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Abstract

We employ the notions of ‘sequential function’ and ‘interrogation’ (di-
alogue) in order to define new partial combinatory algebra structures
on sets of functions. These structures are analyzed using J. Longley’s
preorder-enriched category of partial combinatory algebras and decidable
applicative structures.

We also investigate total combinatory algebras of partial functions.
One of the results is, that every realizability topos is a geometric quotient
of a realizability topos on a total combinatory algebra.

AMS Subject Classification (2000): 03B40,68N18

Introduction

Let us think of a computing device which, in the course of its calculations, is
allowed to consult an oracle. I wish to keep the intuition of ‘computing device’ as
flexible as possible and refrain therefore from a definition; but one requirement
I want to stick to is: the device will use only finitely many oracle queries in
any terminating computation (there may be non-terminating computations in
which the device just keeps on passing queries to the oracle).

If a terminating computation always results in an output, the device then

determines a partial function O
Φ
→ R, where O is the set of oracles and R the

set of results (outputs). In cases of practical interest, R is a discrete set such as
the set N of natural numbers, whereas O, like the set of all functions N → N, has
a nontrivial topology. The finiteness requirement above implies in this example
that the partial function O → R is continuous, and this is often taken as the
meaning of the Use Principle in Recursion Theory (e.g. [12], p.50: “The Use
Principle asserts that Φe is continuous”).

In this paper I concentrate on the situation where O is the set AA of functions
A → A for some infinite set A, and queries are of form: “what is your value at
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a ∈ A?”. I argue that here it makes sense to consider a subclass of the class
of (partial) continuous functions on AA: the sequential functions. Actually,
the computable maps Φ will turn out to be sequential (note that the word
“sequential” as used here has nothing to do with sequential spaces or sequential
continuity, but rather with a certain computation strategy: see section 1 for a
precise definition).

It is shown that the sequential functions play an important role in the con-
struction of partial combinatory algebras. I show that Kleene’s construction of
a partial combinatory algebra structure on N

N ([5]; see [15], 1.4.3, for a concise
exposition) can be generalized to a partial combinatory algebra structure on
any set AA for infinite A.

Then, some further analysis is carried out in the case that A itself has a par-
tial combinatory algebra structure and the coding which is necessary for defining
the structure of AA is actually definable from A. A universal property is ob-
tained in Longley’s category ([6]) of partial combinatory algebras and decidable
applicative morphisms. We also look at sub-partial combinatory algebras of AA.

Next, we discuss partial combinatory algebras on sets of partial functions.
In the end we obtain a theorem in the theory of realizability toposes: every
realizability topos is a geometric quotient of a realizability topos on a total
combinatory algebra.

1 Sequential (partial) functions

The notion ‘sequential’ has been around for a long time, and stems from the
study of Plotkin’s (and Sazonov’s) calculus PCF ([9, 11]). For a fairly recent
paper discussing various approaches to the matter, see [8].

The notion of a sequential tree was defined in [13]. I slightly modify it here.
In order to avoid any ambiguity, I also include a definition of ‘tree’ and the
various concepts related to it.

Definition 1.1 A tree in this paper is a partially ordered set with a least ele-
ment (the root of the tree) such that for every element x, the set {y | y ≤ x} is a
finite linearly ordered subset. An element y is called an immediate successor of x
if x is the greatest element below y. A path through a tree is a maximal linearly
ordered subset. A leaf of a tree is a maximal element. A tree is well-founded if
every path through it is finite.

Let A be a set, and T a set of finite functions p : A′ → A with A′ ⊂ A.
We shall also write dom(p) for A′. The set T is ordered by inclusion. T is
called a sequential tree if it is a tree, with the empty function as root, and
has the property that for every p ∈ T which is not a leaf, there is an element
a 6∈ dom(p) such that for all immediate successors q of p in T , we have dom(q) =
dom(p) ∪ {a}.

A sequential tree is total if for each p ∈ T which is not a leaf, there is
a 6∈ dom(p) such that the set of immediate successors of p in T is the set of all
functions q satisfying dom(q) = dom(p) ∪ {a}.
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We shall mainly be interested in total sequential trees. Clearly, for such a
tree, every function f : A → A determines a path through the tree (the set
{p ∈ T | p ⊂ f}). Suppose F is a function from the set of leaves of T to A. Then
F and T determine a partial function ΦT,F : AA → A as follows: ΦT,F (α) is
defined if and only if the path through T determined by α ends in a leaf v; and
in that case, ΦT,F (α) = F (v).

Definition 1.2 A partial function AA → A of the form ΦT,F is called a partial
sequential function.

Note that a function ΦT,F is a total function (i.e., everywhere defined) if and
only if the tree T is well-founded.

The set A is given the discrete topology and the set of functions AA the
product topology. One of the lemmas underlying the construction of Kleene’s
K2 (a partial combinatory algebra of functions N

N) is that when A is count-
able, every partial continuous function AA → A with open domain is partial
sequential. In fact, one can replace “open” by “Gδ” in this statement.

If A is uncountable, we still have that every total continuous function AA →
A is sequential, but this may fail for partial functions with open domain, as the
following proposition shows.

Proposition 1.3 Let A be an infinite set. Every continuous function AA → A
is sequential, but if A is uncountable, there exist partial continuous functions
with open domain, that are not partial sequential.

Proof. Let Φ : AA → A be continuous. For a finite function p : A′ → A with
A′ ⊂ A, let Up = {α ∈ AA | p ⊂ α} be the open neighborhood determined by
p. By continuity, the function Φ has a base B, that is: a set of finite functions p
such that Φ is constant on Up and such that for every α ∈ AA there is a p ∈ B
such that p ⊂ α.

Call two finite functions s and t compatible if s∪ t is a function (i.e., s(a) =
t(a) whenever a ∈ dom(s) ∩ dom(t)). For arbitrary finite s, let Bs be the set of
those p ∈ B such that p and s are compatible.

Claim For any finite function s, either Φ is constant on Us or there is a finite
subset C of A − dom(s) such that for every p ∈ Bs, dom(p) meets C.

Proof of Claim: Suppose there is no such C; we will show that Φ is constant on
Us. Given α, β ∈ Us, take p, q ∈ Bs such that p ⊂ α, q ⊂ β. Since (dom(p) ∪
dom(q)) − dom(s) is finite and by assumption not a C as above, we can find
r ∈ Bs such that dom(r)−dom(s) is disjoint from (dom(p)∪dom(q))−dom(s).
Then r is compatible both with p and with q, and since Φ is constant on Up,
Uq and Ur, Φ takes the same values on Up and Uq; hence Φ(α) = Φ(β). We
conclude that Φ is constant on Us.

We now build a sequential tree for Φ as follows: T will be the union of a
sequence T0 ⊆ T1 ⊆ · · · of well-founded sequential trees.

Let T0 consist of only the empty function. Suppose Tn has been defined. For
every leaf s of Tn define the set of elements of Tn+1 extending s as follows: if Φ is
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constant on Us, this set is empty (and s is also a leaf of Tn+1). Otherwise, pick a
finite set C for s as in the Claim; and order C as {c1, . . . , cn}. Then add for each
k, 1 ≤ k ≤ n, all functions extending s whose domain is dom(s) ∪ {c1, . . . , ck}.

Each Tn is clearly a well-founded sequential tree, by induction; and by con-
struction the following is true: if p ∈ B and p is compatible with a leaf s of Tn,
then either Φ is constant on Us (in which case s is a leaf of T ), or the cardinality
of s ∩ p is at least n. Hence, since the sets {Up | p ∈ B} cover AA, the tree T is
well-founded. Define for any leaf s of T , F (s) = Φ(α) for an arbitrary α ∈ Us.
Then Φ = ΦT,F .

For the second statement, split A in two disjoint, nonempty subsets A0, A1.
Let Φ be a partial function which is constant on its domain, and which is only
defined on those α for which there is an a ∈ A with α(a) ∈ A0. Then Φ cannot
be partial sequential: suppose it is; let T be a sequential tree for it. Choose α
such that α(a) 6∈ A0 for each a ∈ A. Then the path through T determined by
α must be infinite by assumption on T , but the union of this path is a partial
function on A with countable domain A′. But then any function α′ which agrees
with α on A′ but has α′(a) ∈ A0 for some a 6∈ A′, will determine the same infinite
path, although Φ(α′) should be defined.

Partial sequential functions AA → A can be coded by elements of AA in the
following way. Let A∗ be the free monoid on A, i.e. the set of finite sequences
of elements of A. Fix an injective function

(a0, . . . , an−1) 7→ 〈a0, . . . , an−1〉 : A∗ → A

The elements in the image of this map are called coded sequences. Let q and r
(for ‘query’ and ‘result’) be two specified, distinct elements of A. With these
data we define a partial operation ϕ : AA × AA → A as follows.

For α, β ∈ AA and u = 〈a0, . . . , an−1〉 a coded sequence, call u an in-
terrogation of β by α, if for each j ≤ n − 1 there is an a ∈ A such that
α(〈a0, . . . , aj−1〉) = 〈q, a〉 and β(a) = aj . Of course, for j = 0 this means that
α(〈 〉) = 〈q, a〉 and β(a) = a0. The elements 〈q, a〉 are called the queries of the
interrogation.1

Note that α and β uniquely determine a sequence of interrogations (the
interrogation process) which may be finite or infinite. We shall apply the notion
of interrogation also to finite functions.

We say that ϕ(α, β) is defined with value b, if there is an interrogation u
of β by α such that α(u) = 〈r, b〉. We call the element 〈r, b〉 the result of the
interrogation u.

Write ϕα for the partial function β 7→ ϕ(α, β) : AA → A.

Proposition 1.4 A partial function AA → A is of the form ϕα for some α ∈
AA, precisely when it is sequential.

Proof. Suppose we have a partial sequential function ΦT,F . Then for any
s ∈ T , the sequential tree structure of T induces a linear order on dom(s), say

1In [13], I called these “dialogues”. Now I find they are far too one-sided for that name.
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dom(s) = {c0, . . . , cn−1} (and the predecessors of s in T are restrictions of s to
subsets {c0, . . . , cj−1}). Let ai = s(ci). Let α be any function A → A such that
for each s ∈ T , with ci, ai as above, α(〈a0, . . . , an−1〉) = 〈r, F (s)〉 if s is a leaf of
T , and α(〈a0, . . . , an−1〉) = 〈q, cn〉 if cn is the unique element of dom(t)−dom(s)
for each immediate successor t of s in T . Clearly then, ϕα = ΦT,F .

Conversely, given α, let T0 be the set of all finite functions s such that there
exists an interrogation of s by α which contains all the values of s. It is easy
to see that T0 is a total sequential tree. Let us look at the leaves of T0. If s is
such a leaf, we have the following 3 possibilities:

1) the interrogation process of s by α is infinite: α continues to ask for
information it has already received;

2) for some interrogation u of s by α, α(u) is neither a query nor a result;

3) for some interrogation u of s by α, α(u) = 〈r, b〉 for some b.

Let T result from T0 by the following: for every leaf s of T0 for which 1) or 2)
holds, choose an injective function (a0, a1, . . .) of N into A − dom(s), and add
all finite functions of the form s ∪ t for which dom(t) = {a0, . . . , ak} for some
k ≥ 0.

Finally, if s is a leaf of T (hence a leaf of T0 to which 3) applies), define
F (s) = b if α(u) = 〈r, b〉 for the shortest interrogation u of s by α yielding a
result. Then ϕα = ΦT,F .

2 A partial combinatory algebra structure on

A
A

In this section, we generalize the definition of Kleene’s K2. Our aim is to prove
that with the partial map α, β 7→ αβ defined below in definition 2.2, the set AA

has the structure of a partial combinatory algebra. Let us first recall what this
means:

Definition 2.1 A partial combinatory algebra is a set X together with a partial
function X × X → X , written x, y 7→ xy, such that there exist elements k and
s in X satisfying the two axioms:

(k) For any x, y ∈ X , kx and (kx)y are defined, and (kx)y = x;

(s) For any x, y, z ∈ X , sx and (sx)y are defined, and ((sx)y)z is defined
precisely if (xz)(yz) is, and these expressions define the same element of
X if defined.

The partial function a, b 7→ ab is called the application function.

Definition 2.2 For α, β ∈ AA and a ∈ A, call u = 〈a0, . . . , an−1〉 an a-
interrogation of β by α, if for each j ≤ n − 1, there is a b ∈ A such that
α(〈a, a0, . . . , aj−1〉) = 〈q, b〉 and β(b) = aj .
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We say that ϕa(α, β) is defined with value c, if for some a-interrogation u of
β by α, α(u) = 〈r, c〉.

Then, define a partial function AA × AA → A, denoted αβ 7→ αβ in the
following way: αβ is defined if and only if for every a ∈ A, ϕa(α, β) is defined.
In that case, αβ is the function a 7→ ϕa(α, β).

The following proposition is straightforward.

Proposition 2.3 For any α and a, the partial function β 7→ ϕa(α, β) is se-
quential.

Conversely, suppose that for every a ∈ A we are given a partial sequential
function Fa : AA → A. Then there is an element α of AA such that for all
β ∈ AA and all a ∈ A, ϕa(α, β) is defined if and only if Fa(β) is, and equal to
it in that case. Hence if for all a Fa(β) is defined, αβ is defined and for all a,
αβ(a) = Fa(β).

We shall have to deal with sequential functions of more than one variable.

Definition 2.4 Let T be a set of pairs of finite functions (s, t), ordered by
pairwise inclusion. We say that T is a bisequential tree if T is a tree, and for
any non-leaf (s, t) ∈ T we have: either there is a 6∈ dom(s) such that the set of
immediate successors of (s, t) in T is the set of finite functions (s′, t) where s′

extends s and dom(s′) = dom(s)∪{a}, or there is b 6∈ dom(t) such that the set
of immediate successors is the set of (s, t′) with dom(t′) = dom(t) ∪ {b}.

Any pair of functions f, g : A → A determines a unique path through a
bisequential tree (the set {(s, t) | s ⊂ f, t ⊂ g}), and just as for the case of one
variable we say that a partial function φ : AA ×AA → A is bisequential if there
is a bisequential tree T and a function F from the leaves of T to A, such that
φ = ΦT,F . Here we use the notation ΦT,F also for functions of two variables, in
the same way as before.

Lemma 2.5 Let G be a total bisequential function AA×AA → A. Then there is
an element φG of AA such that for all α and β, φGα is defined, and ϕ(φGα, β) =
G(α, β).

Proof. Let G be ΦT,F , so T is a bisequential tree, F a function from the leaves
of T to A, such that G(α, β) = F ((p, q)) for the unique leaf (p, q) determined
by T and (α, β). Note that since G is total, the tree T is well-founded.

Call a non-leaf (s, t) of T a (0, u)-point if all immediate successors of (s, t)
are of form (s′, t) with dom(s′) = dom(s) ∪ {u}; similarly, a (1, v)-point has
immediate successors (s, t′) with dom(t′) = dom(t) ∪ {v}. Suppose s(u0) =
a0, . . . , s(un−1) = an−1, t(v0) = b0, . . . , t(vm−1) = bm−1 are the values of s and
t in the path, in that order. We define the value of φG on the interrogation

〈〈b0, . . . , bm−1〉, a0, . . . , an−1〉 = 〈〈~b〉,~a〉

If (s, t) is a (0, u)-point, let φG(〈〈~b〉,~a〉) = 〈q, u〉; if (s, t) is a (1, v)-point, let

φG(〈〈~b〉,~a〉) = 〈r, 〈q, v〉〉. Finally, if (s, t) is a leaf, φG(〈〈~b〉,~a〉) = 〈r, 〈r, F (s, t)〉.
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It is then straightforward to verify that for every (α, β) passing through the
point (s, t), we have for all j ≤ m − 1 that (φGα)(〈b0, . . . , bj−1〉) = 〈q, vj〉, and
if (s, t) is a leaf of T , we have (φGα)(〈b0, . . . , bm−1〉) = 〈r, G(α, β)〉. Since T is
well-founded, it is easy to complete the definition of φG in such a way that φGα
is always defined. Then also ϕ(φGα, β) = G(α, β) as desired.

Corollary 2.6 Suppose for each a ∈ A a total bisequential function Ga : AA ×
AA → A is given. Then there is an element φG of AA such that for all α, β ∈ AA

and a ∈ A, φGα is defined, (φGα)β is defined and ((φGα)β)(a) = Ga(α, β).

Proof. Straightforward from propositions 2.3 and 2.5.

We can now state the main theorem of this section.

Theorem 2.7 For an infinite set A, AA, together with the map (α, β) 7→ αβ,
has the structure of a partial combinatory algebra.

Proof. We have to find elements k and s satisfying (k) and (s) of definition 2.1.
Since for any a ∈ A the map (α, β) → α(a) is bisequential, it follows at once

from corollary 2.6 that there is an element k of AA such that (kα)β = α.
For s, we have to do a bit more work. Let α, β be fixed for the moment.

We define a function Sαβ as follows: we define recursively the values of Sαβ on
elements of the form

〈a, a0, . . . , am−1〉

(which we shall also write as 〈a〉 ∗ u, with u = 〈a0, . . . , am−1〉; employing the ∗
notation for concatenation of coded sequences) of which we assume, inductively,
that u = 〈a0, . . . , am−1〉 is an a-interrogation of a finite function t by Sαβ .

Assume the interrogation u has length n. Determine a maximal sequence

(v0
0 , . . . , v

n0−1
0 , b0, w

0
0, . . . , w

m0−1
0 , c0, . . . , v

0
j , . . . , v

nj−1
j , bj, w

0
j , . . . , w

mj−1
j , cj , . . .)

of length ≤ n, such that for any segment

(v0
j , . . . , v

nj−1
j , bj , w

0
j , . . . , w

mj−1
j , cj)

or initial parts of it, the following hold (where applicable):

i) 〈v0
j , . . . , v

nj−1
j 〉 is an 〈a, c0, . . . , cj−1〉-interrogation of t by α with result

〈q, bj〉 (so the value of α on this sequence is 〈r, 〈q, bj〉〉);

ii) 〈w0
j , . . . , w

mj−1
j 〉 is a bj-interrogation of t by β with result cj .

This means that for each j and each k ≤ nj − 1 there is a d such that

α(〈〈a, c0, . . . , cj−1〉, v
0
j , . . . , vk−1

j 〉) = 〈q, d〉

and t(d) = vk
j ; and similarly for each j and each k ≤ mj − 1 there is an e such

that
β(〈bj , w

0
j , . . . , w

k−1
j 〉) = 〈q, e〉

and t(e) = wk
j .

We define the value Sαβ(〈a〉 ∗ u) as follows:
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1) if the sequence ends in (v0
j , . . . , vk

j ) and

α(〈〈a, c0, . . . , cj−1〉, v
0
j , . . . , vk

j 〉) = 〈q, x〉

then Sαβ(〈a〉 ∗ u) = 〈q, x〉;

2) if the sequence ends in (bj , w
0
j , . . . , wk

j ) and

β(〈bjw
0
j , . . . , wk

j 〉) = 〈q, x〉

then Sαβ(〈a〉 ∗ u) = 〈q, x〉;

3) if the sequence ends in (v0
j , . . . , v

nj−1
j ) and

α(〈〈a, c0, . . . , cj−1〉, v
0
j , . . . , v

nj−1
j 〉) = 〈r, 〈r, y〉〉

then Sαβ(〈a〉 ∗ u) = 〈r, y〉;

4) in all other cases, α(〈a〉 ∗ u) = 〈q, q〉.

Now it is a matter of straightforward verification that if γ is any function ex-
tending t, and αγ, βγ are defined, then the sequence c0, . . . , cj forms an a-
interrogation of βγ by αγ.

Hence, if αγ and βγ are both defined, (Sαβγ)(a) is defined precisely when
((αγ)(βγ))(a) is, and equal to it in that case.

It is also left to you to check by inspection of the definition of Sαβ , that for
fixed a and u, the function

(α, β) 7→ Sαβ(〈a〉 ∗ u)

is bisequential.
By corollary 2.6 it follows that there is an element σ ∈ AA such that for all

α and β, σα and (σα)β are defined, and (σα)β = Sαβ .
One is now tempted to say: “Then by the remarks above, this σ satisfies

axiom (s) of definition 2.1. We conclude that AA, with the given partial map
(α, β) 7→ αβ, is a partial combinatory algebra, as claimed.” But actually there
is a snag, as was pointed out to me by the second referee: certainly, if (αγ)(βγ)
is defined then so is ((σα)β)γ, and equal to it; and if αγ, βγ and ((σα)β)γ are
defined, then so is (αγ)(βγ) and it is equal to ((σα)β)γ; but ((σα)β)γ may be
defined while αγ or βγ are not2.

In order to remedy this, we modify the definition of Sαβ as follows. We
define a function Σαβ by saying what its a-interrogations are on a function t:
these are of form v, v ∗w, or v ∗ w ∗ z where v is an a-interrogation of t by α; if
v has a result, then w is an a-interrogation of t by β; and if w has a result, then
z is an a-interrogation of t by Sαβ. If z has a result, so Sαβ(〈a〉 ∗ z) = 〈r, b〉,
then Σαβ(〈a〉 ∗ v ∗ w ∗ z) = 〈r, b〉.

2There is a similar problem for defining s in K2; and the proof in [15], Lemma 1.4.1 is
inaccurate.
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This means that ϕa(Σαβ , γ) is defined if and only if ϕa(α, γ), ϕa(β, γ) and
ϕa(Sαβ , γ) are defined; and if this is the case, then ϕa(Σαβ , γ) = ϕa(Sαβ , γ). It
follows that if Σαβγ is defined, we have that αγ and βγ are defined and that
Σαβγ = (αγ)(βγ).

Just as before, one checks by inspection that for fixed a and u, the function

(α, β) 7→ Σαβ(〈a〉 ∗ u)

is bisequential, so that by 2.6 there is an s ∈ AA such that for each α and β,
(sα)β = Σαβ . This s then does satisfy axiom (s) of definition 2.1, and we can
now legitimately conclude that AA is a partial combinatory algebra, as desired.

We shall denote the partial combinatory algebra on AA by K2(A).

3 Further analysis of K2(A)

In this section we try to analyze the construction of K2(A) a bit, from the
point of view of Longley’s 2-category PCA of partial combinatory algebras (first
defined in [6]; there is also a description in [15]).

Convention. From now on, when dealing with iterated applications we shall
use the familiar convention of ‘associating to the left’: i.e. we write abcd instead
of ((ab)c)d.

PCA is a preorder-enriched category. The objects are partial combinatory
algebras. Given two such, A and B, a 1-cell, or applicative morphism, from A
to B is a total relation γ from A to B (we think of γ as a function A → P∗(B)
into the set of nonempty subsets of B), with the property that there exists an
element r ∈ B such that, whenever a, a′ ∈ A, b ∈ γ(a), b′ ∈ γ(a′) and aa′ is
defined, then rbb′ is defined and an element of γ(aa′). The element r is called
a realizer for γ.

If γ, γ′ : A → B are two applicative morphisms, we say γ � γ′ if there is
an element s ∈ B such that for all a ∈ A and all b ∈ γ(a), sb is defined and
an element of γ′(a). The element s is said to realize γ � γ′. For two parallel
arrows γ, γ′ : A → B we write γ ∼= γ′ if γ � γ′ and γ′ � γ.

It is part of the theory of partial combinatory algebras that every partial
combinatory algebra A contains elements ⊥, ⊤ and C (thought of as ‘Booleans’
and ‘definition by cases’), satisfying for all a, b ∈ A:

C⊤ab = a and C⊥ab = b

Instead of Cvab we write If v then a else b.
Suppose γ : A → B is an applicative morphism and ⊤A,⊥A are Booleans

in A, ⊤B,⊥B are Booleans in B. We call the morphism γ decidable if there is
an element d ∈ B (a decider for γ) such that for all b ∈ γ(⊤A), db = ⊤B and
for all b ∈ γ(⊥A), db = ⊥B. There is a subcategory of PCA on the decidable
applicative morphisms.
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One further definition: if γ : A → B is an applicative morphism and f is a
partial function A → A, then f is said to be representable w.r.t. γ, if there is
an element rf ∈ B (which then represents f), such that for all a ∈ dom(f) and
all b ∈ γ(a), rf b is defined and an element of γ(f(a)). We shall just say “f is
representable” if we mean that f is representable w.r.t. the identity morphism
on A.

Proposition 3.1 For a ∈ A let â denote the constant function with value a.
For any partial combinatory algebra structure on A, the map γ(a) = {â} defines
a decidable applicative morphism A → K2(A). Every total function A → A is
representable w.r.t. γ.

Proof. This is easy. Let ρ be any element of AA satisfying:

ρ(〈〈x〉〉) = 〈r, 〈q, q〉〉
ρ(〈〈x, b〉〉) = 〈q, q〉

ρ(〈〈x, b〉, a〉) =

{
〈r, 〈r, ab〉〉 if ab is defined in A
〈r, 〈q, q〉〉 otherwise

ρ(〈n〉) = 〈r, r〉 if n 6= 〈x〉 and n 6= 〈x, b〉

Then it is easily verified that if ab is defined in A, ρâ is defined and ρâb̂ = âb.
Hence, γ is an applicative morphism. Furthermore, for any good choice of
Booleans ⊤,⊥ in A one can take ⊤̂, ⊥̂ for Booleans in AA, so decidability is
easy. That every f : A → A is representable, is left to you.

At this point I wish to collect a few bits of notation and theory of partial
combinatory algebras; everything can be found in sections 1.1 and 1.3 of [15].
Let A be a partial combinatory algebra.

1) If t and s are terms built up from elements of A and the application
function, t↓ means “t is defined”, and t ≃ s means: t is defined if and only
if s is, and they denote the same element of A if defined.

2) Given a term t(x1, . . . , xn+1) built up from elements of A, variables x1, . . . , xn+1

and the application function, there is a standard construction for an ele-
ment 〈x1 · · ·xn+1〉t of A which satisfies:

(〈x1 · · ·xn+1〉t)a1 · · · an↓
(〈x1 · · ·xn+1〉t)a1 · · · an+1 ≃ t(a1, . . . , an+1)

The reader should keep in mind that the notation 〈x1 · · ·xn+1〉t has noth-
ing to do with the notation 〈x1, . . . , xn+1〉 we have been using for coded
sequences.

3) A has elements p, p0, p1 (pairing and unpairing combinators) such that
pab↓, p0(pab) = a and p1(pab) = b; A contains a copy {0̄, 1̄, . . .} of the
natural numbers such that any computable function on the natural num-
bers is represented by an element of A; and A has a standard coding of
tuples [·, . . . , ·] together with elements representing the basic manipulation
of these.
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4) A has a fixed-point operator: an element z such that for all f, x ∈ A: zf↓
and zfx ≃ f(zf)x (this is also referred to as “the recursion theorem in
A”).

It is clear that the construction of K2(A) given above, depends on the coding of
tuples 〈·, . . . , ·〉 and the elements q and r. Since we wish to study the connection
to A in the case A itself has the structure of a partial combinatory algebra, we
make the following definition.

Definition 3.2 Suppose A is an infinite set and (A, ·) a partial combinatory
algebra structure on A. We say that K2(A) is based on (A, ·) if, in the definition
of an interrogation of β by α, we have used the standard coding [·, . . . , ·] of A,
q and r are, respectively, the Booleans ⊥ and ⊤, and the values of α at such
interrogations are p⊥u or p⊤u.

We say that K2(A) is compatible with (A, ·) if there are elements a, b, c ∈ A
such that:

i) for every tuple u0, . . . , un−1, a(〈u0, . . . , un−1〉) = [u0, . . . , un−1] and
b([u0, . . . , un−1]) = 〈u0, . . . , un−1〉;

ii) cq = ⊥ and cr = ⊤.

Theorem 3.3 Suppose (A, ·) is a partial combinatory algebra and K2(A) is
based on (A, ·). Let γ : A → K2(A) be the applicative morphism of 3.1. Then
for any decidable applicative morphism δ : A → B such that every total function
A → A is representable w.r.t. δ, there is a greatest decidable applicative mor-
phism ε : K2(A) → B such that εγ ∼= δ. Here, ‘greatest’ and ‘∼=’ refer to the
preorder on applicative morphisms.

Proof. Given δ, define ε as follows: ε(α) is the (nonempty) set of elements
b ∈ B which represent α w.r.t. δ.

First we show that ε is an applicative morphism: we have to construct a
realizer for ε.

The proof below may appear a bit technical. However, the reader should
bear in mind that what we are doing is coding up the “interrogation-type”
application of K2(A) within B.

Let r be a realizer for δ and d a decider for δ. Let p, p0, p1 in A be the
pairing and unpairing combinators, and [·, . . . , ·] the standard coding of tuples
in A. Choose π ∈ δ(p) and πi ∈ δ(pi), for i = 0, 1. Let c be an element of
B such that, if u = [u0, . . . , uk−1] in A and y ∈ A, v ∈ δ(u), x ∈ δ(y), then
cvx ∈ δ([u0, . . . , uk−1, y]). Let s ∈ B be such that if y ∈ A and x ∈ δ(y), then
sx ∈ δ([y]).

Using the fixed-point combinator in B, find F ∈ B satisfying for all a, b, v ∈
B: Fab↓ and

Fabv ≃
If d(rπ0(av)) then rπ1(av) else

Fab(cv(rb(rπ1(av))))

Now suppose a ∈ ε(α), b ∈ ε(β).
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Claim. For any y ∈ A, x ∈ δ(y), and any y-interrogation u = [u0, . . . , uk−1] of
β by α, there is a v ∈ δ([y, u0, . . . , uk−1]) such that Fab(sx) ≃ Fabv.

This claim is proved by induction on k. For k = 0, since sx ∈ δ([y]) there is
nothing to prove.

Suppose the Claim holds for j ≤ k, and [u0, . . . , uk] is a y-interrogation.
By induction hypothesis there is a v ∈ δ([y, u0, . . . , uk−1]) such that Fab(sx) ≃
Fabv. Since [u0, . . . , uk] is a y-interrogation of β by α, we have α([y, u0, . . . , uk−1]) =
p⊥e and β(e) = uk, for some e ∈ A. Since av ∈ δ(α([y, u0, . . . , uk−1])) = δ(p⊥e)
we have rπ0(av) ∈ δ(⊥) so d(rπ0(av)) = ⊥ in B. By definition of F , we have

Fab(sx) ≃ Fabv ≃ Fab(cv(rb(rπ1(av))))

It is easily checked that cv(rb(rπ1(av))) is an element of δ([y, u0, . . . , uk]). This
proves the Claim.

Now if u = [u0, . . . , uk−1] is a y-interrogation of β by α with result g, that is to
say α([y, u0, . . . , uk−1]) = p⊤g, and v ∈ δ([y, u0, . . . , uk−1]) is as in the Claim,
then by definition of F ,

Fabv = rπ1(av) ∈ δ(g)

We conclude that if αβ(y) = g then Fab(sx) ∈ δ(g); hence, if αβ↓, then
〈x〉Fab(sx) ∈ ε(αβ). Therefore, the element ρ = 〈abx〉Fab(sx) is a realizer
for ε.

That ε is decidable follows easily from the fact that δ is, and the fact that in
K2(A) we may take ⊥̂ and ⊤̂ for the Booleans.

If b ∈ B is an element of εγ(a), that is, b represents â w.r.t. δ, then for any cho-
sen, fixed ξ ∈

⋃
a′∈A δ(a′) we have bξ ∈ δ(a) so 〈b〉bξ realizes εγ � δ; conversely

if b ∈ δ(a) then the element 〈x〉b ∈ B clearly represents â w.r.t. δ. So we see
that εγ ∼= δ.

In order to see that ε is the greatest applicative morphism satisfying εγ ∼= δ,
suppose ε′ is another one. Suppose r′ realizes ε′, s realizes that ε′γ � δ, and t
realizes that δ � εγ. In K2(A) there is an element σ such that for all α ∈ AA

and a ∈ A, σαâ = α̂(a) (this is left to the reader). Choose τ ∈ ε′(σ).
Let α ∈ AA and a ∈ A be arbitrary. Suppose z ∈ ε′(α). If x ∈ δ(a)

then tx ∈ ε′(γ(a)) = ε′(â), so r′(r′τz)(tx) ∈ ε′(α̂(a)) = ε′(γ(α(a))); hence
s(r′(r′τz)(tx)) ∈ δ(α(a)).

We conclude that 〈x〉s(r′(r′τz)(tx)) represents α w.r.t. δ; in other words, is
an element of ε(α). Therefore, 〈zx〉s(r′(r′τz)(tx)) realizes ε′ � ε, as was to be
proved.

Of course, theorem 3.3 also works if K2(A) is compatible with A.
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3.1 Sub-pcas of K2(A)

We now turn our attention to sub-partial combinatory algebras of K2(A): sub-
sets B ⊂ AA such that, whenever α, β ∈ B and αβ↓ in K2(A), then αβ ∈ B,
and moreover, B with the inherited partial application function is a partial
combinatory algebra. For brevity, let’s call such a B a sub-pca of K2(A).

A stronger notion, which is relevant to relative realizability (see [4, 3]), re-
quires B to contain elements k and s which satisfy the axioms (k) and (s) of 2.1
both with respect to B and with respect to K2. We call such sub-pcas elemen-
tary. Examples of elementary sub-pcas are: the inclusion of Rec in K2, where
Rec is the set of total recursive functions; or ∆n ⊂ K2; or RE ⊂ P(ω), where
RE is the set of recursively enumerable subsets of N.

In the case that A has a partial combinatory algebra structure and K2(A) is
compatible with A, we have an instrument for studying sub-pcas of K2(A): the
preorder ≤T on partial functions A → A, defined in [14]. There, the following
theorem is proved:

Theorem 3.4 Let A be a partial combinatory algebra and f : A → A a partial
function. There is a partial combinatory algebra A[f ] and a decidable applicative
morphism ιf : A → A[f ] such that f is representable w.r.t. ιf , and moreover any
decidable applicative morphism γ : A → B such that f is representable w.r.t. γ,
factors uniquely through ιf .

One can then define, for two partial functions f, g : A → A: f ≤T g if f is
representable w.r.t. ιg. This gives a preorder on the set of partial endofunctions
on A, which in the case that A is K1 (the partial combinatory algebra of indices
of partial recursive functions) and f and g are total functions, coincides with
Turing reducibility.

Moreover, A[f ] is defined as follows. The underlying set is A itself, and one
defines a “b-interrogation of f by a” just as in the definition of K2(A) above,
but now using application in A: i.e. it is a coded sequence u = [u0, . . . , un−1]
such that for each j < n there is a v ∈ A such that a([b, u0, . . . , uj−1]) = [⊥, v]
and f(v) = uj . Then a ·f b = c if there is a b-interrogation u = [u0, . . . , un−1] of
f by a, such that a([b, u0, . . . , un−1]) = [⊤, c]. The partial map a, b 7→ a ·f b is
the application function for A[f ].

We see that if in K2(A) the element α is representable in A, by a ∈ A,
and αβ is defined, then αβ(x) = a ·β x for every x ∈ A. We see that αβ is
representable in A[β], so αβ ≤T β.

We are led to conjecture that a sub-pca of K2(A) should be downwards closed
w.r.t. the preorder ≤T . Let us see what can be said about this.

Proposition 3.5 Let A be a partial combinatory algebra and suppose K2(A)
is compatible with A. Suppose B ⊂ AA is nonempty and closed under the
application function (if α, β ∈ B and αβ↓, then αβ ∈ B).

i) if for every a ∈ A there is an element α ∈ B which extends the partial
function represented by a, then B is downwards closed w.r.t. ≤T ;

13



ii) without the hypothesis of i), the result may fail, even if B is a sub-pca of
K2(A).

Proof. i) Suppose γ ∈ B and β ≤T γ. Then there is an a ∈ A such that for all
x ∈ A, a ·γ x = β(x). If α ∈ B extends the partial function represented by a,
we have αγ = β. So β ∈ B, and B is downwards closed w.r.t. ≤T .

ii) My counterexample is a (non-elementary) sub-pca of Kleene’s original
K2. It is easiest to formulate in the original definition of K2: for α, β ∈ N

N we
say αβ(x) = y if there is an n such that

α〈x, β(0), . . . , β(n − 1)〉 = y + 1
α〈x, β(0), . . . , β(j − 1)〉 = 0 for all j < n

Then αβ is defined if for all x there is a y such that αβ(x) = y.
Now define: E0 = 〈 〉; En+1 = 〈En〉. Let B ⊂ N

N be given by

B = {α ∈ N
N | for all n, α(En) = n}

It is easy to check that if α ∈ B and αβ is defined in K2, then αβ ∈ B. Moreover,
if k′ and s′ are the functions in B which agree with k (and s, respectively) outside
{E0, E1, . . .}, then k′ and s′ satisfy the axioms (k) and (s) of 2.1. So B is a
sub-pca of K2, but evidently not closed under ‘recursive in’.

Remarks

1) The result of part i) in the proposition above can be strengthened a
bit. In ordinary recursion theory, the poset of Turing degrees is a join-
semilattice. It is not clear whether this is so for the general notion of
≤T considered here (but see section 4), but one can define the follow-
ing: for α, γ1, . . . , γn ∈ AA say α ≤T (γ1, . . . , γn) if α is representable
in A[γ1, . . . , γn]. Call B ⊂ AA an ideal if whenever γ1, . . . , γn ∈ B and
α ≤T (γ1, . . . , γn), then α ∈ B. One can prove that if B satisfies the
hypothesis of ii), then B is an ideal.

2) About part ii): I do not know whether there exist elementary sub-pcas of
K2 that are not downwards closed w.r.t. ≤T .

3) I would have liked to include a statement in Proposition 3.5 saying that
if B is downwards closed w.r.t. ≤T , then B is an elementary sub-pca of
K2(A). The intuitive reason being, that k and s are definable in A, hence
≤T β for every β ∈ B, hence in B. However, this fails in general, because
of the need of making k and s total. We have had to define k and s also
outside the relevant interrogations. But in a general partial combinatory
algebra it is not decidable whether or not a given element is a pair, or
a coded sequence. We shall see that this problem disappears when we
consider partial combinatory algebras of partial functions in section 4.

Theorem 3.3 can be generalized to certain sub-pcas of K2(A). The proof is
straightforward.
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Proposition 3.6 Suppose B ⊂ AA is a sub-pca which contains all constant
functions â for a ∈ A and the function ρ from the proof of 3.1. Then there is a
decidable applicative morphism γ : A → B which has the property that whenever
δ : A → C is decidable and every element of B is representable w.r.t. δ, then
there is ε : B → C such that εγ ∼= δ. If, moreover, B contains an element σ

such that for all α ∈ B and a ∈ A, σαâ = α̂(a), then ε is greatest with this
property.

4 Total Combinatory Algebras of Partial Func-
tions

With some care, the whole set-up of this paper generalizes to the set Ptl(A, A)
of partial functions A → A.

For each α ∈ Ptl(A, A) we have a partial function ϕα : Ptl(A, A) → A given
by interrogations. Modifying the definition of sequential functions in such a
way that we now consider nontotal sequential trees T and partial maps F from
the leaves of T to A, we easily see that a partial function Ptl(A, A) → A is
sequential, precisely if it is of the form ϕα for some α ∈ Ptl(A, A). Note that in
this case, given ϕα, we can (much more simply than in the proof of 1.4) define
the corresponding sequential tree as the set of those finite functions s such that
there is an interrogation of s by α which contains all values of s and is in the
domain of α. Finally, for a leaf s of the tree we we can define F (s) = b if there
is an interrogation u of s by α such that α(u) = 〈r, b〉.

Quite similarly to section 2, we have a partial combinatory algebra structure
on Ptl(A, A). This generalizes the construction of B (for A = N) in [13, 7]. Just
as in Definition 2.2 we have a partial function ϕa : Ptl(A, A) × Ptl(A, A) → A
for each a ∈ A, and hence a total function α, β 7→ αβ : Ptl(A, A)×Ptl(A, A) →
Ptl(A, A). The notion of a bisequential function is also straightforward, and
analogously to Lemma 2.5 we have, for every partial bisequential function G :
Ptl(A, A)×Ptl(A, A) → A, an element φG such that for all α and β, ϕφGα(β) ≃
G(α, β).

Again, this is simpler than in the case of total functions: no artificial con-
struction in order to make sure that φGα is a total function, is required.

The proof of Theorem 2.7 also simplifies, because the elements k and s
need not be artificially extended beyond what they have to perform on the
relevant interrogations. It follows, that if the coding apparatus needed for the
application on Ptl(A, A) is the standard coding of A, k and s can be chosen to
be representable in A.

Let us write B(A) for the partial combinatory algebra structure on Ptl(A, A)3.
Since the application function is total, we speak of a (total) combinatory algebra.

We shall say that B(A) is compatible with A (based on A) if the obvious
analogue of Definition 3.2 holds.

3This notation was suggested to me by the first referee.
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We have the same map γ : A → B(A) as in Proposition 3.1; it is decidable,
and every function A → A is representable w.r.t. γ. It is worth noting that in
the partial case, the definition of ρ in the proof of 3.1 can be simplified: we
simply define

ρ(〈〈x, b〉, a〉) ≃ 〈r, 〈r, ab〉〉

and don’t need to define ρ outside the set of elements of form 〈〈x〉〉 or 〈〈x, b〉〉.
It follows, that if B(A) is compatible with A, this function ρ is representable in
A.

The combinatory algebra B(A) satisfies a similar semi-universal property as
the one given for K2(A) in Theorem 3.3, with the map γ : A → B(A), provided
B(A) is compatible with A. That is:

Proposition 4.1 Suppose A is a partial combinatory algebra and B(A) is com-

patible with A. For every decidable applicative morphism A
δ
→ B which has the

property that every partial function A → A is representable w.r.t. δ, there is a
greatest decidable applicative morphism ε : B(A) → B such that εγ ∼= δ.

Corollary 4.2 K2(A) is an elementary sub-pca of B(A) and a retract of it in the
category of partial combinatory algebras and isomorphism classes of applicative
morphisms.

Proof. The choice of k and s we made for K2(A) also works for B(A): so the
inclusion i : AA → Ptl(A, A) is elementary; it is also an applicative morphism,
and decidable. Furthermore, if we apply the semi-universal property of B(A) to
the diagram

A
γ

//

γ

��

K2(A)

B(A)

we obtain an applicative map ε : B(A) → K2(A). Concretely,

ε(α) = {β | for all a ∈ dom(α), βâ = α̂(a)}

It is not hard to show that εi is isomorphic to the identity on K2(A).

The pattern that definitions are simpler and theorems more elegant and smooth
in the case of partial functions extends to the study of sub-pcas of B(A). First
of all we have the following proposition:

Proposition 4.3 The preorder ≤T on partial functions A → A (relative to a
partial combinatory algebra structure on A) has binary joins.

Proof. Given partial functions f and g define f ⊔ g by:

(f ⊔ g)(y) ≃ If p0y then f(p1y) else g(p1y)
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So (f ⊔ g)([⊤, x]) ≃ f(x) and (f ⊔ g)([⊥, x]) ≃ g(x). It is left to the reader that
f ⊔ g is a join for f, g with respect to ≤T .

One can now simply define an ideal of B(A) to be a downwards closed set which
is also closed under ⊔. Given a subset B of Ptl(A, A), let us write B⊆ for the
set

B⊆ = {f ∈ Ptl(A, A) | there is g ∈ B such that f ⊆ g}

Furthermore let us write ā for the partial function x 7→ ax, for a ∈ A.

Proposition 4.4 Let A be a partial combinatory algebra and suppose B(A) is
compatible with A. Suppose B ⊂ Ptl(A, A) is nonempty and closed under the
application function.

i) If B is downwards closed w.r.t. ≤T , then B is an elementary sub-pca of
B(A);

ii) If for every a ∈ A we have ā ∈ B, then B⊆ is an ideal of B(A).

Proof. The first item is the remark made before (fifth paragraph of this section),
that in the partial case we can choose k and s to be representable in A. Then,
if β ∈ B is arbitrary, we have k, s ≤T β hence k, s ∈ B since B is downwards
closed.

For the second item: first we remark that there is an element a ∈ A such
that for any γ1, γ2 ∈ Ptl(A, A), āγ1γ2 = γ1 ⊔ γ2 in B(A). This is left to the
reader. So from the hypotheses on B it follows that B is closed under ⊔. Since
application in B(A) is monotone in both variables w.r.t. ⊆, it follows that also
B⊆ is closed under ⊔.

Next, we see that B⊆ is downwards closed w.r.t. ≤T . Suppose β′ ∈ B,
β ⊆ β′ and γ ≤T β. We need to show: γ ∈ B⊆. Since γ ≤T β, there is an

a ∈ A satisfying a·βx = γ(x) for all x ∈ dom(γ). Then also a·β
′

x = γ(x) for all
x ∈ dom(γ). But this means that γ ⊆ āβ′. Since B is closed under application
and ā, β′ ∈ B by assumption, γ ∈ B⊆ as desired.

We also have the following generalization of the factorization theorem:

Theorem 4.5 Let A be a pca and B(A) compatible with A. Suppose B is an
elementary sub-pca of B(A) containing the (simplified) function ρ of the proof
of 3.1 and all constant functions â. Let γ : A → B be the decidable applicative
morphism γ(a) = {â}. Then for any decidable applicative morphism δ : A →
C such that every partial function in B is representable w.r.t. δ, there is an
applicative morphism ε : B → C satisfying εγ ∼= δ.

I’d like to conclude this paper by applying some of its ideas to a specific case.
If A is a pca and B(A) is compatible with A, let

T (A) = {ā | a ∈ A}

where ā is as defined just preceding Proposition 4.4. The following proposition
generalizes the remark in [15], 1.4.9, that the combinatory algebra B of [13] has
a sub-pca of partial recursive functions, which is in fact an elementary sub-pca
because k and s can be taken to be partial recursive.

17



Proposition 4.6 T (A) is an elementary sub-pca of B(A). In particular, T (A)
is a total combinatory algebra.

Proof. This is like the proof of Theorem 3.3 (and its analogue 4.5), where
we show that given a pca B and a decidable applicative morphism δ from A
to B, there is a uniform way of coding up the “interrogation-type” application
(α, β) 7→ αβ of B(A) within B, given elements of B which represent α and β
w.r.t. δ.

In other words there is an element φ ∈ A such that, if we denote the appli-
cation in B(A) by α • β, we have for each a, b ∈ A that φab is defined and

φab = ā • b̄

This shows that T (A) is closed under the application in B(A) and since k and
s in B(A) can be chosen to be representable in A, we see that T (A) is an
elementary sub-pca of B(A).

Let γ : A → T (A) be given by γ(a) = {â}. Theorem 4.5 gives us a diagram

A

γ
!!

DD
DD

DD
DD

idA
// A

T (A)

ε

==zzzzzzzz

which commutes up to isomorphism: εγ ∼= idA. Here ε(α) is the set

{a ∈ A | a represents α} = {a ∈ A |α ⊆ ā}

However, there is another decidable applicative morphism ε′ : T (A) → A, de-
fined by

ε′(α) = {a ∈ A |α = ā}

We have the following facts, the first of which can easily be checked by concrete
calculation:

i) ε′γ ∼= idA

ii) γε′ � idT (A)

For the second fact, pick an element b ∈ A such that for all x, v ∈ A one has

b(〈x〉) = 〈⊥, k〉
b(〈x, v〉) ≃ 〈⊤, vx〉

Then one checks that in T (A) one has b̄â = ā for all a, from which one readily
deduces the stated fact.

We have therefore an adjunction γ ⊣ ε′ in the 2-category PCA, and by the
theory of geometric morphisms between realizability toposes in chapter 2 of [15]
this gives rise to a geometric morphism

RT(T (A)) → RT(A)
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between the corresponding realizability toposes. Because ε′γ ∼= idA, this geo-
metric morphism is a surjection. We have obtained the following theorem:

Theorem 4.7 Every realizability topos is a geometric quotient of a realizability
topos on a total combinatory algebra.

Topics for further research

Modest sets over K2(A) and B(A)

Given a partial combinatory algebra A, the category of modest sets over A is
defined as follows: objects are pairs (U,∼) where U ⊆ A and ∼ is an equivalence
relation on U ; maps (U,∼) → (V,≈) are functions φ : U/∼ → V/≈ such that
there is an element a of A satisfying: for each b ∈ U , ab is defined and an
element of φ([b]) (where [b] denotes the ∼-equivalence class of b).

In the case that A = K2 with underlying set N
N, every modest set over A can

be regarded as a topological space (the quotient topology on U/∼, where U is
topologized as subspace of Baire space N

N), and moreover every map of modest
sets is continuous w.r.t. these topologies. Since every category of modest sets
over a partial combinatory algebra is cartesian closed, this gives rise to cartesian
closed subcategories of the category of topological spaces. This is exploited in
[2] and [1].

It is not so clear how K2(A) relates to this for uncountable A. Certainly we
can topologize modest sets over K2(A) in the obvious way sketched above, and
we obtain cartesian closed full subcategories of the category of modest sets over
K2(A) that are (non-full) subcategories of the category of topological spaces.

The question is whether there is, from the topological point of view, anything
of interest to say about such subcategories. Is there any way to characterize the
sequential maps topologically? At present I am inclined to think that there is not
a topology on AA and a topologically definable class of domains D (comparable
to the Gδ-sets for K2) such that the sequential maps are precisely the partial
continuous ones with domain in D. Note, for example, that partial sequential
functions don’t enjoy the “pasting property”.

Relation to Graph Models

It is well-known (first noted in [2]; see also [15], examples 4 and 5 of section 1.5)
that there are applicative morphisms γ : P(ω) → K2 and ι : K2 → P(ω) such
that γι ≃ idK2

and ιγ � idP(ω, giving rise to a surjective geometric morphism
from the realizability topos on P(ω) to the one on K2. It is natural to wonder
whether this extends to the case of P(A) and K2(A) for uncountable A.

As far as I can see, the construction of γ uses the countability of ω in an
essential way, however.
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