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Abstract. In this work, we present a multi-agent logic of knowledge and change of knowl-

edge interpreted on topological structures. Our dynamics are of the so-called semi-private

character where a group G of agents is informed of some piece of information ϕ, while all

the other agents observe that group G is informed, but are uncertain whether the infor-

mation provided is ϕ or ¬ϕ. This article follows up on our prior work (van Ditmarsch et

al. in Proceedings of the 15th TARK. pp 95-102, 2015) where the dynamics were public

events. We provide a complete axiomatization of our logic, and give two detailed examples

of situations with agents learning information through semi-private announcements.

Keywords: Topological semantics, Subset space logic, Dynamic epistemic logic, Private
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1. Introduction

This work follows the tradition of modelling (dynamic) epistemic logics on
spatial, rather than relational, structures, such as neighbourhood frames
[23,37], subset spaces [1,10,11,17,18,35,36], and more importantly topolog-
ical spaces [2,3,12,30,31]. Unlike the rather standard approaches to mod-
elling knowledge and information dynamics using relational semantics (see,
e.g., [9,26,29,32] for a survey on this topic), our work acknowledges the ob-
servation based nature of these notions that demands richer, neighbourhood-
like structures. In this work, we propose a multi-agent topological semantics
for knowledge and semi-private announcements in the style of subset space
semantics equipped with neighbourhood functions. While knowledge is en-
tailed by the agents’ current observation sets (roughly speaking, represented
by some opens of the given topological model), the precondition of an an-
nouncement is captured by means of the topological interior operator that
refers to the existence of a possible observation set entailing the announce-
ment (we formalize these notions in Section 3). Therefore, we do not take
the precondition of an announcement to be only that the announced formula
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be true, but that it be ‘observable’, as in [12]. It is this observational aspect
of our work that makes it different from most approaches to knowledge and
semi-private announcements based on standard relational semantics.

An initial investigation by Moss and Parikh [24] presented a single-agent
subset space logic (SSL) for the notions of knowledge and effort. In this
work, the knowledge modality Kϕ has the standard reading “the agent
knows ϕ (is true),” while the effort modality �ϕ captures a notion of effort
as any action that results in an increase in knowledge, read as “after (any)
effort ϕ is true”. Effort can be in the form of measurement, computation,
approximation or even announcement, depending on the context and the
information source, with, observation considered particularly relevant [24].
In [24], Moss and Parikh evaluate the formulas in the bimodal language on
subset spaces (X, O), where X is a non-empty domain and O is a non-empty
set of subsets of X. A subset space is not necessarily a topological space, but
topological spaces constitute a particular case of subset spaces. The elements
of O are taken to be possible observations or possible observation sets, and
the formulas are interpreted not only with respect to the actual state, but
also with respect to a (truthful) observation set. The unit of evaluation is a
pair (x, U) such that x ∈ U ∈ O, where the point x represents the true state
of affairs, and the set U represents all the points the agent considers possible,
i.e., her epistemic range. According to subset space semantics, given a pair
(x, U), the knowledge modality K quantifies over the elements of U (Kϕ is
true in (x, U), if ϕ is true in (y, U) for all y ∈ U), whereas the effort modality
� quantifies over all open subsets of U that include x (�ϕ is true in (x, U),
if ϕ is true in (x, V ) for all V ∈ O with x ∈ V ⊆ U). More precisely, �ϕ
being true in (x, U) means that ϕ is true with respect to the actual state x
and any further refinements of the current observation set U .

The epistemic motivation for subset space semantics and the dynamic
nature of the effort modality clearly suggests a link with dynamic epistemic
logic (DEL). The relationships between some of the well-known dynamic
modalities studied in the DEL literature, such as the public and arbitrary
public announcement modalities, have recently received considerable atten-
tion. In spite of the intuitive connections between SSL and the informational
attitudes studied in DEL, connecting SSL to DEL is not entirely straightfor-
ward, even in the relatively simple case of public announcements. Connec-
tions between single-agent public announcement logic and SSL were made in
[1,7,10–12,36]. To the best of our knowledge, Wáng and Ågotnes [36] were
the first to propose semantics for public announcements on subset spaces
in terms of open set refinement rather than model restriction. Bjorndahl
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[12] then proposed a revision of the semantics in [36], based on topologi-
cal spaces, and with an interior modality int(ϕ) capturing the precondition
of an announcement, associated with the interior operator of topological
spaces. In previous work [30], we further extended the proposal in [12] with
the arbitrary public announcement modality capturing information change
caused by any announcement (rather than any effort) and studied a par-
ticular type of ‘effort’ that is in the shape of public announcements. Baltag
et al. [7] further investigated the relationship between the dynamic notions
effort, public announcements, and arbitrary announcements, building on the
settings presented in [12,30]. While the standard requirement for a truthful
public announcement in DEL literature is only that it be true, the precon-
dition int(ϕ) is stronger than ϕ simply being true (see also [12]) and it
states that “ϕ is supported by truthful observation”. In a framework where
knowledge is based on truthful observations the agent possesses (such as
the subset space setting), this precondition for the announcements seems to
be the right notion to consider. We thus find this reading to be a good fit
with the intuition behind the subset space/topological semantics and the
observation-based dynamics we study in this paper: for an announcement
to be successfully implemented, it is not sufficient that the announced for-
mula be true, but there has to be a truthful observation set available to
the agent, i.e., an open neighbourhood of the actual state, that entails the
proposition in question. This is explained in great detail in [12] with sev-
eral examples; we adopt one of these examples to motivate and explain our
semantics in later sections. Although using topological spaces rather than
subset spaces restricts our class of models, topological spaces are equipped
with more structure and natural topological operators, such as the interior
operator, helping us model information change based on observation.

The generalization of this framework to a multi-agent setting was the
next natural step. Multi-agent subset space logics and topological logics
were presented in [10,17,18,31,35]. We generalize our knowledge operator,
so we now have formulas Kiϕ, for “agent i knows ϕ”, but we must deal
with the complication of ‘jumping out of the epistemic range’ of an agent
while evaluating higher-order knowledge formulas. This issue occurs inde-
pendently from the dynamic extensions, and it is explained in a greater
detail in [31,35]. To briefly recall the problem, for example, consider two
agents i and j, each having an associated observation set so the semantic
primitive becomes a triple (x, Ui, Uj) instead of a pair (x, U). Evaluating a
higher order knowledge formula such as KiK̂jKip with respect to the triple
(x, Ui, Uj) requires checking the truth of K̂jKip at (y, Ui, Uj) for all y ∈ Ui.
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However, there might exists a state y ∈ Ui such that y �∈ Uj , which ren-
ders the triple (y, Ui, Uj) ill-defined. This dilemma can be solved in different
ways. In [35], it is solved with subsets containing partitions of the entire
space, and in [31] by considering neighbourhoods that are not only relative
to each agent, as usual in multi-agent subset space logics, but also relative to
each state. Such a logic, including arbitrary public announcement modalities
that capture a particular type of effort, was axiomatized in [31]. Although
the setting was multi-agent, the dynamics was that of publicly observable
events.

A further step in this story is non-public dynamics: actions such as an-
nouncements that are observed by some agents but not by other agents, or
that are only partially observed by other agents. A well-known example of
such an action from the dynamic epistemic logic literature is the so-called
private announcement [16]. In the current work, we present a multi-agent
logic of knowledge and change of knowledge interpreted on topological struc-
tures. For the dynamic part we consider not only public announcements
but also private events called semi-private, or equivalently, semi-public an-
nouncements [6]. Semi-private announcements describe a type of information
gain of a group of agents A where a subgroup G of agents is informed of some
piece of information ϕ, while all the other agents in A observe that group
G is informed, but are uncertain whether the information provided is ϕ or
¬ϕ. As a simple example, we can consider the following scenario involving
two agents and a number of well-described alternatives: the envelope agent 1
is opening contains p or contains ¬p, while agent 2 is seeing that 1 opens the
envelope but cannot read the letter. After the semi-private announcement
to 1 that p, where 2 is uncertain between p and ¬p, it holds that 1 knows
that p, and 2 knows that 1 knows whether p: K1p, and K2(K1p∨K1¬p). For
the reader who is not familiar with these notions, we refer to “Appendix A”
for examples on Kripke models, and [16,28] for a more detailed discussion.

We proceed with an overview of the paper. In Section 2, we introduce
the topological notions used throughout the paper. Section 3 starts with
two examples motivating our framework and then provides the syntax and
semantics for our multi-agent logic sPALint of knowledge and semi-private
announcements. At the end of this section, we go back to the initial exam-
ples and illustrate the interpretation of the modal operators of our syntax.
Section 4 includes the technical results of the paper where we give the axiom-
atization of the logic sPALint and present its soundness and completeness
with respect to our proposed semantics. We then mention some further re-
sults in Section 5 and conclude.
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2. Background on Topology

In this section, we introduce the topological concepts that will be used
throughout this paper. All the topological notions presented in this section
and a more thorough introduction to topology can be found in [13,14].

Definition 1. (Topological Space) A topological space (X, τ) is a pair con-
sisting of a non-empty set X and a family τ of subsets of X satisfying ∅ ∈ τ
and X ∈ τ , and closed under finite intersections and arbitrary unions.

The set X is called the space. The subsets of X belonging to τ are called
open sets (or opens) in the space; the family τ of open subsets of X is also
called a topology on X. If for some x ∈ X and an open U ⊆ X we have
x ∈ U , we say that U is an open neighborhood of x. Complements of opens
are called closed sets.

A point x is called an interior point of a set A ⊆ X if there is an open
neighborhood U of x such that U ⊆ A. The set of all interior points of
A is called the interior of A and denoted by Int(A). We can then easily
observe that for any A ⊆ X, Int(A) is an open set and is indeed the largest
open subset of A. Dually, Cl(A) denotes the closure of A and it is the
smallest closed set containing A. More precisely, x ∈ Cl(A) iff for every
open neighbourhood U of x, U ∩ A �= ∅. Finally, for any subset A ⊆ X,
we define the boundary of A, denoted by Bd(A), to be the set Bd(A) =
Cl(A) ∩ Cl(X \ A).

Proposition 2. For any topological space (X, τ) and A ⊆ X, the point x
belongs to Bd(A) if and only if for every open neighbourhood U of x we
have U ∩ A �= ∅ �= U \ A (or, equivalently, U �⊆ A and U �⊆ X \ A).

Proof. See [14, Proposition 1.3.3].

Given a topological space (X, τ) and a non-empty set Y ⊆ X, a space
(Y, τY ) is called a subspace of (X, τ) (induced by Y ) where τY = {U∩Y | U ∈
τ}.

Definition 3. (Base) A family B ⊆ τ is called a base for a topological space
(X, τ) if every non-empty open subset of X can be written as a union of
elements of B.

We can also give an equivalent definition of an interior point by referring
only to a base B for a topological space (X, τ): for any A ⊆ X, x ∈ Int(A)
if and only if there is an open set U ∈ B such that x ∈ U and U ⊆ A.

Given any family Σ = {Ai | i ∈ I} of subsets of X, there exists a unique,
smallest topology τ(Σ) with Σ ⊆ τ(Σ) [13, Theorem 3.1, p. 65]. The family
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τ(Σ) consists of ∅, X, all finite intersections of the Ai, and all arbitrary
unions of these finite intersections. Σ is called a subbase for τ(Σ), and τ(Σ)
is said to be generated by Σ. The set of finite intersections of members of Σ
forms a base for τ(Σ).

3. The Topological Logic of Semi-Private Announcements

3.1. Motivation

Dynamics of information change and higher-order knowledge becomes much
more interesting when more than one agent is involved. In this section, we
motivate our setting by two examples demonstrating different situations.
We start with a rather simple example of a discrete nature that is taken
from [12] and adapted here for the multi-agent setting with two agents.
The second example (also inspired by an example in [12]) concerns pairs of
infinite binary strings (to represent a real number pair in the unit square
[0, 1] × [0, 1]). A suitable topology can be defined on the set of such pairs,
and we investigate how different agents that are uncertain about one or both
strings can be informed about individual digits in these binary strings; i.e.,
semi-privately informed, without the other agent getting the information
but with the other agent knowing that the opponent is informed.

Example 4. (The Jewel and the Tomb-Revisited with two agents) Indiana
Jones (i) and Emile Belloq (e) are both scouring for a priceless jewel placed
in a tomb. The tomb could either contain a jewel (J) or not (¬J) and the
tomb could have been rediscovered in modern times (D) or not (¬D). The
propositional variables corresponding to these propositions are, respectively,
J and D. We represent a valuation of these variables by a pair xy, where
x, y ∈ {0, 1}. This scenario with the given relevant alternatives can be repre-
sented in a 4-state model with the domain X = {xy | x, y ∈ {0, 1}} and the
topology τ that we consider is generated by the base B = {{00, 10}, {01},
{11}}. The idea is that one can only conceivably know (or learn) about
the jewel on the condition that the tomb has been rediscovered (as in [12]).
Therefore, {00, 10} has no strict subsets besides the empty set: if the tomb
has not yet been rediscovered, no one can observe whether there is a jewel
in the tomb. Moreover, in this example, we stipulate that the actual state is
11, stating that the tomb contains a jewel and that the tomb has been redis-
covered in modern times. We are then interested in designing a topological
framework that could answer the following questions: (1) if both Indiana
and Emile are initially ignorant about the jewel and the tomb, what facts
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would they come to know if Emile receives some further information?, (2)
Would they end up in a similar epistemic state?, (3) What would they come
to know about each other?

The next example concerns the transmission of partial information about
a probe’s location, and different agents’ perspective on this information.

Example 5. (The probe in the unit square) A group of scientists wants to
launch a probe on a certain field to collect evidence for an experiment. They
target a designated point in the field, but previous measurements show that
the probe launches within a small square-shaped error range due to external
reasons such as the weather conditions, possible mechanical problems etc.
(see Figure 1).

They thus design a feedback mechanism from the probe to the source by
encoding the coordinates as infinite binary strings. The probe can measure
its location in a step by step manner and encodes it as pairs of binary strings.
It transmits this information to two sources, ax and ay, receiving the coding
of coordinate-x and the coding of coordinate-y only, respectively. Since the
precise location is described by a pair of infinite binary strings, observing
the exact location of the probe corresponds to observing the entire infinite
pair. Since the agents are finite beings, they can do this only for a finite
amount of time. Moreover, for the same reason, the probe can measure at
most a string of finite length, so they can only approximate the location of
the probe: the exact location is not observable.

This situation can be modelled on a topological space based on the set
{0, 1}∞ × {0, 1}∞ of the ordered pairs of infinite binary strings. Since the

Figure 1. The arrows are pointing to the target point. Dashed square

represents the error range and (x, y) denotes the real location of the

probe
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agents can learn the infinite binary sequence encoding the location of the
probe up to a finite length n, the topology (representing what agents can
in principle observe) will be generated by subsets of X whose every element
has the same prefix up to length n, for all n ∈ N.

These two example will be reconsidered in Section 3.2 to their full (tech-
nical) extent and used to illustrate our proposed topological semantics for
knowledge and semi-private announcements.

3.2. Syntax and Semantics

In this section, we introduce the syntax and semantics for the multi-agent
logic of knowledge and semi-private announcements. This logic is a gener-
alization of the public announcement logic introduced in [31] in the sense
that it formalizes not only the information change within a group of agents
when the new information is synchronously received by all the members
of the group, but it also captures the information change when the new
information is accessible to only a subset of the group. Here we do not
consider completely private announcements and rather model semi-private
announcements on topological spaces. Throughout the rest of this paper,
we use the phrases semi-private announcements and private announcements
interchangeably.

We let Prop denote a countable set of propositional variables and A a
finite non-empty set of agents.

Definition 6. (Language) The language L is defined by

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | int(ϕ) | Kiϕ | [ϕ]Gϕ

where p ∈ Prop, i ∈ A and G ⊆ A. Abbreviations for the connectives ∨,
→ and ↔ are standard, and ⊥ is defined as an abbreviation of p ∧ ¬p. We
employ K̂i for ¬Ki¬ϕ, and 〈ϕ〉Gψ for ¬[ϕ]G¬ψ. We denote the non-modal
part of L (without the modalities Ki, int , [ϕ]G) by LPl, the part without
[ϕ]G by LELint

. We denote [ϕ]{i}ψ by [ϕ]iψ, and [ϕ]Aψ by [ϕ]ψ and the latter
corresponds to the public announcement operator. We denote the extension
of LELint

only with the public announcement modality [ϕ]ψ by LPALint
.

While the knowledge and semi-private announcement modalities Ki and
[ϕ]Gψ are standard, the modality int intends to capture the precondition
for an announcement in our setting. We read int(ϕ) as “ϕ is announceable”,
where announceable is interpreted as being supported/entailed by a truthful
observation set. This modality, as suggested by its notation, is interpreted as
the topological interior operator and plays a crucial role in the formalization
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of the observation-based information dynamics we study in this paper. It is
important to note that LELint

is the multi-agent extension of the single-agent
epistemic language with the interior modality introduced in [12] and LPALint

is its extension with the public announcement modalities. The topological
semantics for the corresponding single-agent languages has been investigated
in [12], which was later extended to a multi-agent setting in [31] where only
public events were considered.

We interpret the above language L of knowledge and semi-private an-
nouncements on topological spaces endowed with (partial) neighbourhood
functions that assign an open neighbourhood for each agent i ∈ A at a given
state x. The semantics introduced in this paper is similar to the topological
semantics for the multi-agent logic of public announcements proposed in [31].
In this paper, however, the neighbourhood functions are general enough to
interpret semi-private announcements. We therefore generalize the approach
in [31].

Definition 7. (Neighbourhood Function) Given a topological space (X, τ),
a neighbourhood function set Φ on (X, τ) is a set of (partial) neighbourhood
functions θ : X ⇀ A → τ such that for all x ∈ D(θ), for all i ∈ A, G ⊆ A
and Y ⊆ D(θ):

1. x ∈ θ(x)(i),

2. θ(x)(i) ⊆ D(θ),

3. for all y ∈ X, if y ∈ θ(x)(i) then y ∈ D(θ) and θ(x)(i) = θ(y)(i),

4. θY
G ∈ Φ,

where D(θ) is the domain of θ, θY
G is the restricted neighbourhood function

with D(θY
G) = Int(Y ) ∪ Int(D(θ) \ Y ) and

θY
G(x)(j) =

⎧
⎨

⎩

θ(x)(j) ∩ D (
θY

G

)
for x ∈ D (

θY
G

)
and j �∈ G

θ(x)(j) ∩ Int(Y ) for x ∈ Int(Y ) and j ∈ G
θ(x)(j) ∩ Int(D(θ) \ Y ) for x ∈ Int(D(θ) \ Y ) and j ∈ G.

The main role for the neighbour functions θ is to assign a truthful ob-
servation set to a given state for each agent. It simply defines the current
observation set of each agent at the state in question. Each condition given
in Definition 7 guarantees certain requirements that render the semantics
well-defined and meaningful for the language L. In particular, by the help of
the neighbourhood functions, we also solve the problem of ‘jumping out of
the epistemic range’ explained in the introduction. We will provide a more
detailed explanation regarding the definition of the neighbourhood functions
together with our proposed semantics given in Definition 9.
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Definition 8. (Topological Model) A multi-agent topological model (topo-
model) is a tuple M = (X, τ, Φ, V ), where (X, τ) is a topological space, Φ
a neighbourhood function set, and V : Prop → X a valuation function. The
tuple X = (X, τ, Φ) is a multi-agent topological frame (topo-frame).

Given a topo-model M = (X, τ, Φ, V ) (or a topo-frame X = (X, τ, Φ)), τ
is considered to be the set of observation sets that are ‘potentially’ available
for all the agents and, following the intuition behind the subset space se-
mantics [24], we refer to the opens as possible observation sets. A pair (x, θ)
is a neighbourhood situation if x ∈ D(θ). The open set θ(x)(i) is an epistemic
neighbourhood at x of agent i. An epistemic neighbourhood θ(x)(i) repre-
sents the actual, current observation set of the agent i at x and it is her only
source of knowledge at state x with respect to the neighbourhood situation
(x, θ) (see Definition 9 below). If (x, θ) is a neighbourhood situation in M
we write (x, θ) ∈ M. Similarly, if (x, θ) is a neighbourhood situation in X
we write (x, θ) ∈ X . For any (x, θ) ∈ M, we call M, (x, θ) a pointed model.

Definition 9. (Semantics for L) Given a topo-model M = (X, τ, Φ, V ) and
a neighbourhood situation (x, θ) ∈ M, the semantics for the language L is
defined recursively as:

M, (x, θ) |= p iff x ∈ V (p)
M, (x, θ) |= ¬ϕ iff not M, (x, θ) |= ϕ

M, (x, θ) |= ϕ ∧ ψ iff M, (x, θ) |= ϕ and M, (x, θ) |= ψ

M, (x, θ) |= Kiϕ iff (∀y ∈ θ(x)(i))(M, (y, θ) |= ϕ)
M, (x, θ) |= int(ϕ) iff x ∈ Int([[ϕ]]θ)
M, (x, θ) |= [ϕ]Gψ iff M, (x, θ) |= int(ϕ) implies M, (x, θϕ

G) |= ψ

where p ∈ Prop, [[ϕ]]θ = {y ∈ D(θ) | M, (y, θ) |= ϕ} and θϕ
G = θ

[[ϕ]]θ

G . More
precisely, θϕ

G : X ⇀ A → τ is defined such that D(θϕ
G) = Int([[ϕ]]θ) ∪

Int(D(θ)\[[ϕ]]θ), and

θϕ
G(x)(j) =

⎧
⎪⎨

⎪⎩

θ(x)(j) ∩ D (θϕ
G) for x ∈ D(θϕ

G) and j �∈ G

θ(x)(j) ∩ Int([[ϕ]]θ) for x ∈ Int([[ϕ]]θ) and j ∈ G

θ(x)(j) ∩ Int(D(θ)\[[ϕ]]θ) for x ∈ Int(D(θ)\[[ϕ]]θ) and j ∈ G.

It is not hard to see that the domain of an updated function θϕ
G does not

depend on G, it depends only on the initial function θ and the proposition
ϕ. We thus write D(θϕ) for D (θϕ

G) when confusion is unlikely to occur.



Private Announcements on Topological Spaces 491

A formula ϕ ∈ L is valid in a topo-model M, denoted M |= ϕ, iff
M, (x, θ) |= ϕ for all (x, θ) ∈ M; ϕ is valid, denoted |= ϕ, iff for all topo-
models M we have M |= ϕ. Soundness and completeness with respect to
topo-models are defined as usual.

For any topo-model M = (X, τ, Φ, V ), the agents’ current observation
sets, i.e., the epistemic neighbourhood of each agent at a given state x, is
defined by (partial) functions θ ∈ Φ, where θ : X ⇀ A → τ . As briefly stated
in Section 1, one important feature of the subset space semantics is the local
interpretation of the propositions: once the evaluation pair of a state and
an observation set (x, U) has been determined, the rest of the model does
not have any effect on the truth of the proposition in question. Similarly
in our setting, by choosing a neighbourhood situation (x, θ), we localize the
interpretation to an open subdomain of the whole space, namely to D(θ),
that embeds an observation set at every state in D(θ) for each agent i ∈ A.
For every θ ∈ Φ and x ∈ D(θ), the function θ(x) : A → τ is defined to be a
total function. Therefore, given a neighbourhood situation (x, θ), the neigh-
bourhood function θ assigns a neighbourhood at x to each agent. Moreover,
the conditions of neighbourhood functions given in Definition 7 make the
semantics work for the multi-agent setting. To be more precise, Condition 1
guarantees that θ always gives a truthful observation set at the state in ques-
tion for each agent. In particular, it also implies that the agents cannot have
inconsistent, i.e., empty, observation sets. Since the neighbourhoods given by
the neighbourhood functions depend not only on the agent but also on the
current state of the agent, and since x ∈ θ(x)(i) ⊆ D(θ) for every x ∈ D(θ)
and every i ∈ A (due to conditions 1 and 2), our semantics do not face the
problem of ending up with ill-defined evaluation pairs in the interpretation
of iterated epistemic formulas such as K̂jKip (see, e.g., [31, Section 2.5] for
an example). Moreover, conditions 1 and 3 of Definition 7 make the axioms
of the system S5 for knowledge sound. We will give the weaker conditions for
S4, S4.2 and S4.3 in Section 5. Finally, Condition 4 defines the refined neigh-
bourhoods resulted by a semi-private announcement. By the nature of the
semi-private announcements, the effect of the semi-private announcement of
a proposition ϕ to the group G ⊆ A is different on the agents in G than it
is on the ones in A \ G. We therefore define the restricted neighbourhood
function θϕ in such a way that it captures this difference and assigns open
sets to the agents accordingly. We continue analysing Definition 7 together
with a discussion on the semantics for the modalities in L.

The semantic clauses for the propositional variables and Booleans are
standard and, as usual in the subset space setting, their truth value depends
purely on the evaluation state:
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Proposition 10. Given a topo-model M = (X, τ, Φ, V ), neighbourhood sit-
uations (x, θ1), (x, θ2) ∈ M, and a formula ϕ∈LPl, (x, θ1) |=ϕ iff (x, θ2) |=ϕ.

The neighbourhood functions, and thus, the observation sets become im-
portant in the evaluation of the modalities. Recall that for any neighbour-
hood situation (x, θ), the epistemic neighbourhood θ(x)(i) is the particular
truthful observation set that the agent i curently has at the state x. For the
semantic clause of the knowledge modalities, we can simply write

M, (x, θ) |= Kiϕ iff θ(x)(i) ⊆ [[ϕ]]θ,

meaning that “agent i knows ϕ iff her current observation set entails ϕ (with
respect to the neigbourhood function θ)”. Therefore, as in the original subset
space setting, Ki quantifies over the observation set of agent i.

Let us now focus on the semantics of the dynamic part, starting with the
interpretation of the modality int(ϕ) intending to capture the precondition
of the announcement of ϕ. To be more precise, we note that

M, (x, θ) |= int(ϕ) iff (∃U ∈ τ)
(
x ∈ U and U ⊆ [[ϕ]]θ

)
.

Given the observation-based interpretation of the open sets, we can read
the above semantic clause as “the precondition of the announcement of ϕ
is satisfied at the state x (with respect to the neighbourhood function θ) iff
there exists a truthful observation set that entails/supports ϕ (with respect
to θ)”. Therefore, in our setting, the precondition of an announcement is
not only that the announced formula be true but also that it be entailed
by a possible observation set, as in [12]. Moreover, since Int([[ϕ]]θ) is the
largest open neighbourhood contained in [[ϕ]]θ, it is the largest, and conse-
quently, the weakest observation entailing the proposition ϕ with respect
to the neighbourhood function θ. Following [20,33], we say ϕ can be ver-
ified (via some true observation) at the neighbourhood situation (x, θ) if
x ∈ Int([[ϕ]]θ). Similarly, ϕ can be refuted at the neighbourhood situation
(x, θ) if x ∈ Int([[¬ϕ]]θ). Moreover, the existence of a possible, truthful ob-
servation set supporting the new information ϕ, i.e., the verifiability of ϕ,
in no way depends on the agents but only on the model in question and
so is objectively determined. The definition of the restricted neighbourhood
functions θϕ (see Definition 7.4) is mainly based on this intuition behind
the use of the interior operator as a precondition for announcements.

In our setting, i.e., in the setting of semi-private events, while a group
of agents G ⊆ A is announced a proposition ϕ, the agents in A \ G are not
totally blind to the new information. They get to learn that either ϕ or ¬ϕ
is announced, however, unlike the members of G, they do not receive any
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further information as to which one was announced. Given that the initial
neigbourhood situation is (x, θ), the domain of the updated function θϕ be-
comes D(θϕ) = Int([[ϕ]]θ)∪ Int(D(θ)\[[ϕ]]θ) and this domain restriction does
not depend on the group G. This represents the fact that the announcement
of ϕ conveys the information to all the agents that either ϕ or ¬ϕ can be
verified. Therefore, from the opposite perspective, the refinement of D(θ) to
D(θϕ) simply leaves out the states in which neither ϕ nor ¬ϕ is observable
with respect to (x, θ). In fact, the set of states in which neither ϕ nor ¬ϕ is
observable with respect to a neighbourhood situation (x, θ) (or equivalently,
the states in which ϕ is neither verifiable nor refutable) corresponds to an-
other topological concept, namely to the set of boundary points of [[ϕ]]θ in
D(θ):

Proposition 11. For any topo-model M = (X, τ, Φ, V ), any (x, θ) ∈ M
and any ϕ ∈ L, we have

D(θ) \ D(θϕ) = Bd([[ϕ]]θ) ∩ D(θ).

Proof. Let (D(θ), τθ) be the subspace of (X, τ) generated by D(θ), and
Intθ, Clθ and Bdθ be the interior, closure and boundary point operators of
(D(θ), τθ). Since D(θ) ∈ τ , we have Intθ(A) = Int(A) for any A ⊆ D(θ).
And, as usual, Clθ(A) = Cl(A) ∩ D(θ) and Bdθ(A) = Bd(A) ∩ D(θ) for any
A ⊆ D(θ). We can therefore write

D(θ) \ D(θϕ) = (Intθ([[ϕ]]
θ) ∪ Bdθ([[ϕ]]

θ) ∪ Intθ(D(θ) \ [[ϕ]]θ)) \ (Int([[ϕ]]θ) ∪ Int(D(θ)\[[ϕ]]θ))
= (Intθ([[ϕ]]

θ) ∪ Bdθ([[ϕ]]
θ) ∪ Intθ(D(θ) \ [[ϕ]]θ)) \ (Intθ([[ϕ]]

θ) ∪ Intθ(D(θ)\[[ϕ]]θ))
(since Intθ([[ϕ]]θ) = Int([[ϕ]]θ))

= Bdθ([[ϕ]]
θ) (since Intθ([[ϕ]]

θ), Bdθ([[ϕ]]
θ) and Intθ(D(θ) \ [[ϕ]]θ) are disjoint.)

= Bd([[ϕ]]θ) ∩ D(θ)

Therefore, topologically speaking, the domain restriction induced by the
announcement of ϕ boils down to disregarding the boundary points of the
truth set of ϕ under the domain of the initial neighbourhood function. Note
that if the actual state x is an element of Bd([[ϕ]]θ) ∩ D(θ), the update is
not applicable. Therefore, a first step of a successful implementation of the
announcement of ϕ neglects the states in which it is not possible to find
a truthful observation set entailing either ϕ or ¬ϕ, and thus refines the
domain of the initial neighbourhood functions. This naturally leads to a re-
finement of the current observation sets of all the agents (see Definitions 7.2
and 7.4). While the observation sets of the members of A \ G who do not
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receive any further information are only restricted by the domain of the up-
dated function θϕ, the members of G can further strengthen their epistemic
state depending on the content of the information received: without loss of
generality, if ϕ can be verified at x (i.e., x ∈ Int([[ϕ]]θ)), then the refined
observation set becomes θ(x)(i) ∩ Int([[ϕ]]θ) for each agent in G. We can see
how the semantics works on Examples 4 and 5.

Example 12. (The Jewel and The Tomb-continued) Consider the topo-
model M = (X, τ, Φ, V ) based on the topological space (X, τ) described in
Example 4 where Φ is the set of all neighbourhood functions that partition
the domain X and is closed under the condition Definition 7.4. For instance,
the neighbourhood function θ ∈ Φ defined as θ(x)(i) = θ(x)(e) = X for all
x ∈ X describes total ignorance of both agents. Consider this is the initial
state and Emile is semi-privately announced that the tomb has a jewel in it
(J). This means that Indiana received the information that either J or ¬J
is observable but he did not learn which one. Modelling this situation on M
requires calculating that [[J ]]θ={10, 11} and Int([[J ]]θ)={11}. The fact that
10 �∈ Int([[J ]]θ) captures the intuition that one can only learn about the jewel
on the condition that the tomb has been rediscovered in modern times. We
moreover calculate that after the semi-private announcement of J to Emile,
he does not only come to know J but he also comes to know D:

(111, θ) |= [J ]e(KeJ ∧ KeD).

This amounts to calculating θJ
e (e)(11) = θ(e)(11) ∩ Int([[J ]]θ) = {11}. Ob-

serve that the only state 11 in θJ
e (e)(111) makes both J and D true.

On the other hand, Indiana is still ignorant about whether the tomb has a
jewel or not, however, he comes to know that Emile knows whether the tomb
has jewel and he also comes to know that the tomb has been rediscovered:

(111, θ) |= [J ]e(¬KiJ ∧ ¬Ki¬J ∧ KiD ∧ Ki(KeJ ∨ Ke¬J)),

since θJ
e (i)(11) = θ(i)(11) ∩ (Int([[J ]]θ) ∪ Int(D(θ) \ [[J ]]θ)) = {11, 01}. More

precisely, θJ
e (i)(11) includes the state 01 that falsifies J , and the state 11

that falsifies ¬J , and every state in θJ
e (i)(11) makes D true. For the last

conjunct Ki(KeJ ∨Ke¬J), we check whether every state in θJ
e (i)(11) makes

KeJ∨Ke¬J true with respect to the updated neighbourhood function θJ
e . An

intermediate step to reach this result is calculating θJ
e (e)(x), for all x ∈

θJ
e (i)(11) = {11, 01}. We then obtain (1) θJ

e (e)(11) = θ(e)(11)∩ Int([[J ]]θ) =
{11} and (2) θJ

e (e)(01) = θ(e)(01) ∩ Int([[¬J ]]θ) = {01}. We thus have that
Emile knows J (i.e., KeJ holds) at 11 and he knows ¬J (i.e., Ke¬J holds)
at 01 (with respect to θJ

e ). Therefore, every state in the observation set
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θJ
e (i)(11) of Indiana satisfies KeJ∨Ke¬J , hence, Indiana knows Emile knows

whether the tomb has jewel after the announcement of J to Emile.

Example 13. (The probe in the unit square-continued) Recall that the
probe is located in a square region and it transmits information about the
x and y-coordinates of its location to two different agents, ax and ay, in
the form of binary bits giving increasingly precise information about each
coordinate. We model this situation and the corresponding information dy-
namics described in Example 5 on a topological space based on the domain
{0, 1}∞ × {0, 1}∞ of the ordered pairs of infinite binary strings.

In order to define our model more formally, we need to introduce some
notation. If s ∈ {0, 1}∞, for n ∈ N

+, we let s|n be the first n bits of s, and
we let s[n] be the nth bit of s. As usual, we let {0, 1}∗ be the set of finite
strings over {0, 1} and for d ∈ {0, 1}∗, |d| denotes the length of the finite
string d. For d ∈ {0, 1}∗ we define Sd = {x ∈ {0, 1}∞ | x||d| = d}, in other
words, Sd is the set of all infinite binary strings that have d as a prefix.
Note that Sε is {0, 1}∞, since ε is the empty string. Note also that when
we consider the elements of {0, 1}∞ as points on the unit interval, we can
think of Sd as a certain subinterval of the unit interval. More precisely, each
Sd is the interval bounded by d

2|d| and d+1
2|d| when d is viewed as the binary

representation of a natural number. We cannot, however, go in the opposite
direction and consider all such intervals to be sets of the form Sd, since there
are multiple possible representations of some of the points in [0, 1] as binary
strings.

Now consider the topology τ generated by the set B = {Sd | d ∈ {0, 1}∗}.
It is not hard to see that B indeed constitutes a base over the domain
{0, 1}∞:

1. Since Sε ∈ B, we have
⋃B = {0, 1}∞

2. For any U1, U2 ∈ B, we have either U1 ∩ U2 = ∅, U1 ∩ U2 = U1 or
U1 ∩ U2 = U2. Therefore, B is closed under finite intersections.

For our example, we use the product space ({0, 1}∞ ×{0, 1}∞, τ ×τ) and we
have two agents ax and ay. This scenario concerns the following propositional
variables:

Prop = {xi | i ∈ N
+} ∪ {yi | i ∈ N

+}
where

V (xi) = {(x, y) ∈ {0, 1}∞ × {0, 1}∞ | x[i] = 1};
V (yi) = {(x, y) ∈ {0, 1}∞ × {0, 1}∞ | y[i] = 1}.

We read xi as “the ith bit of x is 1” and yi as “the ith bit of y is 1”.
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By using this model, we will model the agents observing the bits of the bi-
nary sequences and what they come to know about the location of the probe
and about what the other agent knows. Moreover, we will further extend
this model and have a look at a situation in which the agent receives some
information that is not observable, i.e., whose truth set does not correspond
to any open set in τ × τ .

We start by describing the situation in which both agents are totally ig-
norant about the exact location of the probe within the unit square. This
is described by the neighbourhood function θ such that θ((x, y))(ax) =
θ((x, y))(ay) = {0, 1}∞ × {0, 1}∞. In order to obtain a well-defined neigh-
bourhood function set Φ on the topology ({0, 1}∞×{0, 1}∞, τ × τ), we must
close the singleton set {θ} under open domain restrictions described in Def-
inition 7.4, so we let Φ = {θ′ : {0, 1}∞ × {0, 1}∞ ⇀ {ax, ay} → τ | Y ⊆
{0, 1}∞ × {0, 1}∞ and G ⊆ {ax, ay} such that θ′ = θY

G}. It is easy to see
that Φ satisfies the properties of a neighbourhood function set given in Def-
inition 7.

We now evaluate some formulas on the topo-model M = ({0, 1}∞ ×
{0, 1}∞, τ × τ, Φ, V ) at the neighbourhood situation ((x, y), θ) =
((11000 . . . , 01000 . . .), θ). In other words, in the initial situation where the
both agents are totally ignorant about the binary sequences, i.e., the location
of the probe within the unit square. The ordered pair (11000 . . . , 01000 . . .)
represents the actual state, i.e., the exact location of the probe in the unit
square.

We can model agent ax learning bits of x and agent ay learning bits of
y in the following way: ax learning that the first bit of x is 1 induces the
function θx1

ax
. We note that

[[x1]]θ = S1 × {0, 1}∞ = Int([[x1]]θ),

and similarly ({0, 1}∞ × {0, 1}∞)\[[x1]]θ = S0 × {0, 1}∞ = Int(({0, 1}∞ ×
{0, 1}∞)\[[x1]]θ). Therefore,

θx1
ax

((x, y))(a) =

⎧
⎨

⎩

{0, 1}∞ × {0, 1}∞ for a = ay

S0 × {0, 1}∞ for a = ax and (x, y) ∈ S0 × {0, 1}∞

S1 × {0, 1}∞ for a = ax and (x, y) ∈ S1 × {0, 1}∞.

Other functions for updating with propositional variables work simi-
larly. We now see for example that

((x, y), θ) |= [x1]ax
(Kax

x1 ∧ ¬Kay
Kax

x1)

after ax learns that the first bit of x is 1, ax knows this, but ay does not
know that ax knows this. On the other hand, as a result of the semi-private
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(x, y)

θx1
ax
((x, y))(ay) = {0, 1}∞ × {0, 1}∞

S0

S1

S0 S1

θx1
ax
(x, y)(ax) = S1 × {0, 1}∞(x, y)

θx1
ax
((x, y))(ay) = {0, 1}∞ × {0, 1}∞

S0

S1

S0 S1

θx1
ax
(x, y)(ax) = S1 × {0, 1}∞

Figure 2. Updated situation where ax knows the first bit of x is 1 and

ay is ignorant about the first bit of x and she does not know that ax

knows the first bit of x is 1. On the other hand, ay know that ax is

informed of the first bit of x. We have θx1
ax

((x, y)(ax) = S1 ×{0, 1}∞ and

θx1
ax

((x, y)(ay) = X

nature of the announcement, ay knows that ax knows the value of the first
bit of x (see Figure 2):

((x, y), θ) |= [x1]ax
Kay

((x1 → Kax
x1) ∧ (¬x1 → Kax

¬x1)).

Observe that this was not the case before the announcement:

((x, y), θ) �|= Kay
((x1 → Kax

x1) ∧ (¬x1 → Kax
¬x1)).

In case of iterative private announcements to different agents, for example,
we have

((x, y), θ) |= [x1]ax
[¬y1]ay

(Kax
x1 ∧ Kay

y1 ∧ ¬Kax
y1 ∧ ¬Kay

x1).

meaning that after ax was announced that the first bit of x is 1 and then ay

was announced that the first bit of y is 0, they come to know the first bit
of their own sequences, however, neither of the two knows the other’s first
bit. A public announcement of x1 ∧ ¬y1, on the other hand, results in the
situation

((x, y), θ) |= [x1 ∧ ¬y1](Kax
(x1 ∧ ¬y1) ∧ Kay

(x1 ∧ ¬y1) ∧ Kax
Kay

(x1 ∧ ¬y1)

∧Kay
Kax

(x1 ∧ ¬y1)).

where each agent knows the first bit of both sequences and they also know
that everyone knows the first bit of both sequences (see Figure 3). The public
announcement of propositional variables and their boolean combinations
indeed lead to common knowledge among the informed agents.

The above case captures a scenario in which the agents receive only ob-
servable information from the probe that corresponds to opens in the given
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Figure 3. The left figure depicts the iterative private announcements of

x1 and ¬y1 to agent ax and agent ay, respectively, whereas the right one

represents the public announcement of x1 ∧ ¬y1

topology. We can further extend this example and talk about a situation
where the agents receive intercepted information from the probe that is
known to be errant in the sense that the shape of the signal does not match
the one that could be sent by the probe in terms of the first nth bit of the bi-
nary sequences. In this case, the agents only consider the observable part of
the new information by the help of the interior modality. In order to capture
such a scenario, we extend the set of propositional variables by the set

Prop′ = {z(.i,.j) | i, j ∈ N}
with the valuation V (z(.i,.j)) = {(x, y) ∈ {0, 1}∞×{0, 1}∞ | (x, y) ∼ (.i, .j)},
where ∼ is defined as

(x, y) ∼ (.i, .j) iff (x, y) corresponds to the pair (.i, .j) on R
2.

For example, V (z(.5,.5)) = {(0111 . . . , 0111 . . .), (1000 . . . , 1000 . . .),
(0111 . . . , 1000 . . .), (1000 . . . , 0111 . . .)}, and the proposition z(.5,.5) states
that “the probe is at one of the coordinates in V (z(.5,.5))”. The propositions
of type z(.i,.j) clearly form discrete options as to where the probe stands and
require measurement of infinitely many bits of both sequences. Since the
probe, by design, cannot calculate as accurately, even if the agents receive
such information, they simply focus on the observable part of the new infor-
mation that corresponds to what could actually be measured and sent by the
probe. This phenomena is captured by the help of the interior modality int .

We again consider the initial neighbourhood situation ((x, y), θ) and sup-
pose the agent ax receives the information z(.75,.25). Observe that

V (z(.75,.25)) = {(11000 . . . , 01000 . . .), (11000 . . . , 00111 . . .),

(10111 . . . , 01000 . . .), (10111 . . . , 00111 . . .)}.
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Even though z(.75,.25) is true (since its truth set at θ contains the actual state
(11000 . . . , 01000 . . .)), it is not observable, or equivalently for this example,
it cannot be sent by the probe. Therefore, it is not an announceable formula
in our setting. This is formalized by the interior modality: Int([[z(.75,.25)]]θ) =
∅. We therefore obtain ((x, y), θ) �|= 〈z(.75,.25)〉ax

ϕ for any ϕ ∈ L. More
interestingly, consider the case the agent ay receives the information y2 ∨
z(.75,.25). Note that

[[y2 ∨ z(.75,.25)]]θ = {0, 1}∞ × (S01 ∪ S11)

∪{(11000 . . . , 00111 . . .), (10111 . . . , 00111 . . .)},

and Int([[y2 ∨ z(.75,.25)]]θ) = {0, 1}∞ × (S01 ∪ S11), corresponding to the
weakest observation set that entails y2 ∨ z(.75,.25). As the agent knows that
the probe cannot calculate infinite sequences such as the discrete signals
{(11000 . . . , 00111 . . .), (10111 . . . , 00111 . . .)}, he only considers the observa-
tion set entailing the announcement while updating his information state. We
therefore obtain, for example, ((x, y), θ) |= [y2 ∨ z(.75,.25)]ay

Kay
y2, although

some states in [[y2∨z(.75,.25)]]θ, namely ((10111 . . . , 00111 . . .), θ), falsifies y2:
((10111 . . . , 00111 . . .), θ) |= ¬y2.

4. Axiomatization, Soundness and Completeness

In this section, we define an axiomatization for the multi-agent (topologi-
cal) semi-private announcement logic with the interior modality sPALint ,
comment on alternative and equivalent axiomatizations (following [34]), and
prove soundness and completeness results for the given axiomatization.

The logic sPALint is the smallest subset of L containining the axioms and
closed under the derivation rules given in Table 1. An element of sPALint is
called a theorem (of sPALint), notation � ϕ, or equivalently ϕ ∈ sPALint .

Let us elaborate on the meaning of some axioms and rules. While the
(K-) named axioms express the S5 character of the knowledge modality
Ki, the first three axioms for the modality int reflects the S4 nature of
the topological interior operator. Moreover, the occurances of int(ϕ) on
the right-hand-side of the reduction axioms capture that this modality is
used as a precondition for the announcements. Moreover, the axioms (Rp5-
i) [ϕ]GKiψ ↔ (int(ϕ) → Ki[ϕ]Gψ), where i ∈ G, and (Rp5-i) [ϕ]GKiψ ↔
(int(ϕ) → Ki[ϕ]Gψ ∧ Ki[¬ϕ]Gψ), where i �∈ G, are the obvious instantia-
tions of the [6]-style reduction of knowledge after action model execution. In
the former case, agent i ∈ G completely observes the announcement. There-
fore, after the announcement she knows something (say, [ϕ]GKiψ is the



500 H. van Ditmarsch et al.

Table 1. The axiomatization of sPALint

(P) All instantiations of propositional tautologies

(K-K) Ki(ϕ → ψ) → (Kiϕ → Kiψ)

(K-T) Kiϕ → ϕ

(K-4) Kiϕ → KiKiϕ

(K-5) ¬Kiϕ → Ki¬Ki¬ϕ

(int-K) int(ϕ → ψ) → (int(ϕ) → int(ψ))

(int-T) int(ϕ) → ϕ

(int-4) int(ϕ) → int(int(ϕ))

(Kint) Kiϕ → int(ϕ)

(Rp1) [ϕ]Gp ↔ (int(ϕ) → p)

(Rp2) [ϕ]G¬ψ ↔ (int(ϕ) → ¬[ϕ]Gψ)

(Rp3) [ϕ]G(ψ ∧ χ) ↔ [ϕ]Gψ ∧ [ϕ]Gχ

(Rp4) [ϕ]Gint(ψ) ↔ (int(ϕ) → int([ϕ]Gψ))

(Rp5-i) [ϕ]GKiψ ↔ (int(ϕ) → Ki[ϕ]Gψ) where i ∈ G

(Rp5-i) [ϕ]GKiψ ↔ (int(ϕ) → Ki[ϕ]Gψ ∧ Ki[¬ϕ]Gψ) where i �∈ G

(DRp1) From ϕ and ϕ → ψ, infer ψ

(DRp2) From ϕ, infer Kiϕ

(DRp3) From ϕ, infer int(ϕ)

(DRp4) From ϕ ↔ ψ, infer χ ↔ χ[ϕ/ψ]

Without the (Rp-) named axioms and (DRp4) we get the axiomatization of ELint . The

(non-standard) meaning of the substitution χ[ϕ/ψ] is given in the accompanying text

case), iff, on the condition that the announcement can be executed (the pre-
condition int(ϕ)), she knows that after the announcement it is true (i.e.,
Ki[ϕ]Gψ holds). In the latter case, agent i �∈ G only partially observes the
announcement. She cannot distinguish the announcement of ϕ from the
announcement of ¬ϕ. Therefore, after the announcement she only knows
something (i.e., [ϕ]GKiψ), iff, again on the condition int(ϕ), she knows that
after the announcement it is true (i.e., Ki[ϕ]Gψ), but she also knows that
after the announcement of ¬ϕ it is true (i.e., Ki[¬ϕ]Gψ). This is because
the announcements ϕ and ¬ϕ are indistinguishable for her. To illustrate,
consider agent a successfully being informed of the truth of p. Then after
this announcement, a comes to know that p. Whereas agent b, who is par-
tially observing this semi-private announcement, only learns that a knows
whether p is true. So we have that [p]aKap, but not that [p]aKbp. In order
for a formula ψ to be known by b after [p]a, it also has to be true after [¬p]a.
Such a formula ψ for which this holds is Kap ∨ Ka¬p. Indeed, we have that
[p]aKb(Kap ∨ Ka¬p).

The derivation rule (DRp4) is one of replacement of equivalents, where
χ[ϕ/ψ] denotes any formula obtained by replacing one or more non-dynamic
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occurrences of ϕ in χ with ψ. Non-dynamic occurrences of ϕ are the occur-
rences of ϕ which are not inside any [ ]G [34]. As usual, we could also give
alternative equivalent axiomatizations for the logic sPALint . One possible
choice would be replacing (DRp4) by the Necessitation rule for the dynamic
modality [ ]G (i.e., from ϕ, infer [ψ]Gϕ) and adding the K-axiom for [ψ]G
((RpK) [ψ]G(ϕ → χ) → ([ψ]G → [ψ]Gχ)). This would slightly change the
completeness proof and we elaborate on this issue after Theorem 19.

We now continue with the soundness and completeness proofs with re-
spect to the class of all topo-models for the system sPALint . While the
soundness proof consists of a standard validity check, the completeness proof
will be given via reduction, a method commonly used in the DEL literature
(see, e.g., [32] for a more detailed discussion of DEL). In order to be able
to apply this method, we need the static fragment ELint of sPALint to be
complete with respect to the topo-models:

Theorem 14. ([31]) ELint is sound and complete with respect to the class
of all topo-models.

Theorem 15. sPALint is sound with respect to the class of all topo-models.

Proof. The proof strategy is standard and the details for (Rp4), (Rp5-i),
(Rp5-i) and (DRp4) are presented in “Appendix B”.

We prove the completeness of sPALint via reduction. More precisely, we
will define an inductive translation from the language L to LELint

that pro-
vides us an algorithm converting each formula of the language L to a seman-
tically and provably equivalent formula in LELint

. This method is commonly
used in the DEL literature to prove completeness of public announcement
logics and, more generally, of action model logics [6]. For a more detailed
discussion on this proof method, we refer the reader to [32].

Definition 16. (Translation) The translation t : L → LELint
is defined

recursively as follows:

t(p) = p

t(¬ϕ) = ¬t(ϕ)

t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)

t(int(ϕ)) = int(t(ϕ))

t(Kiϕ) = Kit(ϕ)

t([ϕ]Gp) = t(int(ϕ) → p)

t([ϕ]G¬ψ) = t(int(ϕ) → ¬[ϕ]Gψ)
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t([ϕ]G(ψ ∧ χ)) = t([ϕ]Gψ) ∧ t([ϕ]Gχ)

t([ϕ]Gint(ψ)) = t(int(ϕ) → int([ϕ]Gψ))

t([ϕ]GKi(ψ)) = t(int(ϕ) → Ki[ϕ]iψ), when i ∈ G

t([ϕ]GKi(ψ)) = t(int(ϕ) → Ki[ϕ]Gψ ∧ Ki[¬ϕ]Gψ), when i �∈ G

t([ϕ]G[ψ]G′χ) = t([ϕ]Gt([ψ]G′χ))

If we compare the left-hand side of each equation in the translation to its
right-hand side, we can observe that the main logical connective bound by
t on the left is out of the scope of t on the right. For example, in t(ϕ ∧ ψ),
on the left, the translation function t binds the conjunction, but not in
t(ϕ) ∧ t(ψ), on the right. However, when the main connective is an an-
nouncement modality, t operates on the main logical connective of the for-
mula bound by the announcement. For example, with t([ϕ]G¬ψ) on the left
(t binds announcement, which binds negation), we get with some further
rewriting t(int(ϕ)) → ¬t([ϕ]Gψ) on the right (negation binds t, which binds
announcement). More importantly, whereas on the left the announcement
binds the negation, on the right the negation binds the announcement. We
can see this as pushing the announcement operator deeper into the formula:
on the right, it has been ‘pushed’ beyond the negation. All the cases for
announcement, except the last one, have the main operator that is bound
by the announcement on the left, bind the announcement on the right. If
the announcement binds a propositional variable on the left, then on the
right the announcement has disappeared: t([ϕ]Gp) versus t(int(ϕ) → p).

In order to show that for each formula, this translation produces an
equivalent formula without announcements, we need to address two con-
cerns: (i) the formula without announcements thus produced is equiva-
lent to the original formula, and (ii) such a formula is always produced,
i.e., the rewrite procedure terminates. Concerning equivalence it is suffi-
cient to show that each step in the translation is truth preserving. For
example, t([ϕ]Gp) = t(int(ϕ) → p) is a proper translation step, because
[ϕ]Gp ↔ (int(ϕ) → p) is an axiom of the sound system sPALint .

But we also have to show that the process of iteratively translating for-
mulas terminates. To prove that, we will define a complexity measure on
formulas and show (A) that the right-hand side is always less complex than
the left-hand side, and (B) that eventually all the announcement operators
disappear from the formula (the proof is by induction on the number of an-
nouncements in a formula). Even so, this is tricky: comparing t([ϕ]G(ψ∧χ))
(left) to t([ϕ]Gψ) ∧ t([ϕ]Gχ) (right), we even have more announcement op-
erators on the right! Will they eventually disappear? Two different ways to
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produce formulas with fewer announcements by rewriting are the outside-in
reduction strategy and the inside-out reduction strategy. In the first case, take
an outermost announcement modality (an announcement modality that is
not in the scope of another announcement modality), and apply one or more
of the translation rules above. Eventually, you will get a logically equivalent
formula with at least one less announcement modality. In the second case,
take an innermost announcement modality (an announcement modality with
no announcement modality in its scope). Then do the same. Either way, we
will have to apply the derivation rule (DRp4), ‘replacement of equivalents’
(from ϕ ↔ ψ, infer χ ↔ χ[ϕ/ψ]).

In our logic, the outside-in strategy fails since we cannot always express
two or more consecutive announcements by means of a single announcement.
One way to do that is to have a composition axiom for announcements
that makes a single announcement out of the two announcements of the
form [ϕ]G[ψ]G′ . We do not have that: there is no [χ]G′′ that has the same
effect as [ϕ]G[ψ]G′ . Namely, as already mentioned, what should then be the
group G′′ learning this χ? But the inside-out reduction works in our case:
comparing t([ϕ]G[ψ]G′χ) on the left to t([ϕ]Gt([ψ]G′χ)) on the right, one
can envisage first getting rid of [ψ]G′ in [ψ]G′χ, producing an equivalent
ξ, and then continue by reducing [ϕ]Gξ. To illustrate the inside-out style
reduction, we can consider the simple dynamic proposition [p][q]K1r. We
then obtain the formula corresponding to t([p][q]K1r) recursively by starting
the reduction with the innermost dynamic modality and following the rules
given in Definition 16:

t([p][q]K1r) = t([p]t([q]K1r)) = t([p](int(q) → K1r)) = int(p) → (int(q) → K1r).

For a more detailed discussion on alternative reduction rules, see e.g., [29,
Chapter 6] and [34].

The soundness of sPALint shows that the translation given in Defini-
tion 16 preserves the truth of a formula. We now define a complexity mea-
sure on the formulas of the language L which will help us to obtain the
desired completeness result.

Definition 17. (Complexity) The complexity measure c : L → N defined
recursively as follows:

c(p) = 1

c(¬ϕ) = 1 + c(ϕ)

c(ϕ ∧ ψ) = 1 + max(c(ϕ), c(ψ))

c(int(ϕ)) = 1 + c(ϕ)



504 H. van Ditmarsch et al.

c(Kiϕ) = 1 + c(ϕ)

c([ϕ]Gψ) = c(ϕ) + 6c(ψ)

Lemma 18. For any ϕ, ψ, χ ∈ L and i ∈ A
1. c(ϕ) ≥ c(ψ), if ψ ∈ Sub(ϕ);

2. c([ϕ]Gp) > c(int(ϕ) → p);

3. c([ϕ]G¬ψ) > c(int(ϕ) → ¬[ϕ]Gψ);

4. c([ϕ]i(ψ ∧ χ)) > c([ϕ]Gψ ∧ [ϕ]Gχ);

5. c([ϕ]iint(ψ)) > c(int(ϕ) → int([ϕ]Gψ));

6. c([ϕ]GKiψ) > c(int(ϕ) → Ki[ϕ]Gψ), when i ∈ G;

7. c([ϕ]GKi(ψ)) > c(int(ϕ) → Ki[ϕ]Gψ ∧ Ki[¬ϕ]Gψ), when i �∈ G.

Therefore,

• c(ϕ) > c(t(ϕ)), for any ϕ ∈ L \ LPl and

• c(ϕ) = c(t(ϕ)), for any ϕ ∈ LPl.

Proof. The proof is elementary and follows from routine complexity cal-
culations.

Theorem 19. For any ϕ ∈ L, � ϕ ↔ t(ϕ).

Proof. The proof follows by induction on the complexity of ϕ. We only
prove the case ϕ = [ψ]G[χ]G′η. For the other cases, see [21, p. 188].
IH: For all ψ ∈ L with c(ψ) ≤ c(ϕ), � ψ ↔ t(ψ).

Case: ϕ = [ψ]G[χ]G′η.

1. � [χ]G′η ↔ t([χ]G′η) by IH
2. � [ψ]G[χ]G′η ↔ [ψ]Gt([χ]G′η) (DRp4)
3. � [ψ]Gt([χ]G′η) ↔ t([ψ]Gt([χ]G′η)) by IH*
4. � [ψ]G[χ]G′η ↔ t([ψ]Gt([χ]G′η)) Propositional taut., (DRp1), 2, 3

*: c([ψ]Gt([χ]G′η)) < c([ψ]G[χ]G′η) by Lemma 18.
Therefore, since t([ψ]Gt([χ]G′η)) = t([ψ]G[χ]G′η) (see Definition 16), we have
� [ψ]G[χ]G′η ↔ t([ψ]G[χ]G′η).

Theorem 19 shows that we can do inside-out reduction in the proof system
of sPALint . In case we were to axiomatize sPALint by the Necessitation
Rule and the K-axiom for the dynamic modality for []G instead of (DRp4),
the derivation presented for the case [ψ]G[χ]G′η would be slightly different
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in the following way:

1. � [χ]G′η ↔ t([χ]G′η) by IH
2. � [ψ]G([χ]G′η ↔ t([χ]G′η)) (Nec. for [ ]G)
3. � [ψ]G[χ]G′η ↔ [ψ]Gt([χ]G′η)) (K-Axiom for [ ]G, DRp1, 1, 2)
4. � [ψ]Gt([χ]G′η) ↔ t([ψ]Gt([χ]G′η)) by IH*
5. � [ψ]G[χ]G′η ↔ t([ψ]Gt([χ]G′η)) Propositional taut., (DRp1), 3, 4

Theorem 20. sPALint is complete with respect to the class of all topo-
models.

Proof. Let ϕ ∈ L such that ϕ �∈ sPALint . Then, by Theorem 19, we
obtain t(ϕ) �∈ sPALint . Since ELint ⊆ sPALint , we have t(ϕ) �∈ ELint

(note that t(ϕ) ∈ LELint
). Then, by Theorem 14, there exists a topo-model

M = (X, τ, Φ, V ) and a neighbourhood situation such that M, (x, θ) �|= t(ϕ).
Then, by the soundness of sPALint , we have M, (x, θ) �|= ϕ.

5. Conclusion, Further Results, and Future Work

We presented a multi-agent logic of knowledge and change of knowledge
interpreted on topological structures. The dynamic part consisted of semi-
private announcements to subgroups. We then modelled public announce-
ments as a special case. We provided a complete axiomatization of our logic.
We presented two detailed examples. While the first example consists in an
4-state model, the other example is about infinite binary strings.

Our results generalize to weaker kinds of knowledge than S5: our setting
also accounts for the S4, S4.2 and S4.3 types of knowledge. These logics
have also been defended as true characterizations of knowledge: see (e.g.)
[19] for S4, [22,25] for S4.2 and [8,27] for S4.3. Such logics have also been
studied on topological spaces as epistemic logics for agents with different
reasoning powers, and with proper dynamic extensions [2–4,23]. One can
adapt the notion of neighbourhood function (Definition 7) such that these
weaker notions of knowledge can be combined with the interior modality.
To get an S4-type topo-model, replace Condition 3 of Definition 7 by

3. for all y ∈ X, if y ∈ θ(x)(i) then y ∈ D(θ) and θ(y)(i) ⊆ θ(x)(i),

and remove Condition 4. Similarly, to get an S4.2-type topo-model, we add
the following condition to the S4-type topo-model

3′. for all y, z ∈ X, if y, z ∈ θ(x)(i) then y, z ∈ D(θ) and θ(y)(i)∩ θ(z)(i) �=
∅,
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and for S4.3 we add

3′. for all y, z ∈ X, if y, z ∈ θ(x)(i) then y, z ∈ D(θ) and either θ(y)(i) ⊆
θ(z)(i) or θ(z)(i) ⊆ θ(y)(i).

We can then also work with the weakenings of sPALint based on the
epistemic systems S4 and S4.3 for the modalities Ki by simply closing the
neighbourhood function sets under Condition 4 of Definition 7, however we
cannot obtain such a dynamic extension for S4.2: the characterizing axiom
K̂iKiϕ → KiK̂iϕ (for ‘confluence’, ‘Church-Rosser’) may no longer hold
after update, as the intersection of updated open neighbourhoods θϕ(y)(i)∩
θϕ(z)(i) may have become empty after the refinement. The details of our
various results for these S4 extensions are not presented in this paper.

For further research we wish to investigate whether sPALint is expressive
enough to model all non-public forms of dynamics (that are S5 preserving),
and not merely semi-private announcements. A first step in such a project
could be to study completely private annoucenements because in combi-
nation with obvious program manipulations they are already sufficiently
expressive to describe all dynamics, e.g., all action models, see [15,16]. Such
results may possibly carry over to a topological setting.

In this work, the observation component of knowledge and information
dynamics is represented mostly in the semantics by means of open sets.
We can further extend our syntax by observation modalities and belief and
study the connection between knowledge, belief and observation together in
one framework (as in [5]). An extension with the original effort modality of
[24] is also of great interest.
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Appendices

A From Public to Private Announcement in Kripke Models

Consider two agents 1 and 2 who are uncertain about the value of a proposition p,
and such that this ignorance is known to them. Model i in Figure 4 encodes this
situation. The result of a public announcement of p is model ii, where both 1 and
2 have learned p. The ¬p world has been eliminated by this announcement. At this
stage, we observe that an equally good way to describe the result of this public
announcement is the model iii, where the ¬p world is not eliminated but where
the accessibility links between the p and the ¬p world are cut. Refinement is an
alternative semantics for public announcement logic (rather than restriction). From
the perspective of the agents there is indeed no difference between the two models.
Given that p is true, both in ii and iii the agents 1 and 2 have common knowledge
of p. The ¬p world is inaccessible.

The result of a private announcement to agent 1 that p is the model iv. We note
that in the top right p world agent 1 knows that p, whereas agent 2 believes that both
agents are still ignorant about p. In other words, 2 believes that nothing happened.
This belief is incorrect. It is not knowledge. Just like for public announcement, for
private announcement it does not hurt to also keep the original state where p is
false, as in model v. From that perspective it represents 1 being privately informed
that ¬p. The beliefs of both 1 and 2 in the top right world remain the same in iv
and in v, as the top left ¬p world is inaccessible.

The difference between models v and vi is that now 2 is no longer unaware of 1
being informed of p, but that 2 considers it possible that 1 is informed about the
value of p. However, 2 still keeps his options open; he also considers it possible that
1 was not informed at all. We note that 2 has universal access in this model. Unlike
v, in model vi the agents’ epistemic stances are again described as knowledge: their
accessibility relations are equivalence relations.

Now that we have vi, the step to vii is fairly small: vii represents the value of p
being privately announced to 1 (or, from the perspective of the actual world where
p is true: p is privately announced to 1), whereas 2 learns that 1 learns the value
of p; and where both agents are aware of this (so that the action has some public
character as well, it is not truly private). The model vii consists of the top row of
model vi: the alternative where 1 did not learn anything is now ruled out. Again,
this is a model where both agents have knowledge: their accessibility relations are
equivalence relations. The transition from model i to model vii goes under the name
of semi-private (or semi-public) announcement.

Instead of private announcements to individual agents we can consider private
announcements to subgroups of agents: among the members of the addressed sub-
group, it functions as a public announcement, whereas the remaining agents think
nothing happens. In that sense the public announcement of p is a private announce-
ment of p to agents 1 and 2. When we have private announcement to subgroups,
there are other connections between the depicted models. A private announcement
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Figure 4. Different ways to announce to agent 1 that p is true. Figures

are numbered i to vii from top to bottom and from left to right. In worlds

denoted p atom p is false. In all cases we assume that the (top) right world

is the actual world

of ϕ to agents in group G can be called the announcement where the agents in G
learn that ϕ. A semi-public announcement of p to 1 can alternatively be described
as the action where 1 and 2 learn that (1 learns p or 1 learns ¬p) (and where the first
is really the case). In other words, a semi-private announcement can be described
in terms of private announcements.

B Proof of Theorem 15

Lemma 21. For any M = (X, τ,Φ, V ), θ ∈ Φ and ϕ,ψ ∈ L;

1. [[int(ϕ)]]θ = Int([[ϕ]]θ)

2. [[int(ϕ) ∧ [ϕ]Gψ]]θ = [[〈ϕ〉Gψ]]θ

3. [[〈ϕ〉Gψ]]θ ⊆ [[ψ]]θ
ϕ
G ⊆ [[[ϕ]Gψ]]θ

Proof. See [31, Proposition 15] for (1) and [31, Proposition 16.2] for (2). For 3,
we have:

[[〈ϕ〉Gψ]]θ = Int([[ϕ]]θ) ∩ [[ψ]]θ
ϕ
G ⊆ [[ψ]]θ

ϕ
G ⊆ (D(θ) \ Int([[ϕ]]θ)) ∪ [[ψ]]θ

ϕ
G = [[[ϕ]Gψ]]θ.

Theorem 15. sPALint is sound with respect to the class of all topo-models.
Here we only show that (Rp4), (Rp5-i) and (Rp5-i) are valid and (DRp4) preserves
validity. The rest is straightforward and the soundness of the static part follows
from the soundness of ELint (see [31]).

Let M = (X, τ, Φ, V ) be a topo-model and (x, θ) ∈ M.
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(Rp4):

(⇒) Let (x, θ) |= [ϕ]Gint(ψ).

(x, θ) |= [ϕ]Gint(ψ) iff x ∈ Int([[ϕ]]θ) implies (x, θϕ
G) |= int(ψ)

iff x ∈ Int([[ϕ]]θ) implies x ∈ Int([[ψ]]θ
ϕ
G)

Now suppose (x, θ) |= int(ϕ), i.e., x ∈ Int([[ϕ]]θ). Then, by assumption, x ∈
Int([[ψ]]θ

ϕ
G). Therefore, by Lemma 21.3, we obtain x ∈ Int([[[ϕ]Gψ]]θ). Then,

by Lemma 21.1, we have x ∈ [[int([ϕ]Gψ)]]θ, i.e., (x, θ) |= int([ϕ]Gψ).

(⇐) Suppose (x, θ) |= int(ϕ) → int([ϕ]Gψ) and suppose (x, θ) |= int(ϕ) (i.e.,
x ∈ Int([[ϕ]]θ)). Then, we have (x, θ) |= int([ϕ]Gψ), i.e., x ∈ Int([[[ϕ]Gψ)]]θ).
Therefore x ∈ Int([[ϕ]]θ)∩ Int([[[ϕ]Gψ)]]θ) = Int([[int(ϕ)θ]])∩ Int([[[ϕ]Gψ)]]θ) =
Int([[int(ϕ)θ]]∩ [[[ϕ]Gψ]]θ) = Int([[int(ϕ)∧ [ϕ]Gψ]]θ). Then, by Lemma 21.2 and
21.3, we have x ∈ Int([[ψ]]θ

ϕ
G), i.e., (x, θϕ

G) |= int(ψ).

(Rp5-i): j ∈ G

(⇒) Let (x, θ) |= [ϕ]GKjψ.

(x, θ) |= [ϕ]GKjψ iff x ∈ Int([[ϕ]]θ) implies (x, θϕ
G) |= Kjψ

iff x ∈ Int([[ϕ]]θ) implies ∀y ∈ θϕ
G(x)(j), (y, θϕ

G) |= ψ

Let z ∈ θ(x)(j) and suppose (z, θ) |= int(ϕ), i.e., z ∈ Int([[ϕ]]θ). By Defi-
nition 9, we have θϕ

G(x)(j) = θ(x)(j) ∩ Int([[ϕ]]θ). Therefore, z ∈ θϕ
G(x)(j).

Then, by assumption, we obtain (z, θϕ
G) |= ψ. Thus, (z, θϕ

G) |= [ϕ]Gψ. Since z
has been chosen arbitrarily from θ(x)(j), we have (x, θ) |= Kj [ϕ]Gψ.

(⇐) Let (x, θ) |= int(ϕ) → Kj [ϕ]Gψ. Suppose moreover that (x, θ) |= int(ϕ) and
let z ∈ θϕ

G(x)(j). Note that θϕ
G(x)(j) is non-empty since x ∈ θϕ

G(x)(j) and
θϕ

G(x)(j) = θ(x)(j) ∩ Int([[ϕ]]θ), by Definition 9. By assumption, we have
(x, θ) |= Kj [ϕ]Gψ. Then, as z ∈ θ(x)(j) ∩ Int([[ϕ]]θ), we obviously obtain
(z, θϕ

G) |= ψ. Since z has been chosen arbitrarily from θϕ
G(x)(j), we have

(x, θϕ
G) |= Kjψ.

(Rp5-i): j �∈ G

(⇒) Let (x, θ) |= [ϕ]GKjψ.

(x, θ) |= [ϕ]GKjψ iff x ∈ Int([[ϕ]]θ) implies (x, θϕ
G) |= Kjψ

iff x ∈ Int([[ϕ]]θ) implies ∀y ∈ θϕ
G(x)(j), (y, θϕ

G) |= ψ

Now suppose (x, θ) |= int(ϕ) and z ∈ θ(x)(j). We want to show that (z, θ) |=
[ϕ]Gψ and (z, θ) |= [¬ϕ]Gψ, i.e., we want to show:

1. z ∈ Int([[ϕ]]θ) implies (z, θϕ
G) |= ψ, and

2. z ∈ Int([[¬ϕ]]θ) implies (z, θϕ
G) |= ψ.

1. Suppose z ∈ Int([[ϕ]]θ). Then, z ∈ θ(x)(j)∩ Int([[ϕ]]θ). Therefore, by defini-
tion of θϕ

G and since j �∈ G, we obtain z ∈ θϕ
G(x)(j). Then, since by assumption

(x, θ) |= [ϕ]GKjψ, as shown above it follows that, (z, θϕ
G) |= ψ.
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2. Suppose z ∈ Int([[¬ϕ]]θ). Then, z ∈ θ(x)(j) ∩ Int(D(θ) \ [[ϕ]]θ). The rest
follows similarly. Therefore, (x, θ) |= Kj [ϕ]Gψ and (x, θ) |= Kj [¬ϕ]Gψ.

(⇐) Let (x, θ) |= int(ϕ) → Kj [ϕ]Gψ ∧ Kj [¬ϕ]Gψ. We want to show (x, θ) |=
[ϕ]GKjψ. Suppose (x, θ) |= int(ϕ). Then, by assumption, (x, θ) |= Kj [ϕ]Gψ ∧
Kj [¬ϕ]Gψ. This means, for all y ∈ θ(x)(j):

1. if y ∈ Int([[ϕ]]θ), then (y, θϕ
G) |= ψ, and

2. if y ∈ Int([[¬ϕ]]θ), then (y, θ¬ϕ
G ) |= ψ

Observe that θϕ
G = θ¬ϕ

G . Therefore, (2) means that if y ∈ Int([[¬ϕ]]θ), then
(y, θϕ

G) |= ψ. Since D(θϕ
G) = Int([[ϕ]]θ)∪ Int([[¬ϕ]]θ), we obtain, by (1) and (2)

that for all y ∈ θϕ
G(x)(j), (y, θϕ

G) |= ψ, i.e., (x, θϕ
G) |= Kjψ. We therefore have

(x, θ) |= [ϕ]GKjψ.

(DRp4): Let ϕ,ψ, χ ∈ L and suppose |= ϕ ↔ ψ. We want to show that |=
χ ↔ χ[ϕ/ψ], where χ[ϕ/ψ] denotes any formula obtained by replacing one or more
non-dynamic occurrences of ϕ in χ with ψ. The proof follows by induction on χ
in case ϕ ∈ Sub(χ). Observe that if ϕ �∈ Sub(χ), we have χ := χ[ϕ/ψ], therefore
|= χ ↔ χ[ϕ/ψ] is vacuously true. Now suppose ϕ ∈ Sub(χ).

Base Case: χ = ϕ
Then, χ[ϕ/ψ] = ψ. Therefore, |= χ ↔ χ[ϕ/ψ] can be written as |= ϕ ↔ ψ and this
is the case by assumption.

IH: For all η ∈ L with c(η) < c(χ), |= η ↔ η[ϕ/ψ].
Case: χ = ¬η
Note that (¬η)[ϕ/ψ] = ¬(η[ϕ/ψ]). Therefore,

(x, θ) |= ¬η iff (x, θ) �|= η
iff (x, θ) �|= η[ϕ/ψ] by (IH)
iff (x, θ) |= ¬(η[ϕ/ψ])
iff (x, θ) |= (¬η)[ϕ/ψ]

Case: χ = η ∧ ζ
Note that (η ∧ ζ)[ϕ/ψ] = η[ϕ/ψ] ∧ ζ[ϕ/ψ]. Therefore,

(x, θ) |= (η ∧ ζ)[ϕ/ψ] iff (x, θ) |= η[ϕ/ψ] ∧ ζ[ϕ/ψ]
iff (x, θ) |= η ∧ ζ by (IH)

Case: χ = int(η)
Note that (int(η))[ϕ/ψ] = int(η[ϕ/ψ]). Therefore,

(x, θ) |= (int(η))[ϕ/ψ] iff (x, θ) |= int(η[ϕ/ψ])
iff x ∈ Int([[η[ϕ/ψ]]]θ)
iff x ∈ Int([[η]]θ) by (IH)
iff (x, θ) |= int(η)
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Case: χ = Ki(η)
Note that (Kiη)[ϕ/ψ] = Kiη[ϕ/ψ]. Therefore,

(x, θ) |= (Kiη)[ϕ/ψ] iff (x, θ) |= Kiη[ϕ/ψ]
iff ∀y ∈ θ(x)(i), (y, θ) |= η[ϕ/ψ]
iff ∀y ∈ θ(x)(i), (y, θ) |= η by (IH)
iff (x, θ) |= Kiη

Case: χ = [η]Gζ
Note that ([η]Gζ)[ϕ/ψ] = [η]Gζ[ϕ/ψ]. Recall that we replace non-dynamic oc-

currences of ϕ in [η]Gζ, i.e., the occurrences outside of any [ ]G. Therefore, in this
particular case, there is no replacing in η. Then, we have

(x, θ) |= ([η]Gζ)[ϕ/ψ] iff (x, θ) |= [η]Gζ[ϕ/ψ]
iff (x, θ) |= int(η) implies (x, θϕ

G) |= ζ[ϕ/ψ]
iff (x, θ) |= int(η) implies (x, θϕ

G) |= ζ by (IH)
iff (x, θ) |= [η]iζ
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