Sl}.g. = m&x{.&Sl,D}.
It is easy to get a Q-optimal portfolio
7" = Eq[HAS:|/Eq(AS,)* = 2/3, Eq(H) = q150/3,

Eq[H — Eq(H) = 7" A5 = 155(1 - 3q1)/9 — 0 as 1 — 1/3.

However we can not choose gy = 1/3, because g = (1/3, 0, 2/3) is not
equivalent to P. It is better to choose gy = 1/3 and 0 < ¢4 < 1/3.

Example 3.2 Let us consider a market with one risky asset defined by:
Sn =.5r[|.1-.[35, or Sﬂ_ =Sn-|zﬂ_|.ﬂ= 1,2,"' -|N|

where Z,, Za,- -, Zy are the sequence of i.i.d. random variables taking
the values in the set 2 = {dy,da, - ,dy) and P(Z; =dp) =pe > 0, k=
1,2 ... M. It is obvious that a probability measure ) is equivalent to
P and under @ {S,} is a martingale if and only if Q{Z; = di) = q& >
0, k=1,2,--- ,M and Eg(Z;) =1, i.e

qudy + qada + - + qardpr = 1.
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Let us recall the integral Hellinger of two measure () and P defined on
some measurable space {{1*, F}:

H(P,Q) = f (dP - dQ) V2.

Q=
In our case we have
H(P,Q) = Z{P{El =di, Za=da, -, Zn = din)-
Q21 = dqy, Zo = dagy -+, Zy = diy)}7°
= E{Fu-!}-:l Paadiz - pivain 2,

where the summation is extended over all d;, dy2,- -, di in £ or over
all 41,12, -,in in {1,2,---, M'}. Therefore

M
H(P,Q) = {)_(pag:)'*}V.
imi
We can define a distance between P and @ by
Q- P|I* =2(1 - H(P,Q)).

Then we want to choose ° in II(S, P) so that ||Q* = P|| = inf{||Q- P|| :
QP(S, F)} by solving the following programming problem:

u 1/2 1
>_p """ — max
1=1
with the constraints -
a. qudy +qadz + - -+ gaedpy = 1.
b. qu gt +ga =1
C. i, o, 0, qar > 0.

Giving gy, p2, -+, pa we can obtain a numerical solution of the above
programming problem. It is possible that the above problem has not a

solution. However, we can replace the condition ¢) by the condition

. 1, fi"h"'s?-i:_’ﬂs

then the problem has always the solution ¢* = (g7, ¢z, -+, ¢}iy) and we
can choose the probabilities qy,q2, -+, gy > 0 are sufficiently near to

IIIIITEP---!Q;J'
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4. Semi-continuous market model (discrete in time
continuous in state )

Let us consider a financial market with two assets:
+ Free risk asset {B,, n=0,1,-.., N} with dynamics

B, = exp (Zf‘k) ,0<r, <1 (4.1)
k=1

+ Risky asset {5,, n=0,1,--- , N} with dynamics

Sy = Spexp (El#(ﬁ't—ll + ﬂ[-?t—lﬁﬂkl) 1 (4.2)
k=1
where {g,, n=10,1,---, N} is a sequence of i.i.d. normal random vari-

able N(0,1). It follows from (4.2) that
=Sn—l'E‘xP{f-‘{Sn—l] + & (Sn-1)gn), H-SJ

where Sp is given and p(S,_1) == a(Sn_1) = 2(Sn-1)/2, with a(z), o(z)
being some functions defined on [0, oo).
The discounted price of risky asset - n/ Bn is equal to

Sn = Spexp (Zfﬁ(sk—ll — Tk + oSk ]Eﬂ) : (4.4)

k=1

We try to find a martingale measure @ for this model.

It is easy to see that Ep(exp(Age)) = exp(A?/2), for ge ~ N(0,1),
hence .

Eexp (E[ﬁk(sﬁa—ljﬂk - ﬁk(sk—l}zﬁl) =1, (4.5)
k=1

for all random variable 85(Sk-1).

Therefore, putting

Ly = exp (Em&{St—l}Ht - .ﬁk[S&ﬂ}Efﬂ]) yn=1,---,N (4.6
k=1

and if ¢} is a measure such that d@) = LydPP then @ is also a probability

measure. Furthermore,

-

SSJ_*I = exp(p(Sn_1) — T + 7{Sn1)gn). (4.7
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Denoting by E?, E expectation operations corresponding to P, Q,
E,(.) = E[(.)|F¥] and choosing

B = —(a(Sn-1) = Tn){a(Sn-1) (4.8)
then it is easy to see that
En-1[5n/5n-1] = E*[LoSn/Sn-1|F3)/Ln-1 =1

which implies that {S,} is a martingale under Q.
Furthermore, under ¢}, S, can be represented in the form

8n = Sn—1exXp((8"(Sn-1) + a(Sn-1)g5)- (4.9)

Where g*(Sp_1) = ra—02(Sa_1)/2, 9% = —Bu+gn is Gaussian N(0,1).
It is not easy to show the structure of II( S, P) for this model.

We can choose a such probability measure @@ or the weight function
Ly to find a Q- optimal portfolio.
Notice 3. The model (4.1), (4.2) is a type of discretization of the following

diffusion model: 3

Let us consider a financial market with continuous time consisting of
two assets: :

+Free risk asset:

£
By = exp ( f rl.’_u}du) , (4.10)

1]

+Risky asset : dS; = S¢[a(S:)dt + o(S5:)dWt], Sp is given, where
al.),o(.) : (0,00) — R such that za(z), zo(x) are Lipschitz. It is obvious
that

. £
5 = mrp{ f [(S4) — 02(Su)/2ldu + f a[&]ﬂﬂ}, 0<t<T.
0

L1
(4.11)

Putting
u(S) = a(S) — #*(5)/2, (4.12)
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and dividing [0, T] into N intervals by the equidistant dividing points
0,4, 24,---, NA with N = T/A sufficiently great, it follows from
(4.10), (4.11) that

nd nd
Sna = S(n_1)a exp f (S )du + f a(Su)dW,
(B—1)4 (n—1)A

= Sin-na exp{p(Sin-1a)A + (Sin-1)a)[Wana — Win_nal}
= Sin—1)4 XP{(Sin-11a)A + 0(Sn-13a)4 3 g,)
with g, = [Waa - W{"_]}ﬂ]fﬂ.l“. n=1.-.-, N, being a sequence of

the i.i.d. normal random variables of the law N(0,1), so we obtain the
model:

na = Fia_1)a eXP{(Stn-1)a) 8 + (Sin-1)a)A g, }. (4.13)
Similarly we have
Bra = B _yya exp(Tn-1ad). (4.14)

According to (4.10), the discounted price of the stock 5, is

S = %i - S:]EJCF {f{#{su} — ruldy + f‘f{Su}qu} . (4.15)
0

0
By Girsanov Theorem, the unique probability measure £ under which
{Se, FF, Q} is a martingale is defined by
T T

(4Q/dP)|Ff = exp ( [oaw. -3 [ ﬂﬁdu) =Lr(w), (416
]

]

where
_ ((a(5s) — 7s)
o(S:)
and (dQ/dP)|F{ denotes the Radon-Nikodym derivative of Q w.r.t. P
limited on Ff. Furthermore, under Q

By =

[/
Wr =W, + f Budu
L]
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is & Wiener process. It is obvious that Lt can be approximated by

N
Ly :=exp (Zﬂkﬂ-mﬂ# - -ﬂﬁgﬁ) ; (4.17)
k=1
where
4 = - [a(Sin-1)a) — rnal (4.18)

7(Sin-1)a)

Therefore the weight function (4.14) is approximate to Radon-Nikodym
derivative of the risk unique neutral martingale measure ¢ w.r.t. P and
£ is used to price derivatives of the market.

Notice 4. In the market model Black- Scholes we have Ly = Lp. We
want to show now that for the weight function (4.17)

Eg(H — Hy— Gn(y"))? = 0as N —wocor A — 0.

¥
Proposition Suppose that H = K(S7)/Bwn is a integrable square
discounted contingent claim. Then

Eq(H - Hy-Gn(7"))? = 0as N —ocor A — 0, (4.19)

provided @ and o are constant (in this case the model (4.10), (4.11) is
the model Black-Scholes).

Proof: It is well known (see[4],[5]) that for the model of com-
plete market (4.10), (4.11) there exists a trading strategy ¢ = (@ =
o(t,S(t)), 0 = ¢ = T), hedging H, where ¢ : [0,T] x (0,00) — R is
continuously derivable in ¢ and S, such that

T
H{Sr)= Hy + f@gdﬁ{t} .5,
0
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On the other hand we have

2

N
Eqy (H ~ Ho - ETt'h-L}aﬂﬂnﬂ)
k=1

N b4
< Eg, (H = Hp = Z t?.".[k_tm,ﬁ-‘i'm)

k=1

T N 4
= Eg (f'#:rﬁ'{!} - Et#{n-lmﬁg{n-um) Ly/Ly
n k=1

2
T N

= Eg (fﬁ:;dﬂ{:} = Efﬁ{h—naﬂgm—na) —+Das A — 0.
0

k=1

(Since Ly = Ly and by the definition of the stochastic integral Ito as a
and o are constant.) a

A  Appendix A

Let Y, X, Xa,---, Xg be integrable square random variables defined on
the same probability space {1, F, P} such that EX; = --- = EXy =
EY =0.

We try to find a coefficient vector b= (by,---,bg)7 so that
ElY —by Xy — - —bgXa) = E(Y -b"X)* = uIIE]l#[F —aTX)% (A1)

Let us denote EX = (EX,,---, EXy), Var(X) = [Cov(X;, X;), 4,7 =
1,2, ,d] = EXXT,

Proposition The vector b minimizing E(Y — a” X)? is a solution of
the following equation system:

Var(X)b = E(XY). (A.2)
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Putting I/ =¥ —bTX =¥ — ¥, with ¥ = b7 X, then

E(UY)=EY? -y E(XY)=0. (A.3)
E(UX;)=0 foralli=1,---,d. (A.4)
EY? = EU? 4+ EY?, (A.5)
- - 172
EY? EY?
P = (Ev2Eya 2 (E}fﬂ) | (4.6)

(p is called multiple correlation coefficient of ¥ relative to X.)
Proof: Suppose at first that Var(X) is a positively definite matrix.
For each a € R? We have

Fla)=E(Y —a"X)* = EY? - 2a"E(XY) +aTEXXTa (A7)
F(a) = —2E{XY) + 2Var(X)a.
[3:;11, i,j=1,2.-- ,d] = 2Var(X).

It is obvious that the vector b minimizing F{a) is the unique solution
of the following equation:

F(a) =0 or (A.2)
and in this case (A.2) has the unique solution:
b= [Var(X)] ' E(XY).

We assume now that 1 < Rank{Var(X)) =r < d.

We denote by ey,eg,- - -, eq the ortho-normal eigenvectors w.r.t. the
eigenvalues Ay, Ag, -, Ag of Var(X), where \y > da = - Z A > 0=
Arg1 = --- = Ay and P is a orthogonal matrix with the columns being
the eigenvectors e, €3, - - , &4, then we obtain:

Var(X) = PAPT, with A = Diag(Ay, Az, -+ , Ad).

Putting
Z=P"X=[e]X,edX,. ...l X7,
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Z is the principle component vector of X, we have
1-"3:{3] — PT".FarEI]P =A= Diﬂg{ll,;’q, - ,}'l-r,.u, Y 'n}
Therefore

Ezil_1=“'=E3§=ﬂ,ﬂﬂzr+]3'“=Ed:='[} P- a.s.

Then
F(a) = E(Y —a"X)? = B(Y - (a" P)2)?
=E(Y —ajZ; —--- —a324)*
=E(Y —alZ; —--- —a’Z,)?,
where

a*" = (aj, - ,a3) =a" P, Var(Z,---,Z,) = Diag(A, Ag,-+ ,Ar) > 0.

According to the above result (b3,--- ,b2)7 minimizing E(Y — a1 2] —
- = ayZ,)? is the solution of

Av... 0\ b EZ,Y
......... e T (A.8)
0 ...x/ \& EX,Y
or
(M... 0 0...0\ 8\ [(Bay\ (Ezy)
0..h 0.0l | |BzY| | EzY (A9)
' TERSEE R B 8 0 EZ, .Y
\0..00..0/\eg/ \ o /) \Ezy)

Ivl'--i’.--lll h;+1-| e rﬁ; &Tbitl'ﬂ.l'}’.
Let b = (b, -, b4)" be the solution of " P = b*T, hence b = Pb*
with b* being a solution of (A.9). Then it is follows from (A.9) that

Var(Z)PTb = E(ZY) = PTE(XY)
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or

PTVar(X)PP b= PTE(XY) ( since Var(Z) = PTVar{X)P)

Var(X)b = E{XY)

which is (A.2). Thus we have proved that (A.2) has always a solution,
which solves the problem (A.1).
By (A.T), we have

F(b) =.min E(Y — arX)?
= EY? _ 26" E(XY) + bT Var(X)b
— EY? - 26T E(XY) + T E(XY)
= EY? - bpTE(XY) > 0.

On the other hand
EUX; = E(X;Y) - E(X:b" X) =0, (A.10)

since b is a solution of (A.2) and (A.10) is the ith equation of the system
(A.2).
It follows from (A.10) that

E(UY) =0 and EY? = E(U+¥)? = EU*4+EY*+2E(UT) = EU*+EV?.
O
Example We can use Hilbert space method to prove the above propo-
sition. In fact, let H be the set of all random variables £'s such that
Ef = 0, Ef* < oo, then H becomes a Hilbert space with the scalar
product (£,¢) = E£(, and with the norm |[£|| = (E€2)Y/2. Suppose
that X;,X3,---, X4, ¥ € H, L is the linear manifold generated by
X1, Xa2,--- ,Xa. We want to find a ¥ € H so that ||V — ¥|| minimizes,
that means ¥ = bT X solves the problem (A.1). It is obvious that ¥ is
defined by
Y =Proj,Y =X andU=¥ -Y € L.
Therefore (Y -7 X, X;) =0or E(M XX,) = B(X;Y)foralli=1,--- ,d
or " E(XTX) = E(XY) which is the equation (A.2). The rest of the
above proposition is proved similarly.
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