Skip to main content
Log in

Reflecting on Complexity of Biological Systems: Kant and Beyond?

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Living organisms are currently most often seen as complex dynamical systems that develop and evolve in relation to complex environments. Reflections on the meaning of the complex dynamical nature of living systems show an overwhelming multiplicity in approaches, descriptions, definitions and methodologies. Instead of sustaining an epistemic pluralism, which often functions as a philosophical armistice in which tolerance and so-called neutrality discharge proponents of the burden to clarify the sources and conditions of agreement and disagreement, this paper aims at analysing: (i) what has been Kant's original conceptualisation of living organisms as natural purposes; (ii) how the current perspectives are to be related to Kant's viewpoint; (iii) what are the main trends in current complexity thinking. One of the basic ideas is that the attention for structure and its epistemological consequences witness to a great extent of Kant's viewpoint, and that the idea of organisational stratification today constitutes a different breeding ground within which complexity issues are raised. The various approaches of complexity in biological systems are captured in terms of two different styles, universalism and (weak and strong) constructivism, between which hybrid forms exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ahouse, J. C. (2000). Bucking the System. Review of Foundations of Complex-System Theories in Economics, Evolutionary Biology, and Statistical Physics, by S.Y. Auyang (1998, Cambridge University Press, New York). MetaScience 9: 51–55.

    Google Scholar 

  • Amundson, R. (1994). Two concepts of constraints: adaptationism and the challenge from developmental biology. Philosophy of Science 61: 556–578.

    Google Scholar 

  • Atlan, H. (1979). Entre le cristal et la fumée. Essai sur l'organisation du vivant. Seuil, Paris.

    Google Scholar 

  • Auyang, S.Y. (2000). Bucking the System. Review of Foundations of Complex-System Theories in Economics, Evolutionary Biology, and Statistical Physics, by S.Y. Auyang (1998, Cambridge University Press, New York). MetaScience 9: 39–44 and 73–75.

    Google Scholar 

  • Baas, N.A. (1997). Self-organization and higher order structures. In: Schweitzer, F. (Ed.). Self-Organization of Complex Structures. From Individual to Collective Dynamics. Gordon and Breach Science Publishers, London. pp. 71–81.

    Google Scholar 

  • Bateson, P. (2001). Behavioral development and Darwinian evolution. In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge. pp. 149–166.

    Google Scholar 

  • Brandon, R. N. (1990). Adaptation and Environment. Princeton University Press, Princeton.

    Google Scholar 

  • Beckermann, A., H. Flohr and J. Kim (Eds). (1992). Emergence or Reduction? Essays on the Prospects of Nonreductive Physicalism. Walter de Gruyter, Berlin.

    Google Scholar 

  • Beurton P., P. Falk and H.-J. Rheinberger (Eds). (2000). The concept of the gene in development and evolution. Historical and epistemological perspectives. Cambridge University Press, Cambridge.

  • Brooks, D.R. (2001). Evolution in the information age: rediscovering the nature of the organism. Semiosis, Evolution, Energy, Development 1: 1–26.

    Google Scholar 

  • Brooks, D.R. (2002). Taking Evolutionary Transitions Seriously. Semiosis, Evolution, Energy, Development 2: 6–24.

    Google Scholar 

  • Brooks, D. R. and E.O. Wiley (1988). Evolution as Entropy: Toward a Unified Theory of Biology, 2nd Edition. University of Chicago Press, Chicago.

    Google Scholar 

  • Casti, J. L. (1994). Complexification: Explaining a pardoxical world through the science of surprise. ABACUS, Little, Brown and Company, London.

    Google Scholar 

  • Chandler, J.L.R. and G. Van de Vijver (Eds) (2000). Closure: Emergent Organizations and their dynamics. Annals of the New York Academy of Sciences 901.

  • Collier, J. (1988). Supervenience and reduction in biological hierarchies. In: Matthen, M. and B. Linsky (Eds). Philosophy and Biology: Canadian Journal of Philosophy Supplement 14: 209–234.

  • Collier, J.D. (1998). The dynamical basis of emergence in natural hierarchies. In: Farre, G. and T. Oksala (Eds). Emergence, Complexity, Hierarchy and Organization. Selected and Edited Papers from the ECHO III Conference. Acta Polytechnica Scandinavica, MA91. Finnish Academy of Technology, Espoo.

    Google Scholar 

  • Collier, J.D. (1999). Autonomy in anticipatory systems: significance for functionality, intentionality and Meaning. In: Dubois, D.M. (Ed.). Proceedings of the second international conference on computing anticipatory systems, CASYS'98. Springer-Verlag, New York.

    Google Scholar 

  • Collier, J.D. (In press). Self-organization, individuation and identity. Revue Internationale de Philosophie. Special Issue on self-organisation and identity (Van de Vijver, Ed.).

  • Collier, J.D. and C.A. Hooker (1999). Complexly organised dynamical systems. Open Systems and Information Dynamics 36: 1–62.

    Google Scholar 

  • Conrad, M. (1998). Towards high evolvability dynamics. In: Van de Vijver, G., S.N. Salthe and M. Delpos (Eds). Evolutionary Systems: Biological and Epistemological Perspectives on Selection and Self-organisation. Kluwer Academic Press, Dordrecht.

    Google Scholar 

  • Dasgupta, S. (1997). Technology and Complexity. Philosophica 59: 113–140.

    Google Scholar 

  • Dawkins, R. (1996). Climbing Mount Improbable. Viking, Penguin Books, London.

    Google Scholar 

  • De Grave, D. (2002). Complexiteitstheorie en Psychoanalyse. Ph.-D. Thesis, Ghent University, Ghent.

    Google Scholar 

  • Dent, E. B. (1999). Complexity science: a worldview shift. Emergence 1: 5–19.

    Google Scholar 

  • Depew, D. J. and B. H. Weber (1995). Darwinism Evolving: System Dynamics and the Genealogy of Natural Selection. A Bradford Book, The MIT Press, Cambridge, MA.

    Google Scholar 

  • Dupuy, J.-P. (1985). L'essor de la première cybernétique. Cahiers du CREA, Paris 7: 7–140.

    Google Scholar 

  • Eldredge, N. (1985). Unfinished Synthesis: Biological Hierarchies and Modern Evolutionary Thought. Oxford University Press, New York.

    Google Scholar 

  • El-Hani, C.N. and C. Emmeche (2000). On some theoretical grounds for an organism-centered biology: property emergence, supervenience, and downward causation. Theory in Biosciences 119: 234–275.

    Google Scholar 

  • Emmeche, C. (1997). Aspects of complexity in life and science. Philosophica 59: 41–68.

    Google Scholar 

  • Fenzl, N. and W. Hofkirchner (1997). Information processing in evolutionary systems. In: Schweitzer, F. (Ed.). Self-Organization of Complex Structures. From Individual to Collective Dynamics. Gordon and Breach Science Publishers, London. pp. 59–70.

    Google Scholar 

  • Fleissner, P. and W. Hofkirchner (1996). Emergent information. Towards a unified information theory. BioSystems 38: 243–248.

    Google Scholar 

  • Gilbert, S.F. and S. Sarkar (2000). Embracing complexity: organicism for the 21st century. Developmental Dynamics 219: 1–9.

    Google Scholar 

  • Godfrey-Smith, P. (2001). On the status and explanatory structure of developmental systems theory. In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 283–298.

    Google Scholar 

  • Goguen, J.A. and F.J. Varela (1979). Systems and distinctions; duality and complementarity. International Journal of General Systems 5: 31–43.

    Google Scholar 

  • Goldstein, J. (1999). Emergence as a construct: history and issues. Emergence 1(1): 49–72.

    Google Scholar 

  • Goodwin, B.C. (1990). Structuralism in biology. Science Progress Oxford 74: 227–244.

    Google Scholar 

  • Gottlieb, G. (2001). A developmental psychobiological systems view: early formulation and current status. In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 41–54.

    Google Scholar 

  • Griesemer, J.R. (1999). Complexity and transition: from chemical evolution to language. Biology and Philosophy 14: 127–142.

    Google Scholar 

  • Griffiths, P.E. and R.D. Gray (1994). Developmental systems and evolutionary explanation. The Journal of Philosophy XCI: 277304.

    Google Scholar 

  • Griffiths, P.E. and R.D. Gray (2001). Darwinisms and developmental systems. In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge. pp. 195–218.

    Google Scholar 

  • Gutmann, M. and E.M. Neumann-Held (2000). The theory of organism and the culturalist foundation of biology. Theory in Biosciences 119: 276–317.

    Google Scholar 

  • Heylighen, F. (1996). The growth of structural and functional complexity during evolution. In: Heylighen, F. and D. Aerts (Eds). The Evolution of Complexity: the violet book of Einstein meets Magritte. Kluwer Academic Press, Dordrecht.

    Google Scholar 

  • Holland, J.H. (1997). Emergence. Philosophica 59: 10–40.

    Google Scholar 

  • Hull, D.L. (1998). A clash of paradigms or the sound of one hand clapping. Biology and Philosophy 13: 587–598.

    Google Scholar 

  • Jablonka, E. (2001). The systems of inheritance. In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 99–116.

    Google Scholar 

  • Jablonka, E. and M. Lamb (1995). Epigenetic Inheritance en Evolution. The Lamarckian Dimension. Oxford University Press, Oxford.

    Google Scholar 

  • Jacob, A. (Ed.). (1990). Encyclopédie Philosophique Universelle. Les notions Philosophique, Dictionnaire (dirigé par Sylvain Auroux). Presses Universitaires de France, Paris.

    Google Scholar 

  • Juarrero, A. (1999). Dynamics in Action: Intentional Behavior as a Complex System. MIT press, Cambridge, MA.

    Google Scholar 

  • Kant, I. (1987). Critique of Judgment. English translation, including the first introduction, by W. S. Pluhar. Hackett Publishing Company, Indianapolis-Cambridge.

    Google Scholar 

  • Kauffman, S.A. (1993). The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press, New York.

    Google Scholar 

  • Kauffman, S.A. (1995). At Home in the Universe: the Search for Laws of Self-organization and Complexity. Oxford University Press, New York.

    Google Scholar 

  • Kauffman, S.A. (2000). Investigations. Oxford University Press, Oxford.

    Google Scholar 

  • Keller, E. F. (1995). Refiguring Life: Metaphors of Twentieth-century Biology. Columbia University Press, New York.

    Google Scholar 

  • Keller, E. F. (1996). Just a phrase they're going through. Interview in The Times Higher Education Supplement, Feb. 9: 16–17.

  • Keller, E. F. (2000). Bucking the System. Review of Foundations of Complex-System Theories in Economics, Evolutionary Biology, and Statistical Physics, by S.Y. Auyang (1998, Cambridge University Press, New York). MetaScience 9: 44–50.

    Google Scholar 

  • Keller, E. F. (2001). Beyond the gene but beneath the skin. In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge. pp. 299–312.

    Google Scholar 

  • Kitano, H. (2001). Foundations of Systems Biology. MIT Press, Cambridge, MA.

    Google Scholar 

  • Kumar, S. (1999). Resisting revolution: generalism and the new genetics. The Lancet 354: 1992–1993.

    Google Scholar 

  • Laland, K.N., F.J. Odling-Smee and M.W. Feldman (2001). Niche construction, ecological inheritances, and cycles of contingency in evolution. In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 117–126.

    Google Scholar 

  • Lelas, S. (1986). Epistemic implications of two biological concepts. Philosophica 37: 127–150.

    Google Scholar 

  • Lemke, J.L. (2000). Opening up Closure: Semiotics across Scales In: Chandler, J.L.R. and G. Van de Vijver (Eds). Closure: Emergent Organizations and their dynamics. Annals of the New York Academy of Sciences 901: 100–111.

  • Levins, R. and R.C. Lewontin (1985). The Dialectial Biologist. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Lewin, R. (1992). Complexity: Life at the edge of chaos. Macmillan, New York.

    Google Scholar 

  • Lewontin, R.C. (1991). The Doctrine of DNA. Biology as Ideology. Penguin Books, London.

    Google Scholar 

  • Lewontin, R.C. (2000). The triple Helix. Gene, organism, and environment. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Lewontin, R.C. (2001). Gene, organism and environment: a new introduction. In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 55–58.

    Google Scholar 

  • Louie, A. H. (1985). Categorical system theory. In: Rosen, R. (Ed.) Theoretical Biology and Complexity. Three essays on the natural philosophy of complex systems. Academic Press, Inc., Orlando. pp. 70–164.

    Google Scholar 

  • Matsuno, K. and S.N. Salthe (1995). Global Idealism/Local Materialism. Biology and Philosophy 10: 309–337.

    Google Scholar 

  • Maturana, M. and F.J. Varela (1980). Autopoiesis and Cognition. The Realization of the Living. Reidel Pub. Co., Dordrecht.

    Google Scholar 

  • Maynard Smith, J. and E. Szathmáry (1995). The major transitions in evolution. J.W.H. Freeman, Salt Lake City.

    Google Scholar 

  • Maynard Smith, J. and E. Szathmáry (1999). The Origins of Life. Oxford University Press, Oxford.

    Google Scholar 

  • McKay, D. M. (1962). Self-Organization in the Time Domain. In: M.C. Yovits, G.T. Jacobi and G.D. Goldstein (Eds). Self-Organizing Systems. Spartan Books, Washington. pp. 37–49.

    Google Scholar 

  • McShea, D.W. (1996). Metazoan complexity and evolution: is there a trend? Evolution 50: 477–492.

    Google Scholar 

  • McShea, D.W. (1997). Complexity in Evolution: a skeptical assessment. Philosophica 59: 79–112.

    Google Scholar 

  • McShea, D. W. (2000). Functional Complexity in Organisms: Parts as Proxies. Biology and Philosophy 15: 641–668.

    Google Scholar 

  • McShea, D.W. (2001). The minor transitions in hierarchical evolution and the question of a directional bias. Journal of Evolutionary Biology 14: 502–518.

    Google Scholar 

  • Mingers, J. (1995). Self-Producing Systems. Implications and applications of Autopoiesis. Series “Contemporary Systems Thinking”. Plenum Press, New York-London.

    Google Scholar 

  • Moreno A. and K. Ruiz-Mirazo (1999). Metabolism and the problem of its universalization, BioSystems 49: 45–61.

    Google Scholar 

  • Morange, M. (2001). The Misunderstood Gene. Translated by M. Cobb from La Part des Gènes, (1998), Editions Odile Jacob. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Morowitz, H. (1986). Entropy and nonsense. Biology and Philosophy 1: 473–476.

    Google Scholar 

  • Moss, L. (2001). Deconstructing the gene and reconstructing molecular developmental systems. In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 85–98.

    Google Scholar 

  • Moss, L. (2002). From representational preformationism to the epigenesis of openness to the world? Reflections on a new vision of the organism. In: Van Speybroeck, L., G. Van de Vijver and D. De Waele (Eds). From Epigenesis to Epigenetics: The Genome in Context. Annals of the New York Academy of Sciences 981: 219–230.

  • Moya, Fernando (2000). Epistemology of living organisms in Aristotle's philosophy. Theory in Biosciences 119: 318–333.

    Google Scholar 

  • Neumann-Held, E.M. (2001). Let's talk about genes: the process molecular gene concept and its context. In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 69–84.

    Google Scholar 

  • Norton, B.G. (1993). Should Environmentalists be Organicists? Topoi 12: 21–30.

    Google Scholar 

  • Oyama, S. (2001). Terms in tension: what do you do when all the good words are taken? In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 177–194.

    Google Scholar 

  • Oyama, S., P.E. Griffiths and R.D. Gray (Eds). 2001. Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Pask, G. (1960). The natural history of networks. In: Yovits, M.C. and S. Cameron (Eds). Internationals tracts in computer science and technology and their application. Vol 2: Self-organizing systems. Oxford Pergamon Press, 232–262.

  • Pask, G. and H. Von Foerster (1960). A predictive model for self organizing systems (I). Cybernetica 3: 258–301.

    Google Scholar 

  • Pask, G. and H. Von Foerster (1961). A predictive model for self organizing systems (II). Cybernetica 4: 20–56.

    Google Scholar 

  • Pattee, H.H. (Ed.). (1973). Hierarchy Theory. The Challenge of Complex Systems. Braziller, New York.

  • Pennisi, E. (2001). Behind the scenes of gene expression. Science 293: 1064–1067.

    Google Scholar 

  • Philonenko, A. (1984). Critique de la Jugement. Traduction, E. Kant, Kritik der Urteilskraft. Vreins, Paris.

    Google Scholar 

  • Prigogine, I. and I. Stengers (1979). La nouvelle alliance: métamorphose de la science. Gallimard, Paris.

    Google Scholar 

  • Prigogine, I. and I. Stengers (1984). Order out of Chaos: Man's New Dialog with Nature. Flamingo-Harper Collins, London.

    Google Scholar 

  • Quine, W. (1953) [1948]. From a LogicalPoint of View. 9 Logico-Philosophical Essays. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Raff, R. A. (1996). The Shape of Life. Genes, Development, and the Evolution of Animal Form. The University of Chicago Press, Chicago-London.

    Google Scholar 

  • Raup, D. M. (1967). Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41: 43–65.

    Google Scholar 

  • Rehmann-Sutter, C. (2000). Biological Organicism and the ethics of the human-nature relationship. Theory in Biosciences 119: 334–354.

    Google Scholar 

  • Richardson, K.A., P. Cilliers and M. Lissack (2000). Complexity Science: a ‘grey’ science for the 'stuff in between'. Proceedings of the First International Conference of Systems Thinking in Management. Geelong, Australia. pp. 532–537.

  • Robert, J.S. (2000). Essay Review: Synthetic Biology (Book Review of Steven Rose's Lifelines: Biology beyond Determinism, 1997, Oxford University Press). Studies in History and Philosophy of Biological and Biomedical Sciences 31: 599–614.

    Google Scholar 

  • Rosen, R. (Ed.) (1985). Theoretical Biology and Complexity. Three essays on the natural philosophy of complex systems. Academic Press, Inc., Orlando.

  • Ruiz-Mirazo, K., A. Etxeberria, A. Moreno and J. Ibáñez (2000). Organisms and their place in biology. Theory in Biosciences 119: 209–233.

    Google Scholar 

  • Salthe, S.N. (1985). Evolving Hierarchical Systems. Columbia University Press, New York.

    Google Scholar 

  • Salthe, S.N. (1993). Development and Evolution: Complexity and change in Biology. MIT Press, Cambridge, MA.

    Google Scholar 

  • Schweitzer, F. (ed.). (1997). Self-Organization of Complex Structures. From Individual to Collective Dynamics. Gordon and Breach Science Publishers, London.

  • Shiner, J.S. (1997). Self-Organization, entropy and order in growing systems. In: Schweitzer, F. (Ed.). Self-Organization of Complex Structures. From Individual to Collective Dynamics. Gordon and Breach Science Publishers, London. pp. 21–35.

    Google Scholar 

  • Simon, H.A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society 106: 467–482. (Reprinted in H. A. Simon. (1996). The sciences of the artificial (3rd edition). MIT Press, Cambridge, MA).

    Google Scholar 

  • Smith, J.D.H. (2002). Three key questions about complex systems. Semiosis, Evolution, Energy, Development 2: 16–28.

    Google Scholar 

  • Spence, P. and A. Rajeev (1999). From reductionist to constructionist, but only if we integrate. Pharmainformatics 0167–7799/99: 37–39.

    Google Scholar 

  • Sterelny, K. (2001). Niche construction, developmental systems, and the extended replicator. In: Oyama, S.; P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 333–350.

    Google Scholar 

  • Stone, J. R. (1997). The spirit of D'Arcy Thompson dwells in empirical morphospace. Mathematical Biosciences 142: 13–30.

    Google Scholar 

  • Strohman, R.C. (1997). The coming Kuhnian Revolution in Biology. Nature Biotechnology 15: 194–200.

    Google Scholar 

  • Swenson, R. (1997). Autocatakinetics, evolution, and the law of maximum entropy production: a principled foundation toward the study of human ecology. Advances in Human Ecology 6: 1–47.

    Google Scholar 

  • Van de Vijver, G. (1991). Van Cybernetica naar Connectionisme. Een epistemologische studie van doelgerichtheid. Academia Press, Gent.

    Google Scholar 

  • Van de Vijver, G. (1997a). Who is galloping at a narrow path? Conversation with Heinz Von Foerster. Cybernetics and Human Knowing, Denmark 4: 3–17.

    Google Scholar 

  • Van de Vijver, G. (1997b). Emergence et explication. Intellectica 2(25): 7–23.

    Google Scholar 

  • Van de Vijver, G. (1999). Psychic Closure. A prerequisite for the recognition of the sign-function? Semiotica 127: 513–631.

    Google Scholar 

  • Van de Vijver, G., S. Salthe and M. Delpos (Eds) (1998). Evolutionary Systems. Biological and Epistemological Perspectives on Self-Organisation and Selection. Kluwer Academic Press, Dordrecht.

  • Van de Vijver, G., L. Van Speybroeck and D. De Waele (2002). Epigenetics: a challenge for genetics, evolution, and development?. In: Van Speybroeck, L., G. Van de Vijver and D. De Waele (Eds). From Epigenesis to Epigenetics: The Genome in Context. Annals of the New York Academy of Sciences 981: 1–6.

  • van der Weele, C. (2001). Developmental systems theory and ethics: different ways to be normative with regard to science. In: Oyama, S., P.E. Griffiths and R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 351–362.

    Google Scholar 

  • Van Speybroeck, L. (2000). The organism: a crucial genomic context in molecular epigenetics? Theory in Biosciences, 119: 187–208.

    Google Scholar 

  • Van Speybroeck, L. (2002). The Case of C.H. Waddington. In: Van Speybroeck, L., G. Van de Vijver and D. De Waele (Eds), From Epigenesis to Epigenetics: The Genome in Context. Annals of the New York Academy of Sciences 981: 61–82.

  • Van Speybroeck, L., G. Van de Vijver and D. De Waele (2002a). Theories in Early Embryology. Close Connections between Epigenesis, Preformationis, and Self-Organization. In: Van Speybroeck, L., G. Van de Vijver and D. De Waele (Eds). From Epigenesis to Epigenetics: The Genome in Context. Annals of the New York Academy of Sciences 981: 7–50.

  • Van Speybroeck, L., G. Van de Vijver and D. De Waele (Eds). (2002b). From Epigenesis to Epigenetics: The Genome in Context. Annals of the New York Academy of Sciences 981.

  • Varela, F.J. (1979). Principles of biological autonomy. North Holland Elsevier Company, Dordrecht. New York (Oxford).

    Google Scholar 

  • Varela, F.J. (1987). Experimental Epistemology: background and future. Revue Internationale de Systémique 1: 209–223.

    Google Scholar 

  • Varela, F.J., H. Maturana and R. Uribe (1974). Autopoiesis: the organisation of living systems, its characterization and a model. BioSystems 5: 187–196.

    Google Scholar 

  • Vereijken, B. (1996). Book review: E. Thelen and L.B. Smith, 1994, A dynamic systems approach to the development of cognition and action (MIT Press, Cambridge, MA). Acta Pscychologica 94: 107–110.

    Google Scholar 

  • Von Foerster, H. (1960). On self-organizing systems and their environments. In: M.C. Yovits and S. Cameron (Eds). Internationals tracts in computer science and technology and their application. Vol 2: Self-organizing systems. Pergamon Press, Oxford. pp. 31–51.

    Google Scholar 

  • Von Neumann, J. (1966). The theory of Self-Reproducing Automata. University of Illinois Press, Urbana.

    Google Scholar 

  • Von Sternberg, R. (2000). Genomes, form, epigenetic influences on inheritance, and morphological attractors: the case for teleomorphic recursivity. In Chandler, J. and G. Van de Vijver (Eds). Closure. Emergent Organzations and their Dynamics. Annals of the New York Academy of Sciences: 224–236.

  • Waddington, C.H. 1947 (1940). Organisers and Genes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wagner, G.P. and M.D. Laubichler (2000). Character identification in evolutionary biology: the role of the organism. Theory in Biosciences 119: 20–40.

    Google Scholar 

  • Weber, B. H. and D. J. Depew (2001). Developmental systems, Darwinian evolution, and the unity of science. In: Oyama, Susan, Paul E. Griffiths and Russell D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 239–254.

    Google Scholar 

  • Webster, G. and B.C. Goodwin (1982). The origin of species: a structuralist approach. Journal of Social and Biological Structures 5: 15–47.

    Google Scholar 

  • Wheeler, M. and A. Clark (1999). Genic representation: reconciling content and causal complexity. British Journal for the Philosophy of Science 50: 103–135.

    Google Scholar 

  • Wiener, N. (1948). Cybernetics. Or control and communication in the animal and the machine. John Wiley & Sons, New York.

    Google Scholar 

  • Williams, G.C. (1992). Natural Selection: Domains, Levels and Challenges. Oxford University Press, New York.

    Google Scholar 

  • Wilson, E. O. (1992). The Diversity of Life. Penguin Books, London.

    Google Scholar 

  • Wimsatt, W.C. (2001). Generative entrenchment and the developmental systems approach to evolutionary processes. In: Oyama, S., P.E. Griffiths, R.D. Gray (Eds). Cycles of Contingency. Developmental Systems and Evolution. The MIT Press, Cambridge, MA. pp. 219–238.

    Google Scholar 

  • Wu, C.-t. and Morris, J. R. 2001. Genes, genetics, and epigenetics: a correspondence. Science 293: 1103–1105.

    Google Scholar 

  • Zawidzki, T.W. (1998). Competing models of stability in complex, evolving systems: Kauffman vs. Simon. Biology and Philosophy 13: 541–554.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van de Vijver, G., Van Speybroeck, L. & Vandevyvere, W. Reflecting on Complexity of Biological Systems: Kant and Beyond?. Acta Biotheor 51, 101–140 (2003). https://doi.org/10.1023/A:1024591510688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024591510688

Navigation