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ABSTRACT. We study the extension of public announcement logic PAL by public assignments, that we call PALA. Just
as in the case of PAL, the standard procedure for deciding PALA validity, i.e., the use of so-called reduction axioms
to translate PALA formulae into formulae in epistemic logic EL, may lead to exponential growth. In this paper, we
show that such price is not mandatory, for we provide a polynomial translation of PALA into EL. This is based
on abbreviations of subformulae by new propositional letters. Such optimal translation also enables us to show the
computational complexity of the problem of deciding PALA validity, which turns out to be coNP-complete in the
single-agent case and PSPACE-complete in the multiagent case.
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1. Introduction

Dynamic Epistemic Logics (DELs) are extensions of epistemic logic (EL). They provide a logical
modeling of actions and events in terms of their effects on the world and on the agents’ knowledge. Up to
now, research on DELs mainly concentrated on epistemic actions where agents learn that some proposi-
tion is true. The archetype of all DELs is Plaza’s public announcement logic (PAL) (Plaza, 1989), which
has formulae of the form [!ψ]ϕ, reading ‘ϕ holds after the public announcement of ψ’. However, logics
have been proposed where assignments of atomic propositions are added to DELs. They have formulae
of the form [p:=ψ]ϕ, reading ‘ϕ holds after p is assigned the truth value of ψ’ (van Ditmarsch et al., 2005;
van Benthem et al., 2006; Kooi, 2007). The semantics of both announcements and assignments is in terms
of functions updating Kripke models. We baptise PALA, the extension of PAL with public assignments.
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PALA was applied in (van Ditmarsch et al., 2007a; van Ditmarsch et al., 2011) to reasoning about actions
in Artificial Intelligence.

PALA can be axiomatised by means of so-called reduction axioms. These axioms are equivalences
whose iterated application allows to eliminate the dynamic operators from formulae. Such rewrite rules
allow therefore to reduce the problem of deciding PALA validity to that of the underlying epistemic logic.
Thus, one obtains decision procedures for PALA by reduction to EL and decision procedures for EL.

Clearly, reduction may be suboptimal: basically, as the right hand side of the equivalences may be
twice as long as the left hand side, exponential growth of the reduced formula cannot be avoided. Lutz
proposed a polynomial reduction from PAL to EL (Lutz, 2006). That transformation makes use of a
technique coming from automated theorem proving: in order to avoid exponential growth when putting
formulae into conjunctive or disjunctive normal form, subformulae χ of a given formula ϕ are abbreviated
by a new propositional letter nχ. This is done systematically for every subformula of ϕ. In the case of
modal logics one has to prefix the abbreviation by what is sometimes called a master modality in order
to guarantee that the equivalence holds not only in the actual world, but throughout the model (that can
be thought of as being point-generated). The transformation preserves validity, and the length of the
resulting formula is polynomial in the length of the original formula ϕ.

In this paper we pursue the quest of polynomial reduction procedures. We show that Lutz’s abbrevia-
tion technique can be adapted to PALA. This leads us to an optimal method for deciding PALA validity.
It follows that the problem of deciding validity is coNP-complete for single-agent PALA, and PSPACE-
complete for multiagent PALA.

The remainder of this paper is organized as follows: Section 2 introduces public announcement logic
with assignment PALA. Section 3 contains the standard reduction from PALA to PAL, which is non-
optimal. Section 4 recalls Lutz’s optimal reduction from PAL to EL, and Section 5 provides an optimal
reduction from PALA to EL. Section 6 addresses multiagent PALA. Section 7 concludes.1

2. Public announcement logic with assignment

In this section we recall public announcement logic with assignment (PALA). We only present the
single-agent case, of which the multiagent case is a straightforward extension.

2.1. Syntax

The language of public announcement logic with assignment PALA is the set of formulae ϕ and
assignments σ that is defined by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | [!ϕ]ϕ | [σ]ϕ

σ ::= ε | p:=ϕ, σ

where p ranges over the countable set of propositional letters P and ε is the empty assignment. We write
[p1:=ψ1, . . . , pk:=ψk]ϕ instead of [p1:=ψ1, . . . , pk:=ψk, ε]ϕ.

Let α be one of !ϕ or σ; the formula [α]ϕ reads ‘ϕ holds after all possible executions of α’. The event
!ϕ is the public announcement of ϕ; and the event p:=ϕ is the public assignment of ϕ to the atom p. For

1. This paper extends and improves the second part of (van Ditmarsch et al., 2007a). The first part of that paper has
been extended and improved in (van Ditmarsch et al., 2011).
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example, p:=(q ∧ ¬q) is an assignment making p false, and K[p:=(q ∧ ¬q)]¬p is a formula expressing
that the agent knows this.

Every [σ] is an assignment operator, and every [!ψ] is an announcement operator. A dynamic operator
is either an assignment operator or an announcement operator. The language of public announcement
logic (PAL) is the subset of the language of PALA where no assignment operators occur, the language of
epistemic logic with assignment (ELA) is the subset of the language of PALA where no announcement
operators occur, and the language of epistemic logic EL is the subset of the language of ELA where no
dynamic operators occur.

We use the standard abbreviations for ⊥, >, ∨,→, and↔: ⊥ is p ∧ ¬p (for some propositional letter
p), > is ¬⊥, ϕ ∨ ψ is ¬(¬ϕ ∧ ¬ψ), ϕ→ ψ is ¬(ϕ ∧ ¬ψ), and ϕ↔ ψ is (ϕ→ ψ) ∧ (ψ→ ϕ).

The language just defined allows for complex assignments where a propositional letter appears more
than once on the left hand side of the operator ‘:=’. Our semantics will make that in such cases only the
leftmost occurrence of this propositional letter matters.

Every assignment σ may be considered as a mapping from P to formulae of the language of PALA.
This is recursively defined as follows:

(q)ε = q

(q)(p:=ϕ, σ) =

ϕ if q = p
(q)σ otherwise

For example, (p)ε = p, (p)(p:=¬p) = ¬p, and (p)(p:=q, q:=p, p:=r) = q. Then, without loss of gen-
erality, an assignment σ can be seen as a finite, and hence partial, function from propositional letters to
formulae. The domain of σ can be defined recursively as follows:

dom(ε) = ∅

dom(p:=ϕ, σ) = {p} ∪ dom(σ)

It will be sometimes convenient to use finite sets {p1:=ϕ1, . . . , pn:=ϕn} to denote assignments; the empty
assignment ε is then identified with ∅.

The function len returns the length of a given expression, where an expression is a formula or an
assignment. It basically counts the number of symbols to write down the given expression (without
parentheses).2 In other words:

len(p) = 1

len(¬ϕ) = 1 + len(ϕ)

len(ϕ ∧ ψ) = 1 + len(ϕ) + len(ψ)

len(Kϕ) = 1 + len(ϕ)

len([!ψ]ϕ) = 1 + len(ψ) + len(ϕ)

len([σ]ϕ) = 1 + len(σ) + len(ϕ)

len(σ) =
∑

p∈dom(σ)

len((p)σ)

2. Strictly speaking, the propositional letter p has to be encoded as a binary number n, and the length of p is therefore
log2 n. It follows that the number of symbols required to write down a formula ϕ is len(ϕ) × log2(len(ϕ) + 1). This,
however, does not change our results. In particular, the reduction of Proposition 12 remains polynomial.
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For example, len(⊥) = len(p ∧ ¬p) = 4, len(>) = len(¬⊥) = 5, and

len(ϕ↔ ψ) = len(¬(ϕ ∧ ¬ψ) ∧ ¬(ψ ∧ ¬ϕ))

= 1 + len(¬(ϕ ∧ ¬ψ)) + len(¬(ψ ∧ ¬ϕ))

= 1 + (len(ϕ) + len(ψ) + 3) + (len(ϕ) + len(ψ) + 3)

= 7 + (2 × len(ϕ)) + (2 × len(ψ));

And the length of [p:=q, q:=p∧ q, ε]Kp is 1 + len(p:=q, q:=p∧ q, ε) + len(Kp) = 1 + (1 + 3 + 0) + 2 = 7.

2.2. Semantics

Formulae of the language of PALA are interpreted in pointed models of epistemic logic.

First, a model of epistemic logic (EL model) is a tuple M = 〈W,R,V〉 such that:

– W is a non-empty set of possible worlds,
– R ⊆ W ×W is an equivalence relation, and
– V : P→ ℘(W) associates an interpretation V(p) ⊆ W to each p ∈ P.

For every w ∈ W, the pair (M,w) is a pointed EL model.

For convenience, we define R(w) = {u | (w, u) ∈ R}. The elements of R(w) are the worlds the agent
considers possible at w.

The satisfaction relation |= between pointed EL models (M,w) = (〈W,R,V〉,w) and PALA formulae
is inductively defined as follows:

M,w |= p iff w ∈ V(p)

M,w |= ¬ϕ iff M,w 6|= ϕ

M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

M,w |= Kϕ iff R(w) ⊆ JϕKM

M,w |= [!ϕ]ψ iff M,w |= ϕ implies M!ϕ,w |= ψ

M,w |= [σ]ϕ iff Mσ,w |= ϕ

where JϕKM = {w | M,w |= ϕ} is the extension of ϕ in M, and where the models M!ϕ and Mσ are updates
of the epistemic model M, that are respectively defined as:

M!ϕ = 〈W !ϕ,R!ϕ,V !ϕ〉 Mσ = 〈Wσ,Rσ,Vσ〉

W !ϕ = W Wσ = W

R!ϕ = R ∩ (JϕKM × JϕKM) Rσ = R

V !ϕ = V Vσ(p) = J(p)σKM

To illustrate the semantics of PALA, let (M,w) be any pointed EL model. We have M,w |= [p:=⊥]¬p
because V p:=⊥(p) = J(p)(p:=⊥)KM = J⊥KM = ∅; and we have M,w |= [!p]K p because R!p(w) ⊆ JpKM .

Note that if (M,w) is a pointed EL model then Mp:=ϕ is an EL model; and if M,w |= ϕ (which is the
relevant case in the truth condition) then M!ϕ is an EL model.
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Remark 1. — Our definition of updates by announcements is a well-known variation of the standard
definition where W !ϕ = JϕKM and V !ϕ(p) = V(p) ∩ JϕKM; see e.g. (Kooi, 2007). �

A PALA formula ϕ is valid in a model M = 〈W,R,V〉, noted M |= ϕ, if and only if JϕKM = W; A
formula ϕ is PALA valid, noted |=PALA ϕ, if and only if for all pointed EL models (M,w), (M,w) |= ϕ; and
ϕ is PALA satisfiable if and only if 6|=PALA ¬ϕ.

For example, [p:=⊥]¬p and [!p]Kp are PALA valid, for atomic p. Another example is
|=PALA [p:=q, q:=p ∧ r](p ∧ ¬q ∧ s) ↔ (q ∧ ¬(p ∧ r) ∧ s).

This by the way also illustrates that the elements of a complex assignment can be thought as being
executed in parallel. Just as in PAL, [!ϕ]ϕ is not always PALA valid, nor is the stronger [!ϕ]Kϕ.

The corresponding semantic notions of validity and satisfiability are defined likewise for PAL, ELA
and EL.

Proposition 2. — Both PALA and ELA are conservative extensions of EL: if ϕ is an EL formula then
both |=PALA ϕ iff |=EL ϕ, and |=ELA ϕ iff |=EL ϕ.

3. Suboptimal reduction

In this section we present the method that is common in dynamic epistemic logics to prove decidabil-
ity, viz. by means of reduction axioms.

3.1. Reduction axioms

Logic EL is the well-known logic S5, whose axiomatization consists of CPL (the tautologies of propo-
sitional classical logic), rules RM (Modus Ponens) and RN (Necessitation), and axiom schemes K, T
and 5.

from ϕ and ϕ→ ψ infer ψ RM

from ϕ infer Kϕ RN

K(ϕ→ ψ)→ (K(ϕ→ Kψ) K

Kϕ→ ϕ T

¬Kϕ→ K¬ϕ 5

The axiomatization of PALA extends that of EL by so-called reduction axioms: equivalences for all
possible combinations of assignments with the logical connectives.
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Proposition 3 ((van Ditmarsch et al., 2005; van Benthem et al., 2006; van Ditmarsch et al., 2007b)). —
The following formula schemes are PALA valid.

[σ]p↔ (p)σ, for p ∈ P Red:=,P

[!ψ]p↔ (ψ→ p), for p ∈ P Red!,P

[σ]¬ϕ↔ ¬[σ]ϕ Red:=,¬

[!ψ]¬ϕ↔ (ψ→ ¬[!ψ]ϕ) Red!,¬

[σ](ϕ1 ∧ ϕ2)↔ ([σ]ϕ1 ∧ [σ]ϕ2) Red:=,∧

[!ψ](ϕ1 ∧ ϕ2)↔ ([!ψ]ϕ1 ∧ [!ψ]ϕ2) Red!,∧

[σ]Kϕ↔ K[σ]ϕ Red:=,K

[!ψ]Kϕ↔ (ψ→ K[!ψ]ϕ) Red!,K

The right hand side of the above equivalences is simpler than their left hand side, in the sense that the
dynamic operator is either eliminated (in the case of the first two equivalences) or ‘pushed inward’ (in
the case of the other equivalences); see e.g. (Kooi, 2007) for a precise definition of what it means to be
‘simpler’. Such equivalences are called reduction axioms. To apply them means to replace subformulae
of a given formula that match the left hand side of some reduction axiom, by its right hand side. When
we do that we apply the rule of replacement of equivalents RRE. The latter preserves validity because the
below inference rules do so.

Proposition 4. — The following inference rules preserve PALA validity.

from ϕ↔ ϕ′ infer [!ψ]ϕ↔ [!ψ]ϕ′ REr
!

from ψ↔ ψ′ infer [!ψ]ϕ↔ [!ψ′]ϕ REl
!

from ϕ↔ ϕ′ infer [σ]ϕ↔ [σ]ϕ′ REr
:=

from ψ↔ ψ′ infer [p:=ψ, σ]ϕ↔ [p:=ψ′, σ]ϕ REl
:=

Proof. — REr
! and REl

! follow from the proof in (van Ditmarsch et al., 2007b) that the rule of replacement
of equivalents preserves PAL validity.

For REr
:=, suppose JϕKM = Jϕ′KM for every model M, and let M be some model. Then J[σ]ϕKM =

JϕKMσ . By hypothesis the latter equals Jϕ′KMσ , which in turn is equal to J[σ]ϕ′KM .

For REl
:=, suppose JψKM = Jψ′KM for every model M, and let M be some model. Then Mp:=ψ,σ =

Mp:=ψ′,σ. �

Proposition 3 provides reduction axioms for all combinations of dynamic operators with EL connec-
tives. Under the condition that we start with some dynamic operator [!ψ] that is innermost (in the sense
that it has no other dynamic operator in its scope) we have reduction axioms for all cases, allowing to
eliminate [!ψ]: the resulting formula has one dynamic operator less than the original formula.
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Remark 5. — We did not state reduction axioms for combinations of dynamic operators with dynamic
operators. Such axioms exist for PAL and ELA, viz. [!ψ][!χ]ϕ ↔ [!(ψ ∧ [!ψ]χ)]ϕ and [σ1][σ2]ϕ ↔
[σ1◦σ2]ϕ, where σ1◦σ2 is the composition of σ1 and σ2 that is defined as function composition. However,
there can be no reduction axiom for [σ][!ψ]ϕ. In particular the schema [σ][!ψ]ϕ ↔ [!([σ]ψ)][σ]ϕ is
PALA invalid. To see this replace σ by p:=p ∧ ¬Kp and replace both ψ and ϕ by p. Then

[p:=p ∧ ¬Kp][!p]p↔ [p:=p ∧ ¬K p]>

↔ >

[!([p:=p ∧ ¬Kp]p)][p:=p ∧ ¬K p]p↔ [!([p:=p ∧ ¬Kp]p)](p ∧ ¬K p)

↔ [!(p ∧ ¬K p)](p ∧ ¬K p)

↔ ¬(p ∧ ¬K p)

So the former formula is PALA valid because it reduces to >, while the latter is not because the last line
is not valid in S5. �

The absence of such reduction principles does not hurt. For our purposes we do not need reduction
axioms for sequences of dynamic (announcement or assignment) operators, because by iterating the elim-
ination of an innermost dynamic operator we end up with a formula having no dynamic operator at all; in
other words: an EL formula. Call red(ϕ) the result of rewriting ϕ by the above reduction axioms until all
dynamic operators are eliminated.

Theorem 6. — Let ϕ be a PALA formula. Then:

1) red(ϕ) is an EL formula
2) |=PALA ϕ↔ red(ϕ)
3) |=PALA ϕ if and only if |=EL red(ϕ)

Proof. — This is proved just as for the other dynamic epistemic logics having reduction axioms for all
logical operators of EL, see e.g. (van Ditmarsch et al., 2007b; Kooi, 2007).

For the first item, we use that the right hand sides of the reduction axioms are simpler than their left
hand sides in the sense that the dynamic operator is either eliminated or pushed inwards: as the function
red is applied until there is no more dynamic operator, the result has no dynamic operator any more.

The proof of the second item uses that red applies valid equivalences (Proposition 3) and that the
inference rule RRE preserves PALA validity (due to Proposition 4).

The third item follows from the first two and Proposition 2. �

The last item of Theorem 6 tells us that PALA validity of ϕ can be checked by applying some EL
decision procedure to red(ϕ). While the problem of deciding EL validity is in coNP, this does not entitle
us to claim the same for the problem of deciding validity in PALA, as we are going to see now.

3.2. Reduction may lead to exponential growth

We have just seen that red provides a decision procedure for PALA validity. However, red(ϕ) may be
exponentially longer than ϕ,
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Example 7. — Consider the family of formulae ψn that is inductively defined by:

ψ0 = p0

ψn+1 = [pn:=pn+1 ∧ pn+1]ψn

Successively applying the reduction axioms to the innermost assignment we get:

[pn−1:=pn ∧ pn] . . . [p1:=p2 ∧ p2][p0:=p1 ∧ p1]p0 ↔ [pn−1:=pn ∧ pn] . . . [p1:=p2 ∧ p2](p1 ∧ p1)

↔ [pn−1:=pn ∧ pn] . . . ((p2 ∧ p2) ∧ (p2 ∧ p2))

...

↔ (. . . (pn ∧ pn) ∧ . . .) . . . )

The last formula cannot be reduced any more, and it contains 2n occurrences of the propositional letter pn.
�

One may hope to find a polynomial reduction which, given a PALA formula ϕ, produces an EL
formula ϕ′ such that ϕ ↔ ϕ′ is PALA valid. However, this cannot be the case. Lutz showed that, if
the underlying epistemic logic is K, then there is a family of PAL formulae ϕn such that for every ϕn,
any equivalent EL formula is exponentially longer than ϕn (Lutz, 2006, Theorem 2). While he only
conjectured that his result transfers to S5, French et al. recently provided a proof (French et al., 2011).

Notwithstanding, there may still be a polynomial transformation preserving satisfiability equivalence
(which is a weaker requirement than logical equivalence). The aim of the rest of the paper is to provide
such a transformation.

4. Optimal reduction for PAL

For PAL, Lutz proposed a polynomial reduction to EL preserving satisfiability (Lutz, 2006). His
transformation adapts a technique originating from automated theorem proving. We present this transfor-
mation now.

4.1. The abbreviation technique for propositional logic

When putting formulae of classical propositional logic into conjunctive or disjunctive normal form
one faces the problem of exponential growth. For example, the straightforward application of the law of
distributivity to (ϕ ∧ ψ) ∨ χ leads to (ϕ ∨ χ) ∧ (ψ ∨ χ): the subformula χ occurs twice in the resulting
formula, and iteration of the distribution may produce formulae that are exponentially longer than the
original formula.

In automated theorem proving, a standard technique to obtain polynomial normal forms is to replace
complex subformulae χ of a given formula ϕ by a new propositional letter nχ and to conjoin the resulting
formula and the equivalence nχ ↔ χ; see e.g. (Nonnengart & Weidenbach, 2001). For example, the
complex subformula χ in (ϕ∧ψ)∨ χ is replaced by a new atomic formula nχ, resulting in (ϕ∧ψ)∨ nχ, to
which the law of distributivity can be applied without leading to exponential growth. This transformation
preserves satisfiability, in the sense that (ϕ∧ψ)∨χ is satisfiability equivalent to ((ϕ∧ψ)∨nχ)∧ (nχ ↔ χ).
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The abbreviation nχ ↔ χ must also be put in normal form, hence subformulae have to be abbreviated
systematically. This is done by associating to ϕ the following set of bi-implications (where SF(ϕ) is the
set of subformulae of ϕ):

Bϕ = {np ↔ p | p ∈ SF(ϕ) ∩ P} ∪

{n¬ψ ↔ ¬nψ | ¬ψ ∈ SF(ϕ)} ∪

{nψ1∧ψ2 ↔ nψ1 ∧ nψ2 | ψ1 ∧ ψ2 ∈ SF(ϕ)}

This transformation preserves satisfiability: the original formula ϕ is satisfiable in classical propositional
logic if and only if nϕ ∧ (

∧
Bϕ) is satisfiable in classical propositional logic. Moreover the length of the

resulting formula is polynomial in the length of the original formula ϕ.

4.2. The abbreviation technique for epistemic logic

In the case of epistemic logic one has to take into account the modal operator of knowledge: The
definition of Bϕ is augmented by the set

{nKψ ↔ Knψ | Kψ ∈ SF(ϕ)}

Moreover, the abbreviations in Bϕ have to be prefixed by what is sometimes called a master modality.
This guarantees that the equivalences hold not only in the actual world, but throughout the model (that
is thought of as being point-generated). Then the original formula ϕ is EL satisfiable if and only if
nϕ ∧K(

∧
Bϕ) is EL satisfiable.

4.3. Lutz’s optimal reduction for PAL

The abbreviation method does not extend straightforwardly to PAL. To see this suppose we again
augment the definition of Bϕ by the set

{n[!ϕ]ψ ↔ [!nϕ]nψ | [!ϕ]ψ ∈ SF(ϕ)}

Consider the PAL unsatisfiable formula ϕ = ¬[!p]Kp. (Unsatisfiability is the case because [!p]Kp
reduces to p→ K(p→ p), which is EL valid.) However, the formula

n¬[!p]Kp ∧K( (n¬[!p]K p ↔ ¬n[!p]K p) ∧

(n[!p]K p ↔ [!np]nK p) ∧

(nK p ↔ Knp) ∧

(np ↔ p))

is PAL satisfiable in the pointed model (〈W,R,V〉,w), where W = {w, v}, R = W ×W, and V(p) = V(np) =

V(n¬[!p]K p) = {w}, and V(nK p) = ∅, and V(n[!p]K p) = {v}. In particular note that (〈W,R,V〉,w) 6|= [!np]nK p,
telling us that this naive extension does not allow to correctly abbreviate subformulae that are in the scope
of an announcement.

Lutz succeeded in finding a polynomial transformation redPAL mapping PAL formulae to EL formulae
that preserves satisfiability equivalence: for every PAL formula ϕ, ϕ is PAL satisfiable iff redPAL(ϕ) is EL
satisfiable (Lutz, 2006, Lemma 7), and the length of the reduction len(redPAL(ϕ)) is quadratic in len(ϕ)
(Lutz, 2006, Lemma 6). His trick is to encode the modal context of a sub-formula as a superscript of
the new propositional letter. We do not give the definition of redPAL here: it is a particular case of our
polynomial transformation from PALA to EL.
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5. Optimal reduction for ELA and PALA

In the rest of the paper we extend Lutz’s abbreviation technique to PALA. For the sake of clarity, we
split the exposition into two parts. In the first part, we address the fragment of PALA called ELA (i.e.,
with assignments but without announcements), and in the second, we address the entire logic PALA.

5.1. From ELA to EL

Call a context a list λ = (λ1, . . . , λm) of assignments, where m ≥ 0. The empty context is noted (), and
the concatenation of λ and the assignment σ is λ · σ = (λ1, . . . , λm, σ). The k-th element of λ is noted λk.

The assignments governing a subformula of a given formula ϕ make up its context in ϕ: for every
subformula χ of ϕ, the context of χ in ϕ is the sequence of assignment operators governing χ in ϕ.

Definition 8. — Given a context λ and an input formula ϕ we recursively define the set CS (λ, ϕ) of
contextualised subformulae of ϕ given λ:

CS (λ, p) = {〈λ, p〉}

CS (λ,¬χ) = CS (λ, χ) ∪ {〈λ,¬χ〉}

CS (λ, χ1 ∧ χ2) = CS (λ, χ1) ∪ CS (λ, χ2) ∪ {〈λ, χ1 ∧ χ2〉}

CS (λ,Kχ) = CS (λ, χ) ∪ {〈λ,Kχ〉}

CS (λ, [σ]χ) =

 ⋃
p∈dom(σ)

CS (λ, (p)σ)

 ∪ CS (λ · σ, χ) ∪ {〈λ, [σ]χ〉}

The set CS ((), ϕ) is the set of contextualised subformulae of ϕ.

For example, for ϕ = [p:=[q:=r]q]p we get:

CS ((), ϕ) = CS ((), [q:=r]q) ∪ {〈(p:=[q:=r]q), p〉} ∪ {〈(), [p:=[q:=r]q]p〉}

= {〈(), r〉, 〈(q:=r), q〉, 〈(), [q:=r]q〉} ∪ {〈(p:=[q:=r]q), p〉, 〈(), [p:=[q:=r]q]p〉}

Let card(S ) be the cardinality of a set S .

Proposition 9. — card(CS (λ, ϕ)) ≤ len(ϕ).

Proof. — We use induction on the structure of ϕ. In the base case ϕ is some atomic formula p ∈ P:

card(CS (λ, p)) = card({〈λ, p〉}) = 1 = len(p)

In the induction step there are four cases:

(1) ϕ is of the form ¬χ. We have:

card(CS (λ,¬χ)) = card(CS (λ, χ)) + 1

≤ len(χ) + 1 (by I.H.)

= len(¬χ)
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(2) ϕ is of the form χ1 ∧ χ2. This case is similar to case (1) above and is left to the reader.
(3) ϕ is of the form Kχ. Again, this case is similar to cases (1) and (2) above and is left to the reader.
(4) ϕ is of the form [σ]χ. We have:

card(CS (λ, [σ]χ)) ≤ card(
⋃

p∈dom(σ)

CS (λ, (p)σ)) + card(CS (λ · σ, χ)) + card({〈λ, [σ]χ〉})

≤
∑

p∈dom(σ)

card(CS (λ, (p)σ)) + card(CS (λ · σ, χ)) + 1

≤
∑

p∈dom(σ)

len((p)σ) + len(χ) + 1 (by I.H.)

≤ len(σ) + len(χ) + 1

= len([σ]χ)

This ends the proof. �

We now define the set Bϕ of bi-implications associated to ϕ:

Bϕ = {nλp ↔ p | 〈λ, p〉 ∈ CS ((), ϕ) and there is no λk in λ s.th. p ∈ dom(λk)} ∪

{nλp ↔ n(λ1,...,λk−1)
(p)λk

| 〈λ, p〉 ∈ CS ((), ϕ) and λk is the rightmost element of λ s.th. p ∈ dom(λk)} ∪

{nλ¬χ ↔ ¬nλχ | 〈λ,¬χ〉 ∈ CS ((), ϕ)} ∪

{nλχ1∧χ2
↔ (nλχ1

∧ nλχ2
) | 〈λ, χ1 ∧ χ2〉 ∈ CS ((), ϕ)} ∪

{nλKχ ↔ Knλχ | 〈λ,Kχ〉 ∈ CS ((), ϕ)} ∪

{nλ[σ]χ ↔ nλ·σχ | 〈λ, [σ]χ〉 ∈ CS ((), ϕ)}

It is understood that the propositional letters nλχ are new for ϕ, i.e. they do not to occur in ϕ. The next
lemma will be useful in the proof of Theorem 13 (cf. Footnote 3).

Lemma 10. — If CS ((), ϕ) contains 〈λ, χ〉 and the bi-implication associated to nλχ in Bϕ has a right hand
side where nµψ occurs then CS ((), ϕ) contains 〈µ, ψ〉.

Proof. — The only non-trivial case is when χ is a propositional letter p and λk is the rightmost element of
λ such that p ∈ dom(λk). In this case, we must show that 〈(λ1, . . . , λk−1), (p)λk〉 ∈ CS ((), ϕ). First, assume
that λ = (λ1, . . . , λk, . . . , λn), where 0 ≤ k ≤ n. Now, we have that, by the definition of CS , if 〈λ, p〉 ∈
CS ((), ϕ) then it is because p is a sub-formula of some formula χn such that 〈(λ1, . . . , λn−1), [λn]χn〉 ∈

CS ((), ϕ). By applying this same argument n−k times, we have that, if 〈λ, p〉 ∈ CS ((), ϕ) then it is because
p is a sub-formula of some formula χk such that 〈(λ1, . . . , λk−1), [λk]χk〉 ∈ CS ((), ϕ). By hypothesis, p ∈
dom(λk). Then, by the definition of CS , we have that the contextualised formula 〈(λ1, . . . , λk−1), (p)λk〉 ∈

CS ((), ϕ). �

Finally, the reduction of ϕ is:

redELA(ϕ) = n()
ϕ ∧K

(∧
Bϕ

)
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Example 11. — Consider the formula ϕ = [p:=q][q:=p]q. It is equivalent to q (which can be checked by
the standard reduction method) and is therefore satisfiable. The set of contextualised subformulae of ϕ is
computed as follows. First,

CS ((p:=q), [q:=p]q) = {〈(p:=q), p〉, 〈(p:=q, q:=p), q〉, 〈(p:=q), [q:=p]q〉}

Second,

CS ((), ϕ) = CS ((), q) ∪ CS ((p:=q), [q:=p]q) ∪ {〈(), [p:=q][q:=p]q〉}

= {〈(), q〉} ∪ {〈(p:=q), p〉, 〈(p:=q, q:=p), q〉, 〈(p:=q), [q:=p]q〉} ∪ {〈(), [p:=q][q:=p]q〉}

Now the reduction redELA(ϕ) is

n()
[p:=q][q:=p]q ∧ K( (n()

[p:=q][q:=p]q ↔ n(p:=q)
[q:=p]q) ∧

(n(p:=q)
[q:=p]q ↔ n(p:=q,q:=p)

q ) ∧

(n(p:=q,q:=p)
q ↔ n(p:=q)

p ) ∧

(n(p:=q)
p ↔ n()

q ) ∧

(n()
q ↔ q) )

Just as the original formula ϕ, the reduction of ϕ is satisfiable. �

Just as Lutz’s reduction, the method above avoids the sub-translation of ϕ and does not lead to an
exponential growth of the resultant formula.

Proposition 12. — redELA is a polynomial transformation.

Proof. — By Proposition 9, the set Bϕ contains at most len(ϕ) elements. The length of each new atom nλχ
such that 〈λ, χ〉 ∈ CS ((), ϕ) is 1. The maximal length of the right part of a a bi-implication Bϕ is when ϕ
is a conjunction. In this case, we have:

len(nλχ1∧χ2
↔ (nλχ1

∧ nλχ2
)) = len((nλχ1∧χ2

→ (nλχ1
∧ nλχ2

)) ∧ ((nλχ1
∧ nλχ2

)→ nλχ1∧χ2
))

= len(¬(nλχ1∧χ2
∧ ¬(nλχ1

∧ nλχ2
)) ∧ ¬((nλχ1

∧ nλχ2
) ∧ ¬nλχ1∧χ2

))

= 15

This therefore bounds the length of
∧

Bϕ: len(ϕ) times the worst case length 15 of each element in that
set, plus the conjunction symbols, i.e., 16 × len(ϕ) − 1. Therefore, redELA is a polynomial transformation
from the language of ELA to that of EL; precisely, the length of redELA(ϕ) = n()

ϕ ∧ K(
∧

Bϕ) is bound by
3 + (16 × len(ϕ) − 1). �

Intuitively, for each pair 〈λ, χ〉 ∈ CS ((), ϕ), the associated bi-implication guarantees that the new
propositional letter nλχ is true in a pointed model (M,w) exactly when χ is true in the pointed model
(Mλ,w). We then have the following result:

Theorem 13. — For every ELA formula ϕ0:

1) redELA(ϕ0) is an EL formula.
2) ϕ0 is ELA satisfiable if and only if redELA(ϕ0) is EL satisfiable.



The complexity of PAL and PALA 13

Proof. — First, redELA(ϕ0) is clearly an EL formula.

Let us prove the “if” part of the second statement: suppose M,w0 |= n()
ϕ0 ∧ K

(∧
Bϕ0

)
. We show by

induction on len(λ) + len(ϕ) that

for every (λ, χ) ∈ CS ((), ϕ0) and w ∈ Rλ(w0) : M,w |= nλχ iff Mλ,w |= χ

where len(λ) and Mλ are recursively defined as expected as: len(()) = 0, and len(λ ·σ) = len(λ) + len(σ);
and M() = M and Mλ·σ = (Mλ)σ. Note that since ((), ϕ0) ∈ CS ((), ϕ0) this allows us to conclude that
M,w0 |= ϕ0.
The induction base is len(λ) + len(ϕ) = 1. Therefore, we must have λ = () and ϕ = p for some proposi-
tional letter p occurring in ϕ0. Then for every w ∈ Rλ(w0) we have M,w |= p iff M,w |= n()

p , because by
hypothesis M,w |= Bϕ and n()

p ↔ p ∈ Bϕ.
For the induction step, suppose Mλ,w |= χ iff M,w |= nλχ for every w in Rλ(w0) and 〈µ, χ〉 such that
len(µ) + len(χ) < m, and let 〈λ, ϕ〉 ∈ CS ((), ϕ0) with len(λ) + len(ϕ) = m. Let λ be (λ1, . . . , λn). We
analyse the form of ϕ.

(1) ϕ = p ∈ P.
We consider two sub-cases.

- If there is no k ≤ n such that p ∈ dom(λk), then
M,w |= nλp
iff M,w |= p (because M,w |= Bϕ)
iff w ∈ V(p)
iff w ∈ Vλ(p) (because there is no k s.th. p ∈ dom(λk))
iff Mλ,w |= p.

- If there exists k ≤ n such that p ∈ dom(λk) then consider the rightmost such k, i.e. such that
p < dom(λl) for every l such that k < l ≤ n. Then
M,w |= nλp
iff M,w |= n(λ1,...,λk−1)

(p)λk
(because M,w |= Bϕ)

iff M(λ1,...,λk−1),w |= (p)λk (by I.H.3)
iff M(λ1,...,λk−1),w |= [λk]p (by the reduction axiom)
iff M(λ1,...,λk),w |= p
iff Mλ,w |= p (because p < dom(λl), for k < l ≤ n).

(2) ϕ = ¬ψ.
M,w |= nλ

¬ψ

iff M,w |= ¬nλψ (because M,w |= Bϕ)
iff M,w 6|= nλψ
iff Mλ,w 6|= ψ (by I.H.)
iff Mλ,w |= ¬ψ.

(3) ϕ = ψ1 ∧ ψ2.
This is similar to case (2) above and is left to the reader.

(4) ϕ = Kψ.
M,w |= nλKψ

iff M,w |= Knλψ (because M,w |= Bϕ)

3. The induction hypothesis is applicable because len((λ1, . . . , λk−1) + len((p)λk) < len((λ1, . . . , λk−1) + len(λk) <
len(λ) + len(p), and because 〈(λ1, . . . , λk−1), (p)λk〉 ∈ CS ((), ϕ0). The latter is guaranteed by Lemma 10.



14 Journal of Applied Non-Classical Logics. Volume Volume of the issue undefined – No. Number
of the issue undefined/Year of publication undefined

iff M, u |= nλψ for all u ∈ R(w)
iff Mλ, u |= ψ for all u ∈ Rλ(w) (by I.H. and because Rλ = R)
iff Mλ,w |= Kψ.

(5) ϕ = [σ]ψ.
M,w |= nλ[σ]ψ
iff M,w |= nλ·σψ (because M,w |= Bϕ)
iff Mλ·σ,w |= ψ (by I.H.4)
iff Mλ,w |= [σ]ψ.

This ends the “if” part.

Finally, let us prove the “only if” part: suppose M = 〈W,R,V〉 and M,w0 |= ϕ0. We construct
a new model M′ = 〈W,R,V ′〉, where V ′ is defined as follows: V ′(p) = V(p) if p occurs in ϕ0, and
V ′(nλχ) = {w | Mλ,w |= χ}, for 〈λ, χ〉 ∈ CS ((), ϕ0).

We clearly have M′,w0 |= n()
ϕ0 . It remains to show that:

M′,w |= χ, for every χ ∈ Bϕ0 and every w ∈ W

Let λ be (λ1, . . . , λn). We inspect the possible forms of χ.

(1) χ = p ∈ P.
We consider two sub-cases.

- If there is no k ≤ n such that p ∈ dom(λk), then:
M′,w |= nλp
iff w ∈ V ′(nλp)
iff Mλ,w |= p (by the definition of V ′)
iff w ∈ Vλ(p)
iff w ∈ V(p) (because p < dom(λk) for any k)
iff w ∈ V ′(p) (by the definition of V ′)
iff M′,w |= p.
Therefore, M′,w |= nλp ↔ p.

- If there exists k ≤ n such that p ∈ dom(λk) then consider the rightmost such k, i.e. such that
p < dom(λl) for every l such that k < l ≤ n. Then:
M′,w |= nλp
iff w ∈ V ′(nλp)
iff Mλ,w |= p (by the definition of V ′)
iff w ∈ Vλ(p)
iff w ∈ V (λ1,··· ,λk)(p) (because p < dom(λl), for k < l ≤ n)
iff M(λ1,··· ,λk),w |= p
iff M(λ1,··· ,λk−1),w |= [λk]p
iff M(λ1,··· ,λk−1),w |= (p)λk (by the reduction axiom)
iff M′,w |= n(λ1,...,λk−1)

(p)λk
(by the definition of V ′).

Therefore, M′,w |= nλp ↔ n(λ1,...,λk−1)
(p)λk

.
(2) χ = ¬χ1.

M′,w |= nλ¬χ1
iff Mλ,w |= ¬χ1 (by the definition of V ′)

4. The induction hypothesis is applicable because len(λ · σ) + len(ψ) < len(λ) + len([σ]ψ).
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iff Mλ,w 6|= χ1

iff M′,w 6|= nλχ1
(again, by the definition of V ′)

iff M′,w |= ¬nλχ1
.

Therefore, M′,w |= nλ¬χ1
↔ ¬nλχ1

.
(3) χ = χ1 ∧ χ2.

This is similar to case (2) above and left to the reader.
(4) χ = Kχ1.

M′,w |= nλKχ1

iff Mλ,w |= Kχ1 (by the definition of V ′)
iff Mλ, u |= χ1 for all u ∈ Rλ(w)
iff M′, u |= nλχ1

for all u ∈ Rλ(w) (again by the definition of V ′)
iff M′, u |= nλχ1

for all u ∈ R(w) (because Rλ = R)
iff M′,w |= Knλχ.

(5) χ = [σ]χ1.
M′,w |= nλ[σ]χ1

iff Mλ,w |= [σ]χ1 (by the definition of V ′)
iff Mλ·σ,w |= χ1

iff M′,w |= nλ·σχ1
(again, by the definition of V ′).

This ends the “only if” part. �

Theorem 14. — The problem of deciding satisfiability for single-agent epistemic logic with assignments
ELA is NP-complete.

Proof. — By Proposition 12 redELA is a polynomial transformation from the language of ELA to that of
EL. Moreover, redELA preserves satisfiability because of Theorem 13. Therefore, the complexity of the
problem of deciding ELA satisfiability is at most that of deciding single-agent EL satisfiability, which is
in NP.

Due to Proposition 2, ELA is a conservative extension of EL. As the problem of deciding EL satisfia-
bility is NP-hard, the problem of deciding ELA satisfiability is also NP-hard. It follows that the problem
of deciding ELA satisfiability is NP-complete. �

5.2. From PALA to EL

Now, we extend the procedure given in the last section to the entire logic PALA. The first thing to do
is to extend contexts to sequences of assignments and announcements.

Definition 15. — The set CS of contextualised subformulae is the same as in Definition 8 plus the fol-
lowing clause for announcements:

CS (λ, [!χ1]χ2) = CS (λ, χ1) ∪ CS (λ·!χ1, χ2) ∪ {〈λ, [!χ1]χ2〉}

Proposition 16. — Let ϕ be a PALA formula. Then card(CS (λ, ϕ)) ≤ len(ϕ).

Proof. — We employ induction on the structure of ϕ. The induction base, as well as cases (1) to (4) are
exactly as in the proof of Proposition 9. In the induction step we have an additional case:
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(5) ϕ = [χ1]χ2.
card(CS (λ, [!χ1]χ2))
≤ card(CS (λ, χ1)) + card(CS (λ·!χ1, χ2)) + card({〈λ, [!χ1]χ2〉})
≤ len(χ1) + len(χ2) + 1 (by I.H.)
= len([!χ1]χ2).

This ends the proof. �

We define the set Bϕ of bi-implications as follows:

Bϕ = {nλp ↔ p | 〈λ, p〉 ∈ CS ((), ϕ) and there is no λk in λ s.th. p ∈ dom(λk)} ∪

{nλp ↔ n(λ1,...,λk−1)
(p)λk

| 〈λ, p〉 ∈ CS ((), ϕ) and λk is the rightmost element of λ s.th. p ∈ dom(λk)} ∪

{nλ¬χ ↔ ¬nλχ | 〈λ, χ〉 ∈ CS ((), ϕ)} ∪

{nλχ1∧χ2
↔ (nλχ1

∧ nλχ2
) | 〈λ, χ1 ∧ χ2〉 ∈ CS ((), ϕ)} ∪nλKχ ↔ K


 ∧

k≤n,λk=!ψ

n(λ1,...,λk−1)
ψ

→ nλχ

 | 〈λ,Kχ〉 ∈ CS ((), ϕ) and λ is of length n

 ∪
{nλ[σ]χ ↔ nλ·σχ | 〈λ, [σ]χ〉 ∈ CS ((), ϕ)} ∪

{nλ[!χ1]χ2
↔ (nλχ1

→ nλ·(!χ1)
χ2 ) | 〈λ, [!χ1]χ2〉 ∈ CS ((), ϕ)}

where we extend the domain function dom to announcements by stipulating dom(!ϕ) = ∅. The clause
for K conditions the abbreviation of χ by the contextual truth of all the preconditions ψ occurring in the
context λ (precisely, of the abbreviations of these preconditions).

Finally, the reduction of the PALA formula ϕ is the formula

redPALA(ϕ) = n()
ϕ ∧K

(∧
Bϕ

)

Example 17. — Consider the formula ϕ = [!¬p][q:=p]Kq. Applying the reduction axioms we get:

[!¬p][q:=p]Kq↔ [!¬p]K[q:=p]q

↔ [!¬p]K p

↔ ¬p→ K[!¬p]p

↔ ¬p→ K(¬p→ p)

↔ ¬p→ K p

The last formula is EL equivalent to p. Therefore, ϕ is PALA satisfiable.
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First, we compute the set of contextualised subformulae. We have:

CS ((), [!¬p][q:=p]Kq) = CS ((),¬p) ∪ CS ((!¬p), [q:=p]Kq) ∪ {〈(), [!¬p][q:=p]Kq〉}

= {〈(),¬p〉, 〈(), p〉} ∪ CS ((!¬p), p) ∪ CS ((!¬p, q:=p),Kq) ∪

{〈(!¬p), [q:=p]Kq〉} ∪ {〈(), [!¬p][q:=p]Kq〉}

= {〈(),¬p〉, 〈(), p〉} ∪ {〈(!¬p), p〉} ∪ {〈(!¬p, q:=p), q〉, 〈(!¬p, q:=p),Kq〉} ∪

{〈(!¬p), [q:=p]Kq〉} ∪ {〈(), [!¬p][q:=p]Kq〉}

Now, using the bi-implications, the reduction of ϕ is

n()
[!¬p][q:=p]Kq ∧ K( (n()

[!¬p][q:=p]Kq ↔ (n()
¬p → n(!¬p)

[q:=p]Kq)) ∧

(n(!¬p)
[q:=p]Kq ↔ n(!¬p,q:=p)

Kq ) ∧

(n(!¬p,q:=p)
Kq ↔ K

(
n()
¬p → n(!¬p,q:=p)

q

)
) ∧

(n(!¬p,q:=p)
q ↔ n(!¬p)

p ) ∧

(n(!¬p)
p ↔ p) ∧

(n()
¬p ↔ ¬n()

p ) ∧

(n()
p ↔ p) )

It can be checked that the reduction of ϕ is EL satisfiable. �

Proposition 18. — redPALA is a polynomial transformation.

Proof. — First, due to Proposition 16, card(CS (λ, ϕ)) ≤ len(ϕ). Second, the longest bi-implications are
those of the form

nλKχ ↔ K
((∧

k≤n,λk=!ψ n(λ1,...,λk−1)
ψk

)
→ nλχ

)
.

As n is at most len(ϕ), the length of the conjunction
∧

k≤n,λk=!ψ n(λ1,...,λk−1)
ψk

is at most 2× len(ϕ) − 1. Hence,
the length of that bi-implication itself is at most 7 + (2× 1) + 2× (2× len(ϕ)− 1 + 5)) = 17 + (4× len(ϕ)).
Therefore, the length of each bi-implication is linear in len(ϕ).

It follows that the length of redPALA(ϕ) is quadratic in len(ϕ). �

Theorem 19. — For every PALA formula ϕ0:

1) redPALA(ϕ0) is an EL formula.
2) ϕ0 is PALA satisfiable if and only if redPALA(ϕ0) = n()

ϕ0 ∧K
(∧

Bϕ0

)
is EL satisfiable.

Proof. — First, redPALA(ϕ0) is clearly an EL formula.

For the “if” part of the second statement suppose M,w0 |= n()
ϕ0 ∧K

(∧
Bϕ0

)
. We show by induction on

len(λ1) + . . . + len(λn) + len(χ) that for every ((λ1, . . . , λn), χ) ∈ CS ((), ϕ0):

if M(λ1,...,λk−1),w0 |= ψk for all λk s.th. λk = !ψk, and w ∈ R(λ1,...,λk−1)(w0), then M,w |= nλχ iff Mλ,w |= χ

where the definition of length is extended to announcements by stipulating len(!ϕ) = len(ϕ). Since
((), ϕ0) ∈ CS ((), ϕ0) this allows us to conclude that M,w0 |= ϕ0, i.e. that ϕ0 is PALA satisfiable.
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In the induction base λ = () and χ = p, for some p in ϕ0. Then we have M,w |= n()
p iff M,w |= p

because M,w |= Bϕ and because w ∈ R()(w0).

In the induction step, let λ be (λ1, . . . , λn), for some n ≥ 0, and suppose M(λ1,...,λk−1),w0 |= ψk if
λk = !ψk. We analyse the form of ϕ. There are six cases. Cases (1) to (3) and (5) are exactly as in the “if”
part of proof of Theorem 13. Case (4) has to be adapted:

(4) χ = Kχ1.
M,w |= nλKχ1

iff M,w |= K
((∧

k≤n,λk=!ϕk
n(λ1,...,λk−1)
ψk

)
→ nλχ1

)
(because M,w0 |= Bϕ0 and w ∈ Rλ(w0))

iff for all u ∈ R(w), M, u |= n(λ1,...λk−1)
ψk

for all k ≤ n s.th. λk = !ψk, implies M, u |= nλχ1

iff for all u ∈ R(w), M(λ1,...λk−1), u |= ψk for all k ≤ n s.th. λk = !ψk, implies Mλ, u |= χ1

(by I.H., n times)5

iff for all u ∈ Rλ(w), Mλ, u |= χ1 (because u ∈ Rλ(w) iff
u ∈ R(w) and M(λ1,...λk−1), u |= ψk for all k ≤ n)6

iff Mλ,w |= Kχ1

Case (6) is new:

(6) χ = [!χ1]χ2.
M,w |= nλ[!χ1]χ2

iff M,w |= nλχ1
→ nλ·!χ1

χ2 (because M,w |= Bϕ0 )
iff M,w 6|= nλχ1

, or M,w |= nλχ1
and M,w |= nλ·!ψ1

χ2

iff Mλ,w 6|= χ1, or Mλ,w |= χ1 and M,w |= nλ·!ψ1
χ2 (by I.H. on χ1)

iff Mλ,w 6|= χ1, or Mλ,w |= χ1 and Mλ·!ψ1 ,w |= χ2 (by I.H. on χ2)7

iff Mλ,w |= [!χ1]χ2

This ends the “if” part.

Let us now prove the “only if” part. Let M = 〈W,R,V〉 and M,w0 |= ϕ0. We define a new model
M′ = 〈W,R,V ′〉, where V ′ is defined as follows: V ′(p) = V(p) if p is in ϕ0, and V ′(nλχ) = {w | Mλ,w |= χ}

for (λ, χ) ∈ CS ((), ϕ0). We show that:

M′,w |= Bϕ0 , for all w ∈ W

There are six cases, according to the form of the left hand sides of Bϕ0 . Cases (1) to (3) and (5) are exactly
as in the “only if” part of the proof of Theorem 13, so we only prove the remaining two cases.

5. The induction hypothesis applies to every ψk because

len(λ1) + . . . + len(λk−1) + len(ψk) = len(λ1) + . . . + len(λk−1) + len(λk)

≤ len(λ1) + . . . + len(λn)

< len(λ1) + . . . + len(λn) + len(χ1).

6. In detail, we prove by induction on k that u ∈ R(λ1 ,...λk)(w) iff u ∈ R(λ1 ,...λk−1)(w) and λk =!ψk implies M(λ1 ,...λk−1), u |=
ψk.
7. Note that the induction hypothesis applies to χ2 because due to Mλ,w |= χ1, the condition of the induction hypoth-
esis is satisfied.
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(4) χ = Kχ1.
Let λ be (λ1, . . . , λn).
M′,w |= nλKχ1

iff Mλ,w |= Kχ1 (by the definition of V ′)
iff for all u ∈ Rλ(w), Mλ, u |= χ1

iff for all u ∈ R(w), M(λ1,··· ,λk−1), u |= ψk for all k ≤ n s.th. λk = ψk implies Mλ, u |= χ1

(because u ∈ Rλ(w) iff u ∈ R(w) and M(λ1,...λk−1), u |= ψk for every k ≤ n)8

iff for all u ∈ R(w), M′, u |= n(λ1,··· ,λk−1)
ψk

for all k ≤ n s.th. λk =!ψk implies M′, u |= nλχ1

(again by the definition of V ′)
iff M′,w |= K((

∧
k≤n nλ1,...,λk−1

ψk
)→ nλχ1

).
(6) χ = [!χ1]χ2.

M′,w |= nλ[!χ1]χ2

iff Mλ,w |= [!χ1]χ2 (by the definition of V ′)
iff Mλ,w |= χ1 implies Mλ·!χ1 ,w |= χ2

iff M′,w |= nλχ1
implies M′,w |= nλ·!χ1

χ2 (again by the definition of V ′)
iff M′,w |= nλχ1

→ nλ·!χ1
χ2

This ends the “only if” part (and the proof). �

Theorem 20. — The problem of deciding satisfiability for single-agent public announcement logic with
assignment is NP-complete.

Proof. — Due to Proposition 18, redPALA is a polynomial transformation. Then NP-membership follows
from Theorem 19. Finally, NP-hardness follows from the fact that PALA is a conservative extension of
EL (Proposition 2). �

6. Multiagent case

As said before, multiagent PALA is a straightforward extension of PALA. Assume a finite non-empty
set N of agents. Then, in the language of multiagent PALA, instead of a single epistemic operator K, we
define an operator Ki for each agent i ∈ N. Formulae of the form Kiϕ are read “agent i knows that ϕ”.
The length of such formulas is defined as usual: len(Kiϕ) = 1 + len(ϕ)9.

For its semantics, the models are tuples M = 〈W,R,V〉, where W and V are as for single-agent PALA
and where R : N −→ 2W×W associates to each agent i an equivalence relation Ri. The satisfaction relation
is as before for the Boolean and the dynamic operators, and:

M,w |= Kiϕ iff Ri(w) ⊆ JϕKM

The technique we used to provide an optimal transformation from single-agent PALA to single-agent
EL cannot be taken over literally in the multiagent case. The reason is simple. Note that the key idea of the
reduction is that each bi-implication in Bϕ is enforced to be true in every world of the model (assuming

8. In detail, we prove by induction on k that u ∈ R(λ1 ,...λk)(w) iff u ∈ R(λ1 ,...λk−1)(w) and λk =!ψk implies M(λ1 ,...λk−1), u |=
ψk.
9. Strictly speaking, we also have to encode the length of the agent index of K. We suppose nevertheless that
len(Kiϕ) = 1 + len(ϕ) for the same reasons as we gave in Footnote 2 of Section 2.1.
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that it is point-generated). In the single-agent case, the operator K is enough to enforce that, but it is
clearly not enough in the multiagent case.

There is a simple way to get around this problem. All that we need is a kind of master modality.
That role could be played by the common knowledge operator: if one replaces the operator K by that
operator in theorems 13 and 19 then we obtain the same results. In this case, the reduction would be from
multiagent PALA without common knowledge to multiagent EL with common knowledge. But the latter
is EXPTIME complete, while multiagent PALA without common knowledge is PSPACE complete, as we
show in the sequel.

To do so we have to add the ‘everybody knows’ operator E to our language. Formulae of the form Eϕ
are read “every agent knows that ϕ”. As before, its length is len(Eϕ) = 1 + len(ϕ). For its semantics, we
use the same models, and the satisfaction relation is as before, plus:

M,w |= Eϕ iff
⋃
i∈N

Ri(w) ⊆ JϕKM

The set of agents N being finite, Eϕ is logically equivalent to
∧

i∈N Kiϕ. Hence, multiagent EL with
E is just as expressive as multiagent EL, and E could have been defined as an abbreviation in multiagent
EL. According to (Lutz, 2006, Footnote 2), the addition of this operator only makes it more succinct,
without increasing the computational complexity of the problem of deciding satisfiability.

However, E is not a master modality yet; we need yet another definition: the epistemic depth ed(ϕ) of
a PALA formula ϕ is recursively defined as follows:

ed(p) = 0

ed(¬ϕ) = ed(ϕ)

ed(ϕ1 ∧ ϕ2) = max(ed(ϕ1), ed(ϕ2))

ed(Kiϕ) = 1 + ed(ϕ)

ed(Eϕ) = 1 + ed(ϕ)

ed([!ϕ1]ϕ2) = max(ed(ϕ1), ed(ϕ2))

ed([σ]ϕ) = max( max
p∈dom(σ)

(ed(σ(p)), ϕ)

Let Ek stand for the string formed by operators E repeated k times; precisely, we inductively define
E0ϕ = ϕ, and Ek+1ϕ = EEkϕ. Now we are ready to define reduction.

redPALA(ϕ) = n()
ϕ ∧ Eed(ϕ)

(∧
Bϕ

)
Proposition 21. — redPALA is a polynomial transformation.

Proof. — As seen in the proof of Proposition 18, for every nλχ ↔ ψ ∈ Bϕ we have
len(nλχ ↔ ψ) ≤ 17 + (4 × len(ϕ)).

And as seen above in Proposition 16, card(Bϕ) ≤ len(ϕ). Therefore,
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len(
∧

Bϕ) ≤ len(ϕ) × (17 + (4 × len(ϕ)) + 1).
Finally, as ed(ϕ) ≤ len(ϕ), we have

len
(
Eed(ϕ)

(∧
Bϕ

))
= ed(ϕ) + len(

∧
Bϕ)

≤ len(ϕ) + len(ϕ) × (17 + (4 × len(ϕ)) + 1)

The length of redPALA(ϕ) is therefore quadratic in the length of ϕ. �

Theorem 22. — For every multiagent PALA formula ϕ0, redPALA(ϕ0) is a multiagent EL formula, and ϕ0

is satisfiable if and only if redPALA(ϕ0) = n()
ϕ0 ∧

(∧
k≤ed(ϕ0) Ek

(∧
Bϕ0

))
is satisfiable.

Proof. — This is essentially the same as for Theorem 19. �

The problem of deciding multiagent EL satisfiability is PSPACE-complete. Therefore, we immedi-
ately get:

Theorem 23. — The problem of deciding multiagent PALA satisfiability is PSPACE-complete.

7. Discussion and conclusion

We gave optimal decision procedures for the logic of public announcements and assignments PALA,
adapting Lutz’s abbreviation technique for PAL. We showed that the problem of deciding validity is
coNP-complete for single-agent PALA, and PSPACE-complete for multiagent PALA.

Our results have also practical value because they can be directly applied to reasoning about actions in
the situation calculus. Indeed, in (van Ditmarsch et al., 2007a; van Ditmarsch et al., 2011) we showed that
Reiter’s solution to the frame problem (Reiter, 1991; Reiter, 2001) in terms of successor state axioms can
be recast in PALA: assignments allow to model ‘physical’ actions, and announcements allow to model
epistemic observation actions. This means that one can also see our procedures as optimal decision
procedures for Reiter-style reasoning about actions. In that respect, an interesting question is whether our
work can be extended further to deal with so-called sensing actions. Such actions are defined in (Scherl
& Levesque, 1993; Scherl & Levesque, 2003): they are actions of the form ?ϕ, which test whether
some boolean formula ϕ is true. They can be viewed as abbreviating the nondeterministic composition
of two announcements: ?ϕ =!ϕ∪!¬ϕ. The problem is that the expansion of such abbreviations leads
to exponential blow-up. We therefore cannot straightforwardly integrate primitive sensing actions into
PALA: it is not clear how the associated reduction axiom

[?ϕ]Kiψ ↔ ((ϕ→ Ki(ϕ→ [?ϕ]ψ))∧
(¬ϕ→ Ki(¬ϕ→ [?ϕ]ψ)))

could be ‘compiled’ into the polynomial transformation. Further evidence that the presence of sensing
actions increases complexity is provided by the result in (Herzig et al., 2000) that plan verification in this
case is Π

p
2 -complete.

Another generalisation of our results would be to allow for non-public events, as in (Baltag et al.,
1998; Bacchus et al., 1999).
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