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The workshop theme

In recent years, the human ability to reasoning about mental states of others
in order to explain and predict their behavior has come to be a highly active
area of research. Researchers from a wide range of fields – from biology and
psychology through linguistics to game theory and logic– contribute new ideas
and results.

This interdisciplinary workshop, collocated with the Thirteenth International
Conference on Theoretical Aspects of Rationality and Knowledge (TARK XIII),
aims to shed light on models of social reasoning that take into account realistic
resource bounds. People reason about other people’s mental states in order to
understand and predict the others’ behavior. This capability to reason about
others’ knowledge, beliefs and intentions is often referred to as theory of mind.

Idealized rational agents are capable of recursion in their social reasoning, and
can reason about phenomena like common knowledge. Such idealized social
reasoning has been modeled by modal logics such as epistemic logic and BDI
(belief, desire, intention) logics and by epistemic game theory. However, in
real-world situations, many people seem to lose track of such recursive social
reasoning after only a few levels. The workshop provides a forum for researchers
that attempt to analyze, understand and model how resource-bounded agents
reason about other minds.

Topics of interest of the workshop include but are not limited to the following:

• Logics modeling human social cognition;

• Computational cognitive models of theory of mind;

• Behavioral game theory;

• Bounded rationality in epistemic game theory;

• Relations between language and social cognition;

• Models of the evolution of theory of mind;

• Models of the development of theory of mind in children;

• Bounded rationality in multi-agent systems;

• Formal models of team reasoning;

• Theory of mind in specific groups, e.g., autism spectrum disorder;

• Complexity measures for reasoning about other minds.
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Invited talks at the workshop

In addition to the contributed lectures and poster presentations, of which the
articles are gathered in this volume, the workshop also presents three invited
speakers:

• Petra Hendriks (University of Groningen): Bounded reasoning about oth-
ers in language: Evidence from language acquisition;

• Barbara Dunin-Kȩplicz (Warsaw University and Polish Academy of Sci-
ences): Calibrating the expressiveness of collective notions;

• Chris Baker (Massachusetts Institute of Technology): Modeling human
reasoning about beliefs, desires, goals and social relations.

Acknowledgments

We would like to thank all the people who helped to bring about the workshop
Reasoning About Other Minds: Logical and Cognitive Perspectives. First of all,
we thank all invited speakers, contributed speakers and poster presenters for
ensuring a diverse and interesting workshop.

Special thanks are due to the members of the program committee for their
professionalism and their dedication to select papers of quality and to provide
authors with useful, constructive feedback during the in-depth reviewing pro-
cess:

Program committee

• Johan van Benthem (University of Amsterdam and Stanford University)

• Robin Clark (University of Pennsylvania)

• Hans van Ditmarsch (University of Sevilla)

• Peter Gärdenfors (Lund University)

• Sujata Ghosh (University of Groningen)

• Noah Goodman (Stanford University)

• Bart Hollebrandse (University of Groningen)

• Eric Pacuit (Tilburg University and University of Maryland)

• Rohit Parikh (City University of New York)

• Jun Zhang (University of Michigan)

2



In addition, a number of experts outside the program committee also reviewed
submissions to the workshop, for which we are very grateful. Thank you Krzysztof
Apt, Boicho Kokinov, Barteld Kooi, Katja Mehlhorn, Ben Meijering, Olivier
Roy, Sunil Simon, and Jakub Szymanik!

We would like to thank our colleagues in the TARK Organizing Committee
for handling many organizational tasks: Virginie Fiutek, Sujata Ghosh, Barteld
Kooi, Ben Meijering, Bryan Renne, Ben Rodenhäuser, Olivier Roy, Sonja Smets,
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Common Knowledge in Email Exchanges

Floor Sietsma1 and Krzysztof R. Apt12

1 Centre Mathematics and Computer Science (CWI), Amsterdam
2 University of Amsterdam

Abstract. We consider a framework in which a group of agents com-
municates by means of emails, with the possibility of replies, forwards
and blind carbon copies (BCC). We study the epistemic consequences of
such email exchanges by introducing an appropriate epistemic language
and semantics. Then we clarify when a group of agents acquires common
knowledge of the formula expressing that an email was sent.

1 Introduction

1.1 Motivation

Email is by now a prevalent form of communication. Its advantages speak for
themselves. However, we rarely pause to reflect on its undesired consequences.
Just to mention a few.

One occasionally reads about scandals caused by email leaks, see, e.g., [2].
On a smaller scale, users of the blind carbon copy feature (BCC) are sometimes
confronted with an undesired situation in which a BCC recipient of an email
reveals his status to others by using the reply-all feature.

Recently, a main Dutch daily, NRC Handelsblad, reported, see [7], that
Wouter Bos, the Deputy Prime minister in the previous Dutch government,
revealed the extensive network of his contacts by sending out his new email ad-
dress to hundreds of influential recipients whose email addresses were erronously
put in the CC list instead of the BCC list. The list was leaked to the newspaper.

So when studying email exchanges a natural question arises: what are their
knowledge-theoretic consequences? To put it more informally: after an email
exchange took place, who knows what? To answer this question we study email
exchanges by focusing on relevant features that we encounter in most email
systems.

More specifically, we study the following form of email communication:

– each email has a sender, a non-empty set of regular recipients and a (possibly
empty) set of blind carbon copy (BCC) recipients. Each of the recipients
receives a copy of the message and is only aware of the regular recipients
and not of the BCC recipients,

– in the case of a reply to or a forward of a message, the unaltered original
message is included,

– in a reply or a forward, one can append new information to the original
message one replies to or forwards.
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As a result, the email exchanges, as studied here, are essentially different from
other forms of communication, in particular from multicasting, i.e., sending a
message to a group of recipients. Also, the resulting model of email communica-
tion differs from the ones that were studied in other papers in which only limited
aspects of emails have been considered. These papers are discussed below.

1.2 Related work

The study of the epistemic effects of communication in distributed systems orig-
inated in the eighties and led to the seminal book [5]. The relevant literature,
including [4], deals only with the customary form of communication, notably
asynchronous send.

The epistemic effects of other forms of communication were studied in numer-
ous papers. In particular, in [9] the communicative acts are assumed to consist
of an agent j ‘reading’ an arbitrary propositional formula from another agent i.
The idea of an epistemic contents of an email is implicitly present in [10], where a
formal model is proposed that formalizes how communication changes the knowl-
edge of a recipient of the message. In [3] a dynamic epistemic logic modelling
effects of communication and change is introduced and extensively studied. [8]
surveys these and related approaches and discusses the used epistemic, dynamic
epistemic and doxastic logics. Further, in [12] an epistemic logic was proposed
to reason about information flow w.r.t. underlying communication channels.

Most related to the work here reported are the following two references. [1]
studied knowledge and common knowledge in a set up in which the agents send
and forward propositional formulas in a social network. However, the forward
did not include the original message which limited the scope of the resulting
analysis. More recently, in [11] explicit messages are introduced in a dynamic
epistemic logic to analyze a very similar setting, though it is assumed that the
number of messages is finite and BCC is simulated as discussed in Section 6.

Finally, the concept of a causal relation between messages in distributed
systems is due to [6].

1.3 Contributions

To study the relevant features of email communication we introduce in the next
section a carefully chosen set of emails. We make a distinction between amessage,
which is sent to a public recipient list, and an email, which consists of a message
and a set of BCC recipients. This distinction is relevant because a forward email
contains only a message, without the list of BCC recipients. We also introduce
the notion of a legal state that captures the fact that there is a causal ordering
on the emails. For example, an email needs to precede any forward of it.

To reason about the knowledge of the agents after an email exchange has
taken place we introduce in Section 3 an appropriate epistemic language. Its
semantics takes into account the uncertainty of the recipients of an email about
its set of BCC recipients and the ignorance about the existence of emails that
one neither sent nor received. This semantics allows us to evaluate epistemic
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formulas in legal states, in particular the formulas that characterize the full
knowledge-theoretic effect of an email.

In Section 4 we present the main result of the paper, that clarifies when a
group of agents can acquire common knowledge of the formula expressing the
fact that an email has been sent. This characterization in particular sheds light
on the epistemic consequences of BCC. The proof this result is given in Section
5. Then in Section 6 we show how BCC can be simulated using only messages
without BCC recipients.

2 Preliminaries

2.1 Messages

In this section we define the notion of a message. We assume non-empty and
finite sets of agents Ag = {1, . . ., n} and of notes P . Each agent has a set of
notes he knows initially.

We make a number of assumptions. Firstly, we assume that the agents do not
know which notes belong to the other agents. Furthermore, we assume that the
agents only exchange emails about the notes. In particular, they cannot com-
municate epistemic formulas. We also assume that an agent can send a message
to other agents containing a note only if he knows it initially or has learned it
through an email he received earlier.

We inductively define messages as follows, where in each case we assume
that G 6= ∅:

– m := s(i, l, G); the message containing note l, sent by agent i to the group
G,

– m := f(i, l.m′, G); the forwarding by agent i of the message m′ with added
note l, sent to the group G.

So the agents can send a message with a note or forward a message with a
note appended. In the examples we assume that there exists a note true that is
known by all agents and we identify true.m with m.

If m is a message, then we denote by S(m) and R(m), respectively, the
singleton set consisting of the agent sending m and the group of agents receiving
m. So for the above messages m we have S(m) = {i} and R(m) = G. We do
allow that S(m) ⊆ R(m), i.e., that one sends a message to oneself.

Special forms of the forward messages can be used to model reply messages.
Given f(i, l.m,G), using G = S(m) we obtain the customary reply message and
using G = S(m) ∪ R(m) we obtain the customary reply-all message. (In the
customary email systems there is syntactic difference between a forward and a
reply to these two groups of agents, but the effect of both messages is exactly
the same, so we ignore this difference.) In the examples we write s(i, l, j) instead
of s(i, l, {j}), etc.
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2.2 Emails

An interesting feature of most email systems is that of the blind carbon copy
(BCC). We would like to study the epistemic effects of sending an email with
BCC recipients and will now include this feature in our presentation.

In the previous subsection we defined messages that have a sender and a
group of recipients. Now we define the notion of an email which allows the
additional possibility of sending a BCC of a message. The BCC recipients are
not listed in the list of recipients, therefore we have not included them in the
definition of a message. Formally, by an email we mean a construct of the form
mB, wherem is a message and B ⊆Ag is a possibly empty set of BCC recipients.
Given a message m we call each email mB a full version of m.

Since the set of BCC recipients is ‘secret’, it does not appear in a forward.
That is, the forward of an emailmB with added note l is the message f(i, l.m,G)
or an email f(i, l.m,G)C , in which B is not mentioned. However, this forward
may be sent not only by a sender or a regular recipient of mB, but also by a
BCC recipient. Clearly, the fact that an agent was a BCC recipient of an email
is revealed at the moment he forwards its message.

A natural question arises: what if someone is both a regular recipient and a
BCC recipient of an email? In this case, no one (not even this BCC recipient
himself) would ever notice that this recipient was also a BCC recipient since
everyone can explain his knowledge of the message by the fact that he was a
regular recipient. Only the sender of the message would know that this agent
was also a BCC recipient. This fact does not change anything and hence we
assume that for any email mB we have (S(m) ∪R(m)) ∩B = ∅.

2.3 Legal States

Our goal is to analyze knowledge of agents after some email exchange took place.
To this end we need to define a possible collection of sent emails.

First of all, we shall assume that every message is used only once. In other
words, for each message m there is at most one full version of m, i.e., an email
of the form mB. The rationale behind this decision is that a sender of mB and
mB′ might equally well send a single email mB∪B′ . This assumption can be
summarized as a statement that the agents do not have ‘second thoughts’ about
the recipients of their emails. It also simplifies subsequent considerations.

One could argue that there is a total ordering on the emails entailed by the
time at which they were sent. However, the fact that an email was sent at a
certain time does not imply that it was also read at that time. All what we can
assert it that the email was read after it was sent. Further, the order in which
an agent reads the emails he received is undetermined. This explains why we do
not impose a linear ordering on the emails and we do not give the messages time
stamps.

However, we have to impose some ordering on the sets of emails. For example,
we need to make sure that the agents only send information they actually know.
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Moreover, a forward can only be sent after the original email was sent. We will
introduce the minimal partial ordering that takes care of such issues.

First, we define by structural induction the factual information FI(m)
contained in a message m as follows:

FI(s(i, l, G)) := {l},
F I(f(i, l.m,G)) := FI(m) ∪ {l}.

We will use the concept of a state to model the effect of an email exchange.
A state s = (E,L) is a tuple consisting of a finite set E of emails that took
place and a sequence L = (L1, . . . , Ln) of sets of notes for all agents. The idea
of these sets is that each agent i initially knows the notes in Li. We use Es and
Ls to denote the corresponding elements of a state s, and L1, . . ., Ln to denote
the elements of L.

We say that a state s = (E,L) is legal w.r.t. a strict partial ordering (in
short, an spo) ≺ on E if it satisfies the following conditions:

L.1: for each email f(i, l.m,G)B ∈ E an email mC ∈ E exists such that mC ≺
f(i, l.m,G)B and i ∈ S(m) ∪R(m) ∪C,

L.2: for each email s(i, l, G)B ∈ E, where l 6∈ Li, an email mC ∈ E exists such
that mC ≺ s(i, l, G)B, i ∈ R(m) ∪C and l ∈ FI(m),

L.3: for each email f(i, l.m′, G)B ∈ E, where l 6∈ Li, an email mC ∈ E exists
such that mC ≺ f(i, l.m′, G)B, i ∈ R(m′) ∪ C and l ∈ FI(m′).

Condition L.1 states that the agents can only forward messages they previ-
ously received. Conditions L.2 and L.3 state that if an agent sends, a note that
he did not initially know, then he must have learned it by means of an earlier
email.

We say that a state s is legal iff it is legal w.r.t. some spo. Given a legal state
s, by its causality ordering we mean the smallest (so the least constraining)
spo w.r.t. which s is legal.

So a state is legal if every forward was preceded by its original message, and
for every note sent in an email there is an explanation how the sender of the
email learned this note.

3 Epistemic language and its semantics

We want to reason about the knowledge of the agents after an email exchange
has taken place. For this purpose we use a language L of communication and
knowledge defined as follows:

ϕ ::= m | i ◭ m | ¬ϕ | ϕ ∧ ϕ | CGϕ

The formula m expresses the fact that m has been sent in the past, with
some unknown group of BCC recipients. The formula i ◭ m expresses the fact
that agent i was involved in a full version of the message m, i.e., he was either
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the sender, a recipient or a BCC recipient. The formula CGϕ denotes common
knowledge of the formula ϕ in the group G.

We use the usual abbreviations ∨, → and ↔ and we use Kiϕ as an abbrevi-
ation of C{i}ϕ. The fact that an email with a certain set of BCC recipients was
sent can be expressed in our language by the following abbreviation:

mB ::= m ∧
∧

i∈S(m)∪R(m)∪B

i ◭ m ∧
∧

i6∈S(m)∪R(m)∪B

¬i ◭ m

Note that this formula expresses the fact that the message m was sent with
exactly the group B as BCC recipients, which captures precisely the intended
meaning of mB.

We now provide a semantics for this language interpreted on legal states,
inspired by the epistemic logic and the history-based approaches of [9] and [10].
For every agent i we define an indistinguishability relation ∼i, where we intend
s ∼i s

′ to mean that agent i cannot distinguish between the states s and s′. We
first define this relation on the level of emails as follows (recall that we assume
that senders and regular recipients are not BCC recipients):

mB ∼i m
′
B′

iff one of the following contingencies holds:

(i) i ∈ S(m), m = m′ and B = B′,
(ii) i ∈ R(m) \ S(m) and m = m′,
(iii) i ∈ B ∩B′, and m = m′,
(iv) i 6∈ S(m) ∪R(m) ∪B and i 6∈ S(m′) ∪R(m′) ∪B′.

Condition (i) states that the sender of an email confuses it only with the email
itself. In turn, condition (ii) states that each regular recipient of an email who is
not a sender confuses it with any email with the same message but possibly sent
to a different BCC group. Next, condition (iii) states that each BCC recipient of
an email confuses it with any email with the same message but sent to a possibly
different BCC group of which he is also a member. Finally, condition (iv) states
that each agent confuses any two emails in which he is not involved.

As an example consider the emails e := s(i, l, j)∅ and e′ := s(i, l, j){k}. We
have then e 6∼i e

′, e ∼j e
′ and e 6∼k e

′. Intuitively, agent j cannot distinguish
between these two emails because he cannot see whether k is a BCC recipient.
In contrast, agents i and k can distinguish between these two emails.

Next, we extend the indistinguishability relation to legal states by defining

(E,L) ∼i (E
′, L′)

iff the following holds:

– Li = L′
i,

– for any mB ∈ E such that i ∈ S(m)∪R(m)∪B there is mB′ ∈ E′ such that
mB ∼i mB′ ,
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– for any mB′ ∈ E′ such that i ∈ S(m) ∪ R(m) ∪ B′ there is mB ∈ E such
that mB ∼i mB′ .

So two states cannot be distinguished by agent i if they agree on his notes
and their email sets look the same to him. Since we assume that the agents do
not know anything about the other notes, we do not refer to the sets of notes of
the other agents. Note that ∼i is an equivalence relation.

As an example consider the legal states s1 and s2 which are identical apart
from their sets of emails:

Es1 := {s(i, l, j)∅, f(j, s(i, l, j), o)∅},
Es2 := {s(i, l, j){k}, f(j, s(i, l, j), o)∅, f(k, s(i, l, j), o)∅}.

We assume here that l ∈ Li. The corresponding causality orderings clarify
that in the first state agent i sends a message with note l to agent j and then j
forwards this message to agent o. Further, in the second state agent i sends the
same message but with a BCC to agent k, and then both agent j and agent k
forward the message to agent o.

From the above definition it follows that s1 6∼i s2, s1 ∼j s2, s1 6∼k s2
and s1 6∼o s2. For example, the first claim holds because, as noticed above,
s(i, l, j)∅ 6∼i s(i, l, j){k}. Intuitively, in state s1 agent i is aware that he sent a
BCC to nobody, while in state s2 he is aware that he sent a BCC to agent k.

In order to express common knowledge, we define for a group of agents G
the relation ∼G as the reflexive, transitive closure of

⋃
i∈G ∼i. Then we define

the truth of a formula from our language in a state inductively as follows, where
s = (E,L):

s |= m iff ∃B : mB ∈ E
s |= i ◭ m iff ∃B : mB ∈ E and i ∈ S(m) ∪R(m) ∪B
s |= ¬ϕ iff s 6|= ϕ
s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= CGϕ iff s′ |= ϕ for any legal state s′ such that s ∼G s′

We say that ϕ is valid (and often just write ‘ϕ’ instead of ‘ϕ is valid’) if for
all legal states s, s |= ϕ.

The following lemma clarifies when specific formulas are valid. In the sequel
we shall use these observations implicitly.

Lemma 1.

(i) m→ m′ is valid iff m = m′ or m′ is part of the message m.
(ii) m → i ◭ m′ is valid iff i ∈ S(m′) ∪ R(m′) or for some note l and group

G, f(i, l.m′, G) is part of the message m.

The second item states that m → i ◭ m′ is valid either if i is a sender
or a receiver of m′ (in that case actually i ◭ m′ is valid) or i forwarded the
message m′. The latter is also possible if i was a BCC receiver of m′. The
claimed equivalence holds thanks to condition L.1.
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To illustrate this definition let us return to the above example. In state s2
agent j does not know that agent k received the message s(i, l, j) since he cannot
distinguish s2 from the state s1 in which agent k did not receive this message.
So s2 |= ¬Kjk ◭ s(i, l, j) holds.

On the other hand, in every legal state s3 such that s2 ∼o s3 both an
email f(k, s(i, l, j), o)C and a ‘justifying’ email s(i, l, j)B have to exist such that
s(i, l, j)B ≺ f(k, s(i, l, j), o)C and k ∈ B. Consequently s3 |= k ◭ s(i, l, j), so
s2 |= Kok ◭ s(i, l, j) holds, so by sending the forward agent k revealed himself
to o as a BCC recipient.

We leave to the reader checking that both s2 |= C{k,o}k ◭ s(i, l, j) and s2 |=
¬C{j,o}k ◭ s(i, l, j) holds. In words, agents k and o have common knowledge
that agent k was involved in a full version of the message s(i, l, j), while the
agents j and o don’t.

4 Common knowledge

We now clarify when a group of agents acquires common knowledge of the for-
mula expressing that an email was sent. This shows how we can use our frame-
work to investigate epistemic consequences of email exchanges.

Given a set of emails E and a group of agents A, let

EA := {mB ∈ E | A⊆ S(m) ∪R(m) or ∃j ∈ B : (A⊆ S(m) ∪ {j})}.

When e ∈ EA we shall say that the email e is shared by the group A.
Note that when |A| ≥ 3, then e ∈ EA iff A⊆ S(m)∪R(m). When |A| = 2, then
e ∈ EA also when ∃j ∈ B : A = S(m)∪{j}, and when |A| = 1, then e ∈ EA also
when A = S(m) or ∃j ∈ B : A = {j}.

The following theorem summarizes our results.

Main Theorem Consider a legal state s = (E,L) and a group of agents A.

(i) s |= CAm iff there is m′
B′ ∈ EA such that m′ → m is valid.

(ii) Suppose that |A| ≥ 3. Then s |= CAmB iff the following hold:
C1 Ag = S(m) ∪R(m) ∪B,
C2 for each i ∈ B there is m′

B′ ∈ EA such that m′ → i ◭ m is valid,
C3 there is m′

B′ ∈ EA such that m′ → m is valid.

In words, s |= CAmB iff

– the email mB involves all agents,
– there is an email shared by the group A that proves the existence of the

message m,
– for every agent i that is on the BCC list of mB there is an email shared by

the group A that proves that i forwarded message m.

As an aside let us mention that there is a corresponding result for the case
when |A| < 3, as well. However, it involves a tedious case analysis concerning
the relation between A,S(m), R(m) and B, so we do not present it here.
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5 Proof of the Main Theorem

We establish first a number of auxiliary lemmas. We shall use a new strict partial
ordering on emails. We define

mB < m′
B′ iff m 6= m′ and m′ → m.

Note that m′ → m precisely if m′ is a forward, or a forward of a forward, etc,
of m. Then for two emails mB and mB′ from a legal state s with the causality
ordering ≺, mB < mB′ implies mB ≺ mB′ on the account of condition L.1.
However, the converse does not need to hold since mB ≺ mB′ can hold on
the account of L.2 or L.3. Further, note that the <-maximal elements of E are
precisely the emails in E that are not forwarded.

Given a set of emails E and E′ ⊆ E we then define the downward closure
of E′ by

E′
≤ := E′ ∪ {e ∈ E | ∃e′ ∈ E′ : e < e′}.

The set of emails E on which the downward closure of E′ depends will always
be clear from the context.

Next, we introduce two operations on states. Assume a state (E,L) and an
email mB ∈ E.

We define the state

s \mB := (E \ {mB}, L′),

with

L′
i :=

{
Li ∪ FI(m) if i ∈ R(m) ∪B
Li otherwise

Intuitively, s \mB is the result of removing the email mB from the state s,
followed by augmenting the sets of notes of its recipients in such a way that they
initially already had the knowledge they would have acquired from mB. Note
that s \mB is a legal state if mB is an <-maximal element of E.

Next, given C ⊆B we define the state

s[mB 7→C ] := (E \ {mB} ∪ {mC}, L′),

with

L′
i :=

{
Li ∪ FI(m) if i ∈ B \ C
Li otherwise

Intuitively, s[mB 7→C ] is the result of shrinking the set of BCC recipients of
m from B to C, followed by an appropriate augmenting of the sets of notes of
the agents that no longer receive m.

Note that s[mB 7→C ] is a legal state if there is no forward of m by an agent
i ∈ B \C, i.e., no email of the form f(i, l.m,G)D exists in E such that i ∈ B \C.

We shall need the following lemma that clarifies the importance of the set
EA of emails.
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Lemma 2. Consider a legal state s = (E,L) and a group of agents A. Then for
some L′ the state s′ := ((EA)≤, L′) is legal and s ∼A s′.

Proof. We prove that for all <-maximal emails mB ∈ E such that mB 6∈ EA (so
neither A⊆ S(m) ∪R(m) nor ∃i ∈ B : (A⊆ S(m) ∪ {i})) we have s ∼A s \mB.
Iterating this process we get the desired conclusion.

Suppose mB is a <-maximal email in E such that mB 6∈ EA. Take some
j ∈ A \ (S(m) ∪R(m)). Suppose first j 6∈ B. Then s ∼j s \mB so s ∼A s \mB.

Suppose now j ∈ B. Define

s1 := s[mB 7→{j}].

Then s1 is a legal state and s ∼j s1. Next, define

s2 := s[mB 7→∅].

Now take some k ∈ A \ (S(m) ∪ {j}). Then s1 ∼k s2 ∼j s \mB so s ∼A s \mB.
Note that both s1 and s2 are legal states since mB is <-maximal. �

Using the above lemma we now establish two auxiliary results concerning
common knowledge of the formula i ◭ m or of its negation.

Lemma 3.

(i) s |= CAi ◭ m iff ∃m′
B ∈ EA : (m′ → i ◭ m)

or (A⊆ S(m) ∪ {i} and ∃mB ∈ EA : (i ∈ B)).
(ii) s |= CA¬i ◭ m iff s |= ¬ i ◭ m and (A⊆ S(m) ∪ {i} or s |= CA¬m).

To illustrate various alternatives listed in (i) note that each of the following
emails in E ensures that s |= C{j}i ◭ m, where in each case m is the corre-
sponding send message:

s(i, l, G){j}, f(k, q.s(i, l, G), H){j},

s(k, l, i){j}, f(i, q.s(k, l, G), H){j}, s(j, l, G){i}.

The first four of these emails imply s |= C{j}i ◭ m by the first clause of (i), the
last one by the second clause.

Proof. (i) (⇒ ) Suppose s |= CAi ◭ m. Take the legal state s′ constructed in
Lemma 2. Then s ∼A s′, so s′ |= i ◭ m.

Hence for some group B we have mB ∈ (EA)≤ and i ∈ S(m) ∪ R(m) ∪ B.
Three cases arise.

Case 1. i ∈ S(m) ∪R(m).
Then m → i ◭ m. So if mB ∈ EA, then the claim holds. Otherwise some

email m′
B′ ∈ EA exists such that mB < m′

B′ . Consequently m′ → m and hence
m′ → i ◭ m. So the claim holds as well.

Case 2. i 6∈ S(m) ∪R(m) and A⊆ S(m) ∪ {i}.
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Then i ∈ B since i ∈ S(m) ∪ R(m) ∪ B. Then by the definition of EA,
mB ∈ EA so the claim holds.

Case 3. i 6∈ S(m) ∪R(m) and ¬(A⊆ S(m) ∪ {i}).
If for some note l and groups G and C we have f(i, l.m,G)C ∈ (EA)≤, then

either f(i, l.m,G)C ∈ EA or for some m′
B′ ∈ EA we have f(i, l.m,G)C < m′

B′ .
In the former case we use the fact that the implication f(i, l.m,G) → i ◭ m is
valid. In the latter case m′ → f(i, l.m,G) and hence m′ → i ◭ m. So in both
cases the claim holds.

Otherwise let s′′ = s′[mB 7→B\{i}]. Note that s′′ is a legal state because i does
not forward m in s′. Take some j ∈ A \ (S(m)∪{i}). Then s′ ∼j s

′′, so s ∼A s′′.
Moreover, s′′ |= ¬i ◭ m, which yields a contradiction. So this case cannot arise.

(⇐ ) The claim follows directly by the definition of semantics. We provide a
proof for one representative case. Suppose that for some email m′

B ∈ EA both
A⊆ S(m′)∪R(m′) and m′ → i ◭ m. Take some legal state s′ such that s ∼A s′.
Then for some group B′ we have m′

B′ ∈ Es′ . So s
′ |= m′ and hence s′ |= i ◭ m.

Consequently s |= CAi ◭ m.

(ii) Let s = (E,L).

(⇒ ) Suppose s |= CA¬i ◭ m. Then s |= ¬i ◭ m. Assume A 6⊆ S(m) ∪ {i} and
s 6|= CA¬m. Then there is some legal state s′ = (E′, L′) such that s ∼A s′ and
s′ |= m. Then there is some group B such thatmB ∈ E′. Let j ∈ A\(S(m)∪{i})
and let s′′ = (E′ \ {mB} ∪ {mB∪{i}}, L′). Then s′ ∼j s′′ so s ∼A s′′. But
s′′ |= i ◭ m which contradicts our assumption.

(⇐ ) Suppose that s |= ¬i ◭ m and either A⊆ S(m) ∪ {i} or s |= CA¬m. We
first consider the case that A⊆ S(m) ∪ {i}. Let s′ be any legal state such that
s ∼A s′. Assume s′ |= i ◭ m. Then mB ∈ Es′ for some group B such that i ∈ B.
Since A⊆ S(m) ∪ {i}, any legal state s′′ such that s′ ∼A s′′ contains an email
mC ∈ Es′′ for some group C such that i ∈ C. So s′′ |= i ◭ m. In particular, this
holds for the state s, which contradicts our assumption. So s′ |= ¬s(i, n,G) and
hence s |= CA¬s(i, n,G).

Now we consider the case that s |= CA¬m. Let s′ be such that s ∼A s′. Then
s′ |= ¬m. Since i ◭ m→ m is valid, we get s′ |= ¬i ◭ m. So s |= CA¬i ◭ m. �

We are now ready to prove the Main Theorem.

Proof

(i) (⇒ ) Suppose s |= CAm. Take the legal state s′ constructed in Lemma 2.
Then s ∼A s′, so s′ |= m. So for some group B we have mB ∈ (EA)≤.

Hence either mB ∈ EA or some email m′
B′ ∈ EA exists such that mB < m′

B′ .
In both cases the claim holds.

(⇐ ) Suppose that for some email m′
B ∈ EA we have m′ → m. Take some

legal state s′ such that s ∼A s′. Then by the form of EA and the definition of
semantics for some group B′ we have m′

B′ ∈ Es′ . So s
′ |= m′ and hence s′ |= m.

Consequently s |= CAm.
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(ii) By the definition of mB, the fact that the CA operator distributes over the
conjunction, part (i) of the Main Theorem and Lemma 3 we have

s |= CAmB iff C3-C6,

where

C4
∧

i∈S(m)∪R(m)∪B ((A ⊆ S(m) ∪ {i} and ∃B′ : (mB′ ∈ EA and i ∈ B′)) or

∃m′
B′ ∈ EA : (m′ → i ◭ m)),

C5
∧

i6∈S(m)∪R(m)∪B (A⊆ S(m) ∪ {i} or s |= CA¬m),

C6 s |= ∧
i6∈S(m)∪R(m)∪B ¬i ◭ m.

(⇒ ) Suppose s |= CAmB. Then properties C3-C6 hold. But |A| ≥ 3 and
s |= CAm imply that no conjunct of C5 holds. Hence property C1 holds.

Further, since |A| ≥ 3 the first disjunct of each conjunct in C4 does not hold.
So the second disjunct of each conjunct in C4 holds, which implies property C2.

(⇐ ) Suppose properties C1-C3 hold. It suffices to establish properties C4-C6.
For i ∈ S(m) ∪ R(m) we have m → i ◭ m. So C2 implies property C4.

Further, since C1 holds, properties C5 and C6 hold vacuously. �

6 Analysis of BCC

In our framework we built emails out of messages using the BCC feature. So it
is natural to analyze whether and in what sense the emails can be reduced to
messages without BCC recipients.

Given a send email s(i, l, G)B, where B = {j1, . . ., jk}, we can simulate it by
the following sequence of messages:

s(i, l, G), f(i, s(i, l, G), j1), . . ., f(i, s(i, l, G), jk).

Analogous simulation can be formed for the forward email f(i, l.m,G)B.
In what follows we clarify in what sense this simulation is correct. Below,

given a message m we write f(S(m),m, j) for f(i,m, {j}), where S(m) = {i}.

Definition 1. Given a state s = (E,L) such that there is no forward of the
message m by the agent j in E, we define remm

j (s) as follows:

– if mB ∈ E for some group B and j ∈ B and f(S(m),m, j)C 6∈ E for any
group C then

remm
j (s) := (E\mB ∪ {mB\{j}, f(S(m),m, j)∅}, L),

– if mB ∈ E for some group B and j ∈ B and f(S(m),m, j)C ∈ E for some
group C then

remm
j (s) := (E\mB ∪ {mB\{j}}, L),
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– otherwise remm
j (s) := s.

So, assuming mB ∈ s and j ∈ B, we form remm
j (s) by replacing the email

mB by mB\{j} when for some group C the forward f(S(m),m, j)C is present in
E, or by mB\{j}, f(S(m),m, j)∅ when no such forward is present in E.

We assume that in E there is no forward of m by agent j, as otherwise the
removal of j from the list of the BCC recipients would yield an illegal state.
Indeed, for such a forward of the message m condition L.1 would not hold. In
the remainder of this section we assume that such forwards by former BCC
recipients are not present.

We are currently working on a formal analysis of a simulation of BCC that
does allow such forwards. It is obtained by replacing each such forward f(j,m,G)
by f(j, f(i,m, j), G).

We now show that using the above operation remm
j (s) we obtain a legal

state that is almost equivalent to the original one. We establish first two lemmas
concerning the relation between remm

j (s) and the knowledge relation of some
agent k.

Lemma 4. For any two legal states s and t, message m and agent j, if s ∼k t
then remm

j (s) ∼k rem
m
k (t).

Proof. Omitted for the reasons of space. �

Lemma 5. For any legal state s, message m and agent j, if there is some t′

such that remm
j (s) ∼k t

′ then either s ∼k rem
m
j (s) or there is some t such that

s ∼k t and t
′ = remm

j (t).

Proof. Let s′ = remm
j (s) and suppose s′ ∼k t

′. If s = s′ then s ∼k s
′. Suppose

otherwise. Then by the definition of remm
j (s) we know that there is some group

B such that j ∈ B, mB ∈ Es and mB\{j} ∈ Es′ . Define B′ = B\{j}.
Suppose there is no full version of f(S(m),m, j) in Et′ . By the definition of

remm
j (s), there is a full version of f(S(m),m, j) in Es′ so then we know that

k 6∈ S(m) ∪ {j} because s′ ∼k t
′. Clearly then s ∼k s

′.
Suppose there is a full version of f(S(m),m, j) in Et′ . Then there is some

group C such that mC ∈ Et′ . Suppose j ∈ C. Since mB′ ∈ Es′ , j 6∈ B′ and
s′ ∼k t

′ this means k 6∈ S(m) ∪ {j}. So s ∼k s
′.

Finally, suppose that mC ∈ Et′ , j 6∈ C and f(S(m),m, j)C′ ∈ Et′ . Suppose
there is no full version of f(S(m),m, j) in Es. Define t as the state which is like
t′ but with Et = Et′\{mC, f(S(m),m, j)C′} ∪ {mC∪{j}}. Clearly, remm

j (t) = t′.
We claim s ∼k t. The condition on the notes is satisfied since the sets of notes
in s and s′ and in t and t′ are identical, and s′ ∼k t

′. We will to show that for
any m′

D ∈ Es such that k ∈ S(m′) ∪ R(m′) ∪ D there is some m′
D′ ∈ Et such

that m′
D ∼k m

′
D′ . The proof in the other direction is very similar. Take such an

m′
D.

Suppose m′
D = mB. We know mB′ ∈ Es′ so mB′ ∼k mC . Since B = B′ ∪{j}

then clearly mB ∼k mC∪{j} and we know mC∪{j} ∈ Et so let m′
D′ = mC∪{j}.
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Suppose otherwise. Then m′
D ∈ Es′ so there is m′

D′ ∈ Et′ such that m′
D ∼k

m′
D′ . We know that m′ 6= m and m′ 6= f(S(m),m, j) because no full version of

f(S(m),m, j)) is in Es so then m′
D′ ∈ Et.

Finally, suppose that for some group E, f(S(m),m, j)E ∈ Es. Let Et =
Et′\{mC} ∪ {mC∪{j}}. The proof is very similar.
For the case that m′

D = f(S(m),m, j)E , note that f(S(m),m, j)E ∈ Es′ so
f(S(m),m, j)E ∼k f(S(m),m, j)C′ , so let m′

D′ = f(S(m),m, j)C′ . �

The theorem below shows that our operation of removing a BCC recipient
results in a state that is equivalent for all formulas that do not explicitly mention
the newly added forward or the fact that this BCC recipient received the original
message.

Theorem 1. For any state s, message m, agent j and formula ϕ that does not
mention j ◭ m or f(i,m, j), s |= ϕ iff remm

j (s) |= ϕ.

Proof. We proceed by induction on the structure of ϕ. The only interesting case
is when ϕ = CGψ.

Suppose remm
j (s) |= CGψ. Let s ∼G t for some group of agents G. Then

there must be a path s ∼j1 s1 ∼j2 ... ∼jn t, with j1, ..., jn ∈ G. Then by Lemma
4, remm

j (s) ∼j1 rem
m
j (s1) ∼j2 ... ∼jn rem

m
j (t). Hence remm

j (s) |= CGψ implies
that remm

j (t) |= ψ. By the induction hypothesis, t |= ψ. So s |= CGψ.
Suppose s |= CGψ. If s ∼G remm

j (s) then clearly remm
j (s) |= CGψ. Suppose

otherwise. Let remm
j (s) ∼G t′ for some state t′. Then there is a path remm

j (s) =
s′0 ∼k1 s′1 ∼k2 ... ∼kn s′n = t′, with k1, ..., kn ∈ G. We claim that for any s′i
there is a state si such that s ∼G si and remm

j (si) = s′i. We will proceed by
induction. Clearly the claim holds for s′0 = remm

j (s). Suppose it holds for s′i−1,
so s ∼G si−1 and remm

j (si−1) = s′i−1 for some state si−1. By Lemma 5 either
si−1 ∼ki s

′
i−1 or there is si such that si−1 ∼ki si and rem

m
j (si) = s′i. In the first

case, since s ∼G si−1 and ki ∈ G we have s ∼G s′i−1 and since remm
j (s) ∼G s′i−1

we have s ∼G remm
j (s) which contradicts our assumption. In the second case,

s ∼G si so our claim holds. So then it also holds for s′n = t′, and there is some t
such that s ∼G t and remm

j (t) = t′. But then by assumption t |= ψ and by the
induction hypothesis t′ |= ψ. So remm

j (s) |= CGψ.

Clearly, by repeatedly applying above construction we obtain the simulation
of BCC given above. The corollary below shows that in the original and the
resulting state the status of the statement that there is common knowledge of
the underlying message is the same.

Definition 2. For a state s, a message m and a group of agents B = {j1, ..., jn}
such that mB ∈ Es, we define

remm
B (s) := remm

j1 (rem
m
j2(. . .rem

m
jn(s))).

Corollary 1. For any legal state s, a group of agents A and an email mB ∈ Es

such that remm
B (s) is a legal state

s |= CAm iff remm
B (s) |= CAm.
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7 Conclusions and future work

Email is by now one of the most common forms of group communication. This
motivates the study here presented. The language we introduced allowed us
to discuss various fine points of email communication, notably forwarding and
the use of BCC. The epistemic semantics we proposed aimed at clarifying the
knowledge-theoretic consequences of this form of communication. Our presen-
tation focused on the issue of common knowledge aimed at clarifying when a
group of agents has a common knowledge of an email.

This framework also leads to natural questions concerning axiomatization of
the language and decidability of the semantics. Currently we work on

– a sound and complete axiomatization of the epistemic language L of Sec-
tion 3; at this stage we have such an axiomatization for the epistemic free
formulas,

– the problem of decidability of the truth definition given in Section 3; at this
stage we have a decidability result for positive formulas.
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Abstract. Humans are without any doubts the prototypical example of agents
that can hold rational beliefs and can show rational behaviour. When modeling
human decision-making, it seems reasonable to take the remarkable abilities of
humans into account with respect to rational behaviour, but also the apparent de-
ficiencies of humans shining up in certain rationality tasks. Based on well-known
challenges for human rationality, together with results from psychological studies
on decision-making and from the field of computational modeling of analogy-
making, we argue that analysis and modeling of rational belief and behaviour
should also consider cognitive mechanisms like analogy-making and coherence
maximization of the background theory.

1 Introduction

At times, human behaviour seems erratic and irrational. Still, it is widely undoubted that
humans can act rational and, in fact, appear to act rational most of the time. In explaining
behaviour, we use terms like beliefs and desires. If an agent’s behaviour makes the most
sense to us, then we interpret it as a reasonable way to achieve the agent’s goals given
his beliefs. We take this as indication that some concept of rationality does play a crucial
role when describing and explaining humans’ behaviour in a large variety of situations.

Based on ideas from vernacular psychology, in many cases rational beliefs are inter-
preted as a foundation of rational behavior. In this extended position paper, we will be
mostly concerned with beliefs and knowledge, i.e. the epistemic aspects of rationality.

In the following, we want to shed light on some aspects of rationality from a mostly
computational cognitive science point of view. Although, even in psychology or eco-
nomics there is no generally accepted formal framework for rationality, we will argue
for a model that links rationality to the ability of humans to establish analogical rela-
tions. This is an attempt for proposing a new perspective and framework for rationality.
Furthermore, in the course of a mostly overview-like presentation, we want to give some
hints at how already existing frameworks for computational analogy-making integrate
some aspects considered characteristic for human decision making.
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2 Rationality Concepts and Challenges

2.1 Rationality

Many quite distinct frameworks for modeling rationality have been proposed, and an
attempt at clustering these frameworks to the best of our knowledge results in at least
four classes: logic-based models (cf. e.g. [1]), probability-based models (cf. e.g. [2]),
heuristic-based models (cf. e.g. [3]), and game-theoretically based models (cf. e.g. [4]).

Several of these models have been considered for establishing a normative theory
of rationality, not only tryinig to model “rational behaviour”, but also to offer predictive
power for determining whether a certain belief, action, or behaviour may be consid-
ered rational or not. Also, every of these theories specifies some sort of definition of
rationality. Unfortunately, when comparing the distinct frameworks, it shows that these
definitions are in many cases almost orthogonal to each other (as are the frameworks).
Therefore, in this paper, we will propose certain cognitive mechanisms for explaining
and specifying rationality in an integrated, more homogeneous way.

2.2 Well-Known Challenges

Although the aforementioned frameworks have gained merit in modeling certain as-
pects of human intelligence, the generality of each such class of frameworks has at the
same time been challenged by psychological experiments. For example, in the famous
Wason-selection task [5] human subjects fail at a seemingly simple logical task (cf. Ta-
ble 1). Also, experiments by Byrne on human reasoning with conditionals [6] indicated
severe deviations from classical logic (cf. Table 1). Similarly, Tversky and Kahneman’s
Linda problem [7] illustrates a striking violation of the rules of probability theory (cf.
Table 1). Heuristic approaches to judgment and reasoning [8] are often seen as approx-
imations to a rational ideal and in some cases could work in practice, but often lack
formal transparency and explanatory power. Game-based frameworks are questioned
due to the lack of a unique concept of optimality in game-theory that can support dif-
ferent “rational behaviors” for one and the same situations (e.g. Pareto optimality vs.
Nash equilibrium vs. Hick’s optimality etc., [9]).

Wason Selection Task: This task shows that a large majority of subjects are seem-
ingly unable to verify or to falsify a simple logical implication: “If on one side of the
card there is a D, then on the other there is the number 3”. In order to check this rule,
subjects need to turn D and 7, i.e. subjects need to check the direct rule application
and the contrapositive implication. After a slight modification of the content of the rule
(content-change), while keeping the structure of the problem isomorphic, subjects per-
form significantly better: In [11], the authors show that a change of the abstract rule
“p → q” to a well-known problem significantly increases correct answers of subjects.
The authors use the rule “If a person is drinking beer, then he must be over 20 years
old.” The cards used in the task were “drinking beer”, “drinking coke”, “25 years old”,
and “16 years old”. Solving this task according to the rules of classical logic comes
down to turning “drinking beer” and “16 years old”.

Inferences and Conditionals: Also Byrne’s observations question whether human
reasoning can be covered by a classical logic-based framework. Presented with the in-
formation given in Table 1, from 1. 46% of subjects conclude that Marian will not study
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Wason-Selection Task [10]:
Subjects are given the rule “Every card which has a D on one side has a 3 on the other
side.” and are told that each card has a letter on one side and a number on the other side.
Then they are presented with four cards showing respectively D, K, 3, 7, and asked to
turn the minimal number of cards to determine the truth of the sentence.
Inferences and Conditionals [6]:
1. If Marian has an essay to write, she will study late in the library. She does not have
an essay to write.
2. If Marian has an essay to write, she will study late in the library. She has an essay to
write.
3. If Marian has an essay to write, she will study late in the library. She has an essay to
write. If the library stays open, she will study late in the library.
Linda-Problem [7]:
Linda is 31 years old, single, outspoken and very bright. She majored in philosophy.
As a student, she was deeply concerned with issues of discrimination and social justice,
and also participated in anti-nuclear demonstrations.
Linda is a teacher in elementary school.
Linda works in a bookstore and takes Yoga classes.
Linda is active in the feminist movement. (F)
Linda is a psychiatric social worker.
Linda is a member of the League of Women Voters.
Linda is a bank teller. (T)
Linda is an insurance salesperson.
Linda is a bank teller and is active in the feminist movement. (T&F)

Table 1. The Wason-selection task questions whether humans reason in such situations according
to the laws of classical logic. Byrne’s experiments on how humans handle conditionals also shed
doubt on a logic-based model. Tversky and Kahneman’s Linda problem questions the ability of
humans to reason according to the laws of probability theory.

late in the library, erring with respect to classical logic (as denial of the antecedent does
not validate a negation of the consequent). Also, from 2. 96% of subjects conclude that
Marian will study late in the library, whilst only 38% of subjects reach the same con-
clusion from 3.. Thus an introduction of another antecedent (without any indication that
the antecedent should not hold) dramatically reduced the number of subjects applying
a simple modus ponens in their process of forming a conclusion.

Linda Problem: With respect to the Linda problem it seems to be the case that
subjects are amenable to the so-called conjunction fallacy: subjects are told a story
specifying a particular profile about the bank teller Linda. Then, eight statements about
Linda are shown and subjects are asked to order them according to their probability (cf.
Table 1). 85% of subjects decide to rank the eighth statements “Linda is a bank teller
and active in the feminist movement” (T & F) as more probable than the sixth statement
“Linda is a bank teller” (T). This ranking contradicts basic laws of probability theory,
as the joint probability of two events (T & F) is less or at most equal to the probability
of each individual event.
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Classical Resolution Strategies: Strategies that have been proposed to address the
mentioned challenges include non-classical logics for modeling subjects’ behavior in
the Wason-Selection task [12], or a switch from (syntactic) deductions to reasoning in
semantic models [13]. Still, these are only individual case-based solutions, which do
not (or only hardly) generalize, and thus don’t provide a basis for a unified theory or
the genesis of a generally accepted broad concept of rationality.

3 Non-Standard Interpretations of Challenges for Rationality

An immediate reaction to the challenges for rationality depicted above may be to deny
that humans are always able to correctly reason according to the laws of classical logic
or the laws of probability theory. Still, concluding that human behaviour therefore is
irrational in general does not seem convincing. The most that can be concluded from
the experiments is that human agents are neither deduction machines nor probability es-
timators, but perform their undisputable reasoning capabilities with other means. From
our point of view, subjects’ behavior in the described tasks is connected to certain cog-
nitive mechanisms that are used by humans in such reasoning tasks, giving rise to the
emergence of behavior commonly described as rational.

3.1 Interlude: Analogy and Analogical Reasoning

Analogies can basically be described as claims of similarity, which are often used in ar-
gumentation or when explaining complex situations. Putting it more formally, analogy-
making refers to the human ability of perceiving dissimilar domains as similar with
respect to certain aspects based on shared commonalities in relational structure or ap-
pearance. Analogy and analogy-making research has received growing attention during
the last decades, changing the perception of analogy from interpreting it as a special and
rarely applied case of reasoning to placing it in the center of human cognition itself [14].
The literature on analogies knows a distinction between two subcategories of analogical
mapping: attribute mappings (surface mappings) and relational mappings [15]. Whilst
both mapping types are standardly assumed to be one-to-one, attribute mappings are
based on attributes or surface properties, such as shape or color (i.e., two objects can
be said to be similar with respect to a particular attribute or set of attributes), whilst
relational mappings are based on relations between objects, such as having the same
role or the same effect (i.e., two objects can then be said to be similar with respect to
some relation to one or more other objects). Once such an analogical bridge has been
established between two domains, analogical reasoning now allows for carrying over
inferences from the base to the target domain in order to extend knowledge about the
latter, i.e., an inference which holds between elements in the base domain is also as-
sumed to analogically hold between the corresponding elements of the target domain.

3.2 How Analogy-Making Enters the Picture

In a short reply to Colman’s article “Cooperation, psychological game theory, and lim-
itations of rationality in social interaction” [16], Kokinov challenges traditional views
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on rationality [17]. Taking an initial stance similar to Colman’s, agreeing on that ratio-
nality fails as both, descriptive theory of human-decision making and normative the-
ory for good decision-making, Kokinov reaches a different, more radical conclusion as
Colman did before. Instead of trying to fix the concept of rationality by redefining it,
adding formerly unconsidered criteria for optimization of some kind, he proposes to re-
place the concept of rationality as a theory in its own right by a multilevel theory based
on cognitive processes involved in decision-making. Where Colman proposes a collec-
tion of ad-hoc strategies for explaining the deviations from rationality which people
exhibit in their behaviour, Kokinov proposes analogy as means of unifying the differ-
ent, formerly unconnected parts of Colman’s attempt at describing the mechanisms of
decision-making. In Kokinov’s view, the classical concept of utility making has to be
rendered as an emergent property, which will emerge in most, but not all, cases, con-
verting rationality itself in an emergent phenomenon, assigning rational rules the status
of approximate explanations of human behavior.

But evidence for a crucial role of analogy in decision-making cannot only be found
in conceptual cognitive science, but also in psychological studies on decision-making
and choice processes. An overview by Markman and Moreau [18], based on experi-
ments and observations from psychological studies, amongst others on consumer be-
haviour and political decision-making, reaches the conclusion that there are at least two
central ways how analogy-making influences choice processes. Analogies to other do-
mains can provide means of representation for a choice situation, as generally speaking
the making of a decision relies on a certain degree of familiarity with the choice setting.
In many cases of this kind, analogy plays a crucial role in structuring the representation
of the choice situation, and thus may strongly influence the outcome of a decision. Also,
structural alignment (a key process of analogy-making) plays a role when comparing
the different possible options offered by a decision situation, with new options being
learned by comparison to already known ones. An experimental study by Kokinov [19]
demonstrated that people actually do use analogies in the process of decision-making,
with significant benefit already if only one case is found to be analogous to the choice
situation under consideration. Furthermore, evidence has been found that there is no
significant difference between close and remote analogies in this process, and that peo-
ple are not limited to rely only on analogous cases from their own experience, but that
also cases which were only witnessed passively (e.g., by being a bystander, or learning
about a situation from reports in the media) may have beneficial influence.

Taking all this together, we strongly argue in favor of taking into account cognitive
mechanisms centered around the concept of analogy when analysing and modeling ra-
tional belief and behaviour in humans. In the following, we want to provide an analogy-
inspired point of view on the aforementioned well-known challenges for rationality.

3.3 Resolving the Wason-Selection Task by Cognitive Mechanisms

As mentioned above, according to [11] subjects perform better (in the sense of more
according to the laws of classical logic) in the Wason-Selection task, if content-change
makes the task easier to access for subjects. In our reading, subjects’ performance is
tightly connected to establishing appropriate analogies. Subjects perform badly in the
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classical version of the Wason-Selection task, simply because they fail to establish a fit-
ting analogy with an already known situation. In the “beer drinking” version mentioned
above, i.e. the content-change version of the task, the situation changes substantially,
because subjects can do what they would do in an everyday analogous situation: they
need to check whether someone younger than 20 years is drinking beer in a bar. This
is to check the age of someone who is drinking beer and conversely to check someone
who is younger that 20 years whether he is drinking beer or not. In short, the success
or failure of managing the task is crucially dependent on the possibility to establish a
meaningful analogy.

3.4 Resolving the Inferences and Conditionals Problem by Cognitive
Mechanisms

The results concerning conclusions drawn by the subjects in Byrne’s experiments can
also be explained through analogy-making. People faced with the information given
in 1. will recall similar conversations they had before, using these known situations as
basis for their decision on what to conclude. According to Grice [20], in conversations
speakers are supposed to provide the hearer with as much information as is needed
for exchanging the necessary information, a rule which goes in accordance with our
everyday observation. Thus, when being given the additional information that “Marian
does not have to write an essay.”, the set of candidate situations for establishing an
analogy will be biased towards situations in which this information had an impact on
the outcome, resulting in the conclusion that Marian would not study late in the library
either. Regarding 2. and 3., a similar conjecture seems likely to hold: By additionally
mentioning the library, similar situations in which the library might actually have played
a crucial role (e.g., by being closed) will be taken into account as possible base domains
of the analogy, causing the change in conclusions made.

3.5 Resolving the Linda Problem by Cognitive Mechanisms

In case of Tversky and Kahneman’s Linda problem, a natural explanation of subjects’
behavior is that people find a lower degree of coherence between Linda’s profile and
the mere statement “Linda is a bank teller”, than they do with the expanded statement
“Linda is a bank teller and is active in the feminist movement”. In the latter one, at least
one conjunct of the statement fits quite well to Linda’s profile. In short, subjects prefer
situations that seem to have a stronger inner coherence. Coherence is important for the
successful establishment of an analogical relation, as it facilitates the finding of a source
domain for an analogy. We conjecture that in order to make sense of the task, humans
rate statements with a higher probability where facts are arranged in a theory with a
higher degree of coherence. Thus, seeing coherence in the first place as a means for
facilitating analogy-making, and taking into account that analogy has been identified as
a core element of human cognition, the decision for the coherence-maximizing option
is not surprising anymore, but fits neatly into the conceptual analogy-based framework,
and could even have been predicted (providing inductive support for our general claim).
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Fig. 1. HDTP’s overall approach to creating analogies

4 Rationality, Decision-Making and Analogy-Making Systems

In this section we want to give an overview-like sketch of how computational analogy-
making systems can be related to some of the discussed challenges for rationality, as
well as to decision-making and choice in general, demonstrating their value as models
also in this domain.

4.1 Heuristic-Driven Theory Projection

Heuristic-Driven Theory Projection is a symbolic framework for computing analogical
relations between two domains that are axiomatized in first order logic [21]. HDTP, after
being given the logic representations of the two domains, by means of anti-unification
[22] computes a common generalization of both, and uses this resulting theory as basis
for establishing an analogy, also involving analogical transfer of knowledge between
the domains (i.e., the system provides an explicit generalization of the two domains
as a by-product of the analogy-making process). Thus, conceptually, HDTP proceeds
in two phases: in the mapping phase, the formal representations of source and target
domain are compared to find structural commonalities, and a generalized description
is created, which subsumes the matching parts of both domains. In the transfer phase,
unmatched knowledge in the source domain can be transferred to the target domain to
establish new hypotheses in an analogical way, cf. Figure 1.

Think about Rutherford’s model of the atom [23] in analogy to a model of the solar
system: HDTP, after finding commonalities in the logical representation of the solar
system as base domain, and the atom model as target domain (for example, that in both
cases less massive objects are somehow related to a more massive central object, or
that always a positive distance and a positive force between these lighter objects and
the heavier core can be found), a generalization is computed, via which known laws
from the base can be reinstantiated in the target (e.g., that a lighter object revolves
around a heavier one when there is negative centrifugal force between the lighter and
the heavier one, yielding the revolution of the electrons around the nucleus, or that
the centrifugal force between two spatially separated objects with positive gravitational
force between both is equal to the negative value of that gravity, resulting in stable orbits
of the electrons in the model).

HDTP implements a principle (by using heuristics) that maximizes the coverage of
the involved domains [21]. Intuitively, this means that the sub-theory of the source (or
the target) that can be generated by re-instantiating the generalization is maximized.
Putting it the other way round, the original domain-specific information and structure

26



shall implicitly be preserved as far as possible. The higher the coverage the better, be-
cause more support for the analogy is provided by the generalization (in a way, the
higher the achieved degree of coverage, the more firmly the analogy is rooted in the un-
derlying domains, used for creating the generalization). A further heuristics in HDTP
is the minimization of substitution lengths in the analogical relation, i.e. the simpler the
analogy the better [24]. The motivation for this heuristics is to prevent arbitrary associa-
tions. Clearly there is a trade-off between high coverage and simplicity of substitutions:
An appropriate analogy should intuitively be as simple as possible, but also as general
and broad as necessary in order to be non-trivial. Unfortunately, high coverage normally
comes with higher complexity of substitutions (as a more complex generalization allows
for a higher degree of re-representation of domain-specific structures and information),
whilst the simplicity constraint is trying to steer the analogy-making process in exactly
the opposite direction. This kind of trade-off is similar to the kind of trade-off that is
usually the topic of model selection in machine learning and statistics.

4.2 The Wason-Selection Task Revisited

A modeling of the Wason-Selection task with HDTP is quite simple as long as appropri-
ate background knowledge is available, in case an analogy should be established, or the
lack of appropriate background knowledge prevents analogy-making, in case no anal-
ogy should be established: On the one hand, if background knowledge for an analogous
case is missing (i.e., in the case of HDTP, no domain representation which offers suffi-
cient structural commonalities to the target domain as to serve as a base for the analogy
process can be retrieved from memory), then there is no chance to establish an analogi-
cal relation. Hence, subjects have to apply other auxiliary strategies, possibly deviating
from the expected “right” answer. If there is a source theory with sufficient structural
commonalities on the other hand, then the establishment of an analogical relation is
straightforward, resulting in a smooth solution process of the task.

4.3 Analogy in Choice

Coming back to Markman and Moreau’s meta-study of the role analogy and analogical
comparison play in the process of human choice, presented in [18], we want to show
some connections of their findings to computational systems for analogy-making.

It is without doubt that the choice of options taken into account when making a
decision is of crucial importance for the entire process of decision-making. Markman
and Moreau present the formation of consideration sets (i.e., the set of options taken into
account by a decision maker) as one of the places at which the influence of analogy on
decision-making clearly shines up. An analogical reasoning process is involved when
deciding on which scenarios are likely to happen, and thus have to be considered (see,
e.g., also [25] for related results). According to their findings, there are different factors
influencing which analogies will be used in a choice situation, resulting in a set of
analogies which are considered similar or familiar to the current situation. Close analogs
have the advantage of probably allowing the transfer of more lower-order relations than
distant analogs would, i.e., closer concepts are more likely to be considered as an option
due to an easier and more fruitful analogy-making process. This goes in accordance with
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characteristics exhibited by many computational models of analogy-making, where we
just want to mention HDTP. As pointed out in [21], although HDTP basically aligns any
entity, function or predicate, it clearly prefers literally-matching alignments over non-
literally ones, and equivalent structures to structural mismatches, thus reconstructing a
preference and behaviour also shown by humans.

Also, experiments indicate that commonly shared surface elements of domains are
more useful as retrieval cues than are connected relational systems. Also this carries
over to the principles underlying HDTP, with HDTP trying to minimize the complexity
of analogical relations whilst maximizing the degree of coverage: Connected relational
systems have the strong tendency of reaching higher-order stages, whilst direct surface
correspondences stay on a low level, allowing for a direct matching of features. Thus,
handling common surface elements allows for a certain degree of coverage without
having to escalate complexity, probably also making HDTP prefer surface elements for
supporting an analogy over relational ones (if both types are equally available).

Finally, it shows that elements related to a person’s individual experience do influ-
ence the way deicsions are taken. These elements have the advantage of being (mostly)
highly accessible, with base domains which form part of someone’s past being more
likely to have richly connected relational structures, providing good ground for even-
tual analogical inference. When searching for a way of computationally modeling this
phenomenon, it comes to mind that a similar effect can already be found in AMBR,
Kokinov’s well-documented hybrid analogy-making system [26]. This system exhibits
signs of priming effects in the retrieval process of a fitting base domain for an analogy’s
given target domain, together with a general influence of earlier memory states on later
ones.

4.4 Modeling Judgement and Choice

In [27], Petkov and Kokinov present JUDGEMAP, a computational model of judge-
ment and choice based on the general-purpose cognitive architecture DUAL [28], and
the aforementioned corresponding AMBR analogy-making system. JUDGEMAP is ca-
pable of performing both tasks, giving a judgement on a scale and deciding a choice
situation, by means of a process of making forced analogies, exclusively using map-
ping principles inherited from the underlying AMBR system. JUDGEMAP has been
demonstrated to replicate phenomena known from observations of human judgement
as, for example, range and frequency effects, or sequential assimilation effects.

Furthermore, several simulations are described, in which it is demonstrated that
mechanisms designed for modeling analogy can have influence on judgement and choice,
possibly reproducing contextual effects in tasks which don’t seem to be related to
analogy-making. Among others, it is shown that the pressure for one-to-one mapping,
which has been introduced to AMBR for the purpose of analogy-making, can in the
model cause phenomena similar to the frequency effect in judgement (i.e., people using
all available ratings almost equally often in their judgements), and for the concave form
of the functional relation between subjective value (i.e., utility) and money. Also, the
effect that humans when judging tend to use middle ratings more often than extreme
ones can be explained in terms of a dynamic mechanism used for hypothesis creation in
AMBR. Also, the occurence of the preference reversal effect in choice can be explained
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by a feature originating from the analogy-making system. The most remarkable part
of all this is, that not a single one of the mechanisms used in the JUDGEMAP model
had been created for this purpose, but were all obtained from the AMBR model, which
supports our claim that structural mapping and analogy play a fundamental role also in
judgement and choice, and therefore ultimately also in decision-making.

5 Concluding Remarks

The evidence for a crucial role of analogy-making presented over the last pages falls far
from being complete. Yet another example can be given in form of well-known studies
on human decision-making under time pressure, which show a change in the applied
inference procedure. In [29], the authors report that, whilst the best predicting model of
human inference for decision making in an unstressed conditions was a weighted linear
model integrating all available information, when time pressure was induced, best pre-
dictions were obtained by using a simple lexicographic heuristic [30]. This presumed
change from a more complex strategy using complex relational structures to a sim-
ple single-attribute-based procedure also can be found in research on analogy-making:
In [31], it is reported that anxiety made participants of an analogical-reasoning exper-
iment switch from a preference for complex relational mappings to simple attribute-
based mappings.
Still, whilst not claiming completeness of our overview of evidence, we are convinced
that even the already given examples and indications are sufficient as not to allow for
leaving analogy and cognitive processes out of consideration.

A criticism with respect to the analogy-making approach might be a seeming lack
of normativity as a theory. Although work on this topic is still in a very early stage,
we are confident that this objection grasps at nothing: Normativity can be introduced
in a very natural way by considering the reasonableness (or unreasonableness) of made
analogies. Roughly speaking, it is obvious that different analogies may have different
degrees of reasonableness, e.g., based on the level to which they result in coherent be-
liefs and to which they encompass both, the source and the target domain of the analogy.

In this paper, we argue in favor of an introduction of the concept of analogy into
conceptual research on rationality and decision-making on a foundational level. Based
on a review of some basic concepts and existing work within the fields of analogy
research and research on decision-making and choice, together with an exemplifying
proposal of new resolution strategies for classical rationality puzzles, we think that the
usage of frameworks for establishing analogical relations and the usage of frameworks
that can maximize the coherence of a theory necessarily have to be taken into account
when modeling (and possibly implementing) what is commonly considered rational
belief in a not overly simplified manner.

Of course, this paper is just a very first conceptual step in constructing and establish-
ing the promoted new view, still a great amount of substantial fundamental work has to
be done, and numerous open questions have to be answered. Nevertheless, considering
the evidence indicating a connection between decision making and analogy originat-
ing from psychology, together with characteristics shown by already existing models
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of analogy-making (which were designed without any consideration of rationality or
an application in decision making), we are strongly confident that an undertaking as
argued for in this paper merits the effort, and can lead to important results and insights.
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Abstract. In our article we explore the developmental paradox of false belief understanding. This paradox 
follows from the claim that young infants already have an ‘implicit’ notion of false belief, despite the fact 
that they consistently fail tests assessing ‘explicit’ forms of false belief understanding. First, we argue that 
recent dual-system proposals to solve this paradox are unsatisfactory because they either lack the 
conceptual resources to deal with the differences between implicit and explicit false belief understanding, 
or ignore questions about system interaction. Second, we discuss a number of problems dual-system 
approaches have to address in order to account for the development of false belief understanding, and 
propose a model that combines a layered model of perspective taking with an inhibition-selection-
representation mechanism operating on different levels.  
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1. Introduction 

 

In our everyday social interactions we frequently attribute mental states (e.g., beliefs, desires) to others in 

order to predict or explain their behavior. For example, if Mini knows that Maxi wants the chocolate, and 

she also knows that Maxi believes the chocolate is in the blue cupboard, she can predict that Maxi will 

search for the chocolate in the blue cupboard. This works equally well if Mini wants to explain Maxi’s 

behavior: Maxi’s searches in the blue cupboard, because he wants the chocolate and believes the 

chocolate is in the blue cupboard. It is generally accepted that this capacity is enabled by a Theory of 

Mind (e.g., Perner 1991, Baron-Cohen 1995, Leslie 2000). 

Over the last couple of decades, most research in Theory of Mind has focused on the 

development of false belief understanding. In order to test whether Mini truly understand Maxi’s behavior 

from his point of view, we need to make sure that she does not simply attribute to Maxi her own belief 

about the location of the chocolate. The False Belief Test (FBT) has been specifically designed to solve 

this problem by introducing a condition in which the protagonist has a false belief about some state of 

affairs in the world (usually the location of an object).  

In ‘explicit’ (i.e., verbal) versions of this test, children are asked a direct question about the 

protagonist’s false belief. In the ‘unexpected location’ FBT (Wimmer & Perner 1983, Baron-Cohen et al. 

1985), for example, children observe a protagonist who sees an object being placed in a certain location. 

Then the protagonist leaves, and the object is moved to another location. When the protagonist returns, 

he mistakenly believes the object is still in its initial location. At this point, the children are asked to predict 

where the protagonist will look for the object. 
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Test results show that 3-year-olds typically give a wrong answer to this question, while four-year-

olds answer correctly. Findings on other explicit FBTs, such as the ‘unexpected identity’ task (Perner et 

al. 1987; Moses & Flavell 1990; Wellman 1990), confirm this picture. Many researchers have therefore 

concluded that false belief understanding does not emerge until four years (Flavell 2004, Sodian 2005; 

see Wellman 2002 for a review, and Wellman et al. 2001 for a meta-analysis). 

Recently, however, this conclusion has been challenged on the basis of findings on so-called 

‘implicit’ false belief understanding. Studies based on ‘violation of expectation’ and ‘anticipatory looking’ 

paradigms have claimed that implicit false belief understanding is already present at a considerably 

earlier age, in 25-month-olds (Southgate et al. 2007), 15-month-olds (Onishi & Baillargeon 2005), and 

even 13-month-olds (Surian et al. 2007). These findings give rise to a very interesting and widely debated 

‘developmental paradox’: if young infants already understand false belief, as the above studies seem to 

suggest, then why do they fail the explicit FBT?  

Our aim in this article is to propose a model that allows us to account for both implicit and explicit 

forms of false belief understanding and to shed new light on the developmental paradox. We start by 

discussing a number of important studies on implicit false belief understanding (section two). Next, we 

evaluate two recent dual-system accounts of the developmental paradox (Apperly & Butterfill 2009; 

Baillargeon et al. 2010) in section three. We argue that both accounts fail to solve the developmental 

paradox because they either lack the conceptual resources to deal with the differences between implicit 

and explicit forms of false belief understanding, or ignore questions about the interaction between the two 

systems. In section four, we discuss a number of problems dual-system approaches have to address in 

order to account for the development of false belief understanding. Section five puts forward a model 

combining a layered model of perspective taking with an inhibition-selection-representation mechanism 

that operates on different levels. 

 

 

2. Implicit False Belief Understanding 

 

The explicit FBT places rather strong demands on children’s other cognitive capacities (Bloom & German 

2000, Carlson & Moses 2001). Studies on implicit false belief understanding are designed in a way as to 

reduce these demands in order to see whether children might be capable of false belief understanding at 

an earlier age. In the implicit FBT, infants no longer have to give an explicit answer to a question about 

the protagonist’s belief. Instead, their understanding of false belief is inferred from the behavior they 

spontaneously produce (cf. Baillargeon et al. 2010).  

Clements & Perner (1994) already showed that linguistic competence is responsible for at least 

some of the difficulties infants have with the explicit FBT vis-à-vis its implicit counterpart. They adapted an 

early version of the ‘anticipatory looking’ paradigm, which is used to test whether children are able to 

visually anticipate where another agent will search for an object, given his false belief about its location. In 

their experiment, Clements & Perner (1994) asked children to watch how the protagonist, a mouse called 

Sam, stored an object in a box in front of one of two mouse holes. While Sam is asleep, the object is 

moved to a different box in front of the other mouse hole. The experimenters monitored where the 

children were looking in anticipation of Sam’s reappearance, given his false belief about the object’s 

location. They contrasted this spontaneous behavior with the explicit answers children gave to the 

question where Sam would look for the object. 

Clements & Perner (1994) found that 3-year-olds looked at the initial (correct) location when 

anticipating Sam’s return, even when they explicitly made the incorrect claim that he would go to the 

second location. They labeled this early manifestation of false belief understanding ‘implicit’, because the 

participating children were not explicitly aware of the knowledge conveyed in their correct eye gaze. 

Importantly, the researchers found no sign of implicit false belief understanding in 2-year-old children (cf. 

Perner & Clements 2000, Clements & Perner 2001, Ruffman et al. 2001, Garnham & Perner 2001). 
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However, recent studies on implicit false belief understanding challenge the assumption that infants 

under three do not understand false belief. Onishi & Baillargeon (2005), for example, used a ‘violation-of-

expectation’ FBT to investigate whether children would look reliably longer when agents act in a manner 

that is inconsistent with their false beliefs. In the experiment, 15-month-old infants were familiarized with a 

protagonist hiding a toy in one of two locations. The protagonist left, and the toy was moved without his 

knowledge. Then the infants were shown scenes of the protagonist searching for the hidden toy, either 

where he falsely believes it to be, or where it was actually located. Onishi & Baillargeon (2005) found that 

infants looked significantly longer at those scenes in which the protagonist searched at the correct 

location despite their false belief about where the toy was hidden. Follow-up experiments have shown 

similar results in even younger infants of thirteen months (Surian et al. 2007). 

These findings contradict the results of Clements & Perner (1994). According to Southgate et al. 

(2007), these different results are due to the fact that Clements & Perner (1994)’s experiment still 

included a verbal element: in order to maximize the frequency of anticipatory looking at one of the mouse 

holes, the investigator said aloud, ‘I wonder where Sam is going to look?’ before asking the question. 

Southgate et al. (2007) argue that this primed 2-year-old infants to look at the incorrect location. In their 

own study, they removed the verbal element from the design and used an eye-tracker to measure 

anticipatory looking in 25-month-olds. The infants observed how a protagonist witnesses a puppet bear 

that hides a ball in one of two boxes. Then the protagonist becomes distracted and turns away from the 

scene. Meanwhile, the bear removes the ball from its original hiding location. Southgate et al. (2007) 

found that most 25-month-olds correctly anticipated the protagonist’s behavior and looked at the location 

where she falsely believed the ball to be hidden. 

Other implicit FBTs indicate that infants do not only understand false beliefs about locations, but also 

about number, identity, and other properties (He & Baillargeon 2007, Scott & Baillargeon 2009, Scott et 

al., 2007, Song & Baillargeon 2008). These findings suggest that, contrary to what the results of explicit 

FBTs suggest, false belief understanding may already be present by the age of 13-18 months (see 

Baillargeon et al. 2010, Poulin-Dubois et al. 2009 for reviews) and perhaps even earlier (e.g., Kovács et 

al. 2010). 

 

 

3. The Developmental Paradox of False Belief Understanding: Two Recent Solutions 

 

Whether or not these findings should be interpreted under the heading of false belief understanding has 

been a weighty topic of discussion (Perner & Ruffman 2005; Ruffman & Perner 2005; Csibra & Southgate 

2006; Sirois & Jackson 2007; Herschbach 2008). The issue is important because an early onset of false 

belief understanding during the first year suggests that the core principles of our Theory of Mind are 

largely part of our biological inheritance, whereas an onset at four years makes it more plausible that 

Theory of Mind is influenced by cultural processes and closely tied to language acquisition. 

If false belief understanding already emerges during the second year of life, then the crucial question 

is why 3-year-old children consistently fail the explicit false belief task (Wellman et al. 2001), even when 

paradigms are used that reduce response selection and inhibition demands (e.g., Call & Tomasello 1999; 

Sodian et al. 2006). This is what we call the ‘developmental paradox’ of false belief understanding. 

Most participants in the debate agree that there is no simple solution to the developmental paradox. 

Some of them have argued that we need two different systems to account for the intricacies of false belief 

development (e.g., Call & Tomasello 2008, Penn et al. 2008). Apperly & Butterfill (2009), for example, 

propose that the findings on implicit and explicit false belief understanding are best explained by 

respectively an early ‘Minimal’ Theory of Mind, which is cognitively efficient but limited and inflexible, and 

a flexible but cognitively very demanding full-blown Theory of Mind. Moreover, they offer an interpretation 

of infants’ performance on the implicit FBT in terms of ‘belief-like’ states rather than full-blown beliefs. On 

Apperly & Butterfill’s interpretation, infants are sensitive to the agent’s belief only insofar as they register 
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the object. First, however, Apperly & Butterfill explain the simpler notion of encountering. Encountering is 

defined as ‘a relation between an individual, an object and a location, such that the relation obtains when 

the object is in the individual’s field’ (p. 962). A field is defined, simply, as a certain region of space 

around the individual. Building on this, registering is defined as a slightly more complex psychological 

relation that obtains between an individual, an object and a location. An individual is said to register an 

object at a location when (a) she encounters the object at the location and (b) has not since encountered 

it somewhere else. A registering is off target when the object registered is not located where it is 

registered to be. The importance of the concept lies in the connections to actions: ‘One can understand 

registration as an enabling condition for action, so that registering an object and location enables one to 

act on it later […] Further, registration also can be understood as determining which location an individual 

will direct their actions to when attempting to act on that object’ (962). Tracking an agent’s registration of 

something does not require sensitivity to her mental states as propositional attitudes – which only comes 

with a full-blown Theory of Mind. 

Apperly & Butterfill’s (2009) proposal seems to provide us with a promising way to explain the 

different forms of false belief understanding. However, it also raises an important question: how are the 

two Theory of Mind systems (functionally) related? One possibility is that there is no direct interaction 

between the early-developing and later-developing Theory of Mind systems. Apperly & Butterfill (2009) 

think this assumption is supported by the afore-mentioned findings of Clements & Perner (1994) and 

Southgate et al. (2007). For they show that infants correctly anticipate the action of another agent in 

terms of looking behavior, even when they respond incorrectly when asked to make an explicit prediction 

about the agent’s future action. Apperly & Butterfill (2009) claim that these results are consistent with the 

possibility that an early-developing Theory of Mind system for tracking belief-like states is guiding 

children’s eye movements and a later-developing Theory of Mind system underlies children’s explicit 

judgments about beliefs. 

The claim that there is no interaction between the two systems at all strikes us as implausible, 

however. For this would imply that our full-blown Theory of Mind system remains invisible during the first 

years of development and suddenly becomes fully operational at age four. At least we would expect to 

see precursors to such a Theory of Mind system that contribute to the system’s functioning. For example, 

although Baron-Cohen’s (1995) Theory of Mind Mechanism can be understood as a separate, late-

developing mechanism, it depends on and receives input from the earlier developing Intentionality 

Detector, Eye-Direction Detector, and Shared Attention Mechanism. 

Moreover, recent studies (e.g., Aschersleben et al. 2008, Sodian et al. forthcoming) indicate that the 

set of specific competencies required for the implicit FBT (e.g., looking-time patterns, eye-direction 

detecting, etc.) actually predicts performance on the explicit FBT. While this does not imply that there has 

to be interaction ‘all the way down’ or ‘all the way up’ between the two ToM systems, it seems to us that a 

complete theoretical account has to explain not only the dissociations but also the continuations in the 

development of false belief understanding. Therefore, we shall assume that the later-developing, 

cognitively more demanding ToM system depends, at least to some extent, on the early minimal ToM 

system for its operation (cf. Csibra & Gergely, 1998; Russell, 2007; Surian et al., 2007). 

Baillargeon et al. (2010) have recently proposed a different solution to the developmental paradox. 

According to their proposal, infants come equipped with a psychological reasoning system that consists of 

two subsystems: sub-system 1 and sub-system 2. Sub-system 1 enables infants to attribute both 

motivational states and reality-congruent informational states to other agents, and is well in place by the 

end of the first year. Motivational states are defined as states that specify the agent’s motivation in the 

scene and include goals and dispositions. Reality-congruent informational states, by contrast, specify 

what knowledge or accurate information the agent possesses about the scene. Sub-system 2 deals with 
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reality-incongruent informational states, i.e. false beliefs, and becomes operational in the second year of 

life.
1
 

Baillargeon et al. (2010) argue that the developmental paradox of false belief understanding can be 

solved by means of a careful analysis of the task-requirements of explicit and implicit FBTs. They claim 

that, whereas the implicit FBT only involves (i) a process of false belief representation, the explicit FBT 

also requires (ii) a response selection process (when asked the test question, children must access their 

representation of the agent’s false belief to select a response) and (iii) a response-inhibition process 

(when selecting a response, children must inhibit any prepotent tendency to answer the test question 

based on their own knowledge (see also Scott and Baillargeon 2009). 

What is problematic about Baillargeon et al. (2010)’s solution is that it seems arbitrary to argue that 

the implicit FBT only involves false belief representation, whereas its explicit counterpart also require 

selection processing and response-inhibition. If we accept that the implicit FBT involves false belief 

representation, then it is not clear why it does not require selection processing and response-inhibition as 

well. For infants still have to select a false belief among other beliefs, and in order to do so they have to 

inhibit their default attribution of true beliefs.
2
 And if this is correct, then it does not work to argue that the 

failure on the explicit FBT is due to the joint activation of false-belief-representation processes and 

response-selection processes, which ‘overwhelms’ the child’s limited information-processing resources, 

and/or the fact that the neural connections between the brain regions that serve these two processes are 

still immature and inefficient in early childhood. 

In other words, whereas Apperly & Butterfill (2009) ignore questions about the interaction between 

the two systems involved in false belief understanding, Baillargeon et al. (2010) seem to lack the 

conceptual resources to adequately explain the differences between implicit and explicit forms of false 

belief understanding.  

 

 

4. Some Requirements for a Dual-system Account of False Belief Understanding 

 

Most accounts of explicit false belief understanding assume that infants have a default tendency to 

attribute their own (true) beliefs to other agents (e.g. Leslie et al. 2004) or to respond on the basis of their 

own knowledge (Birch & Bloom 2007; Carlson & Moses 2001). In order to pass the explicit FBT, infants 

have to be capable of taking ‘offline’ (i.e. inhibiting) their own reality-congruent perspective. 

 According to Baillargeon et al. (2010), as we saw in the previous section, the ability for offline 

processing is precisely what constitutes the difference in task demands between the implicit and explicit 

FBT. However, this seems to ignore the fact that the implicit FBT involves offline processing as well, albeit 

it of a less demanding kind. Take the ‘violation-of-expectation’ study by Onishi & Baillargeon (2005), for 

example (see section 2). Although this experiment does not require infants to deal explicitly with 

differences in belief, it does require them to process differences between the visual information available 

to themselves and the visual information available to the other agent. This can only be accomplished 

offline, since the other’s visual information is not directly available to the infant and needs to be 

represented by her. Therefore, already the implicit FBT  involves a capacity for decoupling from one’s 

own online processing of visual information and processing offline a representation of the visual 

information accessible to another agent. Yet, the role of decoupling and offline processing in this study is 

still limited. The infant largely relies on online visual information, and only has to process offline the other 

                                                           
1
 This proposal is an extension of Leslie’s (1994) view that the ToMM (Theory of Mind Mechanism) 

consists of two subsystems: sub-system 1, which is available from 6 to 8 months of age and allows for the 

processing goal-directed actions, and sub-system 2, which is available from approximately 18 months of 

age and generates propositional attitude representations. 
2
 Baillargeon et al. (2010) assume that infants by default attribute true beliefs to other agents. 
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agent’s representation of the location of a single object. More difficult versions of the implicit FBT place 

stronger demands on offline processing. For instance, Song & Baillargeon (2008) conducted an 

experiment in which infants had to represent the visual representation of another agent with respect to 

both the location and the identity of two objects. Among implicit FBTs, we can thus distinguish between 

more or less demanding versions requiring more or less decoupling. 

The above analysis shows that postulating a single sub-system, such as Baillargeon et al. 

(2010)’s sub-system 2, fails to explain the differences between implicit and explicit forms of false belief 

understanding.
3 This is because both implicit and explicit false belief understanding seem to require a 

three-step inhibition-selection-representation mechanism. Thus, an additional system is needed to explain 

why young infants already have an implicit understanding of false belief, but consistently fail tests 

assessing explicit false belief understanding. At the same time, contrary to what Apperly & Butterfill 

(2009) claim, this alternative dual-system account also has to say something about how the two systems 

interact throughout the development of false belief understanding. 

In order to determine what is required of such a dual-system account it pays to consider an early 

dual-system view proposed by Alan Leslie. According to this view, explicit false belief understanding 

depends on (i) a Theory of Mind Mechanism, and (ii) a Selection Processing System. The Theory of Mind 

Mechanism contains the basic meta-representational concept of belief (as well as the concept of desire 

and pretense) and provides the infants with an early intentional insight into the behavior of others. Leslie 

assumes that infants have a default strategy of attributing their own true belief to others.
4
 In order to pass 

the explicit FBT, they must learn to inhibit or override this default strategy, and select the content of the 

other agent’s false belief. Leslie argues that both processes are handled by the Selection Processing 

System. The job of this system is essentially to ‘inhibit competing possible contents for the belief’ (Scholl 

& Leslie 1999, p. 147). Moreover, ‘to infer the content of somebody's belief when that content is false, SP 

is required to select among the possible contents that ToMM makes available’ (ibid.). However, since the 

Selection Processing system matures later than the Theory of Mind Mechanism (which is innate), the 

infant fails the false belief task until the Selection Processing system is in place. ‘The developing 

performance on false-belief tasks, on this view, reflects not a developing ToMM, but a developing SP’ 

(ibid., p.149). 

Is such a ToMM/SP dual-system view able to account for implicit forms of false belief understanding? 

Interestingly, Leslie (2005) does mention the findings by Onishi & Baillargeon (2005). He claims that they 

‘underline the early role of ToMM as a core mechanism of attention, identifying learning opportunities as 

expectations are violated and directing attention to relevant sources of information’ (p.532). According to 

Leslie, the experiment by Onishi & Baillargeon (2005) and others reflect a very early understanding of 

false belief, which means that SP is already operational in infants of 15 months. However, if this is true, 

then the whole idea that infants use a default attribution strategy before they pass the explicit FBT 

becomes problematic. For it means that SP initially provides infants with an early implicit understanding of 

false belief, then, at a later point of development, exchanges this for a default attribution strategy (despite 

the fact that the infant already has an understanding of the difference between true and false belief), only 

to reinstall an explicit form of false belief understanding around the age of four. Nevertheless, Leslie 

(2005) does seem to follow this line of thought, for he speculates that ‘sometime between 15 and 30 

months, SP learns to make the true-belief attribution the default’ (p.532). 

                                                           
3
 Although Baillargeon et al. (2010) postulate two sub-systems, only one of them (sub-system 2) is used 

to explain the difference between implicit and explicit false belief understanding. 
4
 Leslie (2000) explains the importance of default belief attribution as follows: 'it is useful to understand 

why belief attribution has a default bias. If desires set an agent's goals, beliefs inform the agent about the 

state of the world. A belief that misinforms an agent is a useless, even a dangerous thing: beliefs ought to 

be true. Therefore, the optimal default strategy for the belief attributer is to assume that an agent's beliefs 

are true.’ (p.1242)  
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This is puzzling. Why would SP make true-belief attribution the default when infants already have an 

understanding of false belief, especially given the fact that it has to be overridden again at a later stage of 

development? The problem here seems to be that Leslie tries to explain the development of false belief 

understanding completely in terms of the development of a single Selection Processing System, much 

like Baillargeon et al. (2010) try to explain it completely in terms of the inhibition-selection-representation 

processes enabled by sub-system 2. 

We think that what is needed instead is a more dynamic view of the concepts our Theory of Mind 

Mechanism makes available and how they unfold throughout ontogeny (in close interaction with an 

inhibition-selection-representation mechanism). This is not per se incompatible with the idea of innate 

mental state concepts. Spaulding (2010), for example, maintains that innate mental state concepts are 

not necessarily ‘robust’ (p.127). She contrasts robust mental states, typified by propositional attitudes 

such as belief, with ‘sub-doxastic’ mental states (p.123) that do not possess truth-evaluable, propositional 

content.
5
 

This suggestion is very much in line with recent proposals that emphasize the need to get away from 

the standard folk psychological concepts of belief and desire when it comes to explaining early socio-

cognitive capacities such as those recruited for implicit false belief understanding. These proposals range 

from the postulation of a Naïve, Weak, or Minimal Theory of Mind, i.e., one lacking paradigm folk 

psychological concepts (Bogdan 2009, Tomasello et al. 2003, Apperly & Butterfill 2009), Perceptual 

Mindreading (Bermúdez 2009), or an Early Mindreading System (Nichols & Stich 2003). 

We already mentioned Apperly & Butterfill’s (2009) proposal of an early-developing Minimal Theory of 

Mind, which enables infants to track belief-like states and guides their eye movements. In a similar vein 

Bogdan (2009) postulates the existence of a Naïve Theory of Mind which has ‘the primary function of 

registering and representing another mind’s relations to the world’ (p.63). Naïve Theory of Mind is best 

understood as an assembled cluster of abilities that enables the grasping and representing of the mental 

states of others, specifically - gazing, seeing, and emoting. Bogdan (2009) proposes that infants slowly 

move from initially noticing such things as another’s direction of gaze, bodily posture or movement in 

purely behavioral ways to being able to track, register, or represent the target of the purposed aboutness 

of another’s attending (2009, p.71). 

Like Apperly & Butterfill’s (2009) ‘encountering’ and ‘registering’, however, it is not clear whether this 

notion is sufficiently fine-grained to properly explain the different abilities involved in various forms of false 

belief understanding. Bogdan (2009) explains ‘purposed aboutness’ as a kind of goal-directed 

intentionality that is recognizably expressed in the way that organisms respond to aspects of their 

immediate environment - showing (1) relatedness to a target; (2) the direction of this relatedness; and (3) 

the target itself. But such an explanation is too general and fails to capture important differences between 

the abilities required for false belief understanding. Consider Southgate et al. (2007), for example, who 

employed an eye-tracker to measure anticipatory looking in 25-month-olds. In the experiment, infants 

observed how a protagonist witnesses a puppet bear that hides a ball in one of two boxes. Then the 

protagonist becomes distracted and turns away from the scene. Meanwhile, the bear removes the ball 

from its original hiding location. Southgate et al. (2007) found that most 25-month-olds correctly 

anticipated the protagonist’s behavior and looked at the location where she falsely believed the ball to be 

hidden. Like the ‘violation-of-expectation’ study by Onishi & Baillargeon (2005), this experiment requires 

infants to process differences between the visual information available to themselves and the visual 

information available to the protagonist. Since the latter is not directly available, it has to be represented 

by the infant. In this scenario, an understanding of the agent’s purposed aboutness comes down to being 

able to anticipate her behavior on the basis of her perception of a given object in the previous scene. 

Now take a different experiment by Luo & Baillargeon (2005). This study showed that infants of 5 

months old, after watching an agent repeatedly reach for object A as opposed to object B, registered the 

                                                           
5
 See Stich (1978) for the origins of this distinction. 
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‘purposed aboutness’ (i.e. preference) of this agent for object A over object B. When the objects’ positions 

were reversed, infants expected the agent to reach for object A in its new position, and they looked 

reliably longer if the agent reached for object B instead. What is important is that in this experiment, unlike 

the one by Southgate et al. (2007), infants did not need to process perceptual incongruencies between 

their visual perspective and that of the other agent. Both infant and agent perceived the same object, and 

the infant does not need to represent the reality-incongruent informational state of another agent. In this 

experiment, understanding purposed aboutness means being able to anticipate the behavior of another 

agent on the basis of her movements towards the object. 

Both behavior-anticipation strategies depend on different abilities, and although both emerge in the 

first year of life, they have a different developmental onset. Visual habituation studies indicate that infants 

are already capable of understanding another agent’s goal-directed movement towards an object from 5 

months onwards (e.g., Biro & Leslie, 2007; Gergely & Csibra, 2003; Woodward, 1998, 2005). Importantly, 

they do not selectively attend to goals for events involving inanimate objects, such as rods or claws 

(Woodward, 1998), or for events in which the agent’s hand is disguised by a metallic glove (Guajardo & 

Woodward, 2004).
6
 Understanding another’s agent goal-directed perception emerges later in 

development. In an experiment by Woodward (2003), for example, 7- and 9-month-old infants followed an 

agent’s gaze and when they saw the agent look at and grasp a toy, they not only looked at that toy, but 

also selectively registered the directedness of the agent towards the toy. However, when the infants only 

saw the agent look at the object but not touch it, they failed to register this directedness. Infants of 12 

months, in contrast, were capable of registering the agent’s directedness towards the toy solely on the 

basis of her gaze. Other studies also indicate that it is only towards the end of the first year that infants 

become capable of registering more abstract (or ‘distal’) goal-directed behaviors such as looking and 

pointing (Phillips et al. 2002, Sodian & Thoermer 2004, Woodward 2003, 2005, Woodward & Guajardo 

2002). 

This shows that the concept of purposed aboutness is not fine-grained enough to capture the different 

abilities recruited in the various implicit FBTs. The same seems to hold for the notions of ‘encountering’ 

and ‘registering’ proposed by Apperly & Butterfill (2009). Of course, this is not a principled objection 

against these positions. Rather, it should be seen as an incentive to develop a more sophisticated 

conceptual vocabulary to do justice to the empirical findings on false belief understanding.  

Ideally, this conceptual vocabulary should be sufficiently flexible to account for two important 

developmental interactions, namely, (i) between the infant’s own action towards an object and her 

subsequent perception of another agent’s goal-directed behavior towards the object, and (ii) between the 

infant’s perception of another agent’s goal-directed behavior towards an object and her own perception of 

the object. 

With respect to (i): a study by Sommerville et al. (2005) demonstrated that even 3-month-olds focus 

on the relation between an actor and her goal if they reached (and not just watched) for a toy before 

observing another agent grasping it. The more they themselves were engaged in object-directed contact 

with the toys, the more sensitive they were to the agent goal-directed behavior. More recently, 

Sommerville et al. (2008) also found that 10-month-old infants who received active training in pulling a 

cane to retrieve a toy subsequently registered another person’s cane-pulling actions as goal-directed 

behavior, while infants who underwent observational training were unable to do this. 

                                                           
6
 Early visual habituation experiments showed that infants did not register the goals of inanimate objects 

(Woodward 1998, Guajardo & Woodward, 2004). Recent findings, however, suggest that infants do 

sometimes perceive inanimate entities as goal-directed agents (Biro & Leslie, 2007; Csibra, 2008; 

Johnson et al. 2001; Kuhlmeier et al. 2003; Mahajan & Woodward 2009; Luo & Baillargeon, 2005; 

Shimizu & Johnson, 2004). This seems to depend on the availability of additional cues (e.g. self-propelled 

motion) indicating the animacy of the agent. The current debate is mainly concerned with the range of 

cues that might contribute to the infants’ goal understanding (cf. Biro & Leslie, 2007). 
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With respect to (ii): it has been shown that behavioral cues (Biro et al. 2007, Biro & Leslie 2007), 

infant-directed talk and eye-contact induce gaze-following towards specific objects (Senju & Csibra 2008), 

and the use of specific linguistic labels increases the salience of objects over others (Xu 2002, Xu et al. 

2004). Other experiments suggest that reaching behavior promotes the infant’s perception of the 

spatiotemporal properties of the object of interest, whereas pointing behavior promotes the surface 

properties of the object (e.g., Csibra & Gergely 2006). 

This raises important questions about how the infant’s own action informs her perception of goal-

directed behavior and vice versa. Some have proposed that the actions of infants and their perceptions of 

the actions of others are by a cross-modal system that translates action and perception into a unified 

‘language’. Georgieff & Jeannerod (1998) proposed the term ‘shared representation’ in order to articulate 

the idea that action and perception might essentially share the same representational space. This 

possibility is compatible with the findings of mirror neurons – neurons that fire during both action 

production and action perception (e.g., Rizzolatti & Craighero 2004, Rizzolatti et al. 2006). It has been 

argued that these mirrors show a ‘human bias’, in the sense that they resonate stronger with perceived 

actions of human versus non-human agents (Press et al. 2007, Tsai et al. 2008). This link between 

perception and action has also been found in early infancy (Kanakogi & Itakura 2010), and research on 

newborn imitation has been cited as evidence for an inherited mirror neuron system that underlies 

imitative behavior in human infants (e.g., Iacoboni et al.1999; Decety et al. 2002; Grezes et al. 2003; 

Iacoboni 2005; Iacoboni & Depretto 2006). However, there are many open questions about the existence 

of such a system in infants and its role in infant development (Gerson & Woodward in press; Meltzoff 

2006). Moreover, there are also methodological doubts (Hickok 2009) and experiments that fail to report 

mirror neuron activity (Lingnau et al. 2009). 

Therefore, it should be emphasized that mirror neurons are just one way of getting at the more 

general idea that action production and action perception can be understood in terms of shared 

representations. There are other grounds for supporting this idea as well, e.g. on the basis of proposals 

about action coding (e.g., Elsner & Hommel 2001, Prinz 2002) or findings from developmental studies 

(Meltzoff  2004, 2006; Meltzoff & Moore 1977, 1994; Meltzoff & Brooks 2001). 

 

 

5. False Belief Understanding as Progressive Decoupling 

 

What is attractive about shared representations is that they explain how perception and action are 

dynamically co-constituted in what Gallese (2001) calls the primordial ‘we space'. However, this also 

gives rise to an important question about the registration of agency. How are the mechanisms that 

facilitate shared representations able to differentiate situations in which infants observe the goal-directed 

behavior of another agent from those in which they perform the same action themselves – such as those 

in the studies by Sommerville et al. (2005, 2008)? This is a serious problem for those who appeal to 

mirror neurons in their explanation of action understanding. Since both conditions activate the same 

cortical ‘mirror’ sectors, an additional mechanism is needed to determine whether the infants performs or 

observes the action. More in general, it can be seen a problem for proponents of a version of Simulation 

Theory. The question is, as Gordon (1986) puts it, how infants manage to make ‘adjustments for the 

relevant differences’ while avoiding ‘total projection’. 

Although we think this is indeed an important problem, it should not be overstated. To start with, 

researchers have proposed various solutions to address this issue. According to one proposal, shared 

representations are neither first- or third-person. The infant’s observation of goal-direct behavior triggers 

the activation of so-called ‘naked representations’. The idea is that mirror neurons encode the 

sensorimotor and perceptual properties of goal-directed behavior (either perceived or produced) in a 

shared representational format, but do not register the agent behind the action (deVignemont 2004; 

Jeannerod & Pacherie 2004; Gallese 2005; Hurley 2008). This is done in a second step by an additional 
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mechanism. Georgieff & Jeannerod (1998), for example, have argued that this process might be taken 

care of by a ‘Who’ mechanism. Evidence for this mechanism comes from experiments showing a 

differential activation in the posterior insula when the subject took the role of agent, and in the right 

inferior parietal cortex when it took the role of observer (Farrer et al. 2003; Farrer & Frith 2002; Ruby & 

Decety 2001). 

We are not committed to one of these more specific proposals. We merely mention them in order to 

make clear that the question of self-other differentiation is mainly problematic for those aiming to explain 

action understanding solely in terms of mirror neuron processes – like Iacoboni or Gallese. But this is 

certainly not a position that we wish to defend. In fact, we think the more interesting question for those 

who subscribe to shared representations is precisely what additional mechanisms are required to explain 

the differentiation between self and other. This is not only necessary to account for instances of imitative 

behavior, which is central to most experiments on mirror neurons (cf. Iacoboni 2005), but also action 

emulation (i.e. achieving the same goal by different means), and cases in which agents actually do the 

opposite of the observed behavior. 

Given our current focus on the development of false belief understanding, we are primarily interested 

in those situations in which infants are sensitive to the reality-incongruent informational states of other 

agents (i.e. their false beliefs). Instead of opting for ‘naked representations’, however, we shall follow 

other researchers (e.g., Leslie et al. 2004, Birch & Bloom 2007; Carlson & Moses 2001) in assuming that 

infants simply have a tendency to attribute their own representational states  to other agents. Thus, we 

agree with Goldman (2006) that infants’ default procedure is to project their own basic concepts onto 

others. 

In section 3, we criticized Baillargeon et al. (2010) for explaining the difference between implicit and 

explicit false belief understanding in terms of a single inhibition-selection-representation mechanism. 

More in particular, we suggested that implicit false belief understanding may involve selection processing 

and response-inhibition as well. This is because infants still have to select a reality-incongruent 

informational state, and in order to do so they have to inhibit their default tendency to attribute a reality-

congruent informational state. In what follows we will explain this proposal in more detail. 

Our starting point is Baillargeon et al. (2010)’s notion of a reality-congruent informational state, i.e. 

an informational state represented on the basis of the infant’s own perspective on the scene. We think 

this notion has potential when it comes to explaining the development of false belief understanding, but it 

needs to be specified in more detail – in particular in relation to the infant’s mode of perspective taking. 

Furthermore, in line with other dual-system accounts, we postulate two systems in order to account for 

the development of false belief understanding: (a) an inhibition-selection-representation system, or 

‘ISRS’, and (b) a default attribution mechanism that is responsible for the default attribution of reality-

congruent informational states, or ‘DAM’. Central to our proposal is the idea that ISRS, like Leslie’s 

Selection Processing system, functions as a ‘de-coupling’ mechanism. In our model, however, ISRS is not 

responsible for decoupling false beliefs. Rather, it decouples different kinds of reality-congruent 

informational states. 

We propose that there are three ways in which ISRS facilitates the decoupling of reality-congruent 

informational states, thus allowing infants to understand the reality-incongruent information states of other 

agents instead. In the first place, ISRS can decouple a reality-congruent informational state by inhibiting 

its sensorimotor properties. The basic idea is that infants by default register reality-congruent 

informational states on the basis of their own sensorimotor perspective, i.e. their own (intended) 

movements towards the object. It has been hypothesized that this underlies infants’ ability to anticipate 

the consequences of their own behavior: the brain generates motor-simulations of intended movements 

by sending efference copies through a forward control mechanism in order to compare them with an 

ongoing movement to predict its success (e.g., Frith et al. 2000, Blakemore et al. 2002, Blakemore & Frith 

2003). In order to understand the goal-directed behavior of another agent (i.e. her movement towards the 

object), three ISRS sub-processes are required: (i) a response inhibition process (infants have to inhibit 
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their own sensorimotor perspective, (ii) a response selection process (infants have to select the 

sensorimotor perspective of the other agent), and (iii) a representation process (infants have to represent 

a reality-incongruent informational state that is informed by the other agent’s sensorimotor perspective). 

This first-order mode of decoupling reality-congruent informational states allows us to explain what 

happens in experiments like the one by Luo & Baillargeon (2005), where infants are able to anticipate the 

behavior of another agent on the basis of his or her movement towards the object. 

One might wonder how the infant is able to select and represent the sensorimotor perspective of 

another agent. This is precisely where we think the notion of shared representation could play an 

important role: the infant’s perception of the agent’s goal-directed behavior in the familiarization trials 

leads to ‘shared resonance’, and provides the infant with the sensorimotor information required to execute 

the observed action. During the test trial, the infant has to select and represent a reality-incongruent 

informational state on the basis of this sensorimotor information. 

Secondly, ISRS can also decouple a reality-congruent informational state by inhibiting the infant’s 

perceptual perspective. Our assumption is here that infants by default register reality-congruent 

informational states on the basis of their own perception of the object. In order to anticipate another 

agents’ behavior on the basis of their visual perspective (i.e., what they can or cannot see), the infant has 

to take offline its own perceptual perspective. This second-order mode of decoupling again involves three 

ISRS processes: inhibition, selection and representation. 

Now we are in the position to explain what happens in implicit false belief experiments, which show 

that infants are able to anticipate the behavior of another agent on the basis of his or her perception of the 

object. Consider again the Southgate et al. (2007) experiment, which showed that 25-month-olds 

correctly anticipated the behavior of a protagonist with a false belief about the location of a ball. According 

to our model, in order to anticipate the behavior of the agent on the basis of her visual perspective (i.e., 

what the agent saw in the previous scene) the infant has to inhibit its own perceptual perspective, and 

represent the perceptual perspective of the other agent instead. 

Finally, the ISRS allows infants to decouple a reality-congruent informational state by inhibiting its 

cognitive perspective. Before they acquire linguistic competence, infants are already capable of 

representing certain proximal goal-directed actions as informational states with a means-end structure. 

This provides them with a basic understanding of the ‘in-order-to’ relations that are characteristic for goal-

directed behavior, e.g., the agent reaches out in order to grasp the object. What is important about 

linguistic symbols is that they allow infants to (re)configure informational states in much more complex ‘in-

order-to’ relations, thereby enabling an increasingly sophisticated typing of the distal goal-directed actions 

of other agents. Our use of the terms ‘perceptual perspective’ and ‘cognitive perspective’ is meant to 

illustrate precisely this difference between perceiving and/or representing proximal versus more distal 

goal-directed actions. 

This last ability is an important requirement for the explicit FBT. For this task requires infants to deal 

with rather abstract experimental scenarios, i.e. stories or pictures instead of the interacting real-life 

agents and objects that feature in the implicit FBT. On our view, infants by default register what happens 

in these scenarios on the basis of their own cognitive perspective. Now in order to verbally predict 

another agents’ behavior on the basis of their cognitive perspective, the infant has to take offline its own 

reality-congruent perspective. This third-order mode of decoupling again involves three ISRS processes: 

inhibition, selection and representation. 

This allows us to explain what happens in the explicit FBT, but it does not yet explain the 

developmental paradox of false belief understanding, i.e. why infants have more difficulty with the explicit 

false belief task vis-à-vis its implicit counterpart. Although we cannot offer a concrete solution to this 

problem here, we do think there a number of options that should be further investigated. In the first place, 

the explicit false belief task might simply be more difficult because it requires a much stronger form of 

decoupling. Evidence suggests that explicit false belief understanding indeed places increasing demands 

on executive functioning. For example, several studies have found robust correlations between explicit 
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FBT performance and response inhibition (e.g., Perner & Lang 1999, Cole & Mitchell 2000, Carlson & 

Moses 2001) and working memory (Carlson et al. 2002, Hala et al. 2003, Perner et al. 2002). 

However, it seems unlikely that this is the whole story. What studies such as the one by Southgate et 

al. (2007) show is that especially verbal interaction between infant and experimenter crucially contributes 

to the difficulty of the explicit FBT. Many experiments have found strong correlations between linguistic 

competence and explicit FBT performance (Dunn et al. 1991, Astington & Jenkins 1999, Gale et al. 1996, 

De Villiers & De Villiers 2000, Watson et al. 2002, Farrar & Maag 2002). There are several hypotheses 

about why children have more difficulty with FBTs involving linguistic interaction. Some researchers 

propose that children need to master its semantics (Moore et al. 1990), whereas others argue that what is 

required is getting a handle on its syntactic structure (e.g., Hale & Tager-Flusberg 2003, Lohmann & 

Tomasello 2003). We are not committed to one of these hypotheses in particular, but we like to point out 

that they are not incompatible with the previous point about the stronger decoupling requirement. It is very 

well possible that the explicit FBT requires a stronger form of decoupling precisely because it involves 

language. An intriguing possibility is that infants fail the explicit false belief task because there is 

something that interferes with the decoupling process, namely, their verbal interaction with the 

experimenter. This requires further investigation, however.   

 

 

6. Closing Comments and Further Research 

 

One of the strengths of the ISRS-DAM model presented in the previous section is that it does justice to 

the developmental continuity of false belief understanding, and also gives a clear explanation of how the 

interaction between the two sub-systems provides infants, at each stage of development, with more 

advanced capacities to understand other agents. In this way, the model is able to avoid two serious 

problems for dual-system accounts of false belief understanding, namely, (i) how these systems interact 

and (ii) what this implies for their ontogenetic development (see section 3). 

Of course there are several remaining issues that still need to be addressed. One important question 

has to do with the role of shared representations in the infant’s ability to represent and understand 

another agent’s visual and cognitive perspective. A second question concerns the role of inhibition in 

decoupling reality-congruent informational states. We have argued that ISRS enables infants to inhibit 

their own reality-congruent perspective in order to represent the reality-incongruent perspective of 

another agent. But is this decoupling required for all instances in which infants register reality-incongruent 

informational states? It seems plausible to assume that the amount of inhibition required diminishes as a 

result of learning, and infants become increasingly skilled at switching between congruent and 

incongruent perspectives in the long run. 

The ISRS-DAM model also offers new directions for future research, for instance with respect to its 

neurobiological implementation. An interesting idea is to understand DAM, which underlies the default 

tendency to attribute reality-congruent informational states, as a simulation mechanism. Consequently, it 

could be investigated to which extent DAM recruits the brain areas traditionally associated with the mirror 

neuron system: the superior temporal sulcus, the inferior frontal cortex, and the rostral part of the inferior 

parietal lobe (Iacoboni et al. 1999, 2005, Iacoboni & Dapretto 2006, Koski et al. 2002, 2003, Decety et al. 

2002, Chaminade et al. 2005). The ISRS processes that enable the representation of reality-incongruent 

informational states, by contrast, might be facilitated by a ‘mentalizing’ network, consisting of the anterior 

cingulated cortex, the temporoparietal junction, the superior temporal sulcus and the temporal poles (Frith 

& Frith 2003, Amodio & Frith 2006). Further research has to show whether it is possible to establish such 

a link between DAM and the mirror neuron system, and ISRS and the mentalizing network. 
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1 Introduction

Epistemic modal logics and their extensions are concerned with global and abstract problems in reasoning

about information. One of the features of that approach is its struggle for flexibility: it aims at designing

logical systems that can model a large variety of epistemic scenarios [9, 4]. Hence, it is not surprising that

the trade-off between expressivity and complexity has been one of the central problems in the epistemic

logic literature. Logics need to be quite complex to account for a wide range of problems and it is not a

surprise that there are many intractability results in the literature (see e.g., [13] and [5] for a survey).

One of the aims of this paper is to initiate the mapping of the tractability border among the epistemic

tasks rather than epistemic logics. As a result, we can identify a theoretical threshold in the difficulty

of reasoning about information, as was already done in the context of reasoning with quantifiers (see

[19, 20]). In order to do this, we shift our perspective: Instead of investigating the complexity of a given

logic that may be used to describe a problem, we turn towards a complexity study of that concrete

problem itself, determining what computational resources are needed in order to perform the reasoning.

Focusing on specific problems, things may be much easier since concrete problems involved in the study

of multi-agent interaction are rarely as general as e.g. satisfiability. In most cases, checking whether a

given property is satisfied in a given (minimal) epistemic scenario is sufficient. Hence, many problems

turn out to be tractable. Still, we will see that even in this perspective there are some intractable

problems. This feasibility border in epistemic tasks seems to be an interesting new topic for a formal

study. Moreover, in principle the cognitive plausibility of the border could be empirically assessed by

checking whether it correlates with the difficulties faced by human subjects (cf. [23, 21]). So in a sense,

we aim to initiate a search for an appropriate perspective and complexity measures that describe in

plausible ways the cognitive difficulties agents face while interacting. Certain experimental results in the

economics literature [24, 10] explore similar directions. In general, the approach we have described in this

paper focuses exclusively on the abstract information structure leaving out any concept of preferences

and strategic reasoning.

In this paper we investigate the computational complexity of various decision problems that are

relevant for interactive reasoning in epistemic modal logic frameworks. In particular, we explore the

complexity of manipulating and comparing information structures possessed by different agents. For

instance, we are interested in how difficult it is to answer the following questions.

∗Cédric Dégremont and Jakub Szymanik gratefully acknowledge the support of Vici grant NWO-277-80-001.
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• Is one agent’s information strictly less refined than another agents’ information?

• Do two agents have the same knowledge/belief about each other’s knowledge/belief?

• Given two agents, is it possible to give some information to one of them such that as a result

– both agents have similar information structures? (cf. [22].)

– one of them has more refined information than the other?

For determining the computational complexity of the different problems, we use complexity results

from graph theory (see e.g. [12]). Thus, we also clarify the computational impact of assuming S5 acces-

sibility relations in epistemic models, i.e., the impact of assuming partition-based information structures

on the complexity of various problems.

After giving the preliminaries in Section 2, we discuss four types of epistemic tasks and their com-

putational complexity: informational similarity (Section 3.1), informational symmetry (Section 3.2) and

two kinds of informational manipulation (Section 3.3 and 3.4). Omitted proofs can be found in the

appendix. Section 4 concludes.

2 Preliminaries

2.1 Modeling information

We use relational structures from epistemic logic for modeling information (cf. [6, 9]). Kripke models can

compactly represent the information agents have about the world and about the information possessed

by the other agents. In what follows, N = {1, . . . , n} is a fixed finite set of agents and prop is a countable

set of propositional variables.

Definition 2.1 (Kripke Models). A Kripke model M based on a set of agents N is of the form

(W, (Ri)i∈N , V ), where W 6= ∅, for each i ∈ N , Ri is a binary relation on W , and V : prop→ ℘(W ).

It is frequently assumed that information structures are partition-based [1, 9, 16]:

Definition 2.2 (Epistemic Models). An epistemic model is a Kripke model such that for all i ∈ N , Ri

is an equivalence relation. (We usually write ∼i instead of Ri).

We write |M| to refer to the size of the model M, and Dom(M) to refer to the domain of M. We

refer to a pair (M, w) with w ∈ Dom(M) as a pointed model. Intuitively Ri encodes i’s uncertainty: if

sRit, then if the actual world were s then i would consider it possible that the actual world is t. For any

non-empty set G ⊆ N , we write R∗G for the reflexive transitive closure of
⋃

i∈GRi.

2.2 Comparing models and reasoning about submodels

In what follows, we need a reasonable notion of two models being similar. In addition to the notion of

isomorphism, we make use of the notions of simulation, simulation equivalence and bisimulation.

Definition 2.3 (Simulation). We say that a pointed Kripke model (M, s), whereM = (W, (Ri)i∈N , V )

and s ∈W , is simulated by another pointed model (M′, s′) (which we denote by (M, s) v (M′, s′)) such

that M′ = (W ′, (R′i)i∈N , V
′) with s′ ∈ W ′ if there exists a binary relation Z ⊆ W ×W ′ such that sZs′

and for any two states x, x′ whenever xZx′ then for all i ∈ N :

1. x, x′ verify the same proposition letters.
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2. if xRiz in M then there exists some z′ ∈W ′ with x′R′iz
′ and zZz′.

We say that M = (W, (Ri)i∈N , V ) is simulated by M′ = (W ′, (R′i)i∈N , V
′) (denoted by MvM′) if

there are s ∈ W and s′ ∈ W ′ such that (M, s) v (M′, s′). We say that a simulation Z ⊆ W ×W ′ is

total if for every s ∈W , there is some t ∈W ′ such that sZt, and for every t ∈W ′, there is some s ∈W
such that sZt. IfM is simulated byM′ by means of a total simulation, we sayMvtotalM′. Moreover,

we say thatM = (W, (Ri)i∈N , V ) andM′ = (W ′, (R′i)i∈N , V
′) are simulation equivalent ifM simulates

M′ and M′ simulates M. The following notion is stronger than simulation equivalence.

Definition 2.4 (Bisimulation). A local bisimulation between two pointed Kripke models with set of

agents N , (M, s) with M = (W, (Ri)i∈N , V ) and (M′, t) with M′ = (W ′, (R′i)i∈N , V
′) is a binary

relation Z ⊆W ×W ′ such that sZs′ and also for any worlds x, x′ whenever xZx′ then for all i ∈ N :

1. x, x′ verify the same proposition letters.

2. if xRiu in M then there exists u′ ∈W ′ with x′R′iu
′ and uZu′.

3. if x′R′iu
′ in M′ then there exists u ∈W with xRiu and uZu′.

We say that M = (W, (Ri)i∈N , V ) and M′ = (W ′, (R′i)i∈N , V
′) are bisimilar (M↔M′) if there are

s ∈ W and s′ ∈ W ′ such that (M, s)↔(M′, s′). A bisimulation Z ⊆ Dom(M) × Dom(M′) is total if

for every s ∈ Dom(M), there is some t ∈ Dom(M′) such that sZt, and for every t ∈ Dom(M′), there

is some s ∈ Dom(M) such that sZt. Then we write M↔totalM′.
To reason about informational structures that can be obtained by providing agents with new infor-

mation, we use the notions of submodel and generated submodel.

Definition 2.5 (Submodel). We say that M′ is a submodel of M iff W ′ ⊆ W , ∀i ∈ N, R′i =

Ri ∩ (W ′ ×W ′), ∀p ∈ prop, V ′(p) = V (p) ∩W ′.

The notion of induced subgraph is just like that of a submodel without the condition for the valuations.

The notion of subgraph is weaker than that of an induced subgraph as it allows that R′i ⊂ Ri∩W ′×W ′).

Definition 2.6 (Generated submodel). We say thatM′ = (W ′, (Ri)
′
i∈N , V

′) is a generated submodel of

M = (W, (Ri)i∈N , V ) iff W ′ ⊆W and ∀i ∈ N, R′i = Ri∩(W ′×W ′), ∀p ∈ prop, V ′(p) = V (p)∩W ′ and

if w ∈ W ′ and wRiv then v ∈ W ′. The submodel of M generated by X ⊆ W is the smallest generated

submodel M′ of M with X ⊆ Dom(M′).

We write Ki[w] := {v ∈W | wRiv} to denote i’s information set at w and R∗G[w] := {v ∈W | wR∗Gv}.
This notion is generalized by the concept of horizon:

Definition 2.7 (Horizon). The horizon of i at (M, w) (notation: (M, w)i) is the submodel generated

by Ki[w].

This paper will not use syntactic notions. In terms of intuition, the important definition is that of

knowledge Ki: agent i knows φ at w if φ is true in all states that i considers possible at w. In equivalent

semantic terms: i knows E if E ⊆ Ki[w]. E is common knowledge in a group G at w iff E ⊆ R∗G[w].

2.3 Tractability

Some problems, although computable, nevertheless require too much time or memory to be feasibly

solved by a realistic computational device. Computational complexity theory investigates the resources

(time, memory, etc.) required for the execution of algorithms and the inherent difficulty of computational
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problems [17]. In particular, we want to identify efficiently solvable problems and draw a line between

tractability and intractability. In general, the most important distinction is that between problems which

can be computed in polynomial time with respect to their size, and those which are believed to have

only exponential time algorithmic solutions. The class of problems of the first type is called PTIME

(P for short); one can demonstrate that a problem belongs to this class if one can show that it can be

computed by a deterministic Turing machine in polynomial time. Problems belonging to the second

class are referred to as NP-hard. They are at least as difficult as problems belonging to the NPTIME

(NP) class; this is the class of problems which can be computed by nondeterministic Turing machines in

polynomial time. NP-complete problems are NP-hard problems belonging to NPTIME, hence they are

intuitively the most difficult problems among the NPTIME problems.

3 Complexity of comparing and manipulating information

3.1 Information similarity

The first natural question we would like to address is whether an agent in a given situation has similar

information to the one possessed by some other agent (in a possibly different situation). One very strict

way to understand such similarity is through the use of isomorphism.

For the general problem of checking whether two Kripke models are isomorphic, we can give tight

complexity bounds, as this problem is polynomially equivalent to graph isomorphism. The graph iso-

morphism problem is neither known to be NP-complete nor to be tractable and the set of problems with

a polynomial-time reduction to the graph isomorphism problem is called GI.

Decision Problem 3.1 (Kripke model isomorphism).

Input: Pointed Kripke models (M1, w1), (M2, w2).

Question: Are (M1, w1) and (M2, w2) isomorphic, i.e. is it the case that (M1, w1) ∼= (M2, w2)?

Fact 3.2. Kripke model isomorphism is GI-complete.

However, isomorphism is arguably a too restrictive notion of similarity. Bisimilarity is a weaker but

still a very natural concept of similarity for relational structures. Here the question arises as to whether

working with S5 models – a common assumption in the epistemic logic and interactive epistemology

literature – rather than arbitrary Kripke structures has an influence on the complexity of the task.

Decision Problem 3.3 (Epistemic model bisimilarity).

Input: Two pointed multi-agent epistemic S5 models (M1, w1), (M2, w2).

Question: Are the two models bisimilar, i.e. (M1, w1)↔(M2, w2)?

In [3], it has been shown that deciding bisimilarity is P-complete for finite labelled transition systems.

It follows that epistemic models bisimilarity is also in P.

Fact 3.4. Multi-agent epistemic S5 model bisimulation can be done in polynomial time with respect to

the size of the input (|M1|+ |M2|).

Thus, multi-agent epistemic S5 model bisimilarity is in P. Now, of course the question arises if it is

also P-hard.1

Open problem Is multi-agent epistemic model (S5) bisimulation P-hard?

1We conjecture that we can show P hardness using methods of simulating an arbitrary relation R by a combination of

two equivalence relations ∼1 and ∼2 as follows: we replace each wRv by w ∼1 z ∼2 v, for a new state z.
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Without any assumptions on the accessibility relations for the agents, we immediately get P-

completeness for multi-agent Kripke models as the problem is equivalent to bisimilarity for finite labelled

transition systems.

The picture. Deciding whether two models are bisimilar is tractable for S5 epistemic models, and

in case of the arbitrary Kripke structures it is among the hardest tractable problems. Kripke model

isomorphism lives on the tractability border. It is open whether isomorphism for (partition-based)

epistemic models is tractable and whether epistemic S5 model bisimilarity is P-complete, which we

indeed conjecture to be the case.

3.2 Informational symmetry: knowing what others know

The preceding notions of similarity are very strong. In the context of analyzing epistemic interactions

between agents, weaker notions of similarity are of interest. In general, the information that agents

have about each other’s information state plays a crucial role. We will now analyze the problem of

deciding whether two agents’ views about the interactive epistemic structure, and in particular about

the knowledge of other agents, are equivalent. A first reading is simply to fix some fact E ⊆W and ask

whether E is common knowledge in a group G. Clearly this problem is tractable.

Fact 3.5. Given a pointed model (M, w), some E ⊆ Dom(M) and G ⊆ N , deciding whether E is

common knowledge in the group G at w can be done in polynomial time.

Proof. From reachability for R∗G.

However, instead of fixing some specific fact of interest, the question might be whether a situation

is symmetric with respect to two given agents, say Alice and Bob. In other words, is the interactive

informational structure from Alice’s perspective similar to how it is from Bob’s perspective?

Definition 3.6. We write M[i/j] to be the model obtained by switching labels between i and j.

Definition 3.7. We say that two pointed multi-agent epistemic models (M, s) and (M′, s′) (with set

of agents N) are flipped bisimiliar for agents i, j ∈ N , (M, s)↔f
(i,j)(M′, s′), iff (M, s)↔(M′[i/j], s′).

A natural question is the relation of flipped bisimulation to the fact that all knowledge of both agents

is common knowledge. The following is immediate:

Observation 3.8. If inM, ∼∗{1,2}⊆∼j for j ∈ {1, 2}, then for all w ∈ Dom(M), (M, w)↔f
(1,2)(M, w).

Is other direction true? Locally, even on S5 models, flipped self-bisimulation is a much weaker

requirement: it does not even imply that (shared) knowledge of facts is common knowledge:

Fact 3.9. There exists a pointed S5 epistemic model which is a, b-flipped bisimilar to itself, where the

two agents know that p (with p ∈ prop), and p is not common knowledge between a and b.

But required globally of every state, we do have the following converse:

Fact 3.10. LetM be a transitive model with w ∈ Dom(M). Whenever the submodelM′ ofM generated

by {w} is such that every state is 0, 1-flipped bisimilar to itself, then for any p ∈ prop, if j knows p at

w (i.e., V (p) ⊆ Kj [w]) for some j ∈ {0, 1} then p is common knowledge between 0 and 1 at w.

Let us recall the notion of horizon (see Definition 2.7). It is the submodel generated by the information

set of the agent: the horizon of i at (M,w) (notation: (M,w)i) is the submodel generated by Ki[w].
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Decision Problem 3.11 (Flipped multi-agent epistemic model horizon bisimilarity).

Input: Two pointed multi-agent epistemic models (M, w), (M′, w′), two agents i, j.

Question: Are the horizons of agents i and j in (M, w) and (M′, w′) respectively flipped bisimilar for

i, j, namely is it the case that: (M, w)i↔(M′, w′)j [i/j]?

Fact 3.12. Flipped multi-agent epistemic S5 model horizon bisimilarity is in P. Given a multi-agent

epistemic model (M, w), it is trivial to decide if for two agents i, j it holds that (M, w)i↔(M, w)j [i/j].

Proof. We can use a polynomial algorithm for Kripke model bisimilarity. Horizons of two agents at the

same point in a model are always equal in S5 because of reflexivity of the accessibility relations.

Fact 3.13. Without any assumptions on the accessibility relations, the computational complexity of

multi-agent Kripke model flipped horizon bisimilarity is P-complete.

Proof. Follows from [3] and the fact that in general the horizons of two agents can be disjoint.

The picture. Deciding horizon flipped bisimilarity in Kripke models is among the hardest tractable

problems. It is trivial for partition-based models. Deciding whether a fact is commonly known is

tractable.

3.3 Can we reshape an agent’s mind into some desired informational state?

So far, we have been comparing agents’ informational states within models. The next interesting problem

is to decide whether new informational states (satisfying desired properties) can be achieved in certain

ways. One immediate question is whether one can give some information to an agent (i.e. to restrict her

horizon) such that after the update her horizon is bisimilar to the horizon of some other agent. Concretely,

we would like to know if there is any type of information that could reshape some agent’s information to

fit some desired new informational state or at least be similar to it. We will thus investigate the task of

checking whether there is a submodel that has certain properties. This means that we determine if it is

possible to purposely refine a model in a certain way. This question is in line with problems addressed

by arbitrary public announcement logic and arbitrary event modal logic [2, 11, 22].2

We start with the problem of checking whether there is a submodel of one model that is bisimilar to

another one. On graphs, this is related to the problem of deciding if one contains a subgraph bisimilar

to another. Note that in the problem referred to in the literature as “subgraph bisimulation” [8], the

subgraph can be any graph whose vertices are a subset of the vertices of the original graph, and the

edges can be any subset of the edges of the original graph restricted to the subset of vertices. To be

more specific, the problem investigated in [8] is the following:

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), is there a graph G′2 = (V ′2 , E
′
2) with

V ′2 ⊆ V2 and E′2 ⊆ E2 such that there is a total bisimulation between G′2 and G1?

Since we want to investigate the complexity of reasoning about epistemic interaction using modal logic,

we are interested in subgraphs that correspond to relativization in modal logic: induced subgraphs. This

leads us to an investigation of induced subgraph bisimulation.

Decision Problem 3.14 (Induced subgraph bisimulation).

Input: Two finite graphs G1 = (V1, E1), G2 = (V2, E2), k ∈ N.

Question: Is there an induced subgraph of G2 with at least k vertices that is bisimilar to G1, i.e. is

there some V ′ ⊆ V2 with |V ′| ≥ k and (V ′, E2 ∩ (V ′ × V ′))↔totalG1?

2Note that in the current work, we focus on the semantic structures only and do not require that the submodel can be

characterized by some formula in a certain epistemic modal language.
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Even though the above problem looks very similar to the original subgraph bisimulation problem

(NP-hardness of which is shown by reduction from Hamiltonian Path), NP-hardness does not follow

immediately.3 Nevertheless, we can show NP-hardness by reduction from Independent Set.

Proposition 3.15. Induced subgraph bisimulation is NP-complete.

Now, an analogous result for Kripke models follows. The intuitive interpretation here (with an

epistemic/doxastic interpretation of the accessibility relation) is whether it is possible to ‘gently’ restrict

one model without letting its domain get smaller than k such that afterwards it is bisimilar to another

model. The intuition is that we would like the new information to change as minimally as possible the

informational state of the target agent.

Decision Problem 3.16 (Submodel bisimulation for Kripke models).

Input: Kripke models M1, M2 with set of agents N , k ∈ N.

Question: Is there a submodel M′2 of M2 with |Dom(M′2)| ≥ k such that M1 and M′2 are totally

bisimilar i.e. M1↔totalM′2?

Corollary 3.17. Submodel bisimulation for Kripke models is NP-complete.

As we are interested in the complexity of reasoning about the interaction of epistemic agents as

it is modeled in (dynamic) epistemic logic, let us now see how the complexity of induced subgraph

bisimulation changes when we make the assumption that models are partitional, i.e. that the relation is

an equivalence relation, as it is frequently assumed in the AI or interactive epistemology literature. We

will see that this assumption makes the problem significantly easier.

Proposition 3.18. If for graphs G1 = (V1, E1) and G2 = (V2, E2), E1 and E2 are reflexive, transitive

and symmetric, then induced subgraph bisimulation for G1 and G2 can be solved in linear time.

Assuming the edge relation in a graph to be an equivalence makes induced subgraph bisimulation a

trivial problem because, unless its set of vertices is empty, every such graph is bisimilar to the graph

({v}, {(v, v)}). But for S5 models this is of course not the case, as the bisimulation takes into account the

valuation. Nevertheless, we will now show that also for single agent S5 models, the problem of submodel

bisimulation is significantly easier than in the case of arbitrary single agent Kripke models. To be more

precise, we will distinguish between two problems:

The first problem is local single agent S5 submodel bisimulation. Here we take as input two pointed

S5 models. Then we ask whether there is a submodel of the second model that is bisimilar to the first

one. Thus, the question is whether it is possible to restrict one of the models in such a way that there

is a state in which the agent has exactly the same information as in the situation modeled in the other

model.

Decision Problem 3.19 (Local S5 submodel bisimulation for single agent epistemic models).

Input: A pointed S5 epistemic model (M1, w) withM1 = (W1,∼1, V1) and w ∈W1, and an S5 epistemic

model M2 = (W2,∼2, V2).

Question: Is there a submodel M′2 = (W ′2,∼′2, V ′2) of M2 such that (M1, w)↔(M′2, w′) for some

w′ ∈ Dom(M′2)?

Proposition 3.20. Local submodel bisimulation for single agent pointed epistemic models is in P.

The second problem we consider is global S5 submodel bisimulation, where the input are two models

M1 and M2 and we ask whether there exists a submodel of M2 such that it is totally bisimilar to M1.

3For Induced Subgraph Bisimulation, a reduction from Hamiltonian Path seems to be more difficult, as does a direct

reduction from the original subgraph bisimulation problem.
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Decision Problem 3.21 (Total S5 submodel bisimulation for single agent epistemic models).

Input: Two S5 epistemic models M1 = (W1,∼1, V1),M2 = (W2,∼2, V2).

Question: Is there a submodel M′2 = (W ′2,∼′2, V ′2 , ) of M2 such that M1↔totalM′2?

We can show that even though the above problem seems more complicated than local submodel

bisimulation, it can still be solved in polynomial time. The proof uses the fact that finding a maximum

matching in a bipartite graph can be done in polynomial time (see e.g. [18]).

Theorem 3.22. Total submodel bisimulation for single agent epistemic models is in P.

Now, the question arises whether the above results also hold for the multi-agent case.

Decision Problem 3.23 (Global submodel bisimulation for multi-agent pointed epistemic models).

Input: Two epistemic models M1 = (W1, (∼1i)i∈N , V1),M2 = (W2, (∼2i)i∈N , V2), for N being a finite

set (of agents), and k ∈ N.

Question: Is there a submodel M′2 = (W ′2, (∼2
′
i)i∈N , V

′
2) of M2 such that M1↔totalM′2?

We conjecture that using similar ideas to those outlined in footnote 1 to show that the above problem

is NP-complete for models with at least two agents.

The picture. Induced subgraph bisimulation is intractable (NP-complete) and so is submodel bisim-

ulation for arbitrary Kripke models. For S5 models, induced subgraph bisimulation is tractable, and so

are local submodel bisimulation and total submodel bisimulation in the single agent case. We think that

NP-completeness can be shown for the case of at least two agents.

3.4 Simulation vs Bisimulation

In dynamic systems with diverse agents, an interesting question is whether it is possible to give some

information to one agent such that afterwards she knows at least as much as some other agent. This is

captured by an asymmetric notion, that of simulation. With this difference, the question can be raised

of the effect on tractability and intractability of requiring simulation versus requiring bisimulation. With

this motivation, we would like to explore the problem of induced subgraph simulation.

Decision Problem 3.24 (Induced subgraph simulation).

Input: Two finite graphs G1 = (V1, E1), G2 = (V2, E2), k ∈ N.

Question: Is there an induced subgraph of G2 with at least k vertices that is simulated by G1, i.e., is

there some V ′ ⊆ V2 with |V ′| ≥ k and (V ′, E2 ∩ (V ′ × V ′)) vtotal G1?

Proposition 3.25. Induced subgraph simulation is NP-complete.

In [7], it has been shown that given two graphs it is also NP-complete to decide if there is a subgraph

(not necessarily an induced one) of one such that it is simulation equivalent to the other graph. Here,

we show that this also holds if the subgraph is required to be an induced subgraph.

Decision Problem 3.26 (Induced subgraph simulation equivalence).

Input: Two finite graphs G1 = (V1, E1), G2 = (V2, E2), k ∈ N.

Question: Is there an induced subgraph of G2 with at least k vertices that is similar to G1, i.e. is there

some V ′ ⊆ V2 with |V ′| ≥ k and (V ′, E2 ∩ (V ′ × V ′)) vtotal G1 and G1 vtotal (V ′, E2 ∩ (V ′ × V ′))?

Proposition 3.27. Induced subgraph simulation equivalence is NP-complete.
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As a corollary of the two previous propositions, we get that for arbitrary Kripke models both submodel

simulation and submodel equivalence are NP-complete. We conjecture that for single agent S5, we can

use similar methods as used in the proof of Theorem 3.22. Let us conclude with an interesting open

question, as to whether the results from [15] also hold for epistemic models.

Open problem Is deciding simulation (equivalence) of epistemic models at least as hard as deciding

bisimilarity?

The picture. Induced subgraph simulation and equivalence are both intractable (NP-complete). The

same holds for Kripke model simulation (equivalence). It remains to be investigated for epistemic models.

4 Conclusions and Further Work

In this work, we have identified concrete epistemic tasks related to the comparison and manipulation

of informational states of agents in possibly different situations. Interestingly, our complexity analysis

shows that the preceding problems live on both sides of the border between tractability and intractability:

Problem Tractable? Comments

Kripke model isomorphism unknown in GI

Epistemic model bisimilarity Yes Conjecture: P-hard for ≥ 2 agents

Flipped horizon bisimilarity Yes P-complete for arbitrary models

Kripke submodel bisimulation No NP-complete for arbitrary models;

in linear time for S5

Local S5 submodel bisimulation Single agent: Yes unknown

Total S5 submodel bisimulation Single agent: Yes Conjecture: NP-complete for ≥ 2 agents

Kripke submod. simulation (equiv.) No Conjecture: in P for single agent S5

Table 1: Summary of the results and open questions.

As such, this work is a first step towards mapping out the complexity of concrete epistemic problems

based on epistemic modeling. It would be interesting to systematize this approach to a larger class of

problems. Further work to complete the picture includes the open problems that we mentioned in our

analysis in Section 3. Solving them would clarify the border between tractability and intractability in

the domain of epistemic reasoning tasks. This would then also shed some light on the more general

question as to what is the impact of the assumption of S5 on the complexity of certain problems from

graph theory. It would moreover clarify whether for some epistemic tasks, moving from single agent to

multi-agent scenarios has the consequence of crossing the border between tractability and intractability.

How would we like to interpret our results? One conclusion, we can draw from our case study

is that assuming partition-based information structures simplifies epistemic tasks of comparing and

manipulating informational structures. In particular, we saw that comparing agents’s informational

structures via bisimulation is tractable in the multi-agent case, meaning that it should be relatively easy

to say whether Alice’s information is strictly less refined than Bob’s. Furthermore, deciding whether two

agents have symmetric knowledge about each other’s knowledge should be also in principle easy (PTIME

for S5 models and P-complete for arbitrary models). Finally, we proved that things are getting harder if

one wants to know wether a certain manipulation of agents’ knowledge is possible. Deciding whether the

information structure of Alice is more refined than that of Bob is in general intractable, independently

of choosing bisimilarity or isomorphism as our notion of similarity. However, the problem becomes easy

if one assumes that agents’s knowledge can be modeled by equivalence relations. On the other hand,
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substituting bisimulation by simulation gives rise to an interesting open problem whether computing

simulation equivalence of epistemic models is a at least as hard as deciding their bisimilarity.
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A Proofs of selected theorems

Fact: 3.9 There exists a pointed S5 epistemic model which is a, b-flipped bisimilar to itself, where the

two agents knows that p (with p ∈ prop), and p is not common knowledge between a and b.

Proof. Consider the model M = 〈W,∼a,∼b, V 〉 with W = {−2,−1, 0, 1, 2}, ∼a is the smallest equiva-

lence relation on W containing {(−2,−1), (0, 1)}, ∼b is the smallest equivalence relation on W contain-

ing {(−1, 0), (1, 2)}, and V (p) = {−1, 0, 1}. It is easy to check that both Alice and Bob knows p at 0:

Ka[0] = {0, 1} ⊆ V (p) and Kb[0] = {−1, 0} ⊆ V (p). Also p is not common knowledge between Alice and

Bob at 0, indeed 0 ∼a 1 ∼b 2 and 2 6∈ V (p). Now it remains to show thatM, 0 is a, b-flipped bisimilar to

itself. The flipped bisimulation is defined as Z = {(n, 0−n) | n ∈W}. It is easily checked by inspection

that Z is indeed a a, b-flipped bisimulation.

Fact 3.10: Let M be a transitive model with w ∈ Dom(M). If the submodel M′ of M generated

by {w} is such that every state is 0, 1-flipped bisimilar to itself. Then for any p ∈ prop, if j knows p at

w, i.e., (V (p) ⊆ Kj [w], for some j ∈ {0, 1}, then p is common knowledge between 0 and 1) at w.

Proof. We prove the contrapositive. Assume that p is not common knowledge between 0 and 1 at w. It

follows that we have a 0, 1-path of length n with n ∈ ω of the form wRf (1)w1Rf(2) . . . Rf(n − 1)wn−1
with wn−1 6∈ V (p) and f(k) ∈ {0, 1} for all k ∈ n. Clearly, all the states in the preceding sequence

are in M′ so they must be 0, 1-flipped bisimilar to themselves and, in particular, to w. Hence, by

definition of a flipped bisimulation we have a sequence of the form wR1
f (1)w1

1Rf
1(2) . . . Rf1(n−1)w1

n−1.

Especially, w1
n−1 6∈ V (p) and f1(k) = |1 − f(k)|. Iterating the process we can obtain a sequence of the

form wRn−1
f (1)wn−1

1 Rfn−1(2) . . . Rfn−1(n− 1)wn−1
n−1 with wn−1

n−1 6∈ V (p) and with fn−1 being one of the

constant functions of the co-domain {0, 1}. By transitivity it follows that wn−1
n−1 ∈ K0[w]∩K1[w]∩V (p),

contradicting the assumption that at least of the agents knew p at w.

Proposition 3.15: Induced subgraph bisimulation is NP-complete.

Proof. Showing that the problem is in NP is straightforward. Hardness is shown by reduction from

Independent Set. First of all, let Ik = (V
Ik
, EIk = ∅) with |V

Ik
| = k denote a graph with k vertices and

no edges. Given the input of Independent Set, i.e. a graph G = (V,E) and some k ∈ N we transform it

into (Ik, G), k, as input for Induced Subgraph Bisimulation.

Now, we claim that G has an independent set of size at least k iff there is some V ′ ⊆ V with |V ′| ≥ k
and (V ′, E ∩ (V ′ × V ′))↔totalIk.
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From left to right, assume that there is some S ⊆ V with |S| = k, and for all v, v′ ∈ S, (v, v′) /∈ E.

Now, any bijection between S and VIk is a total bisimulation between G′ = (S,E∩ (S×S)) and Ik, since

E ∩ (S × S) = ∅ and |S| = |VIk |.
For the other direction, assume that there is some V ′ ⊆ V with |V ′| = k such that for G′ = (V ′, E′ =

E ∩ (V ′ × V ′)) we have that G′↔totalIk. Thus, there is some total bisimulation Z between G′ and Ik.

Now, we claim that V ′ is an independent set of G of size k. Let v, v′ ∈ V ′. Suppose that (v, v′) ∈ E.
Then since G′ is an induced subgraph, we also have that (v, v′) ∈ E′. Since Z is a total bisimulation,

there has to be some w ∈ Ik with (v, w) ∈ Z and some w′ with (w,w′) ∈ EIk and (v′, w′) ∈ Z. But this

is a contradiction with EIk = ∅. Thus, V ′ is an independent set of size k of G. The reduction can clearly

be computed in polynomial time. This concludes the proof.

Proposition 3.18: If for graphs G1 = (V1, E1) and G2 = (V2, E2) it holds that E1 and E2 are

reflexive, transitive and symmetric, then the problem of induced subgraph bisimulation for G1 and G2

can be solved in linear time.

Proof. In this proof, we will use the fact that G1 = (V1, E1)↔totalG2 = (V2, E2) if and only if it is the

case that V1 = ∅ iff V2 = ∅. Let us prove this. From left to right, assume that G1 = (V1, E1)↔totalG2 =

(V2, E2). Then since we have a total bisimulation, it must be the case that either V1 = V2 = ∅ or

V1 6= ∅ 6= V2.

For the other direction, assume that V1 = ∅ iff V2 = ∅. Now, we show that in this case, V1×V2 is a total

bisimulation between G1 and G2. If V1 = V2 = ∅, we are done. So, consider the case where V1 6= ∅ 6= V2.

Let (v1, v2) ∈ V1 × V2, and assume that (v1, v
′
1) ∈ E1 for some v′1 ∈ V1. Since E2 is reflexive, we know

that there is some v′2 ∈ V2 such that (v2, v
′
2) ∈ E2. Of course (v′1, v

′
2) ∈ V1 × V2. The back condition is

analogous. Since V1 × V2 is total, we thus have G1↔totalG2. Hence, G1 = (V1, E1)↔totalG2 = (V2, E2)

if and only if it is the case that V1 = ∅ iff V2 = ∅.
Therefore, for solving the induced subgraph bisimulation problem for input G1 and G2 with E1 and

E2 being reflexive, transitive and symmetric and k ∈ N, all we need to do is to go through the input

once and check whether V1 = ∅ iff V2 = ∅, and whether |V2| ≥ k. If the answer to both is yes then we

know that G1↔totalG2 and since |V2| ≥ k, we answer yes, otherwise no.

Proposition 3.20: Local submodel bisimulation for single agent pointed epistemic models is in P.

Proof. Given the input of the problem, i.e. a pointed epistemic model M1, w with M1 = (W1,∼1, V1),

and w ∈W1 and an epistemic model M2 = (W2,∼2, V2), we run the following procedure.

1. For all [w2] ∈W2/ ∼2 do the following:

(a) Initialize the set Z := ∅.
(b) for all w′ ∈ [w] do the following

i. For all w′2 ∈ [w2] check if for all p ∈ Prop it holds that w′ ∈ V1(p) iff w′2 ∈ V2(p). If this

is the case, set Z := Z ∪ (w′, w′2).

ii. if there is no such w′2, continue with 1, otherwise we return Z and we stop.

2. In case we didn’t stop at 1(b)ii, we can stop now, and return no.

In the worst case, this takes |M1| · |M2| steps.

If the procedure has stopped at 2, there is no bisimulation with the required properties. To see this,

note that if we stopped in 2, this means that there was no [w2] ∈W2/ ∼2 such that for every state in [w]

there is one in [w2] in which exactly the same propositional letters are true. Thus, since we were looking

for a bisimulation that is also defined for the state w, such a bisimulation cannot exist.
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If the algorithm returned a relation Z, this is indeed a bisimulation between M1 and the submodel

M′2 of M2 where M′2 = (W ′2,∼′2, V ′2), where

W ′2 = {w2 ∈W2 | there is some w1 ∈ [w] such that (w1, w2) ∈ Z}

and ∼′2 and V ′2 are the usual restrictions of ∼2 and V2 to W2. This follows from the following two

facts: First, for all pairs in Z it holds that both states satisfy exactly the same proposition letters.

Second, since Z is total both on [w] and on W ′2 and all the states in [w] are connected to each other

by ∼1 and all states in W ′2 are connected to each other by ∼′2, both the forth and back conditions are

satisfied. This concludes the proof.

Theorem 3.22: Total submodel bisimulation for single agent epistemic models is in P.

First we introduce some notation used in the proof.

Notation A.1. Let M = (W,∼, V ) be a single agent epistemic model. For the valuation function

V : Prop → W , we define V̂ : W → 2Prop, with w 7→ {p ∈ Prop | w ∈ V (p)}. Abusing notation, for

X ⊆ W we sometimes write V̂ (X) to denote {V̂ (w) | w ∈ X}. For w ∈ W , [w] = {w′ ∈ W | w ∼ w′}
denotes the equivalence class of w under ∼. W/ ∼ denotes the set of all equivalence classes of W for the

relation ∼.

Definition A.2. Given a single agent epistemic model M = (W,∼, V ), Mmin cells denote a model

obtained from M by the following procedure:

1. Initialize X with X := W/ ∼.

2. Go through all the pairs in X ×X.

(a) When you find ([w], [w′]) with [w] 6= [w′] such that V̂ ([w]) = V̂ ([w′]), continue at 2 with

X := X − [w′].

(b) Otherwise, stop and return the model Mmin cells := (
⋃
X,∼′, V ′), where ∼′ and V ′ are the

usual restrictions of ∼ and V to
⋃
X.

Fact A.3. With input M = (W,∼, V ), the procedure in Definition A.2 runs in time polynomial in

|M = (W,∼, V )|.

Proof. Follows from the fact that the cardinality of W/ ∼ is bounded by |W |; we only enter step 2 at

most |W | times, and each time do at most |W |2 comparisons.

Fact A.4. The answer to total submodel bisimulation for single agent epistemic models (Decision Prob-

lem 3.21) with input M1 = (W1,∼1, V1),M2 = (W2,∼2, V2) is yes iff it is with input M1
min cells =

(W1,∼1, V1),M2 = (W2,∼2, V2).

Proof. From left to right, we just need to restrict the bisimulation to the states of M1
min cells. For the

other direction, we start with the given bisimulation and then extend it as follows. For the states in a

cell [w′] which was removed during the construction of M1
min cells, can be mapped to the ones of a cell

[w] in M1
min cells with the same valuation.

Proof. By Fact A.3 and Fact A.4, transforming M1 into M1
min cells can be done in polynomial time.

Thus, w.l.o.g. we can assume that M1 is already of the right shape; i.e. M1 =M1
min cells. Given the

two models as input, we construct a bipartite graph G = ((W1/ ∼1,W2/ ∼2), E) where E is defined as

follows.

([w1], [w2]) ∈ E iff V̂1([w1]) ⊆ V̂2([w2]).
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Claim A.5. There is a submodel M′2 of M2 such that M1↔totalM′2 iff G has a matching of size

|W1/ ∼1 |.

Proof. From left to right, assume that there is a submodel M′2 = (W ′2,∼′2, V ′2) of M2 such that

M1↔totalM′2. Let Z be such a total bisimulation.

Note that since we assumed that M1 =Mmin cells the following holds:

1. For all ([w1], [w2]) ∈W1/ ∼1 ×W2/ ∼2 it is the case that whenever Z ∩ ([w1]× [w2]) 6= ∅, then for

all [w′1] ∈W1/ ∼1 such that [w′1] 6= [w1], Z ∩ ([w′1]× [w2]) = ∅.

Thus, the members of different equivalence classes in W1/ ∼1 are mapped by Z to into different equiva-

lence classes of W2/ ∼2.

Now, we construct Ė ⊆ E as follows.

([w1], [w2]) ∈ Ė iff ([w1], [w2]) ∈ E and ([w1]× [w2]) ∩ Z 6= ∅.

Then |Ė| ≥ |W1/ ∼1 | because of the definitions E and Ė and the fact that Z is a bisimulation that is

total on W1. Now, if |Ė| = |W1/ ∼1 | then we are done since by definition of Ė, for each [w1] ∈W1/ ∼1

there is some [w2] ∈ W2/ ∼2 such that ([w1], [w2]) ∈ Ė. Then it follows from 1, that Ė is indeed a

matching.

If |Ė > |W1/ ∼1 | then we can transform Ė into a matching E′ of size W1/ ∼1 |: For each [w1] ∈
W1/ ∼1, we pick one [w2] ∈W2/ ∼2 such that ([w1], [w2]) ∈ Ė and put it into E′ (note that such a [w2]

always exists because by definition of Ė, for each [w1] ∈W1/ ∼1 there is some [w2] ∈W2/ ∼2 such that

([w1], [w2]) ∈ Ė; moreover because of 1 all the [w2] ∈ W2/ ∼2 that we pick will be different). Then the

resulting E′ ⊆ Ė ⊆ E ⊆ (W1/ ∼1 ×W2/ ∼2) is a matching of G of size |W1/ ∼1 |. Thus, we have shown

that if there is a submodelM′2 ofM2 such thatM1↔totalM′2 then G has a matching of size |W1/ ∼1 |.
For the other direction, assume that G has a matching E′ ⊆ E with |E′| = |W1/ ∼1 |. Then,

recalling the definition of E, it follows that for all [w] ∈ W1/ ∼ there is some [w′] ∈ W2/ ∼2 such that

([w], [w′]) ∈ E′ and thus V̂1([w]) ⊆ V̂2([w′]).

Let us define the following submodel M′2 of M2. M′2 = (W ′2,∼′2, V ′2), where

W ′2 = {w2 ∈W2 | there is some w ∈W1 such that V̂1(w) = V̂2(w2) and ([w], [w2]) ∈ E′}

and ∼′2 and V ′2 are the usual restrictions of ∼2 and V2 to W ′2.

Now, we define a relation Z ⊆W1×W ′2, which we then show to be a total bisimulation betweenM1

and M′2

(w1, w2) ∈ Z iff V̂ (w1) = V̂2(w2) and ([w1], [w2]) ∈ E′.

Next, let us show that Z is indeed a bisimulation.

Let (w1, w2) ∈ Z. Then, by definition of Z, for every propositional letter p, w1 ∈ V1(p) iff w2 ∈ V2(p).

Next, we check the forth condition. Let w1 ∼1 w
′
1 for some w′1 ∈W1. Then since (w1, w2) ∈ Z, and thus

([w1], [w2]) ∈ E′, there has to be some w′2 ∈ [w2] such that V̂2(w′2) = V̂1(w′1). Then since [w′1] = [w1] and

[w′2] = [w2], ([w′1], [w′2]) ∈ E′. Then w′2 ∈W ′2, and (w′1, w
′
2) ∈ Z.

For the back condition, let w2 ∼2 w
′
2, for some w′2 ∈ W ′2. Then by definition of W ′2, there is some

w ∈ W1 such that V̂1(w) = V̂2(w′2) and ([w], [w′2]) ∈ E′. Thus, it follows that (w,w′2) ∈ Z. Now, we still

have to show that w1 ∼1 w. As the following hold: ([w], [w′2]) ∈ E′,[w2] = [w′2], ([w], [w2]) ∈ E′ (because

(w1, w2) ∈ Z) and E′ is a matching, it follows that [w] = [w1]. Thus, w1 ∼1 w.

Hence, we conclude that Z is a bisimulation. It remains to show that Z is indeed total.
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Let w1 ∈ W1. Since E′ is a matching of size W1/ ∼1, there is some [w2] ∈ W2/ ∼2 such that

([w1], [w2]) ∈ E′. Thus, there is some w′2 ∈ [w2] such that V̂1(w1) = V̂2(w′2). This means that w′2 ∈ W ′2
and (w1, w

′
2) ∈ Z. So Z is total on W1.

Let w2 ∈W ′2. By definition of W ′2, there is some w ∈W1 such that V̂1(w) = V̂2(w2) and ([w], [w2]) ∈
E′. Thus, by definition of Z, (w,w2) ∈ Z. Therefore, Z is indeed a total bisimulation between M1 and

M′2. This concludes the proof of Claim A.5.

Hence, given two models, we can transform the first one using the polynomial procedure of Definition

A.2 and then we construct the graph G, which can be done in polynomial time as well. Finally, we use

a polynomial algorithm to check if G has a matching of size M1
min cells. If the answer is yes, we return

yes, otherwise no. This concludes the proof of Theorem 3.22.

Proposition 3.25: Induced subgraph simulation is NP-complete.

Proof. Showing that the problem is in NP is straightforward. Hardness is shown by reduction from

Independent Set. First of all, let Ik = (V
Ik
, EIk = ∅) with |V

Ik
| = k denote a graph with k vertices and

no edges. Given the input of Independent Set, i.e. a graph G = (V,E) and some k ∈ N we transform it

into (Ik, G), k, as input for Induced Subgraph Simulation.

Now, we claim that G has an independent set of size at least k iff there is some V ′ ⊆ V with |V ′| ≥ k
and (V ′, E ∩ (V ′ × V ′)) vtotal Ik.

From left to right, assume that there is some S ⊆ V with |S| = k, and for all v, v′ ∈ S, (v, v′) /∈ E.

Now, any bijection between S and VIk is a total simulation (and in fact an isomorphism) between

G′ = (S,E ∩ (S × S)) and Ik, since E ∩ (S × S) = ∅ and |S| = |VIk |.
For the other direction, assume that there is some V ′ ⊆ V with |V ′| = k such that for G′ = (V ′, E′ =

E ∩ (V ′ × V ′)) we have that G′ vtotal Ik. Thus, there is some total simulation Z between G′ and Ik.

Now, we claim that V ′ is an independent set of G of size k. Let v, v′ ∈ V ′. Suppose that (v, v′) ∈ E.
Then since G′ is an induced subgraph, we also have that (v, v′) ∈ E′. Since Z is a total simulation, there

has to be some w ∈ Ik with (v, w) ∈ Z and some w′ with (w,w′) ∈ EIk and (v′, w′) ∈ Z. But this is a

contradiction with EIk = ∅. Thus, V ′ is an independent set of size k of G. The reduction can clearly be

computed in polynomial time. This concludes the proof.

Proposition 3.27: Induced subgraph simulation equivalence is NP-complete.

Proof. For showing that the problem is in NP, note that we can use a simulation equivalence algorithm

as provided in [14]. Hardness can again be shown by reduction from Independent Set. Given the

input for Independent Set, i.e. a graph G = (V,E) and some k ∈ N, we transform it into two graphs

Ik = (V
Ik

= {v1, . . . vk}, EIk = ∅) and G, and we keep the k ∈ N. This can be done in polynomial time.

Now, we claim that G has an independent set of size k iff there is an induced subgraph of G with

k vertices that is similar to Ik. From left to right assume that G has such an independent set S with

S ⊆ V , |S| = k and E ∩ S × S = ∅. Then (S, ∅) is isomorphic to Ik since both have k vertices and no

edges. Thus, they are also simulation equivalent.

For the other direction, assume that there is an induced subgraph G′ = (V ′, E′) with V ′ ⊆ V , |V ′| = k

and E′ = (V ′ × V ′) ∩ E such that G′ is simulation equivalent to Ik. Suppose that there are v, v′ ∈ V ′
such that (v, v′) ∈ E. Since G′ is an induced subgraph, it must be the case that (v, v′) ∈ E′, but since

Ik simulates G′, this leads to a contradiction since Ik does not have any edges.

This concludes the proof.
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1 Introduction

My favourite of Grimm’s fairytales is ‘Hans im Glück’ (Hans in luck). A close
second comes ‘The Ditmarsch Tale of Wonders’. In German this is called a
‘Lügenmärchen’, a ‘Liar’s Tale’. It contains the passage “A crab was chasing a
hare which was running away at full speed; and high up on the roof lay a cow
which had climbed up there. In that country the flies are as big as the goats are
here.” These are very obvious lies. Nobody considers it possible that this is true.
Crabs are reputedly slow, hares are reputedly fast.

In the real world, if you lie, sometimes other people believe you and some-
times they don’t. When can you get away with a lie? Consider the well-known
consecutive numbers riddle (see [10], and the Appendix), where Anne has 2 and
Bill has 3, and they only know that their natural numbers are one apart. Ini-
tially, Anne is uncertain between Bill having 3 or 1, and Bill is uncertain between
Anne having 2 or 4. So both Anne and Bill do not initially know their number.
Suppose Anne says to Bill: “I know your number.” Anne is lying. Bill does not
consider it possible that Anne knows his number, so he tells Anne that she is
lying. However, Anne did not know that Bill would not believe her. She con-
sidered it possible that Bill had 1, in which case Bill would have considered it
possible that Anne was telling the truth, and would then have drawn the incor-
rect conclusion that Anne had 0. I.e., if you are still following us... It seems not
so clear how this should be formalized in a logic interpreted on epistemic modal
structures, and this is the topic of our paper.

What is a lie? Let p be a Boolean proposition. You lie that p if you believe
that ¬p while you say that p and with the intention that the addressee believes
p. This definition seems standard since Augustine [12]. A believed lie therefore
is one that, when told, is believed by the addressee to be truthful. We abstract
from the intentional aspect and model the believed lie. (Similarly, in AGM belief
revision, we incorporating new information, abstracting from the process that
made it acceptable.)

What are the modal preconditions and postconditions of a lie? Let i be the
speaker (assumed female) and let j be the addressee (assumed male). Then the
precondition of ‘i is lying that p to j’ is Bi¬p, and the postcondition is Bjp. Also,
the precondition should be preserved. More refined preconditions are conceivable,
e.g., that the addressee consider it possible that the lie is true, or believes that
the speaker knows the truth about p. Those are plausible additional conditions

65



rather than rock-bottom requirements. Concerning the postcondition: the liar
does not merely intend the speaker to believe p, but also wants him to believe
that the speaker believes p. It is obvious that the postcondition should not be
merely Bjp, but BjCijp: after a lie that p, the addressee believes that speaker
has shared knowledge with him about p. The modellings we propose satisfy this,
but we restrict our discussion to logics without common knowledge.

In a dynamic setting, what we want, so far, is: Lying that p is the epistemic
action transforming information states satisfying Bi¬p into information states
satisfying Bjp and preserving Bi¬p. We need to make a choice concerning: in-
formation state, epistemic action, epistemic modal operator, and, finally, how to
generalize lying about Booleans to lying about modal formulae. As information
state we propose a multi-agent Kripke model. We consider one agent lying to
one other agent; or one agent lying to the group of all other agents. A Kripke
model transformation calls for a dynamic modality. As lying is the opposite of
telling the truth, a variation of public announcement logic seems obvious. First,
we model lying announcements by an external observer, comparable to truthful
announcements by that observer. Then, we model lying of agent i to agent j,
where both agents are modelled in the Kripke model.

Clearly, our epistemic modality cannot be knowledge. If the liar correctly
believes that p is false and lies that p after which the addressee j believes p,
then j holds a false belief. In AI, the next best thing to knowledge is belief, i.e.,
KD45 belief. We will aim for that, and therefore have to address the problem
that consistency of belief is not necessarily preserved after update.

When generalizing from ‘lying that p’ to ‘lying that ϕ’ for epistemic proposi-
tions, we have to change to postcondition. The addressee j believes that ϕ is true
when announced. It may no longer be true after the liar and the addressee have
processed the information contained in the lie. We should require that j believes
that ϕ was true before the lie, not that it still is true after the lie. This is because
of Moorean phenomena: if I am lying to you, agent j, that p ∧ ¬Bip, after the
lie you believe p, not that you are ignorant about it. Lying in the consecutive
number riddle is of that kind.

We conclude this introduction with an overview of the literature. Lying has
been a thriving topic in the philosophical community for a long, long time [15,
5, 11, 12]— indeed, almost any analysis starts with quoting Augustine on lying
(check!). The precision of the belief preconditions and postconditions is illumi-
nating. E.g., emphasis that the addressee should not merely believe the lie but
believe it to be believed by the speaker. Indeed, ... and even believed to be
commonly believed, would the modal logician say. Interesting scenarios involv-
ing eavesdroppers (can you lie to an eavesdropper?) clearly are relevant for logic
and multi-agent system design, and also claims that you can only lie if you really
say something: an omission is not a lie [12]. Wrong, says the computer scientist:
if the protocol is common knowledge, you can lie by not acting when you should;
say, by not stepping forward in the muddy children problem although you know
that you are muddy. The philosophical literature also clearly distinguishes be-
tween false propositions and propositions believed to be false but in fact true, so
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that when you lie about them, in fact you tell the truth. Interesting Gettier-like
scenarios are discussed. Also, much is said on the morality of lying and on its
intentional aspect. As said, we abstract from the intentional aspect of lying. We
also abstract from its moral aspect.

In the modal logical community, papers on lying include [2, 16, 4, 19, 14, 9,
20]. They (almost) all model lying as an epistemic action, inducing a transfor-
mation of an epistemic model. Lying has been discussed by Baltag et al. from
the inception of BMS onward [2, 4]; the latter also discusses lying in logics with
knowledge and plausible belief (AGM belief revision with lying, so to speak),
as does [19]. In [20] (dating from 2007) the conscious update in [7] is applied
to model lying by an external observer to the public (of agents). The recent
[14] gives a modal logic of lying, bluffing and (after all) intentions—they do not
model lying as an epistemic action, and do not seem to realize the trouble this
gets you into when you lie about a Moore-sentence. In [16, 9] the unbelievable
lie is considered; this is the issue consistency preservation in KD45 updates.

2 Logical preliminaries

The logic of lying public announcements complements the well-known logic of
truthful public announcements [13, 3], that is an extension of multi-agent epis-
temic logic. Its language, structures, and semantics are as follows.

Given a finite set of agents N and a countable set of propositional variables
P , the language L(!) of public announcement logic is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Biϕ | [!ϕ]ψ
where p ∈ P , i ∈ N . For Biϕ, read ‘agent i believes formula ϕ’. For [!ϕ]ψ, read
‘after truthful announcement of ϕ, formula ψ (is true)’.

An epistemic model M = 〈S,R, V 〉 consists of a domain S of states (or
‘worlds’), an accessibility function R : N → P(S × S), where each Ri is an
accessibility relation, and a valuation V : P → P(S). For s ∈ S, (M, s) is an
epistemic state, also known as a pointed Kripke model. The class of models where
all accessibility relations are serial, transitive and euclidean is called KD45.
Without any restrictions we call the model class K.

Assume an epistemic model M = 〈S,∼, V 〉.
M, s |= p iff s ∈ Vp
M, s |= ¬ϕ iffM, s 6|= ϕ
M, s |= ϕ ∧ ψ iffM, s |= ϕ and M, s |= ψ
M, s |= Biϕ iff for all t ∈ S : Ri(s, t) implies M, t |= ϕ
M, s |= [!ϕ]ψ iffM, s |= ϕ implies M |ϕ, s |= ψ

where the model restriction M |ϕ = 〈S′, R′, V ′〉 is defined as S′ = {s′ ∈ S |
M, s′ |= ϕ} (= [[ϕ]]M ), R′

i = Ri ∩ (S′ × S′) and V ′(p) = V (p) ∩ S′. A complete
proof system for this logic (for class S5, originally) is presented in [13]. The
interaction between announcement and belief is

[!ϕ]Biψ ↔ ϕ→ Bi[!ϕ]ψ
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The interaction between announcement and other operators we assume known.
It changes predictably in the other logics we present. The class KD45 is not
closed under public announcements: given ¬p ∧ Bip, and new information !¬p,
agent i’s accessibility relation becomes empty: she believes everything.

In the coming sections, we will only vary the dynamic part of the logic.
For an example of the semantics of public announcement, consider a situation

wherein the agent is uncertain about p, and receives the information that p. In
view of the continuation, we draw all access. A state has been given the value of
the atom there as its name. The actual state is underlined.

¬p pii i ⇒ !p p i

3 Logic of truthful and lying public announcements

We expand the language of truthful public announcement logic with another
inductive construct [¡ϕ]ψ, for ‘after lying public announcement of ϕ, formula ψ
(is true)’; in short ‘after the lie that ϕ, ψ’. This is the language L(!, ¡).

Truthful public announcement logic is the logic to model the revelations
of a benevolent god, taken as the truth without questioning. The announcing
agent is not modelled in public announcement logic, but only the effect of her
announcements on the audience, the set of all agents. Consider a false public
announcement, made by a malevolent entity, the devil. Everything he says is
false. Everything is a lie. Not surprisingly, god and the devil are inseparable and
should be modelled simultaneously. This is as in religion.

An alternative for the semantics of public announcements is the semantics of
conscious updates [7]. (In fact, [7] and [13] were independently proposed.) When
announcing ϕ, instead of eliminating states where ϕ does not hold, one eliminates
access to states where ϕ does not hold. The effect of the announcement of ϕ is
that only states where ϕ is true are accessible for the agents. It is not a model
restricting transformation but an arrow restricting transformation. We see this
as the logic of believed public announcements. There is no relation between the
agent accepting new information and the truth of that information.

In [20], this believed announcement of ϕ is called manipulative update with
ϕ. The original proposal there is to view this as non-deterministic choice !ϕ∪ ¡ϕ
between truthful announcement and lying announcement, with the following
semantics

M, s |= [!ϕ]ψ iffM, s |= ϕ implies Mϕ, s |= ψ
M, s |= [¡ϕ]ψ iffM, s |= ¬ϕ implies Mϕ, s |= ψ

where epistemic model Mϕ is as M except that (with S the domain of M)

Rϕ
i := Ri ∩ (S × [[ϕ]]M ).

We can keep writing !ϕ for ‘arrow eliminiting’ truthful announcement without
risk of ambiguity with ‘state eliminating’ truthful announcement, because on the
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states s where ϕ is true in M we have that

(Mϕ, s)↔(M |ϕ, s).

The axioms for truthful announcement remain what they were and the axiom
for the reduction of belief after lying is

[¡ϕ]Biψ ↔ ¬ϕ→ Bi[!ϕ]ψ.

After the lying announcement that ϕ, agent i believes that ψ, if and only if, on
condition that ϕ is false, agent i believes that ψ after truthful announcement
that ϕ. To the credulous person who believes the lie, the lie appears to be the
truth. This proposal to model lying has been investigated in detail in [20].

For an example, we show the effect of truthful and lying announcement of
p in the model with uncertainty about p. The actual state must be different in
these models: when lying, p is (believed) false, and when being truthful, p is
(believed) true. For lying we get

¬p pii i ⇒ ¡p ¬p pi i

whereas for truthtelling we get

¬p pii i ⇒ !p ¬p pi i

4 Agent announcement logic

In the logic of lying and truthful public announcements, the outside observer is
implicit. Therefore, it is also implicit that she believes that the announcement
is false or true. In multi-agent epistemic logic, it is common to formalize ‘agent
i truthfully announces ϕ’ as ‘the outside observer truthfully announces Biϕ’.
However, ‘agent i lies that ϕ’ cannot be modelled as ‘the outside observer lies
that Biϕ’.

For a counterexample, consider an epistemic state where i does not know
whether p, j knows whether p, and p is true. Agent j is in the position to tell
i the truth about p. The reader can check that a truthful public announcement
of Bip indeed simulates that i truthfully announces p. Now suppose p is false,
and that j lies that p. A lying public announcement of Bip does not result in
the desired information state, because this makes agent j believe his own lie. In
fact, as he already knew ¬p, this makes j’s beliefs inconsistent.

¬p pii ij j ⇒ ¡p ¬p pi i j

Instead, a lie from j to i should have the following effect:
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¬p pii ij j ⇒ ¡jp ¬p pi ij j

After this lie we have that j still believes that ¬p, i believes that p, and i believes
that i and j have common belief of p. We satisfied the requirements of a truthful
and lying agent announcement.

Apart from lying and telling the truth, another form of announcement is
bluffing. You are bluffing that ϕ, if you say that ϕ but are uncertain about ϕ.
The precondition for bluffing is therefore ¬(Biϕ∨Bi¬ϕ). If belief is explicit there
are always three preconditions for announcing ϕ: Biϕ, Bi¬ϕ, and ¬(Biϕ∨Bi¬ϕ),
the preconditions for truthtelling, lying, and bluffing. If belief is implicit there
are only two preconditions for announcing ϕ: ϕ and ¬ϕ, for truthtelling and
lying. God and the devil are omniscient, and bluffing is therefore inconceivable
for them. More prosaically, they can be considered an agent with an accessibility
relation that is the identity on the model.

The logical language L(!j , ¡j , ¡!j) of agent announcement logic is defined by
adding inductive constructs

[!jϕ]ψ | [¡jϕ]ψ | [¡!jϕ]ψ

to the epistemic language, for, respectively, j truthfully announces ϕ, j is lying
that ϕ, and j is bluffing that ϕ; where agent j addresses all other agents i.

The preconditions of these three types of announcement are all different, but
their effect on the speaker and on the listeners are the same: States where ϕ
was believed by j, if any (none, if j is lying), remain accessible for j (i); states
where ¬ϕ was believed by j, if any (none, if j is truthful), remain accessible for
j (ii); states where ϕ was believed by i, if any (if there are none, i will ‘go mad’),
remain accessible for i (iii); and states where ¬ϕ was believed by i, if any, are
no longer accessible for i (iv). This is embodied by the following semantics.

M, s |= [!jϕ]ψ iffM, s |= Biϕ implies Mϕ
j , s |= ψ

M, s |= [¡jϕ]ψ iffM, s |= Bi¬ϕ implies Mϕ
j , s |= ψ

M, s |= [¡!jϕ]ψ iffM, s |= ¬(Biϕ ∨Bi¬ϕ) implies Mϕ
j , s |= ψ

where Mϕ
j is as M except that a new accessibility relation R′ is defined as (S is

the domain of M , and i 6= j)

R′
j := Rj

R′
i := Ri ∩ (S × [[ϕ]]M )

If ϕ is believed by j in state s in M we have that

(Mϕ
j , s)↔(M |Bjϕ, s).

This justifies that there is no difference between agent j truthfully announcing
that ϕ and the truthful public announcement of Bjϕ.
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The principles for j lying to i are as follows:

[¡jϕ]Biψ ↔ Bj¬ϕ→ Bi[!jϕ]ψ

[¡jϕ]Bjψ ↔ Bj¬ϕ→ Bj [¡jϕ]ψ

In other words, the liar knows that he is lying, but the dupe he is lying to, believes
that the liar is telling the truth. The principles for truthtelling and bluffing are
similar, but with (the obvious) different conditions on the right hand side. With
these principles, the logic is completely axiomatizated. (This is, because it is a
logic for a specific action model. See the next section.)

The Appendix illustrates agent lying in the consecutive numbers riddle. In
the continuation we discuss consequences and variations of public lying and agent
lying: an action model perspective, how to address the issue of unbelievable lies,
lying about beliefs, and lying and plausible beliefs.

5 Action models and lying

Whether I am telling the truth to you, am lying, or am bluffing, to you it all ap-
pears as the same annoucement. A familiar way to formalize uncertainty about
actions are action models [3]. We can view truthful and lying public announce-
ment as the two points of an action model, and we can also view truthful, lying
and bluffing agent announcement as the three different points in another action
model.

An action model M = 〈S, R, pre〉 consists of a domain S of actions, an acces-
sibility function R : N → P(S × S), where each Ri is an accessibility relation,
and a precondition function pre : S → L, where L is a logical language. A
pointed action model is an epistemic action. Performing an epistemic action in
an epistemic state means computing their restricted modal product—restricted
to state/action pairs (t, t) such thatM, t |= pre(t). With such an epistemic action
(M, s) we can associate a dynamic modal operator [M, s] in the usual way.

The action model M′ for truthful and lying public announcement consists of
two actions suggestively named ! and ¡ with preconditions ϕ and ¬ϕ in L(!, ¡),
respectively, and for all agents only action ! is accessible. Truthful public an-
nouncement of ϕ is the epistemic action (M′, !). Given that pre(!) = ϕ, [!ϕ]ψ
corresponds to [M′, !]ψ. Lying that ϕ is the epistemic action (M′, ¡).

The action modelM′′ for agent announcement consists of three actions named
¡!j , !j , and ¡j with preconditions ¬(Bjϕ ∨ Bj¬ϕ), Bjϕ, and Bj¬ϕ, respectively
(all in L(!i, ¡i, ¡!i)). The announcing agent j has identity access on the action
model and to the other agents only action !j is accessible. Agent j truthfully
announcing ϕ to all other i is is the epistemic action (M′′, !j)—with precondition
Bjϕ, therefore—and similarly lying and bluffing are the action models (M′′, ¡j)
and (M′′, ¡!j). Action models M′ and M′′ are depicted in Figure 1.

The action model representations validate the axioms for announcement and
belief, for all versions shown; and they justify that these axioms form part of
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• • •
¬(Bjϕ ∨Bj¬ϕ) Bjϕ Bj¬ϕ

i i

j ij j

¬ϕ ϕi i

Fig. 1. Action models for lying, truthtelling and bluffing

complete axiomatizations.1 These axioms are simply instantations of a more
general axiom for an epistemic action followed by a belief. Note that M′ and
M′′ are both in class KD45 but nevertheless, as we have seen, executing a KD45
epistemic action in a KD45 epistemic state does not guarantee a KD45 updated
epistemic state.

5.1 Unbelievable lies

The class of S5 epistemic models is closed under update with S5 epistemic
actions, such as truthful public announcements, but the class of KD45 models
is not closed under update with KD45 epistemic actions such as a lying public
announcement. (It is not even closed under update with correct information.)
The problem is that beliefs may be mistaken and that new information may be
incorrect. Either way, if you tell me that p but I already believe the opposite,
then I ‘go mad’ if I accept the new information without discarding the old
information. My accessibility relation has become empty: I lose the D in KD45.

KD45-preserving updates have been investigated in [16, 1, 9]. Aucher [1] de-
fines a language fragment that makes you go mad (‘crazy formulas’). Steiner [16]
proposes that the agent does not incorporate the new information if she already
believes to the contrary. In that case, nothing happens. Otherwise, access to
states where the information is not believed is eliminated, just as for believed
public announcements. This solution to model unbelievable lies (and unbeliev-
able truths!) is similarly proposed in the elegant and promising [9], where it is
called cautious update—a suitable term.

Steiner gives a useful parable for the case where you do not accept new
information. Someone is calling you and is telling you something that you don’t
want to believe. What do you do? You start shouting through the phone: ‘What
did you say? Is there anyone on the other side? The connection is bad!’ And
then you hang up, quickly, before the caller can repeat his message. Thus you
create common knowledge that the message has been received but its content
not accepted.

A three-point action model for cautious update is as follows. The difference
with the action model for truthful and lying public announcement is that those
alternatives now have an additional precondition ¬Bi¬ϕ, meaning that the an-
nouncement is ‘believable’.

• • •
Bi¬ϕ ¬ϕ ∧ ¬Bi¬ϕ ϕ ∧ ¬Bi¬ϕ

i

i i

1 The logic of believed announcements was originally axiomatized in [7]. The redescrip-
tion of these operations with an action model, providing the alternative axiomatiza-
tion, was suggested in [17, 8].
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We have explored this modelling of lying in more depth. We consider these mere
variations, and move on. Note that for agent announcements, the addressee does
not go mad if she already believes ¬p and the speaker is lying that p. The
addressee then merely concludes that ¬p∧Bjp: the speaker must be mistaken in
his truthful belief of p. Of course the addressee will still go mad if she believed
¬Bjp.

For believed announcements we mentioned the problem that the agent be-
lieves new information whether it is true or not. For cautious update it still is the
case that the agent can process (although maybe not believe) new information
whether it is true or not, and even whether she already believed it or not. Going
mad is too strong a response, but not changing contradictory beliefs is too weak.
The next section presents a solution in between.

5.2 Lying and plausible belief

Suppose that we also have a preference relation, expressing which states are
more and less plausible. We then can distinguish degrees of belief. For example,
suppose states s and t are indistinguishable for agent i but she considers s more
plausible than t; and proposition p is true in s and false in state t. The agent
(defeasibly) believes ϕ if ϕ is true in all preferred states, and the agent knows
(or, strongly believes) ϕ if ϕ is true in all accessible states. We keep writing B
for belief and we write K for knowledge. Given that, Bip is true in t, because
p is true in the preferred state s, but Kip is not true in t. When presented
with evidence that ¬p, in t, i will eliminate s from consideration; t is now the
most preferred state, and Bi¬p is now true. Such a distinction between epistemic
access and preference can also be made in the action models, where agents may
consider more and less plausible actions. We will refrain from details, see [18, 17,
4]. How to model lying with plausibility models was summarily discussed in [4,
19].

• • •
¬(Bjϕ ∨ Bjϕ) Bjϕ Bj¬ϕ

i i

j ij j

1 0 2

i i

ij ij ij

Fig. 2. Belief and preference

The action model of Figure 1 enriched with plausibility is depicted in Figure
2. The adressee i is most inclined to believe that j is telling the truth (0), less
inclined to believe that he is bluffing (1), and least inclined to believe that he
is lying (2). Agent i’s accessibility relation is the dashed relation. (This is the
universal relation. We assume transitivity.) She cannot excluse any of the three
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types of announcement. From that and her preference the solid accessibility
relation is what she considers most likely. This will determine her plausible
beliefs. (A third, intermediate degree of belief, is implicit in the figure.) Now
consider an epistemic state wherein i has hard evidence that ¬Bjp, and let j
announces p, thus suggesting Bjp. In the first place, i will now not go mad,
the problem discussed before. She will merely eliminate truthtelling from the
alternatives, and from the two remaining alternatives she considers it more likely
that j is bluffing than that he is lying. If she had also hard evidence that j is
not bluffing, she will still not go mad, and finally conclude that he is a liar.

5.3 Lying about beliefs

If I lie to you that “you don’t know that I will fly to Amsterdam tomorrow”,
something of the form p∧¬Bjp, the lie succeeds if you believe p afterwards, i.e.,
if Bjp is then true, not if the contradictory sentence Bj(p ∧ ¬Bjp) is true. This
is not merely some theoretical boundary case. I can very well lie to you about
the knowledge or ignorance of other agents or about my own knowledge. In fact,
I do that all the time.

Agents may announce factual propositions but also modal propositions, and
thus be lying and bluffing about them. For example, in the consecutive number
riddle, both i and j may lie about their knowledge or ignorance of the other’s
number.

In social interaction, untruthfully announcing modalities is not always con-
sidered lying (with the moral connotation). Suppose we work in the same de-
partment and one of our colleagues, X , is having a divorce. I know this. I also
know that you know this. But we have not discussed the matter between us. I
can bring up the matter in conversation by saying ‘You know that X is having a
divorce!’. But this is unwise. You may not be willing to admit your knowledge,
because X ’s husband is your friend, which I have no reason to know; etc. A
better strategy for me is to say ‘You may not know that X is having a divorce’.
This is a lie. I do not consider it possible that you do not know that. But, unless
we are very good friends, you will not laugh in my face to that and respond with
‘Liar!’.

It is also strange that I may be bluffing if I tell you p, given that in fact I
don’t know if p, but I would be lying if I tell you that I believe that p. This is
because I believe that I don’t believe p: ¬Bip entails by negative introspection
Bi¬Bip, where ¬Bip is now the negation of the announced formula Bip!

6 Conclusions and further research

Lying is an epistemic action inducing a transformation of an epistemic model.
We presented logics for public lying and truthtelling, and logics for agent lying,
bluffing, and truthtelling. These logics abstract from the moral and intentional
aspect of lying, and only consider the effect of lies that are believed by the
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addressee. We also presented versions that treat unbelievable lies differently,
and lying in the presence of plausible (defeasible) belief.

There are many topics for further research. 1. Explicit agency is missing in
our approach (as so often in dynamic epistemic logics). 2. We only summarily
discussed common knowledge—this seems a straightforward enough generaliza-
tion, that also allows for more more refined preconditions then merely requiring
that lies are believable for the addressee. A good (and possibly strongest?) pre-
condition seems:

Bi¬ϕ ∧ ¬Bj¬ϕ ∧ Cij((Biϕ ∨Bi¬ϕ) ∧ ¬(Bjϕ ∨Bj¬ϕ))

3. One problem with lying to some and telling the truth to others is that you
have to keep track of who knows the truth and who not, and that you should
carefully consider what you can still say and in whose company. In everyday
communication, this (logical) computational cost of lying seems a strong incen-
tive against lying. Can this intuition be formalized? We are inspired by results
on the computational cost of insincere voting in social choice theory [6]: in well-
designed voting procedures this is intractable, so that sincere voting is your best
strategy. 4. In multi-agent systems with several agents on may investigate how
robust certain communication procedures are in the presence of few liars; and
results might be compared to those for signal analysis with ‘intentional’ noise.
5. Finally, we would like to model a liar’s paradox in a dynamic epistemic logic.
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Appendix: Lying about consecutive numbers

The consecutive numbers riddle is often attributed to Littlewood [10]. It is as
follows.

Anne and Bill are each going to be told a natural number. Their numbers
will be one apart. The numbers are now being whispered in their respective
ears. They are aware of this scenario. Suppose Anne is told 2 and Bill
is told 3.
The following truthful conversation between Anne and Bill now takes
place:

– Anne: “I do not know your number.”
– Bill: “I do not know your number.”
– Anne: “I know your number.”
– Bill: “I know your number.”

Explain why is this possible.

76



First, the standard analysis of the informative consequences of these four an-
nouncements.

(0,1) (2,1) (2,3) (4,3) . . .

(1,0) (1,2) (3,2) (3,4) . . .

b a b

a b a

– Anne: “I do not know your number.”

(2,1) (2,3) (4,3) . . .

(1,0) (1,2) (3,2) (3,4) . . .

a b

a b a

– Bill: “I do not know your number.”

(2,3) (4,3) . . .

(1,2) (3,2) (3,4) . . .

b

b a

– Anne: “I know your number.”

(2,3)

(1,2)

– Bill: “I know your number.”

This last announcement does not make a difference anymore, as it is already
common knowledge that Anne and Bill know each other’s number.

Next, we show two different scenarios for the consecutive number riddle with
lying. This is agent lying (and truthtelling), the actions we modelled as !iϕ and
¡iϕ. (Bluffing is not an option in this example, because the lying is about ig-
norance or knowledge, and introspective agents know their ignorance and know
their knowledge.) As we are reasoning from the actual state (2, 3), we do not
depict the top chain of possibilities any more. And as beliefs may now be incor-
rect, we show all arrows. Positions in the model where a change took place (i.e.,
where arrows have been removed) are shown in red. The first scenario consists
of Anne lying in her first announcement. We do not model Bill’s response that
Anne is a liar! After Anne’s lie, in the actual state (2, 3), Bill does not consider
any state possible, and therefore believes everything. (Of course you have Bill
say that he has gone mad—by way of truthfully announcing that Bj(p ∧ ¬p).)

(0,1) (2,1) (2,3) (4,3) . . .b a b

ab ab ab ab
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– Anne: “I know your number.” Anne is lying

(0,1) (2,1) (2,3) (4,3) . . .b a

ab a a a

– Bill: “That’s a lie.”

In the second scenario Anne initially tells the truth, after which Bill is lying,
resulting in Anne mistakenly concluding (and announcing) that she knows Bill’s
number: observe that she believes it to be 1. This mistaken announcement by
Anne is informative to Bill: he learns from it (correctly) that Anne’s number is
3.

(0,1) (2,1) (2,3) (4,3) . . .b a b

ab ab ab ab

– Anne: “I do not know your number.”

(0,1) (2,1) (2,3) (4,3) . . .b a b

a ab ab ab

– Bill: “I know your number.” Bill is lying

(0,1) (2,1) (2,3) (4,3) . . .b a b

a ab b b

– Anne: “I know your number.” Anne is mistaken.

(0,1) (2,1) (2,3) (4,3) . . .b a b

a ab b
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Abstract. This paper builds up a bridge between the formal and cog-
nitive modeling of human reasoning aspects. To this end, we focus on
empirical studies on playing a certain game, namely marble drop, that
involves reasoning about other minds, and build up a formal system that
can model the different strategic reasoning methods employed by the
participants in the empirical study. Finally, we show how the syntactic
framework of the formal system can aid in building up a cognitive model
of the participants of the marble drop game.

1 Introduction

In recent years, a lot of questions have been raised regarding the idealization
that a formal model undergoes while representing social reasoning methods (e.g.
see [3]). Do these formal methods represent human reasoning satisfactorily or
should we concentrate more on the empirical studies and models based on those
empirical data? Without going into this debate here, we combine empirical stud-
ies, formal modeling and cognitive modeling to study human strategic reasoning.
Our proposal is the following: rather than thinking about them as separate ways
of modeling, we can consider them to be complementary and investigate how
they can aid each other to bring about a more meaningful model of the real-life
scenarios.

Experimentation // Formal modeling // Cognitive modelingii

In [5], a formal framework has been introduced to model human strategic
reasoning as exemplified by certain psychological experiments focusing on a dy-
namic game scenario, namely the Marble Drop game [10]. In continuation of the
work done in [5], this paper builds on the formal framework to give a more realis-
tic reasoning model of the participants. Moreover, we propose to use a cognitive
model of these participants based on the formal framework.

For the experimental work, the advantage of using dynamic games to study
higher-order social reasoning is that they allow for repeated presentation, which
yields more observations than is typical in other paradigms such as, for example,
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false-belief story and/or picture tasks. More observations yield more reliable
outcome measures such as accuracy of decisions and decision (or reaction) times
(RTs). Examples of dynamic games used in empirical studies are the Centipede
game [9], the matrix game [6], the road game [4], and Marble Drop [10, 11].
These examples are all game-theoretically equivalent because they share the
same extensive form, namely that of the original Centipede game [17].

Previous empirical studies have shown higher-order social reasoning to be
far from optimal, and have argued that higher-order social reasoning is compli-
cated and cognitively demanding (e.g., [19]). However, Meijering et al. [10, 11]
demonstrated that performance improved to near ceiling if participants (1) were
assigned to stepwise instruction and training, (2) were asked to predict the other
player’s move, and (3) were presented with concrete and realistic games.

Based on empirical findings that show that the participants do not always
follow the backward induction method [13], in this paper a formal framework is
presented to model forward, backward as well as combined reasoning attempts of
the participants. As discussed in [15], in backward induction reasoning, a player,
at every stage of the game, only reasons about the opponents future behavior and
beliefs. On the other hand, in forward induction reasoning, a player, at every
stage, only considers the past choices of the opponents. Based on the formal
framework, a cognitive model is proposed as a better alternative to the model
proposed in [8]. The new model can represent these different reasoning methods
in the Marble Drop game.

Before proceeding into the main sections of this paper, we should mention
here that this paper should be considered as a preliminary report of a cognitive
model of strategic reasoning that is being constructed with the aid of a formal
framework. We still need to do the important tasks of predicting and testing the
strategies that have come to our notice based on the empirical findings in [10, 11]
and the eye-tracking study reported in [12]. The formal framework is introduced
to capture the findings of the eye-tracking experiment, so that it can provide an
easy, mechanical representation of the eye-tracking analyses to be used in the
construction of the cognitive computational model.

2 Empirical work

We provide here a short discussion of the experimental studies on which this
work is based. The first part gives a description of the Marble Drop game and
the second part provides an analysis of the eye-tracking experiment.

2.1 Marble drop game

Figure 1 depicts examples of a zeroth-, first-, and second-order Marble Drop
game. A white marble is about to drop, and its path can be manipulated by
removing trapdoors (i.e., the diagonal lines). In this example, the participant
controls the blue trapdoors and the computer controls the orange ones. Each
bin contains a pair of payoffs. The participant’s payoffs are the blue marbles
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(a) (b) (c)

Fig. 1. Examples of a zeroth, first-, and second-order Marble Drop game. The blue
marbles are the participant’s payoffs and the orange marbles are the computer’s payoffs.
The marbles can be ranked from light to dark, light less preferred than dark. For each
player, the goal is that the white marble drops into the bin with the darkest possible
marble of their color. The participant controls the blue trapdoors (i.e., blue diagonal
lines) and the computer the orange ones. The dashed lines represent the trapdoors that
both players should remove to attain the darkest possible marble of their color.

and the computer’s payoffs are the orange marbles. The marbles can be ranked
from light to dark, light marbles being less preferred than dark. For each player,
the goal is that the white marble ends up in the bin that contains the darkest
possible color-graded marble of their color.

For example, at the start of the game in Figure 1c, Player I has to decide
whether to remove the left trapdoor (end) or to remove the right trapdoor (con-
tinue). Player I’s marble in bin 2 is darker than in bin 1, but what will Player
II decide if Player I continues? Player II may want to continue the game to the
last bin, as Player II’s marble in bin 4 is darker than in bin 2, but what will
Player I decide at the last set of trapdoors? Player I would stop the game in bin
3, as Player I’s marble in bin 3 is darker than in bin 4. Thus, Player II should
stop the game in bin 2, as Player II’s marble in bin 2 is darker than in bin 3.
Consequently, Player I should decide to continue the game from bin 1 to bin 2.

Marble Drop games provide visual cues as to which payoff belongs to whom,
who decides where, what consequences decisions have, and how a game con-
cludes. In matrix games [6], participants had to reconstruct this from memory.
Meijering et al. [10] hypothesized that the supporting structure of the represen-
tation of Marble Drop would facilitate higher-order social reasoning, and, in fact,
participants assigned to Marble Drop games performed better than participants
assigned to matrix games [11].

2.2 Eye-tracking study

Behavioral measures such as responses and reaction times shed some light on
higher-order social reasoning. However, they show the end result of higher-order
social reasoning, not the online process. The online process (i.e., the strategies
that participants use) may prove valuable in the study of higher-order social rea-
soning, because strategies determine to a great extent what cognitive resources
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are employed. For example, an algorithmic strategy such as backward induction
puts a lesser strain on working memory than a strategy that explicitly models
mental states. Johnson, Camerer, Sen, and Rymon [7] used a novel approach
to measure online higher-order social reasoning. In their sequential bargaining
games, information displayed on a computer screen was masked with boxes and
participants could uncover parts of that information by clicking on the boxes with
the mouse. This approach allowed Johnson et al. to investigate the sequence in
which participants uncovered information during reasoning.

A concern with this approach is that participants may have felt disinclined to
click on the information repeatedly and would rather adopt an artificial strategy
that involves fewer mouse clicks but puts a higher strain on working memory.
To avoid that, Meijering, Van Rijn, Taatgen, and Verbrugge [12] conducted a
study in which they used eye-tracking, which is not as obtrusive as Johnson et
al.’s method of masking information. Participants’ eye movements were recorded
while they were playing Marble Drop games. The eye movement data yielded
insight into the comparisons that participants made and the sequence of those
comparisons during each game.

The proportions of fixations at bins 1 to 4 are depicted in Figure 2. The
proportions were averaged over games, and plotted against position in the total
fixation sequence. In other words, Figure 2 shows the general increase or decrease
of fixations at a particular bin over time spent in a game. The results showed that
participants did not seem to use backward induction, at least, initially. Figure
2(a) shows that, on the first position, the proportion of fixations at bins 1 and 2
was higher than at bins 3 and 4. In contrast, backward induction would yield a
higher proportion of first fixations at bins 3 and 4, as backward reasoning starts
with a comparison of the payoffs in bins 3 and 4. However, as of position 4 in
Figure 2(a), the fixation patterns seem to correspond with backward induction:
the proportion of fixations at bins 3 and 4 was higher than the proportion of
fixations at bins 1 and 2, and the way that the proportions change over time
(i.e., they decrease for bins 3 and 4, and increase for bins 1 and 2) correspond
with eye movements that go from right to left.

The patterns are less obvious in Figure 2(b), because the figure shows fixa-
tions that were averaged over another set of games. Where Figure 2(a) (bottom
panel) depicts mean proportions for games in which a rational participant should
end the game because the computer would continue, Figure 2(b) (bottom panel)
depicts mean proportions for games in which a rational participant should con-
tinue because the computer would continue. Differential fixation sequences imply
that participants did not use pure backward induction, because backward induc-
tion works independently of the payoff values.

Instead of backward induction, participants may have applied forward rea-
soning, or a mix of backward and forward reasoning. Figure 2(a) hints at the
latter possibility as participants fixated from left to right during the first four
fixations, and from right to left during later fixations. To test what strategies
participants may have used, we construct cognitive computational models (cf.
Section 4) that implement various strategies, and use these models to predict
eye movements that we can test against the observed eye movements. To aid in
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Fig. 2. The bottom panel depicts mean proportions of fixations at bins 1, 2, 3, and 4,
calculated separately for position in the total fixation sequence. In (a), Player I should
end the game in bin 1, because given the chance, Player II would continue, and the
game would end with a lesser payoff for Player I . In (b), Player I should continue the
game, because given the chance, Player II would continue, and the game would end
with a better payoff for Player I . The games in the top panel are examples of the
former and latter type of games. We did not depict standard errors, because we fitted
(non-)linear models instead of traditional ANOVAs, which typically include contrasts
between (successive) positions of fixations.

the construction we build up a formal framework (cf. Section 3) and show how
the formal and cognitive modeling can interplay to provide a better model for
strategic reasoning (cf. Section 4.2). As mentioned in the introduction, we are
presently at the phase of building up this cognitive model and predicting and
testing strategies are our next steps.

3 A formal framework

In this section, we present a formal system to represent the different ways of
strategic reasoning that the participants of the Marble Drop game (cf. Section
2.1) undertake, suggested by the eye-tracking study described in Section 2.2.
We extend the system developed in [5] by adding special propositional variables
representing players’ payoffs and comparison of such payoffs, inspired by [2].
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3.1 Strategy specifications

Following the lines of work in [16, 14], a syntax for specifying partial strategies
and their compositions in a structural manner involving simultaneous recursion
has been proposed in [5]. The main case specifies, for a player, what conditions
she tests for before making a move. The pre-condition for the move depends on
observables that hold at the current game position as well as some simple finite
past-time conditions and some finite look-ahead that each player can perform in
terms of the structure of the game tree. Both the past-time and future conditions
may involve some strategies that were or could be enforced by the players. These
pre-conditions are given by the following syntax.

Below, for any countable set X, let BPF pXq (the boolean, past and future
combinations of the members of X) be sets of formulas given by the following
syntax:

BPF pXq :� x P X |  ψ | ψ1 _ ψ2 | xa
�yψ | xa�yψ.

where a P Σ, a finite set of actions.
Formulas in BPF pXq can be read as usual in a dynamic logic framework

and are interpreted at game positions. The formula xa�yψ (respectively, xa�yψ)
talks about one step in the future (respectively, past). It asserts the existence
of an a edge after (respectively, before) which ψ holds. Note that future (past)
time assertions up to any bounded depth can be coded by iteration of the cor-
responding constructs. The “time free” fragment of BPF pXq is formed by the
boolean formulas over X. We denote this fragment by BoolpXq.

Syntax Let P i � tpi0, p
i
1, . . .u be a countable set of observables for i P N and

P �
�
iPN P

i. To this set of observables we add two new kinds of propositional
variables pui � qiq to denote ‘player i’s utility (or payoff) is qi’ and pr ¤ qq to
denote that ‘the rational number r is less than or equal to the rational number
q’. The syntax of strategy specifications is given by:

Strat ipP iq :� rψ ÞÑ asi | η1 � η2 | η1 � η2,

where ψ P BPF pP iq. For a detailed explanation see [5]. The basic idea is to use
the above constructs to specify properties of strategies as well as to combine
them to describe a play of the game. For instance the interpretation of a player
i’s specification rp ÞÑ asi where p P P i, is to choose move “a” at every game
position belonging to player i where p holds. At positions where p does not hold,
the strategy is allowed to choose any enabled move. The strategy specification
η1 � η2 says that the strategy of player i conforms to the specification η1 or η2.
The construct η1 �η2 says that the strategy conforms to specifications η1 and η2.

Let Σ � ta1, . . . , amu, we also make use of the following abbreviation.

– null i � rJ ÞÑ a1s � � � � � rJ ÞÑ ams.

It will be clear from the semantics (which is defined shortly) that any strategy
of player i conforms to null i, or in other words this is an empty specification.
The empty specification is particularly useful for assertions of the form “there
exists a strategy” where the property of the strategy is not of any relevance.
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Semantics We consider perfect information games as models. Let M � pT , V q

with T � pS,ñ, s0, pλ,Uq, where pS,ñ, s0, pλq is an extensive form game tree,
U : frontierpT q � N Ñ Q is a utility function. Here, frontierpT q denotes the
leaf nodes of the tree T . Finally, V : S Ñ 2P is a valuation function. The truth
of a formula ψ P BPF pP q at the state s, denoted M, s |ù ψ, is defined as follows:

– M, s |ù p iff p P V psq.
– M, s |ù  ψ iff M, s �|ù ψ.
– M, s |ù ψ1 _ ψ2 iff M, s |ù ψ1 or M, s |ù ψ2.

– M, s |ù xa�yψ iff there exists an s1 such that s
a
ñs1 and M, s1 |ù ψ.

– M, s |ù xa�yψ iff there exists an s1 such that s1
a
ñs and M, s1 |ù ψ.

The truth definition for the new propositions are as follows:

– M, s |ù pui � qiq iff Ups, iq � qi.
– M, s |ù pr ¤ qq iff r ¤ q, where r, q are rational numbers.

Strategy specifications are interpreted on strategy trees of T . We also assume
the presence of two special propositions turn1 and turn2 that specify which
player’s turn it is to move, i.e. the valuation function satisfies the property

– for all i P N , turni P V psq iff pλpsq � i.

One more special proposition root is assumed to indicate the root of the
game tree, that is the starting node of the game. The valuation function satisfies
the property

– root P V psq iff s � s0.

A partial strategy σ, say of player i, can be viewed as a set of total strategies
of the player [14] and each such strategy is a subtree of T .

The semantics of the strategy specifications are given as follows. Given the
game T � pS,ñ, s0, pλ,Uq and a partial strategy specification η P Strat ipP iq,

we define a semantic function v�wT : Strat ipP iq Ñ 2Ω
ipTq, where each partial

strategy specification is associated with a set of total strategy trees.
For any η P Strat ipP iq, the semantic function vηwT is defined inductively as

follows:

– vrψ ÞÑ asiwT � Υ P 2Ω
ipTq satisfying: µ P Υ iff µ satisfies the condition that,

if s P Sµ is a player i node then M, s |ù ψ implies outµpsq � a.
– vη1 � η2wT � vη1wT Y vη2wT
– vη1 � η2wT � vη1wT X vη2wT

Above, outµpsq is the unique outgoing edge in µ at s. Recall that s is a player
i node and therefore by definition of a strategy for player i there is a unique
outgoing edge at s.

To model players’ responses, we introduce the formula ı?ζ in the syntax
of BPF pP iq, where ı denotes the opponent of i. The intuitive reading of the
formula is “player ı is playing according to a partial strategy conforming to the
specification ζ at the current stage of the game”, and the semantics is given by,

– M, s |ù ı?ζ iff DT 1 such that T 1 P vζwT and s P T 1.
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3.2 Marble Drop game: a test case

We now express the empirical strategic reasoning performed by the participants
of the Marble drop game described in Section 2.1. The game form is structurally
equivalent to the Centipede game tree. Figure 3a gives the corresponding tree
structure, and figures 3b and 3c correspond to example cases.

s, 1

(t1, t2)

l r

t, 2

(s1, s2)

l r

u, 1

(p1, p2) (q1, q2)

l r

s, 1

(3, 4)

l r

t, 2

(1, 2)

l r

u, 1

(2, 1) (4, 3)

l r

s, 1

(5, 2)

l r

t, 2

(1, 2)

l r

u, 1

(2, 1) (4, 3)

l r

(a) (b) (c)

Fig. 3. Example trees.

Using the strategy specification language introduced in Section 3.1, we ex-
press the different reasoning methods of participants that have been validated
by the experiments described in Section 2. The reasoning is carried out by an
outside agent (participant) regarding the question:

How would the players 1 and 2 play in the game, under the assumptions
that both players are rational (thus will try to maximize their utility),
and that there is common knowledge of rationality among the players.

We abbreviate some formulas which describe the payoff structure of the game.

xryxryxlyppu1 � p1q^ pu2 � p2qq = α (two r moves and one l move lead to pp1, p2q)

xryxryxryppu1 � q1q ^ pu2 � q2qq = β (three r moves lead to pq1, q2q)

xryxlyppu1 � s1q ^ pu2 � s2qq = γ (one r move and one l move lead to ps1, s2q)

xlyppu1 � t1q ^ pu2 � t2qq = δ (one l move leads to pt1, t2q)

A formula describing backward reasoning giving the correct answer corre-
sponding to the game tree given in Figure 3b is:

ϕ1 :
�
rα^ β ^ xryxryturn1 ^ p2 ¤ 4q ^ γ ^ xryturn2^ p2 ¤ 3q ^ root^

turn1^δ^p3 ¤ 4q ÞÑ rs1, rα^β^xryxryturn1^p2 ¤ 4q^γ^xryturn2^
p2 ¤ 3q ÞÑ rs2, rα^ β ^ xryxryturn1 ^ p2 ¤ 4q ÞÑ rs1

�

‘If the utilities and the turns of players at the respective nodes are as in
Figure 3b, then player 1 would play r at the root node, player 2 would
continue playing r at his node, after which player 1 can finish off by
playing r.’

Another formula describing forward reasoning giving a wrong answer correspond-
ing to the game tree given in Figure 3b is:
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ϕ2 :
�
rroot^ turn1 ^ δ ^ xryturn2 ^ γ ^ p1 ¤ 3q ÞÑ ls1

�

‘If the utilities at the first two leaf-nodes of the game are as Figure 3b,
and players 1 and 2 move respectively in the first two non-terminal nodes,
then player 1 would play l at the root node finishing it off.’

The last formula describes forward reasoning giving a correct answer correspond-
ing to the game tree given in Figure 3c is:

ϕ3 :
�
rroot^ turn1 ^ δ ^ xryturn2 ^ γ ^ p1 ¤ 5q ÞÑ ls1

�

‘If the utilities at the first two leaf-nodes of the game are as Figure 3c,
and players 1 and 2 move respectively in the first two non-terminal nodes,
then player 1 would play l at the root node finishing it off.’

These are just some examples to show that one can actually list possible
ways of reasoning that can be performed by human reasoners in the Marble
Drop game. Such a list aids in developing the cognitive models of the reasoners,
as we shall see in the next section.

4 Cognitive modeling

Analyses of eye movements are challenging because they have to deal with great
variability typically found in eye-movement data. Salvucci and Anderson [18]
suggested using a cognitive computational model to predict eye movements,
which can be compared with observed eye movements. This method helps to
disentangle explained (i.e., hypothesized) variance from unexplained variance
(due to e.g. measurement errors).

Van Maanen and Verbrugge [8] suggested a cognitive model that implemented
backward induction. However, the eye-tracking study conducted by Meijering et
al. [12] suggests that participants did not use pure backward induction. Thus,
in this paper we present preliminary ideas about a more generic cognitive model
that implements backward and forward reasoning as well as possible mixtures of
the two. Before going into the specific details of our construction of the cognitive
computational model, we first provide a general description of the model that
we are going to develop.

4.1 ACT-R modeling

The model that we propose has been implemented in ACT-R, which is an inte-
grated theory of cognition as well as a cognitive architecture that many cognitive
scientists use to model human cognition [1]. ACT-R consists of modules that link
with cognitive functions (e.g., vision, motor processing, and declarative process-
ing) and map with specific brain regions. Each module has a buffer associated
with it, and the modules communicate among themselves via these buffers.
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A very important property of ACT-R is that cognitive resources are bounded,
because each buffer can store just one piece of information at a time. Conse-
quently, if a model has to keep track of more than one piece of information,
it has to move it back and forth between two important modules: declarative
memory and the problem state. Moving information back and forth comes with
a time cost, and could cause a so-called cognitive bottleneck.

The declarative memory module represents long-term memory and stores in-
formation encoded in so-called chunks (i.e., knowledge structures). For example,
a chunk can be represented as some expression with a defined meaning (e.g.
formal expressions). Each chunk in declarative memory has an activation value
that determines the speed and success of its retrieval. Whenever a chunk is used,
the activation value of that chunk increases. As the activation value increases,
the probability of retrieval increases and the latency of retrieval decreases. For
example, whenever the chunk of a successful formula is used, its activation value
increases. As the activation value of a successful formula increases, its probability
(and speed) of retrieval increases.

Anderson [1] provided a formalization of the mechanism that produces the
relationship between the probability and speed of retrieval. As soon as a chunk is
retrieved from declarative memory, it is put into the module buffer. As mentioned
earlier, each ACT-R module has a buffer that may contain one chunk at a time.
On a functional level of description, the chunks that are stored in the various
buffers are the knowledge structures the cognitive architecture is aware of.

The problem state module (sometimes referred to as ‘imaginal’) slightly al-
leviates bounds on cognitive resources, as it also contains a buffer that can hold
one chunk. Typically, the problem state stores a sub-solution to the problem
at hand. In the case of a social reasoning task, this may be the outcome of a
reasoning step that will be relevant in subsequent reasoning. Storing information
in the problem state buffer is associated with a time cost (typically 200ms). The
cognitive model that we present relies on the declarative and problem state mod-
ules. More specifically, it retrieves relevant information from declarative memory
and moves that information to the problem state buffer whenever it requests the
declarative module to retrieve new information, which the declarative module
stores in its buffer.

A central procedural system recognizes patterns in the information stored
in the buffers, and responds by sending requests to the modules, for example,
‘retrieve a fact from declarative memory’. This condition-action mechanism is
implemented in production rules. For example, the following production rule
represents comparing the last two payoff values in order to decide whether to
end or continue a Marble Drop game:

IF the goal is to compare the last two payoff values,
AND the first is greater than the second,
THEN respond end the game.

Here, the first line refers to the goal buffer, the second line to the problem state
buffer, and the third line to a manual action. With this brief introduction to
ACT-R modeling, we now move on to the specific model construction.
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4.2 A cognitive computational model of Marble Drop

The cognitive model that we propose here is based on the model presented pre-
viously by [8], but it is more generic because it is not based on a fixed strategy.
Instead, the model is based on formulas (cf. Section 3.2) that are selected from a
list provided by the logical framework. The formulas can either represent back-
ward reasoning, forward reasoning, or a mix of both (see examples ϕ1, ϕ2, ϕ3 in
Section 3.2).

Retrieve
payo!
location

Payo!
location

Shift
attention

Attending
payo!

Store
payo!
value

Update problem state

Retrieve
payo!
location

Payo!
location

Shift
attention

Attending
payo!

Compare
payo!
values

Respond

Goal

Declarative

Procedural

Visual

Problem State

Manual

(1) (2) (3) (4) (5) (6a) (6b)

φ

Fig. 4. Flowchart of the ACT-R model.

The flowchart of the model is depicted in Figure 4. Throughout an entire
game, the goal buffer stores a chunk that represents which formula (represented
by ϕ) is used. For each pair of payoffs that are compared in the formula, the
model iterates through the following steps: The model retrieves the location of
the first payoff from declarative memory (1). That location is represented in a
chunk, and the more often a location chunk is retrieved the faster that retrieval
will be, as the activation value of a chunk increases with each retrieval. As
soon as the location of the first payoff is retrieved from declarative memory, the
model shifts attention to that location (2). More specifically, the model requests
the visual module to shift attention to the location it has just retrieved. After
attending the payoff, the model stores the payoff value in the problem state buffer
(3). If the model does not store the payoff value in the problem state buffer, it
will be lost (i.e., replaced) when the model retrieves a new piece of information.
Whenever the payoff value is moved from declarative memory to the problem
state, the model retrieves the location of the second payoff from declarative
memory (4). After retrieving that location, the model shifts attention to it (5).
Now, the model has attended both payoffs, and it compares the payoff value
stored in the problem state with the payoff value stored in the visual buffer (6a).
After comparing the last pair of payoffs in the formula, the model produces a
response (6b).

89



At the start of each game, a new formula chunk is retrieved from declara-
tive memory. The model tags a formula chunk according to its success, that is,
whether the model’s response was correct or incorrect, which is indicated by the
task feedback presented after each game. The model learns to play Marble Drop
games better and faster, as it requests the declarative module to retrieve suc-
cessful formulas, and the more often those are retrieved and tagged, the higher
their activation value becomes. Higher activation value, in turn, increases the
probability and speed of retrieving a formula.

The model produces responses and associated reaction times, which we can
analyze and compare with the behavioral data. In addition, the model also pro-
duces fixations, which we can compare with the human eye movement data. By
comparing the model’s fixation sequences with the observed fixation sequences
in Marble Drop games (Meijering et al. [12]), we can determine what formulas
provide a good description of human higher-order social reasoning.

5 Conclusion

The eye-tracking study of Meijering et al. [12] has shown that participants did not
use a pure backward induction strategy in the Marble Drop game. We, therefore,
constructed a logical model to describe the game, and possible strategies. We use
the logical model as a basis for a cognitive computational model, implemented
in the cognitive architecture ACT-R.

We want to emphasize that the cognitive model can be considered as a virtual
human being. It can do the very same task presented to the participants in Mei-
jering et al.’s [10, 11] studies, and it produces responses and associated response
times. The cognitive computational model is useful for a better understanding
of higher-order social reasoning, because we can analyze the model output and
see which formulas are successful and how quickly the model learns to apply one
(set of) formula(s) instead of other formulas.

An advantage of having cognitive models, besides having statistical models, is
that cognitive models can be broken down into mechanisms. Our ACT-R model
comprises cognitive functions (e.g., a declarative memory and a problem state
representation), and we can determine to what extent each cognitive function
contributes to the model’s behavior (i.e., the responses and response times) in
Marble Drop games.

Another advantage of a cognitive model is that we can compare the model’s
output with Meijering et al.’s human data, and acquire a better understanding of
individual differences. Higher-order social reasoning probably consists of multiple
serial and concurrent cognitive functions, and thus it may be prone to great
individual differences. Our cognitive model may help to determine what formulas
fit the responses of a particular (subset of) participant(s). This fit not only
concerns patterns in responses and response times, but also patterns in eye-
movements. The model’s execution of a formula yields eye movements, and we
can calculate the explanatory power of eye movement patterns in (subsets of)
the human data.
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First and second-order false-belief reasoning:              

Does language support reasoning about the beliefs of 

others? 

Bart Hollebrandse, Angeliek van Hout and Petra Hendriks 

University of Groningen 

1 Introduction1 

We understand and act upon the beliefs of other people, even if these conflict with 

our own beliefs. Children’s development of this ability, known as Theory of Mind, 

has been extensively studied over the past twenty-five years, starting with the seminal 

study of Wimmer and Perner (1983). Theory of Mind (ToM) development involves 

various aspects of reasoning about others, including social awareness, joint attention, 

and anticipation of other people's behavior. Reasoning about false beliefs—the ability 

to handle the contrast between true and false beliefs—seems to develop rather late. It 

is typically not until the age of four that children understand that, for instance, John 

thinks that it is raining outside contains a belief about the weather attributed to John, 

and know that John may be incorrect in his belief, thus attributing a false belief to 

another person (Astington, 1993; Wellman & Bartsch, 1988). Our study involves 

more complex false-belief reasoning adding another belief layer, for instance, Tom 

believes that John thinks that it is raining outside. We investigated when children 

succeed at complex false-belief reasoning as tested with a verbal story task at the age 

                                                           
1 The tests used in this study have been developed by the first author in collaboration with Tom 

Roeper, Jill and Peter de Villiers and Kate Hobbs. We thank the children and teachers of the 

Annie M.G. Schmidt school and the Joseph Haydnschool in Groningen for their hospitality. 

This paper has benefitted from the comments of three anonymous reviewers. We gratefully 

acknowledge ESF (grant no. 028395, PI M. Krifka and U. Sauerland) and NWO (grant no. 

277-70-005, PI P. Hendriks). 
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of 7, whereas they pass a similarly complex task with non-verbal movie clips not until 

the age of 8 or 9. 

Why does false-belief reasoning develop so late? De Villiers (2005) argues that the 

acquisition of the syntax of linguistic embedding, with verbs like say (Mom said that 

it was raining), is a prerequisite for developing the cognitive representations required 

for false beliefs. The child has to be able to embed sentential complements before she 

can represent a false belief in a cognitive embedding and reason about it accurately. 

Recent work, however, found that toddlers as young as 15 months old are able to pass 

a false-belief task. In a non-verbal version of the so-called Sally-Ann task, Onishi and 

Baillargeon (2005) showed toddlers movies in which a toy is hidden in one location 

while the actor is watching; when the actor’s view is blocked by a screen, the toy is 

hidden in another location. When the screen opens again and the actor is about to 

reclaim the toy, the toddlers looked longer at the location where the toy was initially 

hidden (i.e., where the actor thinks that the toy is), than at the location where the toy 

was hidden now. The children’s looks reveal their expectation of the actor’s behavior 

on the basis of that person’s belief about the hiding place of a toy, which is different 

from their own beliefs about it (cf. Southgate, Senju & Csibra, 2007, who replicated 

this finding with 25-month-old children). The children thus seem to track the actor’s 

false belief about the location of a toy vis-à-vis their own, true beliefs. 

Although one may doubt whether these tasks, which measure expectation, test the 

actual reasoning involved in considering false beliefs (see Apperly & Butterfill, 2009; 

De Bruin, 2011), the Onishi and Baillargeon findings undoubtedly show that 15-

month-olds effectively represent false beliefs. Toddlers develop implicit knowledge 

of false-belief attribution well before they can verbalize that knowledge explicitly, 
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which suggests that they have some form of cognitive representation of false beliefs 

that does not rely on language. These young learners pass this ToM test before they 

pass any of the verbal false-belief tasks and before they have acquired any complex 

syntax, thereby refuting the basis of De Villiers’s (2005) hypothesis. 

In this study we present a more complex case of false-belief reasoning with older 

children that finds just the opposite: 7-year-olds pass a verbal false-belief reasoning 

task, but fail on an equally complex non-verbal task. It is not until the age of 8 or 9 

that children pass this non-verbal task as well. The case under investigation involves 

two layers of belief representations: the ability to understand one person’s belief (the 

first layer) about a belief attributed to another person (the second layer), as in Tom 

believes that John thinks that it is raining outside, where Tom entertains the know-

ledge that John holds a certain belief about the weather. Perner and Wimmer (1985) 

claim that this latter type of ToM development—second-order reasoning—is not mas-

tered until the age of 7 or 8 (see also Sullivan, Zaitchik & Tager-Flusberg, 1994). We 

probed second-order ToM reasoning in 6-9 year-olds with a verbal and a non-verbal 

task. We argue that for such complex false-belief tasks, language may support the 

development of the cognitive representations of reasoning required to perform these 

tasks, reviving De Villiers’ hypothesis about the role of language in false-belief rea-

soning. 

2 Participants 

43 Dutch children were tested, divided over two age groups: twenty-one 6 and 7 

year-olds (mean age = 6;9, range = 6;2 – 7;3) and twenty-two 8 and 9 year-olds (mean 

age = 8;10, range = 8;2 – 9;11). We also tested a control group of seventeen adults.  

95



 

3 Method 

We used two tasks to test false-belief (FB) reasoning at first-order and second-

order levels, the designs and materials of which were taken from the study of Holle-

brandse, Hobbs, De Villiers and Roeper (2008) with English children. The essence of 

both tasks is that the protagonists in the stories and video clips have beliefs about 

situations that are different from the participants’ beliefs (first order), as well as from 

the beliefs of others (second order). The two tasks differ as to how the clues for the 

beliefs were presented. In the verbal task, participants were told a story about four 

characters which provided the necessary clues for FB reasoning (see Appendix 1 for 

an illustration). In the non-verbal task, participants watched silent movies with one or 

two actors. The experimenter occasionally pointed out some features in the movies, 

but, crucially, no language clues about beliefs were given. Instead, the clues for the 

beliefs of the different actors had to be deduced from the visual context (see Appen-

dix 2 for an illustration). 

All subjects participated in both tasks. The data was collected in two sessions. The 

order in which the tasks were conducted was balanced across participants.  

3.1 Verbal false-belief task 

In the verbal task an elaborate story was told in which the beliefs of various people 

in the story were manipulated. The stories were accompanied by pictures, which were 

presented one by one and served as a memory aid. The stories were modeled after 

Wimmer and Perner’s (1985) “ice cream truck story”, but in contrast to their stories, 

we made sure that there were no overlapping beliefs, not only at the second-order 

96



  

level, but also at the first-order level: each protagonist had his or her own distinct 

belief which was different from those of the other protagonists.  

All the stories have the same set up. Protagonist 1 and 2 initially share the same be-

lief. In the sample story in Appendix 1, both main characters (Sam and Maria) initial-

ly think that there are chocolate-chip cookies at the bake sale of the church. Then 

character 1’s belief changes without character 2 knowing about it (Sam’s mom tells 

Sam that they are selling pumpkin pie). Next, character 2 learns that the reality is 

different, without character 1 knowing about this (Maria finds out that there are only 

brownies left). At this point character 1 has a first-order belief which differs from his 

initial belief and also from the reality (Sam now thinks they’re selling pumpkin pie, 

not chocolate-chip cookies; he doesn’t know that in reality they’re selling brownies). 

Character 2 knows the reality which is different from her second-order belief about 

character 1 (Maria knows they’re selling brownies, but thinks that Sam still thinks 

that they sell chocolate-chip cookies).  

We did not use any second-order embedding constructions of the type Maria thinks 

that Sam thinks they are selling cookies at the bake sale in the story. Instead we eli-

cited a second-order answer by asking a “double” first-order question. The mailman 

asks Maria a first-order question What does Sam think they are selling at the bake 

sale? The experimenter then asks the participant what Maria answered to the mailman 

(see also Sullivan, Zaitchik & Tager-Flusberg, 1994). The child thus did not need to 

process second-order embedding structures in language, but was still required to do a 

second-order reasoning task. 

There were eight stories with this format, each containing one second-order ques-

tion and two first-order ones. One first-order question was asked in the middle of the 
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story and the second one was asked at the end of the story. The purpose of asking the 

same first-order question once more at the end of the story was to check whether 

children had difficulties with the length and complexity of the story. The second first-

order question thus effectively served as a control of how well participants were able 

to keep track of the different beliefs despite the length and complexity of the story.  

3.2 Non-verbal false-belief task 

For the non-verbal task, participants also had to keep track of the different beliefs 

of different protagonists in the same situation. Whereas the former task was a fully 

verbal one, this one limited the use of language as much as possible. The experimen-

ter only drew attention to the contents of a box and pointed out whether or not the 

observers in the movies were watching the changes of the content. This was done 

without using any propositional-attitude verbs (such as think or believe), and without 

referring to thoughts or beliefs in any other way.  

Participants watched short movies. In half of the movies the contents of a box were 

changed once or twice (the Unknown-Change-of-Content set-up), and in the other 

half an object was moved between two or three different locations (the Unknown-

Change-of-Location set-up). The task was presented as a game in two parts. In the 

first part the participant himself was the player of the game and had to keep track of 

what the observer in the movie knew about the changes of the contents of a box (or 

the different locations in the change-of-location variant of this task). These were the 

first-order trials (see Appendix 2a).  

In the second part participants were told that it was the same game, but now there 

was a different player: an additional observer in the movie (i.e., the man in the win-
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dow on the right in Appendix 2b). The task of the participant was to keep track of 

what this observer knew about the contents of the box and what he knew about the 

other observer (the woman)’s beliefs, which involves second-order reasoning. The set 

of events  in the second-order movies was essentially the same as in the first-order 

movies, except that here we introduced a second-order false belief for the man about 

the woman. For example, the man would incorrectly believe that the woman thinks 

there is an apple in the box, whereas she actually believes that there is small basket in 

the box; in reality, however, there is a turtle in the box.  

Four movies tested first-order FB reasoning and four others tested second-order FB 

reasoning. For the younger children, a first-order question was added to the end of the 

second-order trials to check whether they were able to follow the complex series of 

events.
2
 

 In both tasks then, participants had to reason about first-order and second-

order false beliefs in a setting in which none of the protagonists’ beliefs overlapped. 

In both tasks participants had to keep track of two first-order beliefs and one second-

order belief. In the story task they had to keep track of Sam’s and Mary’s first-order 

beliefs as well as Mary’s second-order belief about Sam’s first-order belief. In the 

movie task they had to keep track of the first-order beliefs of the protagonist in the 

right window and the protagonist in the left window, and the second-order belief of 

                                                           
2 The second first-order question was not asked with the older children as they were tested 

before the younger children. At that time, we feared that adding another question would 

make the task too demanding. However, as the older children turned out to be quite success-

ful with the second first-order question in the verbal task, our fears appeared to be unwar-

ranted. Hence, we decided to add the second first-order question to the non-verbal task for 

the younger children.  
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the protagonist in the right window about the belief of the other protagonist in the left 

window.  

The tasks differed in whether the clues about who believes what about whom were 

presented verbally, or whether they had to be deduced from the movies, hence our 

labels verbal versus non-verbal task. Note that even though we call the movie task 

non-verbal, it is not completely non-verbal, as the experimenter draws verbal attention 

to the changes of the contents of the box; moreover, the test questions were also ver-

bal. Conversely, the verbal task was supported with pictures. The two tasks also dif-

fered in the number of protagonists; the non-verbal task has only two protagonists (the 

woman and the man), whereas the verbal task has four (Sam, Maria, the mom and the 

mailman). Having more protagonists adds to the complexity of the mental representa-

tions involved and potentially makes the verbal task more demanding. However, as 

we will see in the next section, this is not reflected in the results. Children are more 

accurate in the verbal task than in the non-verbal task.  

4 Results 

Figures 1 and 2 present the children’s scores on the verbal and non-verbal tasks. 

For both, the results show a sharp difference between first-order and second-order 

questions. Moreover, for the second-order items, children performed better in the 

verbal task than in the non-verbal task. The adults performed nearly at ceiling at all 

test questions, with 96% correct responses on the second-order question in the verbal 

task and 91% in the non-verbal task. 
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Figure 1: Verbal false-belief task: Percentage of correct responses for both age groups (error 

bars show standard errors) on 1FB1 (first first-order FB question), 2FB1 (second first-order FB 

question) and FB2 (second-order FB question). 

 

 

 

 

Figure 2: Non-verbal false-belief task: Percentage of correct responses for both age groups 

(error bars show standard errors) on 1FB1 (first first-order FB question), 2FB1 (first-order FB 

question in the second-order trial) and FB2 (second-order FB question). Note that the older 

children did not receive the 2FB1 question. 

Repeated Measures ANOVAs were performed with Verbal Level (verbal – non-

verbal) and False Belief Order (first order – second order) as within-participants fac-

tors, and Age (younger children – older children) as the between-participants factor. 

There were main effects for Verbal Level, F(2,43) = 51.4; p < 0.001) and False Belief 

Order,  F(2,43) = 160.7; p <0.001), and a significant interaction between the two 

(F(2,43) = 37.4; p < 0.001). The children performed better on the verbal than on the 
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non-verbal task and they also performed better on first-order questions than on 

second-order questions. There was a difference between performance on first-order 

and second-order questions in the non-verbal but not in the verbal task. 

Taking a closer look at these effects, we performed paired-sample t-tests. These 

only revealed significant differences between the verbal and the non-verbal second-

order responses, both for the younger group (t(20) = 4.1; p = 0.001) and the older 

group (t(20) = 6.5; p < 0.001). Importantly, there were no significant differences be-

tween any of the first-order false-belief responses, except for one: in the non-verbal 

task the younger group showed a significant difference between the first and second 

first-order question (t(20) = 2.6; p =0.015). This general lack of effect at first-order 

level indicates that participants had no problem at this level of reasoning. The diffi-

culties lie instead at the second-order level of reasoning. 

Furthermore, Age was also significant (F(2,43) = 7.9; p = 0.008). The younger 

group performed worse than the older group. Paired sample t-tests reveal that this 

difference mostly lies in the difference between the two age groups on the verbal 

second-order false belief question (t(20) = 2.1; p = 0.050). Moreover, there was a 

trend for Age for the first first-order FB question in the non-verbal task (t(20) = 2.0; p 

= 0.056). 

5 Discussion 

Onishi and Baillargeon (2005) show that implicit non-verbal FB reasoning is ac-

complished at a very young age, which suggests that language is not required for the 

implicit representation of first-order false beliefs. Explicit verbal FB reasoning is 

acquired around the age of four, possibly with the help of language (de Villiers, 
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2005). In this study, we investigated second-order reasoning about false beliefs with a 

verbal and a non-verbal task. Children’s success on the first-order false-belief items in 

the two tasks indicates that they were able to keep track of the different beliefs despite 

the complexity of the tasks with several protagonists, each with their own beliefs. 

Their performance on these first-order items contrasts with their much poorer perfor-

mance on the second-order items. Importantly, children pass a verbal second-order 

task before they pass a non-verbal second-order task. We thus find a strong effect of 

language at the second-order level, as the verbal second-order FB task turned out to 

be easier than the corresponding non-verbal task. What does this suggest about the 

relation between language development and false-belief reasoning? And why is the 

verbal task easier for children?  

A first possibility is that children’s different performance on the two tasks is 

a task effect that does not relate to their capacity for FB reasoning. Retrieval of the 

relevant belief representations from memory in order to respond to the test question 

may be aided by the manner in which these representations have been processed and 

stored during the task. In the verbal task the story was presented verbally. Moreover 

there were probe questions at various moments throughout the story which were de-

signed to prompt participants to verbalize their knowledge about false beliefs. In the 

non-verbal task, on the other hand, the story was presented purely visually and no 

probe questions were asked. It is conceivable that the explicit nature of the verbal task 

makes this task easier for children. However, this is at odds with the observed differ-

ence between toddler’s early good performance on implicit false-belief tasks and 

young children’s difficulty with explicit false-belief tasks (see Section 1).  
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An alternative explanation in terms of task effects is that the mismatch between 

mode of presentation and mode of response may make the non-verbal task more diffi-

cult for children. In both the verbal and the non-verbal task a verbal response was 

required in response to the test question. If this explanation is correct, we predict that 

children will perform better on a non-verbal task if performance is measured by look-

ing behavior, as one can do in an eye-tracking study. Also, if this explanation is cor-

rect, it is expected that in implicit higher-order reasoning tasks (such as Meijering, 

Van Maanen, Van Rijn & Verbrugge’s (2010) marble task) that do not rely on lan-

guage either in their presentation or for the response, children may not experience the 

same difficulty as in our non-verbal task. However, even for adults implicit second-

order reasoning does not come readily, as Hedden and Zhang (2002) have shown.  

An third possibility is that children perform better on the verbal task because 

grammatical representations help them in their FB reasoning. Second-order FB rea-

soning requires embedding of beliefs in a way similar to how language structures 

syntactic embedding, The recursive linguistic representations involved in syntactic 

embedding may therefore provide the scaffolding to perform the recursive step of a 

second-order FB reasoning task (Hollebrandse & Roeper, submitted). This explana-

tion extends the ideas of De Villiers (2005) about the role of language in acquiring 

explicit FB representations to second-order FB reasoning (see also Hollebrandse, 

2000).  

We conclude that a verbal second-order FB task is easier for children than a cor-

responding non-verbal FB task. This suggests that language supports explicit reason-

ing about beliefs, perhaps by facilitating the cognitive system that keeps track of be-

liefs attributed by people to other people. 
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Appendix 1: Illustration of verbal false belief task: the Bake Sale Story 

Abbreviations: Q1FB1 = first first-order false-belief question; Q2FB1 = second first-order false 

-belief question; QFB2 = second-order false-belief question. 

 

Sam and Maria are playing together. They look out-

side and see that the church is having a bake sale. 

Maria tells Sam: “I am going to buy chocolate chip 

cookies for us there,” and she walks away. 

 

Mom comes home and she tells Sam that she just 

drove past the bake sale.  “Are they selling choco-

late chip cookies?” Sam asks. “No,” mum says, 

“they are only selling pumpkin pie.” “Maria will 

now probably get pumpkin pie at the bake sale,” 

Sam says.  

 

Probe 1: Does Maria know they are selling pumpkin 

pie at the bake sale?  

 

Maria has arrived at the bake sale. “I would like to buy 

chocolate chip cookies,” she says. “All we have left 

are brownies,” says the lady behind the stall. Since 

Maria also likes brownies, she decides to get some 

brownies.  

 

Probe 2: Does Sam know that Maria bought some 

brownies? 

Q1FB1: What does Sam think they are selling at the 

bake sale? Why does he think that? 

 

On her way back, Maria meets the mailman. She tells 

the mailman: “I have just bought some brownies. I 

am going to share them with my brother Sam. It is a 

surprise”. “That is nice of you,” says the mailman. 

Then he asks Maria: “Does Sam know what you 

bought him?” 

 

Ignorance: What does Maria tell the mailman?  

 

Then the mailman asks: “What does Sam think they are selling at the bake sale?” 

 

QFB2:  What does Maria tell the mailman? Why does she say that?  

Q2FB1:  What does Sam think they are selling at the bake sale?   

 Why does he think that? 
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Appendix 2: Illustration of non-verbal false-belief task (Unknown-Change-of-

Content set-up) 

 

Abbreviations: Q1FB1 = first first-order false-belief question; Q2FB1 = second first-

order false-belief question; QFB2 = second-order false-belief question. 

 

a. Non-verbal first-order task  

 

 

 

 

 

 

 

  

 

First order trial 

 

Q1FB1:  Remember you are the player. Now, what does she think is in the box? 

 (experimenter points to the woman) 

 

b. Non-verbal second-order task 

 

 

 

 

 

 

 

 

 

 Second order trial 

 

QFB2: Remember, first you were the player, but now he (experimenter points 

to the man in the right window) is the player and we are going to ask 

him the same question as we asked you: “What does she think is in the 

box?” What will he answer? 

Q2FB1: What does she herself think is in the box? 

 

 

Examples of non-verbal movies can be found at:  

http://www.let.rug.nl/hollebr/FB-movies/1stOrderNonVerbal.wmv 

http://www.let.rug.nl/hollebr/FB-movies/2ndOrderNonVerbal.wmv 
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Abstract. Epistemic game theory has shown the importance of infor-
mational contexts in understanding strategic interaction. We propose a
general framework to analyze how such contexts may arise. The idea is
to view informational contexts as the fixed-points of iterated, “rational
responses” to incoming information about the agents’ possible choices.
We show general conditions for the stabilization of such sequences of ra-
tional responses, in terms of structural properties of both the decision
rule and the information update policy.

1 Background and Motivation

An increasingly popular3 view is that “the fundamental insight of game theory
[is] that a rational player must take into account that the players reason about
each other in deciding how to play” [6, pg. 81]. Exactly how the players (should)
incorporate the fact that they are interacting with other (actively reasoning)
agents into their own decision making process is the subject of much debate.
A variety of frameworks explicitly model the reasoning of rational agents in a
strategic situation. Key examples include Brian Skyrms’ models of “dynamic de-
liberation” [32], Ken Binmore’s analysis of “eductive reasoning” [11], and Robin
Cubitt and Robert Sugden’s “common modes of reasoning” [17]. Although the
details of these frameworks are quite different they share a common line of
thought: In contrast to classical game theory, solution concepts are no longer the
basic object of study. Instead, the “rational solutions” of a game are the result
of individual (rational) decisions in specific informational “contexts”.

This perspective on the foundations of game theory is best exemplified by
the so-called epistemic program in game theory (cf. [15]). The central thesis
here is that the basic mathematical model of a game should include an explicit
parameter describing the players’ informational attitudes. However, this broadly
decision-theoretic stance does not simply reduce the question of decision-making
in interaction to that of rational decision making in the face of uncertainty or
ignorance. Crucially, higher-order information (belief about beliefs, etc.) are key
components of the informational context of a game4. Of course, different contexts

3 But, of course, not uncontroversial. See, for example, [22, pg. 239].
4 That is, strategic behavior depends, in part, on the players’ higher-order beliefs.

However, the question of what precisely is being claimed should be treated with
some care. The well-known email game of Ariel Rubinstein [30] demonstrates that
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of a game can lead to drastically different outcomes, but this means that the
informational contexts themselves are open to rational criticism:

“It is important to understand that we have two forms of irrationality
[...]. For us, a player is rational if he optimizes and also rules nothing
out. So irrationality might mean not optimizing. But it can also mean
optimizing while not considering everything possible.” [16, pg. 314]

Thus, a player can be rationally criticized for not choosing what is best given
their information, but also for not reasoning to a “proper” context. Of course,
what counts as a “proper” context is debatable. There might be rational pressure
for or against making certain substantive assumptions5 about the beliefs of one’s
opponents, for instance, always entertaining the possibility that one of the players
might not choose optimally.

Recently, researchers using methods from dynamic-epistemic logic have taken
steps to understanding this idea of reasoning to a “proper” or “rational” con-
text [10, 9, 8, 36]. Building on this literature6, we provide a general characteriza-
tion of when players can or cannot rationally reason to an informational context.

2 Belief Dynamics for Strategic Games

Our goal is to understand well-known solutions concepts, not in terms of fixed
informational contexts—for instance, models (e.g., type spaces or epistemic mod-
els) satisfying rationality and common belief of rationality—but rather as a result
of a dynamic, interactive process of “information exchanges”. It is important to
note that we do not see this work as an attempt to represent some type of “pre-
play communication” or form of “cheap talk”. Instead, the idea is to represent
the process of rational deliberation that takes the players from the ex ante stage
to the ex interim stage of decision making. Thus, the “informational exchanges”
are the result of the players’ practical reasoning about what they should do, given
their current beliefs. This is in line with the current research program using dy-
namic epistemic and doxastic logics to analyze well-known solution concepts (cf.
[2, 9, 10] where the “rationality announcements” do not capture any type of com-
munication between the players, but rather internal observations about which
outcomes of the game are “rational”).

misspecification of arbitrarily high-orders of beliefs can have a great impact on (pre-
dicted) strategic behavior. So there are simple examples where (predicted) strategic
behavior is too sensitive to the players’ higher-order beliefs. We are not claiming
that a rational agent is required to consider all higher-order beliefs, but only that a
rational player recognizes that her opponents are actively reasoning, rational agents,
which means that a rational player does take into account some of her higher-order
beliefs (e.g., what she believes her opponents believe she will do) as she deliberates.
Precisely “how much” higher-order information should be taken into account is a
very interesting, open question which we set aside in this paper.

5 The notion of substantive assumption is explored in more detail in [29].
6 The reader not familiar with this area can consult the recent textbook [35] for details.
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2.1 Describing an Informational Context

Let G = 〈N, {Si}i∈N , ui〉 be a strategic game (where N is the set of players and
for each i ∈ N , Si is the set of actions for player i and ui : ΠiSi → R is a utility
function).7 The informational context of a game describes the players’ hard and
soft information about the possible outcomes of the game. Many different formal
models have been used to represent an informational context of a game (for a
sample of the extensive literature, see [13, 10] and references therein). In this
paper we employ one such model: a plausibility structure consisting of a set of
states and a single plausibility ordering (which is reflexive, transitive and con-
nected) w � v that says “v is at least as plausible as w.” Originally used as a
semantics for conditionals (cf. [24]), these plausibility models have been exten-
sively used by logicians [34, 35, 8], game theorists [12] and computer scientists
[14, 23] to represent rational agents’ (all-out) beliefs. We thus take for granted
that they provide a natural model of beliefs in games:

Definition 1. Let G = 〈N, {Si}i∈N , ui〉 be a strategic form game. An infor-
mational context of G is a plausibility model MG = 〈W,�, σ〉 where � is
a connected, reflexive, transitive and well-founded8 relation on W and σ is a
strategy function: a function σ : W → ΠiSi assigning strategy profiles to each
state. To simplify notation, we write σi(w) for (σ(w))i (similarly, write σ−i(w)
for the sequence of strategies of all players except i).

A few comments about this definition are in order. First of all, note that there
is only one plausibility ordering in the above models, yet we are interested in
games with more than one player. There are different ways to interpret the fact
that there is only one plausibility ordering. One is that the models represent the
beliefs of a single player before she has made up her mind about which option to
choose in the game. A second interpretation is to think of a model as representing
the modeler’s or game theorist’s point of view about which outcomes are more
or less plausible given the reasoning of the players. Thus, a model describes
a stage of the rational deliberation of all the players starting from an initial
model where the players have the same beliefs (i.e., the common prior). The
private information about which outcomes the players consider possible given
their actual choice can then be defined from the conditional beliefs.9 Our second
comment on the above definition is that since we are representing the rational

7 We assume the reader is familiar with the basic concepts of game theory. For example,
strategic games and various solution concepts, such as iterated removal of strictly
(weakly) dominated strategies.

8 Well-foundedness is only needed to ensure that, for any set X, the set of minimal
elements in X is nonempty. This is important only when W is infinite – and there
are ways around this in current logics. Moreover, the condition of connectedness can
also be lifted, but we use it here for convenience.

9 The suggestion here is that one can define a partition model á la Aumann [5] from
a plausibility model. Working out the details is left for future work, but we note
that such a construction blurs the distinction between so-called belief-based and
knowledge-based analyses of solution concepts (cf. the discussion in [15]).
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deliberation process, we do not assume that the players have made up their minds
about which actions they will choose. Finally, note that the strategy functions
need not be onto. Thus, the model represents the player’s(s’) opinions about
which outcomes of the game are more or less plausible among the ones that have
not been ruled out.

Of course, this model can be (and has been: see [8, 35]) extended to include
beliefs for each of the players, an explicit relation representing the player(s)
hard information or by making the plausibility orders state-dependent. In order
to keep things simple we focus on models with a single plausibility ordering.

We conclude this brief introduction to plausibility models by giving the well-
known definitions of a conditional belief. For X ⊆ W , let Min�(X) = {v ∈
X | v � w for all w ∈ X } be the set of minimal elements of X according to �.

Definition 2 (Belief and Conditional Belief). Let MG = 〈W,�, σ〉 be a
model of a game G. Let E and F be subsets of W , we say:

– E is believed conditional on F in MG provided Min�(F ) ⊆ E.

Also, we say E is believed in MG if E is believed conditional on W . Thus, E
is believed provided Min�(W ) ⊆ E

2.2 A Primer on Belief Dynamics

We are not interested in informational contexts per se, but rather how the infor-
mational context changes during the process of rational deliberation. The type
of change we are interested in is how a modelMG of a game G incorporates new
information about what the players should do (according to a particular choice
rule). As is well known from the belief revision literature, there are many ways
to transform a plausibility model given some new information [28]. We do not
have the space to survey the entire body of relevant literature here (cf., [35, 7]).
Instead we sketch some key ideas, assuming the reader is already familiar with
this approach to belief revision.

The general approach is to define a way of transforming a plausibility model
MG given a proposition ϕ. A transformation τ maps plausibility models and

propositions to plausibility models (we write Mτ(ϕ)
G for τ(MG, ϕ)). Different

definitions of τ represent the different attitudes an agent can take to the incoming
information. The picture below provides three typical examples:

A

B

C

D

E

ϕ

!(ϕ) : A ≺ B

A

B

C

D

E

ϕ

↑(ϕ) : A ≺ C ≺ D ≺ B ∪ E

A

B

C

D

E

ϕ

⇑(ϕ) : A ≺ B ≺ C ≺ D ≺ E
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The operation on the left is the well-known public announcement operation [25,
19], which assumes that the source of ϕ is infallible, ruling out any possibilities
that are inconsistent with ϕ. For the other transformations, while the players do
trust the source of ϕ, they do not treat the source as infallible. Perhaps the most
ubiquitous policy is conservative upgrade (↑ϕ), which allows the player(s) only
tentatively to accept the incoming information ϕ by making the best ϕ-worlds
the new minimal set while keeping the old plausibility ordering the same on all
other worlds. The operation on the right, radical upgrade (⇑ϕ), is stronger, mov-
ing all ϕ worlds before all the ¬ϕ worlds and otherwise keeping the plausibility
ordering the same. These dynamic operations satisfy a number of interesting
logical principles [35, 7], which we do not discuss further here.

We are interested in the operations that transform the informational context
as the players deliberate about what they should do in a game situation. In
each informational context (viewed as describing one stage of the deliberation
process), the players determine which options are “rationally permissible” and
which options the players ought to avoid (which is guided by some fixed choice
rule). This leads to a transformation of the informational context as the players
adopt the relevant beliefs about the outcome of their practical reasoning. The
different types of transformation mentioned above then represent how confident
the player(s) (or modeler) is (are) in the assessment of which outcomes are
rational. In this new informational context, the players again think about what
they should do, leading to another transformation. The main question is does
this process stabilize?

The answer to this question will depend on a number of factors. The general
picture is

M0
τ(D0)
=⇒ M1

τ(D1)
=⇒ M2

τ(D2)
=⇒ · · · τ(Dn)

=⇒ Mn+1=⇒· · ·
where each Di is some proposition and τ is a model transformer. Two questions
are important for the analysis of this process. First, what type of transformations
are the players using? For example, if τ is a public announcement, then it is not
hard to see that, for purely logical reasons, this process must eventually stop
at a limit model (see [8] for a discussion and proof). The second question is
where do the propositions Di come from? To see why this matters, consider the
situation where you iteratively perform a radical upgrade with p and ¬p (i.e.,
⇑(p),⇑(¬p), . . .). Of course, this sequence of upgrades never stabilizes. However,
in the context of reasoning about what to do in a game situation, this situation
may not arise thanks to special properties of the choice rule that is being used
to describe (or guide) the players’ decisions.

2.3 Deliberating about What to Do

It is not our intention to have the dynamic operations of belief change discussed
in the previous section directly represent the players’ (practical) reasoning. In-
stead, we treat practical reasoning as a “black box” and focus on general choice
rules that are intended to describe rational decision making (under ignorance).
To make this precise, we need some notation:
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Definition 3 (Strategies in Play). Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a strate-
gic game and MG = 〈W,�, σ〉 an informational context of G. For each i ∈ N ,
the strategies in play for i is the set

S−i(MG) = {s−i ∈ Πj 6=iSj | there is w ∈Min�(W ) with σ−i(w) = s−i}
This set S−i(MG) is the set of strategies that are believed to be available for
player i at some stage of the deliberation process represented by the model
MG. Given S−i(MG), different choice rules offer recommendations about which
options to choose. There are many choice rules that could be analyzed here
(e.g., strict dominance, weak dominance or admissibility, minimax, minmax re-
gret, etc.). For the present purposes we focus primarily on weak dominance (or
admissibility), although our main theorem in Seciton 3 applies to all choice rules.

Weak Dominance (pure strategies10) Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a
strategic game andMG an model of G. For each i and a ∈ Si, put a ∈ Swdi (MG)
provided there is b ∈ Si such that for all s−i ∈ S−i(MG), ui(s−i, b) ≥ ui(s−i, a)
and there is some s−i ∈ S−i(MG) such that ui(s−i, b) > ui(s−i, a).

So an action a is weakly dominated for player i if it is weakly dominated
with respect to all of i’s available actions and the (joint) strategies believed to
be still in play for i’s opponents.

More generally, we assume that given the beliefs about which strategies are in
play the players categorize their available options (i.e., the set Si) into “good” (or
“rationally permissible”) strategies and those strategies that are “bad” (or “irra-
tional”). Formally, a categorization for player i is a pair Si(MG) = (S+

i , S
−
i )

where S+
i ∪S−i ⊆ Si. (We write Si(MG) to signal that the categorization depends

on current beliefs about which strategies are in play.) Note that, in general, a
categorization need not be a partition (i.e., S+

i ∪S−i 6= Si) . See [18] for an exam-
ple of such a categorization algorithm. However, in the remainder of this paper
we focus on familiar choice rules where the categorization does form a partition.
For example, for weak dominance we let S−i = Swdi (MG) and S+

i = Si − S−i .
Given a model of a game MG and for each player i a categorization is

Si(MG); the next step is to incorporate this information into MG using some
model transformation. We start by introducing a simple propositional language
to describe a categorization.

Definition 4 (Language for a Game). Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a
strategic game. Without loss of generality, assume that each of the Si is disjoint
and let AtG = {P ia | a ∈ Si} be a set of atomic formulas (one for each a ∈ Si).
The propositional language for G, denoted LG, is the smallest set of formulas
containing AtG and closed under the Boolean connectives ¬ and ∧.

Formulas of LG are intended to describe possible outcomes of the game. Given an
informational context of a game MG, the formulas ϕ ∈ LG is can be associated
with subsets of the set of states in the usual way:

10 This definition can be modified to allow for dominance by mixed strategies, but we
leave issues about how to incorporate probabilities to another occasion.
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Definition 5. Let G be a strategic game, MG = 〈W,�, σ〉 an informational
context of G and LG a propositional language for G. We define a map [[·]]MG

:
LG → ℘(W ) by induction as follows: [[P ia]]MG

= {w | σ(w)i = a}, [[¬ϕ]]MG
=

W − [[ϕ]]MG
and [[ϕ ∧ ψ]]MG

= [[ϕ]]MG
∩ [[ψ]]MG

.

Using the above language, for each informational context of a game MG,
we can define Do(MG), which describes what the players are going to do ac-
cording to a fixed categorization procedure. To make this precise, suppose that
Si(MG) = (S+

i , S
−
i ) is a categorization for each i and define:

Doi(MG) :=
∨

a∈S+
i

P ai ∧
∧

b∈S−
i

¬P bi

Then, let Do(MG) =
∧
iDoi(MG).11

The general project is to understand the interaction between types of catego-
rizations (eg., choice rules) and types of model transformations (representing the
rational deliberation process). One key question is: Does a deliberation process
stabilize(and if so, under what conditions)? (See [8] for general results here.) In
this paper there are two main reasons why an upgrade stream would stabilize.
The first is from properties of the transformation. The second is because the
choice rule satisfies a monotonicity property so that, eventually, the categoriza-
tions stabilize and no new transformations can change the plausibility ordering.
We are now ready to give a formal definition of a “deliberation sequence”:

Definition 6 (Deliberation Sequence). Given a game G and an informa-
tional context MG, a deliberation sequence of type τ (which we also call an
upgrade sequence), induced by MG is an infinite sequence of plausibility models
(Mm)m∈N defined as follows:

M0 =MG Mm+1 = τ(Mm, Do(Mm))

An upgrade sequence stabilizes if there is an n ≥ 0 such that Mn =Mn+1.

3 Case Study: Iterated Admissibility

A key issue in the epistemic foundations of game theory is the epistemic analysis
of iterated removal of weakly dominated strategies. Many authors have pointed
out puzzles surrounding such an analysis [4, 31, 16]. For example, Samuelson [31]
showed (among other things) that “common knowledge of admissibility” may be
an inconsistent concept (in the sense that there is a game which does not have
a model with a state satisfying ‘common knowledge of rationality’ [31, Example
8, pg. 305]).12 This is illustrated by the following game:

11 There are other ways to describe a categorization, but we leave this for further
research.

12 Compare with strict dominance: it is well known that common knowledge that play-
ers do not play weakly dominated strategies implies that the players choose a strategy
profile that survives iterated removal of strictly dominated strategies.
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Ann

Bob
L R

u 1, 1 1, 0
d 1, 0 0, 1

The key issue is that the assumption that players only play admissible strategies
conflicts with the logic of iteratively removing strategies deemed “irrational”.
The general framework introduced above offers a new, dynamic perspective on
this issue, and on reasoning with admissibility more generally.13 Dynamically,
Samuelson’s non-existence result corresponds to the fact that the players’ ra-
tional upgrade streams do not stabilize. That is, the players are not able to
deliberate their way to a stable, common belief in admissibility. In order to show
this we need the “right” notion of model transformation.

Our first observation is that the model transformations we discussed in Sec-
tion 2.2 do not explain Samuelson’s result.

Observation 1 Suppose that the categorization method is weak dominance and
that Do(M) is defined as above. For each of the model transformations discussed
in Section 2.2 (i.e., public announcement, radical upgrade and conservative up-
grade), any deliberation sequence for the above game stabilizes.

The proof of this Observation is straightforward since the language used to
describe the categorization does not contain belief modalities14. This observation
is nice, but it does not explain the phenomena noticed by Samuelson [31]. The
problem lies in the way we incorporate information when there is more than one
element of S+

i (M) for some agent i.
It is well known that, in general, there are no rational principles of decision

making (under ignorance or uncertainty) which always recommend a unique
choice. In particular, it is not hard to find a game and an informational con-
text where there is at least one player without a unique “rational choice”. How
should a rational player incorporate the information that more than one action
is classified as “choice-worthy” or “rationally permissible” (according to some
choice rule) for her opponent(s)? Making use of a well-known distinction due
to Edna Ullmann-Margalit and Sidney Morgenbesser [33], the assumption that
all players are rational can help determine which options the player will choose,
but rationality alone does not help determine which of the rationally permissible
options will be “picked”15. What interests us is how to transform a plausibility

13 We do not provide an alternative epistemic characterization of this solution concept.
Both [16] and [20] have convincing results here. Our goal is to use this solution
concept as an illustration of our general approach.

14 An interesting extension would be to start with a multiagent belief model and allow
players not only to incorporate information about which options are “choice-worthy”,
but also what beliefs their opponents may have. We leave this extension for future
work, focusing here on setting up the basic framework.

15 This line of thought led Cubitt and Sugden to impose a “privacy of tie breaking”
property which says that players cannot know that her opponent will not pick an
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model to incorporate the fact that there is a set of choice-worthy options for
(some of) the players.

We suggest that a generalization of conservative upgrade is the notion we are
looking for (see [21] for more on this operation). The idea is to do an upgrade
with a set of propositions {ϕ1, . . . , ϕn} by letting the most plausible worlds be
the union of each of the most plausible ϕi worlds:

ϕ2

ϕ1
A B

C D
E

F G

↑{ϕ1, ϕ2} : A ∪ E ≺ B ≺ C ∪D ≺ F ∪G

We do not give the formal definition here, but it should be clear from the example
given above. It is not hard to see that this is not the same as ↑ϕ1 ∨ · · · ∨ ϕn,
since, in general, Min�([[ϕ1]] ∪ · · · ∪ [[ϕn]]) 6= ⋃

iMin�([[ϕi]]). We must modify
our definition of Do(M): for each i ∈ N let:

Doi(Si(MG)) = {P ia | a ∈ S+
i (MG)} ∪ {¬P ib | b ∈ S−i (MG)}

Then defineDo(S(MG)) = Doi(Si(MG))
∧
Do2(S2(MG)) · · ·∧Don(Sn(MG)),

where if X and Y are two sets of propositions, then let X ∧ Y := {ϕ ∧ ψ | ϕ ∈
X,ψ ∈ Y }.

Observation 2 Suppose that the categorization method is weak dominance as
explained in Section 2.3 and that Do(M) is defined as above. Then, starting with
the initial full model of the above game,16 a generalized conservative upgrade
stream does not stabilize.

The following upgrade stream illustrates this observation:

option that is classified as “choice-worthy” [17, pg. 8] (cf. also [4]’s “no extraneous
restrictions on beliefs” property). Wlodeck Rabinovich takes this even further and
argues that from the principle of indifference, players must assign equal probability
to all choice-worthy options [27].

16 A full model is one where it is common knowledge that each outcome of the game
is equally plausible.
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u, L u,R

d, L d,R

M0

d, L d,R

u, L u,R

M1

↑D0

d, L d,R

u,R

u,L

M2

↑D1 ↑D2

d,R

u,R

u,L d, L

M3

u, L u,R

d, L d,R

M4 =M0

↑D3

Intuitively, from M0 to M2 the agents have reasons to exclude d and R,
leading them to the common belief that u, L is played. At that stage, however,
d is admissible for Ann, canceling the reason the agents had to rule out this
strategy. The rational response here is thus to suspend judgment on d, leading
to M3. In this new model the agents are similarly led to suspend judgment on
not playing R, bringing them back to M0. This process loops forever: the agents’
reasoning does not stabilize.

A corollary of this observation is that common belief in admissibility is not
sufficient for the stabilization of upgrade streams. Stabilization also requires that
all and only those profiles that are most plausible are admissible.

4 Stabilization Theorem

In this section we informally state and discuss a number of abstract principles
which guarantee that a rational deliberation sequence will stabilize. The prin-
ciples ensure that the categorizations are “sensitive” to the players’ beliefs and
that the players respond to the categorizations in the appropriate way.

We start by fixing some notation. Let U be a fixed set of states and G a fixed
strategic game. We confine our attention to transformations between models of
G whose states come from the universe of states U . Let MG be the set of all
such plausibility models. A model transformation is then a function that maps
a model of G and a finite set of formulas of LG to a model in MG:

τ : MG × ℘<ω(LG)→MG

where ℘<ω(LG) is the set of finite subsets of LG. Of course, not all transforma-
tions τ make sense in this context.

117



The first set of principles that τ must satisfy ensure that the categorizations
and belief transformation τ are connected in the “right way”. One natural prop-
erty is that the belief transformations treat equivalent formulas the same way.
A second property we impose is that receiving exactly the same (ground) infor-
mation twice does not have any effect on the players’ beliefs. These are general
properties of the belief transformation. Certainly, there are other natural proper-
ties that one may want to impose (for example, variants of the AGM postulates
[1]), but for now we are interested in the minimal principles needed to prove a
stabilization result.

The next set of properties ensure that the transformations respond “prop-
erly” to a categorization. First, we need a property to guarantee that the cate-
gorizations depend only on the players’ beliefs. Second, we need to ensure that
all upgrade sequences respond to the categorizations in the right way:

C2− For any upgrade sequence (Mn)n∈N in τ , if a ∈ S−i (Mn) then ¬P ai is
believed in Mn+1.

C2+ For any upgrade sequence (Mn)n∈N in τ , if a ∈ S+
i (Mn) then ¬P ai is not

believed in Mn+1

Finally, we need to assume that the categorizations are monotonic:

Mon− For any upgrade sequence (Mn)n∈N, for all n ≥ 0, for all players i ∈ N ,
S−i (Mn) ⊆ S−i (Mn+1)

Mon+ Either for all models MG, S+
i (MG) = Si − S−i (MG) or for any up-

grade sequence (Mn)n∈N, for all n ≥ 0, for all players i ∈ N , S+
i (Mn) ⊆

S+
i (Mn+1)

In particular, Mon− means that once an option for a player is classified as “not
rationally permissible”, it cannot drop this classification at a later stage of the
deliberation process.

Theorem 3. Suppose that G is a finite game and all of the above properties are
satisfied. Then every upgrade sequence (Mn)n∈N stabilizes.

The proof can be found in the full version of the paper. The role of mono-
tonicity of the choice has been noticed by a number of researchers (see [3] for
a discussion). This theorem generalizes van Benthem’s analysis of rational dy-
namics [10] to soft information, both in terms of attitudes and announcements.
It is also closely related to the result in [3] (a complete discussion can be found
in the full paper).

5 Concluding remarks

In this paper we have proposed a general framework to analyze how “proper”
informational contexts my arise. We have provided general conditions for the sta-
bilization of deliberation sequences in terms of structural properties of both the
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decision rule and the information update policy. We have also applied the frame-
work to admissibility, giving a dynamic analysis of Samuelson’s non-existence
result.

Throughout the paper we have worked with (logical) models of all out atti-
tudes, leaving aside probabilistic andgraded beliefs, even though the latter are
arguably most widely used in the current literature on epistemic foundations of
game theory. It is an important but non-trivial task to transpose the dynamic
perspective on informational contexts that we advocate here to such probabilistic
models. This we leave for future work.

Finally, we stress that the dynamic perspective on informational contexts is
a natural complement and not an alternative to existing epistemic characteri-
zations of solution concepts [37], which offer rich insights into the consequences
of taking seriously the informational contexts of strategic interaction. What we
have proposed here is a first step towards understanding how or why such con-
texts might arise.
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Abstract: We propose a theory of the interaction between knowl-
edge and games. Epistemic game theory is of course a well devel-
oped subject [4,5]. But there is also a need for a theory of how
some agents can affect the outcome of a game by affecting the
knowledge which other agents have and thereby affecting their ac-
tions.

We concentrate on games of incomplete or imperfect informa-
tion, and study how conservative, moderate, or aggressive players
might play such games. We provide models for the behavior of a
knowledge manipulator who seeks to manipulate the knowledge
states of active players in order to affect their moves and to max-
imize her own payoff even while she herself remains inactive.

1 Introduction

It is a commonplace that what we do depends on what we know4. And
the theory of mind (Premack and Woodruff [15]) predicts that we also
know that what others do will depend on what they know.

Bill can copy the answers from a fellow student’s exambook if he knows
that the teacher is not looking. And Betty can shoplift if she knows that
the store does not have cameras, and that the guard is distracted.5

4 or believe. We will use the word ‘knowledge’ neutrally, being well aware that actions
often proceed from false beliefs.

5 Deception also occurs among non-human primates. As [11] note, “... chimpanzees,
one of humans’ two closest primate relatives, sometimes attempt to actively conceal
things from others. Specifically, when competing with a human in three novel tests,
eight chimpanzees, from their first trials, chose to approach a contested food item
via a route hidden from the human’s view (sometimes using a circuitous path to
do so).” Note that we are not claiming that chimps actually have what is called a
theory of mind. Merely that some of their behavior seems deceptive.
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But we can also proceed one level up. If Bill wants to copy from Jack’s
answerbook, he might ask Betty to distract the teacher, perhaps by asking
his permission to go to the bathroom. If the store does not want Betty
to shoplift then it might install TV cameras which record what happens
in the store.

This second level of arranging for some level of knowledge or ignorance
in others, in order to influence their actions, seems not to be sufficiently
investigated formally.

Manipulation of knowledge can happen in two different contexts. One
might manipulate knowledge for a particular purpose. For instance if Jack
and Ann are going on a picnic and do not want Betty to come along, they
may simply not reveal the existence of the picnic to her. That way they
can avoid the situation where she says, “Oh, can I come too?” and have
to either put up with her presence or else offend her by saying no.

But manipulation can also happen in a more general context. For instance
a university may reveal the email address of a student to a professor who
is teaching a course which the student is taking; and yet, not reveal the
email address to another professor even though there is no specific reason
why this knowledge would be harmful in some way.

1.1 Our Model

In our model we have a number of active players as well as a knowledge
manipulator (KM). The knowledge manipulator arranges for the players
to have certain restricted amounts of knowledge, both about the situation
and about the knowledge of the other players. But she makes no moves
herself. When the game ends, all the players including KM receive payoffs.

As we show later, our games can be reduced to more familiar forms treat-
ing KM as yet another active player. We choose not to do that since the
role of the manipulator in real life is different, whether we are speaking
about Julian Assange revealing certain secret messages or the government
of some country restricting access to the internet. Iago in Shakespeare’s
play Othello is also a knowledge manipulator, although what he supplies
to Othello is false beliefs rather than knowledge. It is important that Oth-
ello trusts Iago rather than questioning his motives. So in this paper, we
will assume that the active players do not concern themselves with the
motives of KM.
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1.2 Defining rationality

Suppose an agent is in a situation of uncertainty where it has to choose
between two moves L and R but does not know for sure what the outcome
will be with either choice. How will the agent choose?

One option is the maxmin route. The agent can choose L if the worst
possible outcome with L is better than the worst outcome with R. We
will describe such an agent as conservative. However, an ambitious agent
may choose R if the best outcome under R is better than the best outcome
with L. We will describe such an agent as aggressive.

It is clear then that in the same situation, an aggressive agent with the
same preferences as a conservative one may still make a different choice.
Some people never buy lottery tickets on the ground that the worst out-
come under buying, namely losing one’s money, is worse than the certain
outcome under not buying. But those who do buy such tickets are clearly
judging by the best outcome.

In most of this paper we assume that utilities are ordinal. In other words,
between any two choices a, b, the agent may be neutral, prefer a or pre-
fer b. Numbers can be assigned to a and b so that u(a) < u(b) iff b is
preferred to a. However, ordinal utilities are preserved by all order pre-
serving transformations. If c is preferred to b and b to a (which we may
write c > b > a) then there is no difference between utility assignments
to a, b, c of 1, 2, 3 or 1, 2, 4 or 1, 3, 4. It is also generally assumed that
comparing utilities between different players makes no sense.

If utilities are cardinal and a subjective probability is available, we could
also use expected value as a measure. However, in this work our utilities
will be ordinal, and the notion of expected utility will not be available to
us.

In addition to conservative and aggressive players, we can also consider
moderate players who try to find the middle way. The general issue is
that a player in uncertainty is choosing between two sets (or sequences)
of payoffs. The payoff with L is say, a1 > a2 > ... > ak and with R it
is b1 > b2 > ... > bm. A conservative player chooses L over R iff ak is
preferred to bm. An aggressive player chooses R over L iff b1 is better than
a1. More generally, let a player use a function f to represent a sequence of
outcomes by a single element. A conservative player uses the minimum,
an aggressive player uses the maximum, and a moderate player uses (say)
the median.
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Such points of view are often taken into account by stockbrokers advising
people on investments. A younger investor may prefer a stock with a high
potential growth but significant risk. An investor close to retirement age
may, on the contrary prefer a stock with less growth but also less risk. A
middle aged investor may accept a moderate amount of risk.

The function f should satisfy some rationality conditions.

Definition 1. A choice function f is suitable if it satisfies the following
two conditions:

1. If X is a final segment of Y , then f(X) ≥ f(Y ) and if X is an initial
segment of Y then f(Y ) ≥ f(X).

2. (Dubey) If sequences X and Y overlap, but all elements in X −Y are
higher than all elements of Y −X, then f(X) is higher than f(Y ).

3. If sequences X and Y are in an order preserving one-one correspon-
dence g then g(f(X)) = f(Y ).

Lemma 11 The minimum, the median and the maximum are all suit-
able functions in the sense above (and the corresponding notions of f -
rationality are equivalent to being conservative, moderate, and aggressive
respectively).

Note that an SCF need not satisfy Nash’s IIA condition that if a = f(X),
Y ⊆ X, and a ∈ Y then a = f(Y ). It so happens that both the maximum
and the minimum do satisfy this condition, but not the median. Of course
there is no particular reason why IIA should be obeyed in such a case.
The role of f(X) is to play the role of an element which in some sense
represents X rather than that of a most preferred element of X. Thus
the median is probably the closest to the expected value which we tend
to use when we have cardinal utilities and a subjective probability.

Definition 2. Given an SCF f , An f -rational agent is an agent who,
when uncertain between sets X and Y of alternatives, always picks X if
f(X) > f(Y ).

It is easily seen that if all payoffs in X are higher than those in Y then an
f -rational player will choose X over Y . Thus all three kinds of players,
conservative, moderate and aggressive will never pick a strictly dominated
strategy.6

6 By a strictly dominated strategy we will mean a strategy which is dominated by
another pure strategy. See appendix for details.
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1.3 An Example

W

H − l

(3, 2)

B

(0, 0)

S

B

H − r

(1, 1)

B

(2, 3)

S

S

Fig. 1.

In figure 1, we assume that the wife moves first and the husband after.
We consider various scenarios involving the husband’s knowledge and
temperament. We assume that the wife knows the husband’s payoffs and
temperament and he does not know hers.

Case 1) Husband does not know wife’s move (and she knows this).

a) He is aggressive. Then being aggressive, he will choose S (Stravinsky)
for his move since the highest possible payoff is 3. Anticipating his move,
she will also choose S, and they will end up with payoffs of (2,3).

b) The husband is conservative. Then not knowing what his wife chose, he
will choose B since the minimum payoff of 1 is better than the minimum
payoff of 0. Anticipating this, the wife will also choose B and they will
end up with (3,2).

2) Finally if the husband will know what node he is at (and the wife
knows this), then the wife will choose B, the husband will also choose B
and they will end up at (3,2).

1.4 Example 2

Artemov [2] is concerned with rationality in the presence of uncertainty.7

A rational player for him is one who makes a decision based on the highest
guaranteed payoff, subject to the player’s knowledge. In other words he
describes as rational the kind of player we have chosen to call conservative.

7 His utilities are also ordinal.
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Artemov shows (his theorem 1) that a rational player in his sense will
follow the backward induction solution even in the absence of common
knowledge of rationality. Thus Artemov generalizes Aumann’s result, re-
placing common knowledge of rationality by plain rationality.8

2
1

•

��

A(1)

1
4

•

��

B(2)
//

4
3

•

��

C(1)
//

3
6

•

��

D(2)
//

6
5

•

��

E(1)
// // 5

8
//

Fig. 2. Centipede game

Now consider a moderate player playing this game. If he had been conser-
vative and used backward induction, he would go down at once and get
a certain payoff. But since he is a moderate, he will see that the median
from going across is much higher. If both players are moderate players,
and agnostic about the rest of the game, then the game will continue
for quite a while, with both players going across and earning much larger
payoffs. Thus our notion of a moderate player shows the rationality of the
common pattern seen in ordinary behaviour where players play across for
quite a while.9

1.5 Comparison with previous work

Two relevant sources are the book by Chwe [7] and the recent paper by
Artemov [2]. Chwe’s book is largely concerned with the manipulation of
beliefs through some form of advertising. An advertiser may seek to create
the common belief that everyone is drinking beer X and so the viewer of
the TV show should also drink beer X. However, Chwe’s treatment is
largely non-technical and does not bring in game theoretic techniques for
the most part.

Artemov does mention a case (section 5.2 of [2]) where revealing true
information changes the behavior of the players.

8 Artemov’s argument applies only to the tree. For other games Artemov’s solution
could diverge from the backward induction solution.

9 We are assuming here that the players will be agnostic about the actions of the other
player rather than carry out the elaborate backward induction argument.
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What is novel in our present work is that we make knowledge manipu-
lation the central aspect of our considerations and we do bring in some
technical considerations.

Thus while we acknowledge a debt to Chwe and Artemov, we are carrying
the ideas considerably further.

Other work like that of Brandenburger et al [6] is also relevant but unlike
us they rely on cardinal utilities. They also do not speak about actual
manipulation of behavior by limiting knowledge.

Finally, Agotnes et al have written a very interesting paper about the
power which agents have over other agents who want some knowledge.
Suppose A knows P → R, B knows Q → R and C knows P ∧ Q. Then,
if the interest is in knowing that R is true, C has the most power since
either of the pair A and C or the pair B and C could derive R; but A
and B together could not.

2 Game Theory

Let us consider a game tree for two (The number two has no special
significance and is only used to simplify notation.) players with a set X
of nodes, divided into X1, the nodes where player 1 moves, X2 where
player 2 moves, and T the set of terminal nodes so that X is the disjoint
union of X1, X2, T . Moreover payoff functions p1 and p2 are defined on T .
To simplify matters we will usually assume that both p1 and p2 are 1-1.
(I.e., the payoffs at distinct leaves are distinct, i.e., the tree is generic.)

In that case we know that if we have a perfect information game, then
backward induction yields a unique way in which the game is played and
according to Aumann, that will indeed be the way the game will be played
if there is common knowledge of rationality, see [3,2].

But of course a perfect information game might be played differently from
an imperfect information game with the same structure, same moves, and
the same payoffs. As we saw with the example in figure 1, this matters,
because someone who can manipulate the knowledge of others can also
affect the way they play some particular game. If the game has payoffs
not only for the active players, but also for the KM, then KM will seek to
manipulate the active players’ knowledge in such a way as to maximize
her own payoff.
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2.1 States of Knowledge

We now describe a model for representing a game with possibly complex
knowledge situations. We will use Kripke models for that. X is the set of
nodes of the game tree.

Let us stipulate that for each element A ∈ X, A is also an atomic formula
which is true precisely when the play is at node A. We create a formal
language L by closing under truth functions, operators K1,K2 and the
operator C. (Here K1 means that 1 knows, K2 means that 2 knows, and
C stands for common knowledge).

Then a perfect information game is simply a game where formulas of the
form A→ C(A) are true for all nodes A.

But now consider a game with two players 1 and 2 and where the formula
A → (K1(A) ∧ K2(A)) holds at all nodes A, but for instance K1K2(A)
does not hold at node A. At each node, both players know what node it
is but they do not know that the other knows.

With (K1(A)∧K2(A)), both players know which node they are at. But if
1 makes a choice between L and R, 2 knows which choice 1 made, but 1
does not know that 2 will know, then 1 might well play differently. So it is
not a perfect information game, strictly speaking. Yet we cannot indicate
the ‘imperfection’ by indicating an information set.

To represent such situations, we modify the knowledge requirement. We
stipulate that with each node A is associated a Kripke structure MA with
two knowers 1 and 2. Such a Kripke structure would represent a state of
partial knowledge on the part of the players.

We assume that the map A ; MA is common knowledge.10 To fix
thoughts, we also assume that common knowledge of temperaments (con-
servative, moderate or aggressive) exists. Each player plays according to
his own temperament subject to what he believes about the choice sit-
uation he will be in.11 Thus the class of knowledge situations we can
consider is more general than perfect information games or games whose
imperfection can be indicated simply by information sets.

10 We of course mean the unpointed Kripke structure MA, since an agent who knows
also what the real world is would know everything.

11 Thus it is even open in our model to consider players who have not carried out
certain deductions which they were entitled to carry out. They choose according to
their belief.
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We define an extended knowledge-based game (or KB-game) as an ex-
tended game supplemented by such a function MA. As we noted, a perfect
information game is a special case of such a KB-game. For in that case,
for each A, the structure MA has a single state satisfying A and no other
states are accessible to any player.

2.2 Creating knowledge States

How would the KM create the structure MA? One way that KM can
create such structures is, at each node she sends signals to the players
– the signal function s is common knowledge, and based on the signal
received by the player he can infer something about the node he is at.

Definition 3. A game tree with knowledge function is a standard extensive-
form game tree with nodes A along with a set of signals Σ and a function
s : A → P (Σn) where n is the number of players and P stands for the
power set. We extend s to sequences ∈ A∗ in the obvious way. The asso-
ciated protocol (see [14]) H(A) consists of all sequences
(a1, σ1),m1, (a2, σ2) . . . ,mk−1, (ak, σk) ∈ (A × Σ)∗ such that a1, . . . , ak
is a path in the game tree starting at the root, for all i < k, ai+1 is
a child of ai resulting from the move mi, and σi ∈ s(ai) for each 1 ≤
i ≤ k. We define a valuation function V : H(A) → 2A by setting
V ((a1, σ1), . . . , (ak, σk)) := {ak} (re-using the nodes as propositions).
Further, we assume an observability function on Σ for each player which
gives rise to synchronous epistemic accessibility relations in the usual
way. Thus for each σi = (s1, ..., sn), player j observes sj and moreover
the player observes all the mi which were his own moves.

Pradeep Dubey [8] has pointed out that by including KM as an additional
active player and interpreting her signals as moves, a knowledge based
game can be understood as a conventional game of partial information
with information sets. For details see the appendix.

2.3 Example 1 revisited

We consider now the question of how KM can create these various knowl-
edge scenarios of example 1.

KM is capable of creating all these three situations by means of signals,
as well as the one we did not mention where the husband does not know
but the wife does not know that he will not.
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For case 1a), s(H − l) = (l, a) and s(H − r) = (r, a). The wife knows (if
she did not already) which node they are at, but the husband will not.

For case 2, s(H − l) = (l, l) and s(H − r) = (r, r). Both will know which
node they are at.

Finally if KM wants the wife to be in doubt whether the husband knows,
he could make s(H−l) = {(l, l), (l, a)} and s(H−r) = {(r, r), (r, a)}. Then
if the wife chose left and receives an l, she will not know if the husband
got an l or the neutral a. If KM does send (l, l) then the husband will
know, but will also know that his wife did not know whether he would
know.

We have not indicated KM’s utilities above. They could appear as a third
component of the payoff function. When the game finishes, all three play-
ers including KM receive their payoffs and so KM has an interest in seeing
to it that the game is played in a certain way. She can do this, to a limited
extent, by influencing the structures MA.

The Kripke structures which arise this way will be special in three ways. In
the first place it will be common knowledge that wherever the players are,
they are all at some node of the game tree (but they may not know the
actual node). Secondly, (assuming perfect recall) if a player was uncertain
among nodes A and B, and only these, then she will know in the future
that she must be at some node below one of A and B. Finally, if she
herself performed an action α when she was so uncertain, then whatever
node she is at now will have be below either the α successor of A or the
α successor of B.

2.4 Predicting the play

Can the KM always predict how a game will be played in a less than per-
fect information state which he has brought about? This is indeed true in
a decision theoretic situation if the temperament of the player is common
knowledge12 For instance a conservative agent faced with uncertainty will
choose the least risky alternative. And since we assume that no two out-
comes have the same value, the least risky alternative will always be well
defined and known to the KM.

With two person games, there may not be a unique way that the players
will play in a game with imperfect information and so the KM may not

12 By decision theoretic we mean that there is only one agent apart from KM, who has
a decision theoretic problem to solve.
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be able to predict how they will indeed play. In particular the reasoning
process of the players can be order-dependent, for consider figure 3 below.

With perfect information and CK of (conventional) rationality, the back-
ward induction solution applies. In figure 3, 2 would choose right at B
and left at A. The resulting payoffs for 1 are 4 with left, and 3 with right.
He chooses L and so does 2 so they get (4,4).

S

A

(4, 4)

L

(1, 1)

R

L

B

(0, 0)

L

(3, 3)

R

R

Fig. 3.

But now suppose that when it is his turn to play, 2 (who is conservative)
does not know whether he is at node A or B. Then he will choose Right
which gives him one of {1,3}, safer than {4,0}, which he would get with
Left. 1 will anticipate this and choose Right. So they end up at (3,3).

However, 2 might start his reasoning by trying to figure out 1’s move. 1
will get one of {4,1} if she plays Left, and one of {0,3} if she plays Right.
So she will play Left. 2 will anticipate this and will play Left. So they end
up at (4,4).

Clearly the KM (whose payoffs we have not included) cannot count on
any particular play.

Theorem 21 If player 2 does not know player 1’s payoffs but player 1
does know player 2’s payoffs, then (given their temperaments) there is a
unique solution to the game.

More generally, with 2 or more players, if the players are linearly ordered
so that no player knows the payoffs of any player above him then there is
a unique solution.

Future work: In the setup we investigated, there is only one knowledge
manipulator who, moreover, is trusted by the other players. But we can
consider variants.
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One possibility is where the manipulator is, well, manipulative. Her payoff
function is known to other players, and they are aware that they cannot
fully trust her. This is the direction of cheap talk [10].

Another possibility to consider is that while the KM is presumed hon-
est, every player is both an actor and an informer. This case would be
investigated by enriching the purely informational structure of [14] and
augmenting it with actions.

Acknowledgement: We thank Sergei Artemov, Pradeep Dubey, and
Johan van Benthem for comments.
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3 Appendix

Proof of lemma 11 It is obvious that the median, the maximum and the
minimum are preserved by isomorphism. we check the Dubey property
just for the median. Suppose that X and Y overlap so that X is a1 >
a2 > ... > ak > b1 > ....bm and Y is b1 > b2 > ...bm > c1 > ... > cp. X−Y
is above Y −X. Clearly if the median of X is an ai or the median of Y
is a ci then we are done. If both medians are bi and bj respectively. Then
i+ k = m− i+ 1 and j = p+m− j + 1. Thus we get 2i = m+ 1− k and
2j = p+m+ 1. Thus i < j and bi > bj . 2

Sketch of proof of theorem 21: We do not assume that player 2 always
plays after 1. For instance the game may be over more than two stages.

At any particular node, player 2 has a set of nodes X which he might be
at. He considers all possible strategies s of player 1 which are compatible
with their presently being in X. For each such s he considers various
strategies s′ which he himself could play and the payoff p(s, s′) to himself
of s, s′. Then he chooses that s′ for which min{p(s, s′)|s ∈ X} is highest.

This defines the strategy s′ of 2 as a function of the node. Player 1 can
simulate player 2’s reasoning and plays so as to maximize her own payoff.

This yields a unique outcome. 2

Note that since player 2 does not know player 1’s payoffs, he is not able
now to think of a proper response to player 1’s choice - he has no idea
what it is. So there is no ‘cycle of reasoning’.

We now provide definitions for the way in which a KM can create appro-
priate Kripke structures.

Intuitively, at each node a, the KM chooses and sends an n-tuple of signals
(s1, ..., sn) ∈ f(a). Player j observes only sj but can infer something about
the signals received by the other players. Moreover, he observes his own
moves. Based on what he has seen, he can infer a set of possible sequences
compatible with what he has seen, and what he knows is what is true in
all these possible sequences [14].

As Dubey has pointed out, the kinds of structures we defined above can
be replaced by traditional imperfect information games with information
sets, provided that the knowledge player’s signals are treated as actual
moves arising within the game tree rather than outside it.

Consider the case from figure 1 where KM wants the wife to be in doubt
whether the husband knows, she could make s(H− l) = {(l, l), (l, a)} and
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s(H − r) = {(r, r), (r, a)}. Then if the wife chose left and receives an l,
she will not know if the husband got an l or the neutral a. If KM sends
(l, l) then the husband will know, but will also know that his wife did not
know whether he would know.

Thus KM could have two moves for each of the wife’s moves. After her
move L, she could have an L move corresponding to the signal pair (l, l)
and an R move corresponding to the signal pair (l, a). Similarly after her
R move, he could have an L move corresponding to the signal pair (r, r)
and an R move corresponding to the signal pair (r, a). This gives us four
nodes corresponding to the moves by the wife and KM, and let us denote
them in the natural way as LL, LR, RL and RR. (See figure 4).

The nodes LL, LR are indistinguishable for the wife and similarly RL and
RR. She knows what she moved, but does not know what the husband
got. The husband cannot distinguish between LR and RR, because in the
signal description he got an a in either case. But the other two, LL and
RL are singletons for him. If he gets an l or an r he knows how the wife
moved.

W

H − l

LL

(3, 2)

B

(0, 0)

S

(l, l)

LR

(3, 2)

B

(0, 0)

S

(l, a)

B

H − r

RL

(1, 1)

B

(2, 3)

S

(r, r)

RR

(1, 1)

B

(2, 3)

S

(r, a)

S

Fig. 4.

Definition 4. A D-tree is a standard extensive-form game tree as above,
but with the choices given by s interleaved after each move, and informa-
tion sets added as follows: For each player i, at each depth in the tree, any
two nodes share an information set iff their parents share an i-information
set and
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(i) they both result from the same action by i himself, or
(ii) they result from two s-actions which lead to the same observation

for i, or
(iii) they result from some other player’s actions.

Additionally, we define a valuation function which assigns a unique propo-
sition to all nodes generated by f -actions from the same parent. The
knowledge situation after n moves is the horizontal slice of this tree at
depth 2n.

Theorem 31 The knowledge situations in a game tree with knowledge
function are isomporphic to the ones in the corresponding D-tree (modulo
renaming of propositions).

Proof. intuition: both constructions boil down to taking the product of
a “normal” move and the signals that can be sent along with it, and in
both constructions the indistinguishabilities are wired according to the
observability of the signal part.

Theorem 32 Any knowledge situation can be created in a single signal-
ing step.

Proof. Intuition: Take the Kripke structure representing the knowledge
situation and create an edge from a unique (new) root node to each
possible world. Label each edge with tuples (σ1, . . . , σn) of signals, one
for each player i, such that any two edge labels coincide in σi iff the worlds
they lead to are indistinguishable to i. Define the observability function
for player i as the restriction of a given tuple to its ith component.

Postscript on dominated strategies: Suppose that an agent believes
he is facing various scenarios s1, ..., sn but does not know which one. For
each of these he has payoffs li from playing L and ri from playing R
and in each case li > ri. then it is an easy one step argument that the
set {l1, ..., ln} has higher maximum, minimum and median values than
the set {r1, ..., rn}. Thus whether a player is conservative, aggressive,
or moderate, he will not choose R. Only the case of a moderate player
requires a very short argument which we leave to the reader.
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Abstract. Strategic games require to reason about other peoples and one’s own 
beliefs or intentions. Although they have clear commonalities with 
psychological tests of theory of mind, they are not clearly related to these tests 
for children between 9 and 10 years old [6]. We study children’s (5 – 12 years 
of age) individual differences in playing a strategic game by analyzing the 
strategies that they apply in a zero, first, and second-order reasoning tasks. For 
the zero-order task, there were two subgroups with different accuracy. For the 
first-order task subgroups apply different suboptimal strategies or an optimal 
strategy. For the second-order task only different suboptimal strategies were 
present. Strategy use for all tasks was related to age. For the 5 and 6 years old 
children strategy-use was related to working memory, and not to theory of 
mind, after correction for age, verbal ability and general IQ. 

Keywords: Strategic games, child development, reasoning, theory of mind, 
strategy analysis. 

1   Introduction 

Strategic games require to reason about other peoples and one’s own beliefs or 
intentions. Hedden and Zang [8] designed a matrix game to distinguish the use of 
first-order and second-order theory of mind in adults. First-order reasoning involves a 
proposition of the form: “The other person (A) plays X” and second-order reasoning 
involves a proposition of the form: “A knows that I will play X, so A will play Y”. 
That is, second-order reasoning involves 2 propositions that are embedded. Hedden 
and Zang suggested that for optimal play in a strategic game one needs a theory of 
mind.  
Since theory of mind is still developing into childhood [20], a limited theory of mind 
is expected to be a factor in children’s ability to play strategic games. The 
development of theory of mind is most extensively tested with false-beliefs tasks, 
appearance-reality tasks, and deception tasks [23,15,5,7]. These tasks all require first-
order reasoning, that is, they involve a proposition “A beliefs X”. In development, 
theory of mind, as measured with these tasks, is strongly related to executive 
functions, especially a combination of working memory, inhibitory control and 
planning, independent of age, verbal abilities, and intelligence (e.g., [1,2]).  
Second-order false-belief tests require reasoning with reference to what another 
person beliefs about your own intentions, that is, it involves two propositions “A 
believes that I believe X” that are embedded, as in the strategic game that requires 
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second-order reasoning. Second-order reasoning is mostly studied with stories from 
which one has to infer a person’s belief [14,15]. Second-order reasoning involves 
more information, more complex worded sentences, and puts more demand on 
working memory. Success of second-order reasoning emerges around 5 and 6 years of 
age, but differs substantially between tasks and studies. Second-order reasoning 
abilities are related to inhibition, planning, and working memory, but not in all studies 
independently from verbal abilities and general intelligence [13].  
Flobbe et al. [6] adapted the task by Hedden en Zang [8] such that the strategic game 
is understandable and appealing to children.  They showed that 55% of the 8 to 10 
years old children perform first-order reasoning (at least 5 out of 6 items correct) and 
these children can show second-order reasoning above chance level. However, the 
game results were not related to two theory of mind tasks, a false belief task and a 
sentence-comprehension task. As they concluded, successful first and second-order 
theory of mind in 8 to 10 years old children depends crucially on the domain in which 
it must be applied.  
In summary, we could state that, looking at the structure of the tasks, first-order and 
second-order reasoning in theory of mind requires the same type of reasoning as in 
the strategic games. However, the ability to play the strategic game appears not to be 
related to other theory of mind tasks in 8 to 10 years old children. In development, 
abilities measured by typical theory of mind tasks are related to executive functions, 
inhibition, working memory, and planning, but verbal abilities, general intelligence 
and age partially contribute to this relation. As yet, the relation between playing 
strategic games and executive functions is not known.  

 
1.1   Individual differences 

 
In Flobbe et al. [6] children make more mistakes on first-order and second-order 
reasoning tasks than adults, but they found also considerable variation within the 
group of children. The source of this inter-individual variation did not become clear. 
Individuals can differ in game playing in multiple ways. They can play different 
strategies and/or they can differ in the number of mistakes in applying one and the 
same strategy. By inspecting sum scores of test items, it is difficult to disentangle 
these different sources of variation in the data. Only the use of different strategies 
would indicate different insight into the games, for example first-order and second-
order reasoning. The aim of the present research is to study different strategies in 
playing strategic games and the way these strategies are related to age, executive 
functions, and a standard false-belief task. For multiple cognitive domains, children 
appear to acquire increasingly complex reasoning strategies [18].  
To this end, we studied first and second-order reasoning in playing Flobbe et al.’s 
strategic game in 5 to 12 years old children. Our approach is novel in analyzing the 
reasoning performance. We designed the reasoning task such that different items in 
the task distinguish between expected strategies in an optimal way. The strategies that 
could be expected are firstly, optimal strategies where children optimize absolute 
gain. Secondly, it can be expected that, as Flobbe et al. found, that some children 
optimize relative gain instead of absolute gain. Thirdly, young children might not 
master first or second-order reasoning and hence it is possible that zero-order 
reasoning is applied to the first-order task and first-order reasoning (that is only 
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played if first-order reasoning is mastered) is applied to the second-order task. 
Finally, children could also have a position bias.  
We applied the statistical technique of latent class analysis (LCA) to model the 
strategies from the accuracy data. LCA (McCutcheon, 1987) provides a statistically 
reliable method to detect strategies from response patterns [10,19]. Hence, by the 
application of LCA one can establish which and how many strategies are actually 
applied. It is not required to fully define the expected strategies beforehand. After 
revealing the strategies for 5 to 12 years old children, for the 5 and 6 years old 
children we relate the use of strategies to age, IQ, Verbal Ability, working memory, 
and theory of mind. These children are expected to show the most variation in theory 
of mind and also the executive functioning that we measure.  

 A  B 

 C 

Fig. 1. Three items from the traveling game, which is based on Flobbe et al. (2008). 1A: a zero-
order reasoning item, 1B: a first-order reasoning item; 1C: a second-order reasoning item. The 
child travels together with a lizard in a car. She/he has to acquire as many marbles as possible, 
but the lizard will try to gain as many leafs as possible. At each cross of the road either the 
child or the lizard (as is indicated) can decide where they go together, left or right. The player 
plays the child and the computer plays the lizard. The lizard has an optimal playing strategy, 
assuming the child uses an optimal strategy.  

2.1   Overview 

The main research question is whether inter-individual differences in playing a 
strategic game are due to using different strategies or to playing the same strategy 
with different accuracy. The next question is whether strategy use is related to the 
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developmental notion of theory of mind, as was suggested by [8], or to other 
cognitive abilities, specifically working memory after correction for age, verbal 
abilities and general IQ.  
The reasoning task we applied is a traveling game as in Flobbe et al. [6], but the 
appearance is somewhat different (Figure 1). There exist three types of items, which 
were presented in three tasks: items that require zero-order (1A), first-order (1B), and 
second-order reasoning (1C). In the task, the child travels together with a lizard in a 
car. She/he has to acquire as many marbles as possible, but the lizard will try to gain 
as many leafs as possible. At each cross of the road either the child or the lizard can 
decide where to go, left or right. The player plays the child and the computer plays the 
lizard, which has an optimal playing strategy, assuming an optimal strategy of the 
child. 

2   Method 

Participants were 129 children in the age range of 5 to 12 years: 23 5-years old, 26 6-
years old, 16 7-years old, 14 8-years old, 15-9 years old, 10 10-years old, 18 11-years 
old, 7 12 years old children. Children were tested at a middle-class primary school in 
Amsterdam, The Netherlands 

2.1   Materials 

Traveling game: The strategic game is briefly explained in Figure 1. The test 
consisted of three tasks: a task with 2 example and 9 zero-order test items, a task with 
3 example and 15 first-order test items and a task with 3 example and 9 second-order 
test items. All items are listed in Appendix A.  
 
For the 5 and 6 years old children we used the following battery of cognitive tests: 
IQ test: The Raven’s Progressive Matrices for fluid intelligence, part A, B, and C for 
which we calculate a sum score.  
Verbal ability test: A Dutch test for sentence comprehension, TAK (Taaltoets voor 
Alle Kinderen; [21]).  
Working Memory test: the digit span forward and backward task.  
Theory of Mind test: For the false belief test, the participants heard two second-order 
false belief stories, accompanied by drawings by the hand of Flobbe. The first story 
was the ‘Birthday Puppy Story’ reported in [20], a standard second-order false belief 
task. The second story, the ‘Chocolate Bar Story’, was a second-order adaptation of a 
first-order story by Hogrefe and Wimmer [9]. Both stories had first- and second-order 
questions. These test were exactly the same tests as were used in [6] experiment 1. 

2.2   Procedure 

Children were tested in two sessions on two different days if they completed all tests 
(5 and 6 years old children), otherwise they were only tested in one session. The first 
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day they played the traveling game, the second day they completed the cognitive tests 
battery. The traveling game was explained and tested on a computer. Children started 
with the example zero-order items. The first item was used to explain the game. The 
child played the second item. Children responded by clicking an arrow on the road 
they wanted to go. In the example items children saw the animated car moving on the 
screen and they were presented on the screen the resulting marbles for her- or himself 
and the lizard was presented the leafs. If the second example item was made incorrect, 
the first item appeared again and the game was explained a second time. In this way, 
we also tested whether (the youngest) children could count. After the example items 
the child made the test items. Now, the child saw the animated car but did not get any 
direct feedback. Only after 3 items the cumulative gain was presented on the screen as 
a bag full of marbles.  
The first-order items were explained to the children with 3 example items. Children 
were explained the task from the first item. Then, with the second item, which 
required first-order reasoning, the experimenter used instructional scaffolding to 
direct the child towards an optimal choice [16]. The child made the third example 
item, which could also be solved by a suboptimal strategy, by her-/himselves. After 
the example items the children made 15 test items. Again, only during the example 
items feedback occurred on the screen. After a choice on the test items only the first 
part of the animation was shown. After three items, the cumulative gain was shown 
on the screen.  
After the first-order task, a total score for the first-order items was calculated. Only 
the children with 12 (out of 15) items correct, continued with the second-order items. 
The procedure for the second-order items was equivalent to the first-order items, 
again with three example items. 

3   Results 

All 129 children completed the experiment. However, only 55 children (43%) passed 
the first-order reasoning task and completed the second-order reasoning task. Their 
mean age is 9.78 years (sd = 1.96). Mean scores for the three tasks were above change 
level for the zero-order task (t(128) = 40.1, p < .001) and the first-order task (t(128) = 
10.6, p < .001), but not for the second-order task (t(54) = 1.6, p = .06). Table 1 (last 
column) shows the scores for each task.  
Strategy analysis was conducted for the three tasks separately. For each task latent 
class models with different number of classes were fitted to the accuracy scores of the 
items. The best fitting, most parsimonious model (according to the BIC, Schwartz, 
1978) was selected for each task.  
See table 2 for the resulting most parsimonious, best fitting models. Two strategies 
were found for zero-order reasoning (N = 129): The first strategy (12% of the 
participants) is suboptimal and has lower probability correct (p = .62) for the items for 
which the largest sum of leafs and marbles was not the optimal choice. Mean score 
for participants following this strategy is .66, which is above change level (sd = 12, 
t(15) = 5.1, p < .001; see Table 1). The second strategy (88%) is an optimal strategy. 
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The mean score for participants following this strategy is .98 (sd = .05). Strategies for 
the zero-order task were related to age (p = .002; Figure 2).  
Table 1. Mean scores for the three reasoning tasks per strategy 

Task S1 S2 S3 S4 All 
0-order 0.66 (0.12) 0.98 (0.05)   0.94 (0.12) 
1st-order 0.58 (0.16) 0.54 (0.05) 0.51 (0.08) 0.94 (0.06) 0.70 (0.22) 
2nd-order 0.42 (0.16) 0.60 (0.17)   0.54 (0.19) 

Note. Columns S1 - S4 denote the mean (sd) proportion correct for the different tasks for 
participants responding according to strategies S1 – S4 respectively. Column All shows the 
mean (sd) proportion correct for all participants. Note that cell S2 for 0-order relates to 
different subjects than cell S2 for 1st-order task, etc. The strategies are listed in the same order 
as in Fig. 1.  

Four strategies were found for the first-order reasoning task (N = 129): The first 
strategy (39%) cannot be distinguished from guessing. The second strategy (19%) is a 
zero-order strategy. The third strategy (5%) is to go right, which avoids a choice by 
the lizard. Although the third group is very small (6 children) the class does contribute 
to a better, parsimonious description of the data. The fourth strategy (37%) has a high 
probability of responding optimally for all items. The children in this group have an 
optimal strategy. Table 1 shows the mean scores per strategy. Strategies for the first-
order task were related to age (p < .001; Figure 2).  
Table 2. Resulting models from latent class analysis.  

 prior conditional probabilities 
zero-order items  type 1 type 2   

bias to sum 17% .62 .75   
optimal 83% .98 .99   

      
first-order items  type 1 type 2 type 3  

guess 39% .62 .47 .79  
0-order 19% .96 .04 .96  
go right 4% .03 .97 .03  
optimal 38% .94 .94 .94  

      
second-order items  type 1 type 2 type 3 type 4 

guess 44% .5 .5 .5 .5 
first-order 56% .5 1 .5 .5 

Note. The estimated parameters from the best fitting, most parsimonious models of the 
accuracy scores of each task. The priors show the prior probability of belonging to that class (in 
percentages). The conditional probabilities are the probabilities of responding correctly for the 
corresponding item type given the strategy. For the zero-order task items 1, 4, 7, 9 are type 1, 
items 3, 5, 6 are type 2. For the first-order task items 1, 4, 6, 9, 15 are type 1, items 2, 5, 7, 8, 
10, 12, 13 are type 2, items 3, 14 are type 3. For the second order task items 4, 7, 9 are type 1, 
items 2, 3 are type 2, item 6 is type 3, item 8 is type 4. 
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For the second-order reasoning task (N = 55) two strategies were found. The first 
strategy (33%) is not distinguishable from guessing. The second strategy (67%) 
resembles most a first-order strategy where the final choice by the child is neglected 
in the decision. Table 1 shows the mean scores per strategy. The mean score for 
participants following a kind of first-order strategy is .60, which is above chance level 
(sd = .17, t(36) = 3.5, p < .001).  Strategies for the second-order task were related to 
age (p = .005). Figure 2 shows per task the distribution of strategies (in percentages) 
for each age group. The relation between strategy-use and age is apparent from this 
figure.  

5-6
(N=49)

7-8
(N=30)

9-10
(N=25)

11-12
(N=25)

bias to sum
optimal

0-order task

Age

P
er
ce
nt
ag
e

0
20

40
60

80
10
0

5-6
(N=49)

7-8
(N=30)

9-10
(N=25)

11-12
(N=25)

guess
0-order
go right
optimal

1st-order task

Age

P
er
ce
nt
ag
e

0
20

40
60

80
10
0

5-6
(N=5)

7-8
(N=14)

9-10
(N=15)

11-12
(N=21)

guess
1st-order

2nd-order task

Age
P
er
ce
nt
ag
e

0
20

40
60

80
10
0

 

Fig 2. The distribution of strategies (in percentages) for each age group. Below the bar the 
number of participants within the age group is depicted. A) zero=order task, B) first-order task, 
C) second-order task. 

Table 3. Summary data cognitive tests 

Task 5 years 6 years 
 mean  sd mean sd 
ToM  4.80  1.96  5.92  1.44 
ToM1  2.65  1.18  2.92  0.74 
ToM2  2.15  1.14  3.00  1.02 
DS  5.90  2.05  7.42  1.58 
RPM  13.30  4.50  15.88  4.23 
Tak  21.85  3.69  24.77  2.39 

Note. ToM is the Theory of Mind test, the sum of scores to first-order (ToM1) and second-
order (ToM2) questions. DS is the Digit Span test, backwards and forwards DS summed. RPM 
is the Raven’s Progressive Matrices, part A, B, C. Tak is the Sentence Comprehension test.  

The cognitive abilities were tested only for the 5 and 6 years old children (mean age = 
6.0 years, sd = 0.6). Summary statistics are shown in Table 3. For all measures we 
have a considerable variation, which is important to detect a relationship with strategy 
use. After correcting for age and verbal ability, there was a correlation between theory 
of mind and working memory (r = .32, p = .02) and theory of mind and IQ (r = .16, p 
= .005). For the zero-order task, in this age group, only age had a unique relation to 
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strategy use and not to the other abilities that were measured (logistic regression: 
coeff. = .1, p = .047). For the first order task, in a logistic regression analysis with all 
cognitive abilities and age as predictors, only working memory had a unique relation 
to strategy use (coeff. = .59, p = .017) and not the other abilities or age. 

4   Conclusion 

Strategy analysis of playing a strategic game gives interesting insights into children’s 
reasoning. For the zero-order tasks all children play with the same strategy, but with 
different accuracies. For the first- and second-order tasks children play with different 
strategies. The subgroups of children with different accuracies and strategies for the 
zero-, first and second order task were revealed by careful construction of items and 
with latent class analysis. On average children have high scores on the zero-order 
task, but nevertheless they show two types of performances. A subgroup of the 
children is making more mistakes and is distracted by a large amount of total gains 
(the sum of marbles and leafs), which results in a suboptimal choice for type 1 items. 
This strategy is more frequent in younger children. For the first-order task, there is 
one group of children with an optimal strategy. The other children have different 
ways of being suboptimal: guessing, location bias or zero-order reasoning. Zero-order 
reasoning means that the choice of the lizard is not taken into account.  
For the 5 and 6 years of age children, strategy use is not related to theory of mind (in 
addition to age and other abilities), as was suggested in the literature, but only related 
to working memory. Although the age range is small, the variation in theory of mind 
scores is quite large. It can be questioned whether the strategic-game tasks and the 
theory of mind tasks have something specific in common at all. The fact that we do 
find a specific relation between the strategic games and working-memory task 
indicates that the reliability of the strategic games are large enough to find 
relationships with other cognitive abilities.  
Finally, for the second-order task, we find one subgroup who’s choices could not be 
distinguished from guessing. The other group seems to apply a kind of first-order 
strategy, combined with guessing. Although the participants in this subgroup do not 
use a second-order strategy, the scores of this subgroup are above chance level. This 
shows that from the fact that a participants have above chance performance, one 
cannot conclude that the participants master the task and/or the correct strategy. First, 
it could only be a subgroup mastering the task. Second, it could be that only a 
partially correct strategy was applies, which is considerably more easy. Hence, sum 
scores of age groups are not always very indicative for their cognitive abilities.  

 
The overall performance for the first-order and second-order tasks is poor compared 
to performance on theory of mind tasks. Only 50% of the 9 and 10 years olds show a 
true first-order strategy, which agrees with the percentage of children that passes the 
criterion in [6]. However, none of the children shows a proper second order strategy. 
The poor performance might be due to the instruction by scaffolding instead of 
learning by feedback, which was used by Flobbe et al. [6]. Note that for the theory of 
mind tasks, instructions are mostly very limited. The reason that we have chosen for 
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the scaffolding explanation is that we want to have optimal performance for all ages. 
Since learning by feedback differs importantly between 5 and 12 years of age (eg., 
[3]), we avoided learning by feedback. Moreover, for a strategy analysis one should 
test stable performance. Feedback will result in changing performance if people are 
not performing in an optimal way from the start (as was found by [8]). For future 
research it would be interesting to train children extensively on these strategic game 
items in an adaptive training system over a time frame of weeks, to reveal the optimal 
performance children gain after extensive deliberate practice [4]. An adaptive test and 
training system was developed as the Mathsgarden.com (rekentuin.nl; [11]). For a 
different complex reasoning game, static MasterMind, we see very high performance 
for primary school children after extensive deliberate practice on a large item bank.  
There is a second possible reason why we found few children responding optimally 
on first and second-order reasoning items, as compared to theory of mind tasks. It is 
important to note that responding with a non-optimal strategy is not necessarily 
resulting in non-optimal choices for all items. This is not only true for the items that 
we designed but also for some of the items that were included in the Flobbe et al. task 
[6]. The result is that sum scores might end up above chance level unless children are 
not following a true first- or second-order strategy. Hence, strategy analysis is 
important for fully understanding performance on complex reasoning tasks and its 
development. 
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Appendix A 

In Appendix A, all items are enumerated (Tables A1, A3, and A5) and the expected 
accuracy patterns according to different strategies (Tables A2, A4, and A6). In the 
latent class analysis not all items are used (see note Table 2), because these items did 
not correlate well with the items of the same type for unclear reasons. Items of the 
same type have the same expected scores for all strategies. 

 
Table A1. Zero-order items  

Items B1 B2 Optimal 
 L M L M Response 

A 3 3 2 1 L 
B 3 1 2 4 R 
1 3 3 1 4 R 
2 4 4 1 3 L 
3 1 2 3 3 R 
4 1 4 4 2 L 
5 4 3 1 2 L 
6 1 3 3 4 R 
7 1 3 4 2 L 
8 4 3 2 4 R 
9 3 3 1 4 R 

Note. Items A and B are example items, 1 – 9 are test items. Items are coded by an enumeration 
of leafs (L) and marbles (M) from the left branch (B1) to the right branch (B2). See Figure 1 for 
the configuration of leafs and marbles. The optimal choice is left (L) or right (R).  

 
Table A2. Expected accuracy patterns for different potential strategies 

  Strategies 
Items 0-A 0-B 0-C 
1, 8, 9 1 0 1 
4, 7 1 0 1 
2, 5 1 1 0 
3, 6 1 1 0 

Note. The potential strategies are 0-A, the optimal strategy, 0-B, the choice for largest sum of 
leafs and marbles, 0-C, the choice for largest relative gain. 1 is correct, 0 is incorrect 
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Table A4. Expected accuracy patterns for different potential strategies 

 Strategies 
Items 1-A 1-B 0-A 0-B 0-C 0-D 

1, 4, 6, 9, 15, 11 1 0 1 1 0 0 
2, 5, 7, 8, 10, 12, 13 1 1 0 0 0 1 

3, 14 1 1 1 1 1 0 

Note. The potential strategies are 1-A, the optimal strategy, 1-B, the choice for largest relative 
gain, 0-A, a zero-order strategy with largest gain, 0-B, zero-order strategy with largest sum of 
leafs and marbles, 0-C zero-order strategy with largest relative gain, 0-D, go to the right. 1 is 
correct, 0 is incorrect. 

 
Table A5. Second-order items  

Item B1 B2 B3 B4 Optimal 
 L M L M L M L M Response 

A 2 3 4 4 3 1 1 2 L 
B 2 2 1 4 4 1 1 3 R 
C 4 3 1 1 2 2 2 1 L 
1 3 3 4 1 2 4 2 2 L 
2 3 2 2 4 4 1 2 3 R 
3 3 2 2 4 4 1 2 3 R 
4 1 3 2 4 4 2 3 3 L 
5 3 1 4 3 1 4 1 2 R 
6 3 1 1 4 4 3 2 2 R 
7 2 3 1 3 4 1 2 2 L 
8 3 1 4 3 2 4 3 2 R 
9 1 2 4 2 2 4 2 3 L 

Note. See note Table A1 

 
Table A6. Expected accuracy patterns for different potential strategies 

 Strategies 
Items 2-A 1-A 1-B 
1, 9,4,7 1 1 0 
2, 3 1 0 1 
5, 6, 8 1 0 0 

Note. The potential strategies are 2-A, the optimal strategy, 1-A, a first-order strategy with a 
second choice for the child, 1-B, a first-order strategy without a second choice for the child. 1 is 
correct, 0 is incorrect.  
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The Advantage of Higher-Order Theory of Mind
in the Game of Limited Bidding
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Groningen

Abstract. Higher-order theory of mind is the ability to recursively model
mental states of other agents. It is known that adults in general can rea-
son adequately at the second order (covering attributions like “Alice
knows that Bob knows that she wrote a novel under pseudonym”), but
there are cognitive limits on higher-order theory of mind. For example,
children under the age of around 6 cannot correctly apply second-order
theory of mind, and it seems to be a uniquely human ability. In this
paper, we make use of agent-based models to investigate the advantage
of applying a higher-order theory of mind among agents with bounded
rationality. We present a model of computational agents in the competi-
tive setting of the limited bidding game, and describe how agents achieve
theory of mind by simulating the decision making process of their op-
ponent as if it were their own. Based on the results of a tournament
held between these agents, we find diminishing returns on making use of
increasingly higher orders of theory of mind.

1 Introduction

Humans, in many aspects, are extraordinary within the animal kingdom. They
show an impressive ability to reason about the world around them, as well as
about unobservable mental content of others, such as others’ knowledge, beliefs
and plans. This so-called theory of mind [1] is said to be unique to humans
[2]. Humans use theory of mind beyond its first-order application, concerning
other’s propositional attitudes with respect to world facts. They take this ability
to a second-order theory of mind, in which they reason about the way others
reason about mental content. For example, suppose that Alice is throwing Bob
a surprise party. Bob engages in second-order theory of mind when he knows
about the party, but is playing along with Alice so she won’t find out that he
already knows; he may make the second-order attribution “Alice doesn’t know
that I know”.

Although the ability to use higher-order (i.e., at least second-order) theory
of mind is well established for humans, both through the attribution of second-
order false belief [3] as well as in strategic games [4–6], the use of theory of mind
of any kind by non-human species is a controversial matter [see for example
2, 7, 8]. Also, research shows that even human adults have difficulty applying
higher-order theory of mind correctly [4, 5, 9].
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In this paper, we consider agent-based computational models [10, 11] to in-
vestigate the advantages of making use of higher-order theory of mind. The use
of computational agents allows us to precisely control and monitor the mental
content, including application of theory of mind, of our test subjects. This allows
us to investigate the conditions under which a theory of mind would present indi-
viduals with an evolutionary advantage over individuals without such abilities.
Following the Machiavellian intelligence hypothesis [12, 13], the main driving
force behind the evolution of social cognition, such as theory of mind, would
be the competitive ability within the species (for a discussion of alternative hy-
potheses, see [9]). We therefore simulate computational agents in a competitive
game, and determine the extent to which higher-order theory of mind provides
individuals with an advantage over competitors that are more restricted in their
use of theory of mind. In particular, we consider whether the ability to use
second-order theory of mind provides individuals with advantages beyond the
use of first-order theory of mind.

The setting in which we compare the performance of the computational
agents is a newly designed competitive game of limited bidding, which is ex-
plained in Section 2. Section 3 gives a detailed description of the way agents
that are limited in their ability to explicitly represent mental content are imple-
mented for the limited bidding game. These agents are placed in competition
with one another, the results of which are presented in Section 4. We compare the
advantages of using second-order theory of mind to those obtained using first-
order theory of mind. Finally, Section 5 provides discussion and gives directions
for future research.

2 Limited bidding

2.1 Game outline

The limited bidding game (adapted from a game in [14]) is a competitive game
played by two players. At the start of the game, each player receives an identical
set of N tokens, valued 1 to N . Over the course of N rounds, players simultane-
ously choose one of their own tokens to use as a ‘bid’ for the round. Once both
players have made their choice, the tokens selected by the players are revealed
and compared, and the round is won by the player that selected the highest value
token. In case of a draw, there are no winners. The object of the game is to win
as many rounds as possible while losing as few rounds as possible. However, each
token may be used only once per game. This forces players to plan ahead and
strategically choose which of the still available tokens to place as the bid. For
example, a player that selects the token with the highest value (N) in the first
round will ensure that the first round will not result in a win for his opponent.
However, this also means that during the remaining N − 1 rounds, the token
with value N will not be available to this player.

After each round in the limited bidding game, the tokens that were played
are announced to each player. That is, at the end of each round, every player not
only knows who won the round, but also which tokens were used. This allows
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players to keep track of the tokens that may still be played by their opponent.
Since our computational agents are limited in their ability to make use of theory
of mind, these agents do not have the capacity to explicitly represent common
knowledge. However, we assume that players do not hold beliefs that would be
inconsistent with common knowledge of the rules and dynamics of the limited
bidding game.

2.2 A scenario for agents with bounded rationality

Under the assumption of common knowledge of rationality, rational agents play
the limited bidding game randomly (see Appendix A), such that during each
round, a rational agent randomly plays one of the still available tokens. How-
ever, experiments with human subjects have shown contexts in which humans
regularly fail to behave as predicted by game theory [e.g. 15–19]. In reality, agents
may not be fully rational, or consider their opponent to be fully rational. When
agents repeatedly interact with the same opponent, they may show patterns of
behaviour that deviate from random play, which may be used to their opponent’s
advantage. In this section, we tentatively describe the process of playing the lim-
ited bidding game by agents that are limited in their application of theory of
mind. In the remainder, we will speak of a ToMi agent to indicate an agent that
has the ability to use theory of mind up to and including the i-th order. Also,
to avoid confusion, we will refer to agents as if they were male, and opponents
as if they were female.

Consider the situation in which a ToM0 agent meets a ToM1 opponent for the
second time in the setting of the limited bidding game. During the first round of
the game, suppose that the ToM0 agent recalls that his opponent played token
1 in the first round of the last game. When deciding what token to play, a ToM0

agent cannot make use of any theory of mind. In particular, a ToM0 agent cannot
consider the possibility that his opponent has goals that are competitive to his
own. The only information available to the agent is that his opponent sometimes
plays token 1 in the first round of the game. Against token 1, the best response
is token 2, and thus the ToM0 agent chooses to play token 2.

The ToM1 opponent, on the other hand, forms beliefs about what the ToM0

agent believes. She remembers that the last time she played against the ToM0

agent, she selected token 1 in the first round. She reasons that if the situation
were reversed, and she had been in the ToM0 agent’s position, she would conclude
that the best response against token 1 is playing token 2. From this, the ToM1

opponent concludes that the ToM0 agent will be playing token 2. Against token
2, the best response is token 3, which is the token that the ToM1 agent will
select to play.

In our setup, none of the agents is aware of the abilities of his opponent.
Through repeated interaction, a ToM1 agent may come to believe that his oppo-
nent is not a ToM0 agent, but that she does not have any beliefs at all, and plays
according to some unchanging strategy. Based on this belief, a ToM1 agents can
choose to play as if he were a ToM0 agent himself. Each agent forms and updates
his beliefs through repeated interaction, in an attempt to uncover what order

151



of theory of mind he should use to win the game. The need for such learning
becomes apparent for agents that make use of higher-order theory of mind. A
ToM2 agent, for example, engages in second-order theory of mind by forming
beliefs about what his opponent believes him to believe. The implicit assumption
in this modeling is that his opponent is a ToM1 opponent that is able to form be-
liefs about what he believes. When in reality she is a ToM0 opponent, the ToM2

agent therefore attributes beliefs to his opponent that she cannot represent.

3 A mathematical model of theory of mind agents

In this section, we discuss the implementation of computational agents that are
limited in their ability to make use of theory of mind while playing the limited
bidding game, similar to the agents described in Section 2.2.

Computational agents in the limited bidding game represent the game situ-
ation by its observable features, that is, the set of tokens T that is still available
to the agent and the set of tokens S that is available to his opponent. Based
on this representation (T, S), an agent has beliefs in the form of a probability
distribution b(0), such that b(0)(s;T, S) represents what the agent believes to be
the probability that his opponent will play the token with value s in situation
(T, S). A ToM1 agent furthermore attributes beliefs to his opponent in the form
of a distribution b(1), such that he believes his opponent to assign probability
b(1)(t;S, T ) to the event that he will play token t in situation (T, S). A ToM2

agent maintains an additional belief structure b(2), such that he believes his op-
ponent to believe that he assigns probability b(2)(s;T, S) to the event of her
playing token s in situation (T, S).

Since an agent’s beliefs b(i) represent probability distributions, we assume
that they are non-negative and normalized such that

∑
s∈S

b(i)(s;T, S) = 1 for

all S 6= ∅ and all orders of theory of mind i. Besides these beliefs, agents are
governed by their confidence in the predictions based on application of first- and
second-order theory of mind, c1 and c2 respectively, as well as learning speed
λ and discounting rate δ. Unlike the beliefs b(i) and confidences ci, an agent’s
learning speed λ and discounting rate δ, to be discussed later in this section, are
fixed and agent-specific traits that are beyond the agent’s ability to control.

To decide what token to use, agents make use of three basic functionalities:
a value function Φ, a decision function t∗ and a belief updating function ∆. The
value function Φ is used to obtain a measure of the expected outcome of the
game when playing token t in situation (T, S). This is achieved through

ΦT,S(t, b(i)) =



∑
s∈S

b(i)(s;T, S) · sgn(t− s) if |T | = 1

∑
s∈S

b(i)(s;T, S)
(
sgn(t− s) + δ max

t′∈T\{t}
ΦT\{t},S\{s}(t′, b(i))

)
if |T | > 1,

(1)

where sgn is the signum function. Note that the value function Φ makes use of
exponential time discounting with parameter 0 ≤ δ ≤ 1 [20, 21]. A higher value
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of time discounting δ indicates that the agent is more patient, and more willing
to lose the next round if it means winning the game.

Agents use the value function Φ to weigh the likelihood of winning the current
round by playing token t against the value of the situation that results from losing
token t for the remainder of the game. Based on beliefs b(i), agents decide what
token to use according to the decision function

t∗T,S(b(i)) = arg max
t∈T

ΦT,S(t, b(i)). (2)

Through application of theory of mind, agents come to believe that their
opponent will be playing some token ŝ. The extent to which ith-order theory of
mind governs the decisions of the agent’s actions is determined by his confidence
0 ≤ ci ≤ 1 that ith-order theory of mind accurately predicts his opponent’s
behaviour. For every order of theory of mind available to the agent, he therefore
adjusts his beliefs using the belief adjustment function ∆, given by

∆(b(i), ŝ, ci)(s;T, S) =

{
(1− ci) · b(i)(s;T, S) if s 6= ŝ
ci + (1− ci) · b(i)(s;T, S) if s = ŝ.

(3)

The functions Φ, t∗ and ∆ are shared by all agents, but the type of agent de-
termines how these functions are used. A ToM0 agent selects what token to play
by using Equation (2) directly. That is, given discounting rate δ and zeroth-order
beliefs b(0), a ToM0 agent faced with situation (T, S) will play token t∗T,S(b(0)).

In contrast, ToM1 agents consider the possibility that their opponent is play-
ing as a ToM0 agent. A ToM1 agent makes use of this by determining what token
he would play if the situation were reversed. To do so, a ToM1 agent maintains
first-order beliefs b(1) that describe what he would believe in his opponent’s sit-
uation, and thus what he believes his opponent to believe. Using these beliefs, a
ToM1 agent can estimate what token his opponent will believe him to be playing
by calculating ŝ(1) = t∗S,T (b(1)).

Once a ToM1 agent has derived what token ŝ(1) he would play in his oppo-
nent’s situation, he adjusts his own beliefs b(0) to represent that he believes his
opponent to play ŝ(1). That is, using the belief adjustment function ∆, a ToM1

agent decides what token to use by calculating

t∗T,S

(
∆
(
b(0), ŝ(1), c1

))
= t∗T,S

(
∆
(
b(0), t∗S,T

(
b(1)
)
, c1

))
. (4)

Note that in this sense, the computational agents described here represent
their theory of mind according to simulation-theory of mind [22–24]. That is,
rather than forming a theory-theory of mind [1, 25] that relates observable fea-
tures of the world to unobservable mental states of their opponent through ex-
plicit hypotheses, agents simulate the mental content of their opponent in their
own mind. A ToM1 agent thus considers the mental states of his opponent by
considering her viewpoint as if it were his own, implicitly assuming that this
accurately describes her thought process. In this particular setting, this means
that a ToM1 agent makes use of his own discounting rate δ in determining ŝ(1),
and therefore assumes his opponent to have the same rate of impatience he has.
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Similar to the way a ToM1 agent models his opponent as a ToM0 agent, a
ToM2 agent determines what token he would play if he were in the position of
his opponent, playing as a ToM1 agent. In order to do so, a ToM2 agent needs
to specify his opponent’s confidence in first-order theory of mind. In our exper-
iments, we have assumed that all ToM2 agents use a value of 0.8 to determine
their opponent’s behaviour playing as a ToM1 agent, resulting in the estimate

ŝ(2) = t∗S,T

(
∆
[
b(1), t∗T,S

(
b(2)
)
, 0.8

])
. This estimate is then used to update the

ToM2 agent’s beliefs a second time before he makes his choice of what token to
use. This choice can therefore be represented as

t∗T,S

(
∆
[
∆
(
b(0), t∗S,T

(
b(1)
)

︸ ︷︷ ︸
ŝ(1)

, c1

)
, t∗S,T

(
∆
[
b(1), t∗T,S

(
b(2)
)
, 0.8

])

︸ ︷︷ ︸
ŝ(2)

, c2

])
. (5)

To arrive at his decision of what token to play, an agent makes use of beliefs
b(i), which are initialized randomly, and confidence levels ci, which are initialized
at zero. After each round, the actual choices of the agent t̃ and his opponent
s̃ are revealed. At this moment, an agent updates his confidence in theory of
mind based on the accuracy of its predictions. That is, given his agent-specific
learning speed 0 ≤ λ ≤ 1, a ToM1 agent updates his confidence in first-order
theory of mind c1 according to

c1 :=

{
(1− λ) · c1 if s̃ 6= ŝ(1)

λ+ (1− λ) · c1 if s̃ = ŝ(1).
(6)

A ToM1 agent thus increases his confidence in the use of first-order theory
of mind if it yields accurate predictions, and lowers his confidence if predictions
are inaccurate. A ToM2 agent additionally adjusts his confidence in the use of
second-order theory of mind c2 according to

c2 :=





(1− λ) · c2 if s̃ 6= ŝ(2)

c2 if s̃ = ŝ(1) = ŝ(2)

λ+ (1− λ) · c2 if s̃ = ŝ(2) 6= ŝ(1).

(7)

This update is similar to the updating of the confidence in first-order theory
of mind, except that a ToM2 agent does not change his confidence in second-
order theory of mind when first- and second-order theory of mind both yield
correct predictions. That is, a ToM2 agent only grows more confident in the use
of second-order theory of mind when this results in accurate predictions that
could not have been made with first-order theory of mind.

Finally, the agent also updates his beliefs b(i). For zeroth- and second-order
beliefs b(0) and b(2), an agent updates his beliefs using his opponent’s choice s̃,
while first-order beliefs b(1) are updated using his own choice t̃, such that

b(i)(s;T, S) := ∆
(
b(i), s̃, λ

)
(s;T, S) for i = 0, 2, and (8)

b(1)(t;S, T ) := ∆
(
b(1), t̃, λ

)
(t;S, T ). (9)
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(a) Average performance of a focal
ToM1 agent playing against a ToM0 op-
ponent.

(b) Average performance of a focal
ToM2 agent playing against a ToM1 op-
ponent.

Fig. 1: Effects of learning speed λ on average performance in a game of 5 tokens.
Performance was determined as the average score over 50 trials, for every 0.02
increase of λ in the range 0 ≤ λ ≤ 1. Discounting rate δ was fixed at 0.9.

The agents described above implicitly assume that their opponents update
their beliefs using the same learning speed 0 ≤ λ ≤ 1 as themselves. Furthermore,
equations (8) and (9) maintain the normalization and non-negativity of beliefs,
while the confidences c1 and c2 remain limited to the range [0, 1]. Finally, agents
do not update their beliefs and confidence levels after the last round, in which
they make the degenerate choice of playing the only token still available to them.

4 Results

The agents described in Section 3 have been implemented in Java and their per-
formance has been tested in competition in a limited bidding game of five tokens.
Performance per game was measured as the difference between the number of
rounds an agent won and the number of rounds won by his opponent. Note that
since it is not possible for an agent to win more than four out of five rounds1, an
agent’s game score ranges from -3 to 3. Agents play against each other in trials
that consist of 50 consecutive games. An agent’s trial score is the average of the
agent’s game scores over all 50 games in the trial.

Figure 1 shows the advantage of making use of theory of mind as a function
of the learning speed of the focal agent (λf ) and his opponent (λo). Higher and
lighter areas represent that the focal agent performed better than his opponent,
while lower and darker areas show that his opponent obtained a higher average

1 If an agent wins the first four rounds, the final round will be won by his opponent.
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score. To emphasize the shape of the surface, the grid that appears on the bottom
plane has been projected onto the surface.

Both figures show that an agent with learning speed λ = 0 cannot successfully
compete with his opponent, and obtains a negative score. Note that in this case,
the agent does not learn at all. Instead, he plays according to a fixed strategy,
irrespective of his ability to use theory of mind.

Figure 1a shows that ToM1 agents predominantly obtain a positive score
when playing against ToM0 opponents. The bright area along the line λf = λo
indicates that this advantage is again particularly high when learning speeds are
equal. In this case, the ToM1 agent’s implicit assumption that his opponent has
the same learning speed as himself is correct. Surprisingly, Figure 1a shows that
even when the ToM1 agent fails to accurately model his opponent, he will on
average obtain a positive score for any learning speed λf > 0.08.

Figure 1b shows that ToM2 agents obtain an advantage over ToM1 opponents.
However, although Figure 1b shows many of the same features as Figure 1a, such
as the brighter area along the line λf = λo, ToM2 agents playing against ToM1

agents obtain a score that is on average 0.5 lower than the score of ToM1 agents
playing against ToM0 agents. As a result, a ToM2 agent needs a learning speed
of at least λf > 0.12 in order to obtain, on average, a positive score when playing
against a ToM1 agent.

5 Discussion and future research

By making use of agent-based models, we have shown that in the competitive
setting of the limited bidding game, the ability to make use of theory of mind
presents individuals with an advantage over opponents that lack such an ability.
This advantage presents itself even when an agent fails to model his opponent
correctly, although an agent that accurately models his opponent obtains more
of an advantage than an agent that over- or underestimates the speed at which
his opponent learns from past behaviour. In competitive settings like the limited
bidding game, there may therefore be an evolutionary incentive that justifies the
application of higher-order theory of mind.

Our results also show diminishing returns on higher orders of theory of mind.
Concretely, although second-order theory of mind agents outperform first-order
theory of mind opponents, the advantage is not as high as for first-order theory of
mind agents playing against zeroth-order theory of mind agents. Further evidence
suggests that the advantage diminishes quickly for even higher orders of theory
of mind (see Appendix B). This could help explain why humans have difficulty
applying higher-order theory of mind correctly.

One possible direction for future research presents itself in the form of variable-
frame level-n theory [16]. Variable-frame level-n theory expresses theory of mind
as levels of bounded rationality, which an agent uses to model the behaviour
of his co-player in the setting of a coordination game. An agent makes use of
salience to determine what he believes his co-player to believe to be the best
course of action, and selects his own action accordingly. In our competitive set-
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ting, variable-frame level-n theory could be used to shape an agent’s initial beliefs
based on the salience of the tokens with the highest and lowest values. This could
provide theory of mind agents with additional advantages early in the game.

Although we have shown that the use of theory of mind benefits individuals
in the setting of the limited bidding game, in order to represent the beliefs they
attribute to others, the higher-order theory of mind agents we describe need
additional memory capacity. Based on additional experiments, it seems that the
explicit attribution of mental content to competitors presents individuals with
advantages beyond those of an increase in memory capacity (see Appendix C).
That is, it seems that the advantage obtained by the application of theory of
mind cannot be fully explained by an increase in memory capacity.
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Appendix A Rational agents in the limited bidding game

In game theory, it is common to make the assumption of common knowledge of
rationality [26, 27]. In terms of theory of mind, this means that rational agents
possess the ability to make use of theory of mind of any depth or order. In this
section, we will explain how rational agents play the limited bidding game under
the assumption of common knowledge of rationality.

For simplicity, we consider a limited bidding game of three tokens. In such
a game, players decide what token to play at two moments: once at the start
of the game, and again once the result of the first round has been announced.
Although new information also becomes available after the second round, the
choice of which token to play in the third round is a degenerate one; at the start
of the third round both players only have one token left. Since both players have
the choice of three tokens to play in the first round, there are nine variations of
the subgame the agents play at the second round of the game. We first consider
what a rational agent will choose to do at the start of the second round.

Player 2
123 132 213 231 312 321

P
la

ye
r

1

123 (0,0) (0,0) (0,0) (-1,1) (1,-1) (0,0)
132 (0,0) (0,0) (-1,1) (0,0) (0,0) (1,-1)
213 (0,0) (1,-1) (0,0) (0,0) (0,0) (-1,1)
231 (1,-1) (0,0) (0,0) (0,0) (-1,1) (0,0)
312 (-1,1) (0,0) (0,0) (1,-1) (0,0) (0,0)
321 (0,0) (-1,1) (1,-1) (0,0) (0,0) (0,0)

Table 1: Payoff table for the limited bidding game of three tokens. Each outcome
of the game corresponds to a tuple in the table. The first value of the tuple is
the payoff for player one, the second is the payoff for player two.

Since every player tries to maximize the number of rounds won and minimize
the numbers of rounds lost, at the end of each game, each player receives a payoff
equal to the difference between the two. Table 1 lists the payoffs for both players
for each possible outcome of the game, where each outcome is represented as
the concatenation of the tokens in the order in which the player has played
them. Each payoff structure is presented as a tuple (x, y), such that player 1
receives payoff x and player 2 receives payoff y. The subgames that are played
at the beginning of the second round are represented as 2-by-2 submatrices,
highlighted by alternating background color in Table 1.

Note that whenever the first round of the game ends in a draw, the resulting
subgame is a degenerate one. In this case, both players receive zero payoff irre-
spective of the final outcome. When the first round does not end in a draw, the
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resulting subgame is a variation on the matching pennies game [28]. This game
is known to have no pure-strategy Nash equilibrium. That is, there is no com-
bination of pure strategies such that each player maximizes his payoff given the
strategy of its opponent. However, there is a unique mixed-strategy Nash equi-
librium in which each player plays each possible strategy with equal probability.
If both players play either one of their remaining tokens with 50% probability,
neither one of them has an incentive to switch strategies: given that its opponent
is playing randomly, a rational agent has no strategy available that will yield a
better expected payoff than playing randomly as well.

Player 2
1 2 3

P
la

ye
r

1 1 (0.0,0.0) (-0.5,0.5) (0.5,-0.5)
2 (0.5,-0.5) (0.0,0.0) (-0.5,0.5)
3 (-0.5,0.5) (0.5,-0.5) (0.0,0.0)

Table 2: Payoff table for the limited bidding game of three tokens once the players
have derived that after the first round, both players will play randomly.

Due to the common knowledge of rationality, each player knows that both of
them have reached the conclusion that after the first round, they will both play
randomly. This means we can rewrite the payoff matrix to reflect the results of
each of the subgames, as shown in table 2. Note that this is another variation of
the matching pennies game with three strategies, also known as a stone-paper-
scissors game [28]. As before, there is no pure-strategy Nash equilibrium, but the
unique mixed-strategy Nash equilibrium is reached when both players play each
strategy with equal probability. That is, rational agents, under the assumption
of common knowledge of rationality, solve the limited bidding game by playing
randomly at each round.

This result also holds when the game is played using more than three tokens.
That is, to prevent their opponent from taking advantage of any regularity in
their strategy, rational agents play the limited bidding game randomly.

Appendix B Limits of the advantage of theory of mind

In Section 4, we have shown that ToM2 agents can obtain advantages that go
beyond those obtained by ToM1 agents. In this section, we extend the model of
Section 3 to allow for ToM3 agents. These agents possess an additional distri-
bution b(3), such that a ToM3 agent believes that his opponent believes that he
believes her to assign probability b(3)(t;S, T ) to him playing token t in situation
(T, S). These beliefs are used to determine what token the ToM3 agent would
play if he were in the position of his opponent, and playing as a ToM2 agent.
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(a) Average performance of a focal
ToM2 agent playing against a ToM1 op-
ponent.

(b) Average performance of a focal
ToM3 agent playing against a ToM2 op-
ponent.

Fig. 2: Effects of learning speed λ on average performance in a game of 5 tokens.
Performance was determined as the average score over 50 trials, for every 0.02
increase of λ in the range 0 ≤ λ ≤ 1. Discounting rate δ was fixed at 0.9.

The ToM3 agent considers a ‘pure’ ToM2 agent, such that he specifies c1 = 0.0
and c2 = 0.8 for his opponent. The confidence in first-order theory of mind that
he believes her to assign to him is c1 = 0.8. This results in the estimate

ŝ(3) = t∗S,T
(
∆
[
b(1), t∗T,S

(
∆
[
b(2), t∗S,T

(
b(3)
)
, 0.8

])
, 0.8

])
. (10)

This estimate is then used to update the ToM3 agent’s beliefs a third time
before he makes his choice of what token to use. This choice therefore is

t∗T,S

(
∆
{
∆
[
∆
(
b(0), t∗S,T

(
b(1)
)

︸ ︷︷ ︸
ŝ(1)

, c1

)
, t∗S,T

(
∆
[
b(1), t∗T,S

(
b(2)
)
, 0.8

])

︸ ︷︷ ︸
ŝ(2)

, c2

]
,

t∗S,T
(
∆
[
b(1), t∗T,S

(
∆
[
b(2), t∗S,T

(
b(3)
)
, 0.8

])
, 0.8

])

︸ ︷︷ ︸
ŝ(3)

, c3

})
. (11)

This agent has been implemented in Java and placed in competition with
the ToM2 agent described in Section 3. The results are shown in Figure 2b. For
convenience, the average performance of a ToM2 agent playing against a ToM1

opponent has been repeated in Figure 2a. As Figure 2b shows, a ToM3 agent
barely outperforms a ToM2 agent. The average score only exceeds 0.3 when the
ToM2 opponent has zero learning speed. Although it appears as if a ToM3 agent
can still on average obtain a positive score when his learning speed is at least
λ > 0.32, Figure 2b shows that when the ToM2 opponent has learning speed
0 < λ < 0.1, performance of the ToM3 agent may still fall below zero.
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Interestingly, the poor performance of ToM3 agents playing against ToM2

opponents is partially caused by the model that the ToM2 opponent holds of the
ToM3 agent. Note that since confidence levels ci are initialized at zero, all agents
start out by playing as ToM0 agents. When a focal ToM3 agent is in competition
with a ToM2 opponent, both of them will notice that their predictions based on
first-order theory of mind ŝ(1) are correct. Through Equation (6), this causes
both agents to grow more confident in application of first-order theory of mind.
As a result, they both gradually start playing more as a ToM1 agent. When
this happens, predictions based on first-order theory of mind ŝ(1) will become
less accurate, but predictions based on second-order theory of mind ŝ(2) become
increasingly accurate, increasing confidence in the application of second-order
theory of mind through Equation (7). Both the focal agent and his opponent
will therefore start playing as a ToM2 agent. At this point, the opponent can no
longer model the focal agent. That is, she will notice that none of her predictions
are correct and start to play as a ToM0 agent again. However, when the focal
agent tries to take advantage of this by playing as a ToM1 agent, the opponent
recognizes this and once again grows more confident in her predictions based on
second-order theory of mind. This causes the ToM2 opponent to constantly keep
changing her strategy, which hinders the ToM3 agent’s efforts of trying to model
her behaviour.

Appendix C Theory of mind is more than increased
memory

The results in Section 4 show that the use of a theory of mind benefits individ-
uals in the setting of the limited bidding game. However, in order to represent
the beliefs they attribute to others, the higher-order theory of mind agents we
described in Section 3 need additional memory capacity; for every additional
order of theory of mind available to the agent, it maintains another belief struc-
ture b(i). In this section, we consider the high-memory ToM0 agent, which has

the ability to remember what token t
(−1)
T,S he played the last time in any game

situation (T, S). The high-memory ToM0 agent makes use of this by represent-

ing beliefs of the form b
(0)
Mem, such that he believes that the probability of his

opponent playing token s in situation (T, S) is b
(0)
Mem(s;T, S, t

(−1)
T,S ). That is, the

high-memory ToM0 agent has different beliefs concerning what his opponent will
play in situation (T, S) based on the last token he played in the same situation.

To determine whether the contribution of theory of mind to an agent’s perfor-
mance can be explained by additional memory alone, we placed the high-memory
ToM0 agent in competition with the ToM2 agent described in Section 3, both
of which have similar demands on memory capacity. The number of game sit-
uations in which a player makes a non-trivial choice of what token to play is
N−2∑
i=0

(
N
i

)2
. For a game of five tokens, there are 226 such situations. Since a ToM2

agent needs to maintain three belief structures b(i), a ToM2 agent needs enough
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Fig. 3: Effects of learning speed λ on the average performance of a high-memory
ToM0 agent playing against a (low-memory) ToM2 opponent in a game of 5
tokens. Performance was determined as the average score over 50 trials, for every
0.02 increase of λ in the range 0 ≤ λ ≤ 1. Discounting rate δ was fixed at 0.9.

memory to represent 678 beliefs. A high-memory ToM0 agent has a richer rep-

resentation of the game, which causes him to consider
N−2∑
i=0

(N − i)
(
N
i

)2
game

situations in which he makes a non-trivial choice of what token to play. In ad-

dition to remembering his last choice t
(−1)
T,S in 226 situations, the high-memory

ToM0 agent therefore needs enough memory to represent 605 beliefs to maintain

his belief structure b
(0)
Mem.

Note that the high-memory ToM0 agent represents an unpredictable oppo-
nent for the ToM2 agent. A ToM2 agent models the behaviour of his opponent
by considering his own actions in her situation. However, the representation of
the game situation held by a high-memory ToM0 agent differs from that of his
low-memory ToM2 opponent. That is, the ToM2 opponent fails to accurately
model the high-memory ToM0 agent.

Figure 3 show the average performance of a high-memory ToM0 agent when
playing against a low-memory ToM2 opponent. Surprisingly, even though the
ToM2 opponent is unable to effectively use her theory of mind, she outperforms
the high-memory ToM0 agent whenever her learning speed λ > 0.12. On average,
a high-memory ToM0 agent scores -0.20 when playing against a ToM2 opponent.

A possible reason for the negative score of the high-memory ToM0 agents,
even though their ToM2 opponent is unable to accurately model them, may be
the length of the trials. In our setup, trials consist of 50 consecutive games, which
may not provide a high-memory ToM0 agent with sufficient information to gain
an advantage over his ToM2 opponent. In contrast, although the ToM2 opponent
incorrectly models the high-memory ToM0 agent, her model is accurate enough
to obtain a reliable advantage.
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