
Synthese (2007) 156:1–19
DOI 10.1007/s11229-006-9072-6

O R I G I NA L PA P E R

Social laws in alternating time: effectiveness, feasibility,
and synthesis

Wiebe van der Hoek · Mark Roberts ·
Michael Wooldridge

Received: 18 May 2006 / Accepted: 12 June 2006
Published online: 16 September 2006
© Springer Science+Business Media B.V. 2006

Abstract Since it was first proposed by Moses, Shoham, and Tennenholtz, the social
laws paradigm has proved to be one of the most compelling approaches to the offline
coordination of multiagent systems. In this paper, we make four key contributions
to the theory and practice of social laws in multiagent systems. First, we show that
the Alternating-time Temporal Logic (atl) of Alur, Henzinger, and Kupferman pro-
vides an elegant and powerful framework within which to express and understand
social laws for multiagent systems. Second, we show that the effectiveness, feasibil-
ity, and synthesis problems for social laws may naturally be framed as atl model
checking problems, and that as a consequence, existing atl model checkers may
be applied to these problems. Third, we show that the complexity of the feasibility
problem in our framework is no more complex in the general case than that of the
corresponding problem in the Shoham–Tennenholtz framework (it is np-complete).
Finally, we show how our basic framework can easily be extended to permit social
laws in which constraints on the legality or otherwise of some action may be explicitly
required. We illustrate the concepts and techniques developed by means of a running
example.

Keywords Multi-Agent Systems · Social Laws · Coordination · Alternating-time
Temporal Logic · Model checking

This paper was presented at the Social Software conference in May 2004, Copenhagen, organised by
PHILOG. We thank the organisers for providing the opportunity, and the participants for their
useful feedback.

W. van der Hoek (B) · M. Roberts · M. Wooldridge
Department of Computer Science,
University of Liverpool,
Liverpool, L69 7ZF, UK
e-mail: wiebe@csc.liv.ac.uk

2 Synthese (2007) 156:1–19

1 Introduction

One of the defining problems in multiagent systems research is that of coordination—
managing the interdependencies between the actions of multiple interacting agents
(Durfee, 1999; Wooldridge, 2002). Techniques to coordinate activity in multiagent sys-
tems may be broadly categorised by whether they are “online” or “offline”. Online
techniques aim to equip agents with the ability to dynamically coordinate their activ-
ities, for example by explicitly reasoning about coordination at run-time. In contrast,
offline techniques aim at developing a coordination regime at design-time, and hard-
wiring this regime into a system for use at run-time. There are arguments in favour
of both approaches: the former is potentially more flexible, and may be more robust
against unanticipated events, while the latter approach benefits from offline reasoning
about coordination, thereby reducing the run-time decision-making burden on agents
(Wooldridge, 2002).

One of the most successful approaches to “offline” coordination is the social laws
paradigm, introduced largely through the work of Shoham, Tennenholtz, and Moses
(Moses & Tennenholtz, 1995; Shoham & Tennenholtz, 1992; Shoham & Tennenholtz,
1996; Shoham & Tennenholtz, 1997). A social law can be understood as a set of rules
imposed upon a multiagent system with the goal of ensuring that some desirable global
(coordination) behaviour will result. Social laws work by constraining the behaviour
of the agents in the system—by forbidding agents from performing certain actions
in certain circumstances. In this sense, they can be understood as norms (Dignum,
1999). Shoham et al. investigated a number of issues surrounding the development
and use of social laws, including the computational complexity of their synthesis, and
the possibility of the development of social laws or conventions by the agents within
the system themselves.

In this paper, we make four key contributions to the literature on social laws.
First, we demonstrate that Alternating-time Temporal Logic (atl)—the tempo-
ral logic of cooperation developed by Alur, Henzinger, and Kupferman (2002)—
provides a rich and natural technical framework within which to investigate social
laws and their properties. Second, we show that the effectiveness, feasibility, and syn-
thesis problems for social laws in the atl framework can be posed as atl model
checking problems (Clarke, Grumberg, & Peled, 2002) and that existing model check-
ers for atl can hence be directly applied to these problems. Third, we show that,
despite its apparent expressive power, the complexity of the feasibility problem in
our framework is no more complex than the corresponding problem in the Shoham–
Tennenholtz framework: it is np-complete. We also identify cases where the problem
becomes tractable. Finally, we show how our basic framework can easily be extended
to permit social laws in which constraints on the legality or otherwise of some action
may be explicitly required: for example, we show how the feasibility and synthesis
problems for dictatorship social laws can be formulated.

We begin by introducing Action-based Alternating Transition Systems, (aatss),
the semantic structures that we employ throughout the remainder of the paper; we
then introduce atl itself, and give some properties of the logic that will be used. In
Sect. 4, we introduce and formally define our social laws framework with respect to
aatss and atl, present the feasibility and synthesis problems, and show how these
can be understood as atl model checking problems. A discussion of related work is
presented in Sect. 5, and some conclusions are presented in 6.

Synthese (2007) 156:1–19 3

2 Action-based alternating transition systems

The semantic structures underpinning atl are known as Alternating Transition Sys-
tems (atss), and several essentially equivalent variations of these structures have been
described in the atl literature. As the notions of action and action pre-condition play
such a key role in our framework, we find it convenient to work with another version
of atss, in which actions and pre-conditions are firstclass citizens. We refer to these
structures as Action-based Alternating Transition Systems (aatss), and emphasise that
they are equivalent to “conventional” atss. We first assume that the systems of interest
to us may be in any of a finite set Q of possible states, with some q0 ∈ Q designated
as the initial state. Systems are populated by a set Ag of agents; a coalition of agents is
simply a set G ⊆ Ag, and the set of all agents is known as the grand coalition. Each
agent i ∈ Ag is associated with a set Aci of possible actions, and we assume that these
sets of actions are pairwise disjoint (i.e., actions are unique to agents). We denote the
set of actions associated with a coalition G ⊆ Ag by AcG, so AcG = ⋃

i∈G Aci. A joint
action for a coalition G is a tuple 〈α1, . . . , αk〉, where αi ∈ Aci, for each i ∈ G. We
denote the set of all joint actions for coalition G by JG, so JG = ∏

i∈G Aci. Given an
element j of JG and agent i ∈ G, we denote i’s component of j by ji.

An Action-based Alternating Transition System—hereafter referred to simply as an
aats—is an (n + 7)-tuple

S = 〈Q, q0, Ag, Ac1, . . . , Acn, ρ, τ , $, π〉
where:

• Q is a finite, non-empty set of states;
• q0 ∈ Q is the initial state;
• Ag = {1, . . . , n} is a finite, non-empty set of agents;
• Aci is a finite, non-empty set of actions, for each i ∈ Ag, where Aci ∩ Acj = ∅ for

all i '= j ∈ Ag;
• ρ : AcAg → 2Q is an action precondition function, which for each action α ∈ AcAg

defines the set of states ρ(α) from which α may be executed;
• τ : Q×JAg → Q is a partial system transition function, which defines the state τ (q, j)

that would result by the performance of j from state q—note that, as this function is
partial, not all joint actions are possible in all states (cf. the pre-condition function
above);

• $ is a finite, non-empty set of atomic propositions; and
• π : Q → 2$ is an interpretation function, which gives the set of primitive propo-

sitions satisfied in each state: if p ∈ π(q), then this means that the propositional
variable p is satisfied (equivalently, true) in state q.

We require that aatss satisfy the following two coherence constraints:

1. Non-triviality [13]. Agents always have at least one legal action:

∀q ∈ Q,∀i ∈ Ag, ∃ α ∈ Aci s.t. q ∈ ρ(α)

2. Consistency. The ρ and τ functions agree on actions that may be performed:

∀q,∀j ∈ JAg, (q, j) ∈ dom τ iff ∀i ∈ Ag, q ∈ ρ(ji)

We denote the set of infinite sequences over Q by Qω.
The next scenario explains our running example, to which we will refer many times

in this paper:

4 Synthese (2007) 156:1–19

away

traintrain
eastbound westbound

waiting

in

movemove

move

idle

idle

idle

 Overall structure of the train sytem Train states and transitions

tunnel

(b)(a)

Fig. 1 The train system

Example 1 There are two trains, one of which (E) is Eastbound, the other of which
(W) is Westbound. Each train occupies its own circular track. At one point, both tracks
pass through a narrow tunnel—a crash will occur if both trains are in the tunnel at the
same time. Unlike the original version of this scenario (van der Hoek & Wooldridge,
2002), we do not assume that there is a “controller” agent, whose purpose is to ensure
that collisions do not occur. Instead, we will be concerned with social laws that achieve
this end.

We model each train i ∈ Ag = {E, W} as an automaton that can be in one of three
states (see Fig. 1(b)): “awayi” (the initial state of the train); “waitingi” (waiting to enter
the tunnel); and “ini” (the train is in the tunnel). Each train i ∈ {E, W} has two actions
available: Aci = {movei, idlei}. The idlei action is the identity, which causes no change
in the train’s state (i.e., it stays where it is). If a train i executes a movei action while it is
awayi, then it goes to a waitingi state; executing a movei while waitingi causes a transi-
tion to an ini state; and finally, executing a movei while ini causes a transition to awayi as
long as the other train was not in the tunnel, while if both trains are in the tunnel, then
they have crashed, and are forced to idle indefinitely. Initially, both trains are away.

The overall state of the system at any given time can be characterised in terms of
the propositional variables {awayE, awayW , waitingE, waitingW , inE, inW}, where these
variables have the obvious interpretation. The overall structure of the train system,
and the model of trains is illustrated in Fig. 1; a formal definition of the train system
aats is given in Fig. 2 (the function ρ is left implicit, but can be read off from τ : e.g.,
ρ(moveW) = Q\{q8}, etc.).

Of course, not all combinations of propositional variables correspond to reachable
system states (i.e., states that the system could possibly enter). For example, an agent
i cannot be both waitingi and ini simultaneously. There are in fact just nine reachable
states of the system; see Fig. 2.

Given an agent i ∈ Ag and a state q ∈ Q, we denote the options available to i in
q—the actions that i may perform in q—by options(i, q):

options(i, q) = {α|α ∈ Aci and q ∈ ρ(α)}.
We then say that a strategy for an agent i ∈ Ag is a function:

σi: Q → Aci

which must satisfy the legality constraint that σi(q) ∈ options(i, q) for all q ∈ Q.

Synthese (2007) 156:1–19 5

Fig. 2 The aats for the trains scenario

A strategy profile for a coalition G = {a1, . . . , ak} ⊆ Ag is a tuple of strategies
〈σ1, . . . , σk〉, one for each agent ai ∈ G. We denote by (G the set of all strategy pro-
files for coalition G ⊆ Ag; if σG ∈ (G and i ∈ G, then we denote i’s component of
σG by σ i

G. Given a strategy profile σG ∈ (G and state q ∈ Q, let out (σG, q) denote
the set of possible states that may result by the members of the coalition G acting as
defined by their components of σG for one step from q:

out(σG, q) = {q′|τ (q, j) = q′ where (q, j) ∈ dom τ and σ i
G(q) = ji for i ∈ G}

6 Synthese (2007) 156:1–19

Notice that, for any grand coalition strategy profile σAg and state q, the set out (σAg, q)
will be a singleton.

A computation is an infinite sequence of states λ = q0, q1, A computation
λ ∈ Qω starting in state q is referred to as a q-computation; if u ∈ N, then we denote
by λ[u] the component indexed by u in λ (thus λ[0] denotes the first element, λ[1] the
second, and so on).

Given a strategy profile σG for some coalition G, and a state q ∈ Q, we define
comp(σG, q) to be the set of possible runs that may occur if every agent ai ∈ G follows
the corresponding strategy σi, starting when the system is in state q ∈ Q. That is,
the set comp(σG, q) will contain all possible q-computations that the coalition G can
“enforce” by cooperating and following the strategies in σG.

comp(σG, q) = {λ | λ[0] = q and ∀u ∈ N : λ[u + 1] ∈ out(σG, λ[u])}.

Again, note that for any state q ∈ Q and any grand coalition strategy σAg, the set
comp(σAg, q) will be a singleton, consisting of exactly one infinite computation.

3 ATL

Alternating-time Temporal Logic (atl), can be understood as a generalisation of the
well-known branching time temporal logic ctl (Emerson, 1990), in which path quan-
tifiers are replaced by cooperation modalities. A cooperation modality 〈〈G〉〉ϕ, where
G is a coalition, expresses the fact that the coalition G can cooperate to ensure that
ϕ; more precisely, that there exists a strategy profile for G such that by following this
strategy profile, G can ensure ϕ. Thus, for example, the system requirement “agents
1 and 2 can cooperate to ensure that the system never enters a fail state” may be
captured by the atl formula 〈〈1, 2〉〉!¬fail. The “!” temporal operator means “now
and forever more”: additional temporal connectives in atl are “♦” (“either now or
at some point in the future”), “U” (“until”), and “©” (“in the next state”).

Formally, the set of atl formulae, formed with respect to a set of agents Ag, and a
set of primitive propositions $, is given by the following grammar:

ϕ ::= p|¬ϕ|ϕ ∨ ϕ|〈〈G〉〉 © ϕ|〈〈G〉〉!ϕ|〈〈G〉〉ϕUϕ

where p ∈ $ is a propositional variable and G ⊆ Ag is a set of agents. We identify
two fragments of atl: the ©-fragment is the class of atl-formulae containing only
the © temporal operator; and propositional logic formulae are those containing no
cooperation modalities.

We can now give the rules defining the satisfaction relation “|0” for atl, which
holds between pairs of the form S, q (where S is an aats and q is a state in S), and
formulae of atl:

S, q |0 p iff p ∈ π(q) (where p ∈ $);
S, q |0 ¬ϕ iff S, q ! ϕ;
S, q |0 ϕ ∨ ψ iff S, q |0 ϕ or S, q |0 ψ ;
S, q |0 〈〈G〉〉 © ϕ iff ∃σG ∈ (G, such that ∀λ ∈ comp(σG, q), we have S, λ[1] |0 ϕ;

Synthese (2007) 156:1–19 7

S, q |0 〈〈G〉〉!ϕ iff ∃σG ∈ (G, such that ∀λ ∈ comp(σG, q), we have S, λ[u] |0 ϕ

for all u ∈ N;
S, q |0 〈〈G〉〉ϕUψ iff ∃σG ∈ (G, such that ∀λ ∈ comp(σG, q), there exits some u ∈ N

such that S, λ[u] |0 ψ , and for all 0 ≤ v < u, we have S, λ[v] |0 ϕ.

The remaining classical logic connectives (“∧”, “→”, “↔”) are assumed to be defined
as abbreviations in terms of ¬,∨, in the conventional manner. For readability, we omit
set brackets in cooperation modalities, for example writing 〈〈1〉〉 instead of 〈〈{1}〉〉.

Two cooperation modalities play a special role in the remainder of the paper, and
are worth singling out for special attention. The cooperation modality 〈〈〉〉 (“the emp-
tyset of agents can cooperate to. . .”) asserts that its argument is true on all computa-
tions, and thus acts like ctl’s universal path quantifier “A”. Similarly, the cooperation
modality 〈〈Ag〉〉 asserts that its argument is satisfied on at least one computation, and
thus acts like the ctl path quantifier “E”.

The model checking problem for atl is the problem of determining, for any given
atl formula ϕ, aats S, and state q in S, whether or not S, q |0 ϕ. If S is an aats and ϕ

is a formula then we say that ϕ is initially satisfied in S if, S, q0 |0 ϕ; we indicate this
by writing S |0 ϕ. A formula ϕ is satisfiable if there is some aats S and state q in S
such that S, q |0 ϕ. The satisfiability problem for atl is the problem of determining,
for any given atl formula, whether this formula is satisfiable or not.

3.1 Some properties of atl

We begin by proving some properties of atl that we use in subsequent proofs. For
any S = 〈Q, q0, Ag, Ac1, . . . , Acn, ρ, τ , $, π〉, let the relation RAg between states in Q
be defined as: q1RAgq2 iff for some j ∈ JAg, τ (q1, j) = q2. In other words, q1RAgq2
is true if the grand coalition can enforce a transition from q1 to q2. Now, let S =
〈Q, q0, Ag, Ac1, . . . , Acn, ρ, τ , $, π〉 and S′ = 〈Q′, q′0, Ag, Ac′1, . . . , Ac′n, ρ′, τ ′, $′, π ′〉 be
two aatss. We say that S′ is a subsystem of S, (notation S′ 4 S), or that S is a super-
system of S′, (notation S 5 S′), if there exists a relation 6 ⊆ Q×Q′ such that:

1. q06q′0
2. ∀q ∈ Q, q′ ∈ Q′ : q6q′ ⇒ (π(q) = π(q′))
3. ∀q1 ∈ Q, q′1, q′2 ∈ Q′ : ((q16q′1&q′1R′Agq′2)⇒ (∃q2 ∈ Q : q1RAgq2&q26q′2))

A special case is obtained when S′ = 〈Q, q0, Ag, Ac1, . . . , Acn, ρ′, τ ′, $, π〉, in which
case we write S′ 8 S. The relation 6 is essentially half of a bisimulation between two
Kripke models (Blackburn, Rijke, & Venema, 2001, p. 64): the final clause represents
the “backward clause” for such relations, with the “forward clause” not being pres-
ent in the conditions on 6. We are interested in which formulas are preserved when
going from S to S′, where S′ 4 S. To this end, we define a universal and an existential
sublanguage of atl, denoted Lu and Le, respectively. These languages are defined by
the following grammars:

Lu υ ::= p|¬p|υ ∧ υ|υ ∨ υ|〈〈〉〉 © υ|〈〈〉〉♦υ|〈〈〉〉!υ|〈〈〉〉υUυ

Le ε ::= p|¬p|ε ∧ ε|ε ∨ ε|〈〈Ag〉〉 © ε|〈〈Ag〉〉♦ε|〈〈Ag〉〉!ε|〈〈Ag〉〉εUε

where p ∈ $.

8 Synthese (2007) 156:1–19

Lemma 1 Suppose we have S 5 S′ and υ ∈ Lu, ε ∈ Le. Then:

1. ∀q ∈ Q, q′ ∈ Q′ with q6q′ : S, q |0 υ ⇒ S′, q′ |0 υ.
2. ∀q ∈ Q, q′ ∈ Q′ with q6q′ : S′, q′ |0 ε ⇒ S, q |0 ε.

Proof We only prove the first item; the second follows from it and the observation
that every ε ∈ Le is equivalent to the negation of some υ ∈ Lu. The proof is by struc-
tural induction. For the case υ is p or ¬p where p ∈ $, the claim follows immediately
from the second condition in the definition of subsystems. The cases of conjunction
and disjunction follow directly, so assume that υ equals 〈〈〉〉♦υ ′, and that the claim is
proven for υ ′. Assume that S, q |0 〈〈〉〉♦υ ′, and q6q′. The former implies that for all
strategy profiles σ ∈ (Ag, for the unique λσ ∈ comp(σ , q), we have that for some
iσ , S, λ[iσ] |0 υ ′. In order to derive a contradiction, suppose that S′, q′ ! 〈〈〉〉♦υ ′. It
would mean S′, q′ |0 〈〈Ag〉〉!¬υ ′, i.e., for some strategy profile σ ′ ∈ (Ag, and the
computation λ′ ∈ comp(σ ′, q′) and all i ∈ N, we have S′, λ′[i] |0 ¬υ ′. Consider the
run λ′[0]RAgλ

′[1] . . . λ′[i] . . . that is induced by λ′, with λ′[0] = q. By the backward
condition on 6, we hence also find q0 = q, q1, . . . qi, . . . with qiRAgqi+1 and qi6λ′[i].
By the inductive assumption, we have S, qi |0 ¬υ ′ for all i. But then, the agents Ag
have a strategy to always ensure ¬υ ′ from q: they just choose the actions that induce
this path. This then means that S, q |0 〈〈Ag〉〉!¬υ ′, which contradicts the fact that
S, q |0 〈〈〉〉♦υ ′. The remaining cases are similar. 9:

It is not possible within the scope of this paper to examine other properties of atl in
detail; instead, we simply note some results that are pertinent to the goals of this paper.

Theorem 1 (Alur et al., 2002; van Drimmelen, 2003; Pauly, 2001) The satisfiability
problem for atl is exptime-complete (van Drimmelen, 2003), while the satisfiabili-
ty problem for the ©-fragment of atl is pspace-complete (Pauly, 2001). The model
checking problem for “full” atl can be solved in time O(|Q| · |ϕ|), where |Q| is the
number of states, and |ϕ| is the size of the formula to be checked (Alur et al., 2002).

4 Social laws

We now introduce the formal framework of social laws, which we build upon through-
out the remainder of the paper. Intuitively, a social law consists of two parts:

• An objective, which represents what the society aims to achieve by the introduc-
tion, or adoption of the law. In human societies, for example, the objective of a
law might be to eliminate alcohol-related road accidents.

• A behavioural constraint, which corresponds to the requirements that a law places
on the members of a society. A behavioural constraint corresponding to the objec-
tive of eliminating alcohol-related road accidents might be to forbid the action of
driving a car after drinking alcohol.

We represent an objective for a social law as a formula of atl, the intuition being
that a social law is effective if it ensures that the objective is satisfied. (We give the for-
mal definition shortly.) atl provides a natural and powerful language for expressing
the objectives of social laws, not least because such laws frequently refer to the powers
or rights (or, conversely, the limits to powers) that agents have. The original social
laws framework of Shoham and Tennenholtz illustrates this (Shoham & Tennenholtz,

Synthese (2007) 156:1–19 9

1992). In this framework, each agent i ∈ Ag was associated with a set Fi ⊆ Q of focal
states, the idea being that a successful social law would be one which ensured that if
ever an agent i ∈ Ag found the environment was in a state q ∈ Fi, then i should have the
power to ensure that, the environment eventually entered state q′ ∈ Fi. This objective
can naturally be expressed within our framework: assume that, for each q ∈ Q, we have
a proposition q that is satisfied iff the system is currently in state q. Then, given focal
state sets F1, . . . , Fn, we can express the Shoham–Tennenholtz objective as follows:

∧

i∈Ag

∧

q∈Fi

q →
∧

q′∈Fi

〈〈i〉〉♦q′

 (1)

The atl framework allows us to express much richer objectives, however. For example,
from ctl it inherits the ability to express liveness and safety properties, and moreover
we can reason about what certain coalitions can bring about.

Example 2 Recall the trains scenario introduced earlier. The most obvious require-
ment for a social law is that the trains do not crash. The objective for this social law,
O1, is thus:

O1 = ¬(inE ∧ inW)

The basic system S1 does not ensure that (O1) is satisfied—there are initial computa-
tions of the basic system on which both trains enter the tunnel simultaneously:

S1, q0 ! 〈〈〉〉!¬(inE ∧ inW).

We model a behavioural constraint, β, as a function

β : AcAg → 2Q

with the intended interpretation that if q ∈ β(α), then action α may not be performed
when the system is in state q—that is, α is “forbidden” in state q. (As an aside, notice
the duality between the pre-condition function ρ, and behavioural constraints β: if
q ∈ ρ(α), then α is permitted in q, whereas if q ∈ β(α), then α is forbidden in q.) We
will require that any behavioural constraint is “reasonable”, in that it always permits
an agent to have at least one action left that can be performed in any state:

∀i ∈ Ag,∀q ∈ Q, ∃α ∈ options(i, q) s.t. q /∈ β(α).

We can now see what it means for a behavioural constraint β to be implemented
in an aats S: it simply means eliminating from S all transitions that are forbidden
by β. The operation of implementing a behavioural constraint is thus an update on
aatss, in the sense that it results in a new aats, which potentially satisfies different
formulae. We denote the aats obtained from S by implementing β by S † β. Formally,
if S = 〈Q, q0, Ag, Ac1, . . . , Acn, ρ, τ , $, π〉 is an aats, and β is a behavioural constraint
on S, then

S † β = 〈Q, q0, Ag, Ac1, . . . , Acn, ρ′, τ ′, $, π〉,
where:

1. ∀α ∈ Ac,

ρ′(α) = ρ(α)\β(α)

10 Synthese (2007) 156:1–19

2. ∀q ∈ Q, ∀j ∈ JAg,

τ ′(q, j) =
{

τ (q, j) if (q, j) ∈ dom τ and ∀i ∈ Ag, q /∈ β(ji)
undefined otherwise

3. All other components of S † β are as in S.

It is natural to ask what properties the implementation operator “†” has. First, notice
that aatss are closed under the implementation of behavioural constraints. That is, if
S is an aats and β is a behavioural constraint over S, then S † β is an aats—it satisfies
the non-triviality and consistency coherence constraints given earlier. Second, notice
that (S † β)†β = S † β. Third, consider what properties of aatss might be preserved
by the implementation of social laws. To answer this question, first recall the notion
of a subsystem as defined in Sect. 3.1; we have the following result.

Lemma 2 Let S be an aats, and let β be a behavioural constraint over S. Then S † β is
a subsystem of S, i.e., S † β 4 S. (In fact, S † β 8 S.)

From Lemma 1, we immediately obtain the following.

Lemma 3 Suppose we have an aats S, a behavioural constraint β over S, a state q in
S, and formulae υ ∈ Lu, ε ∈ Le. Then:

1. If S, q |0 υ then S † β, q |0 υ.
2. If S † β, q |0 ε then S, q |0 ε.

The first of these two results tells us that implementing a behavioural constraint guar-
antees to preserve the universal properties of a system. However, it is easy to see that
implementing a behavioural constraint does not guarantee to preserve existential
properties. The second result, in contrast, tells us that if an existential property holds
of a system in which some behavioural constraint has been implemented, then it must
have held of the original system, before the constraint was imposed. Thus, implement-
ing a behavioural constraint cannot create existential properties in a system.

Now, a social law over an aats S is a pair:

(ϕ, β)

where:

• ϕ is an atl formula called the objective of the law; and
• β : AcAg → 2Q is a behavioural constraint on S.

A social law (ϕ, β) is effective in aats S if, after implementing β in S, we know that
〈〈〉〉!ϕ will be initially satisfied in S, i.e., if S † β |0 〈〈〉〉!ϕ.

There are three key computational questions with respect to social laws, which we
shall investigate throughout the remainder of this paper:

1. Effectiveness. Given an aats S and a social law (ϕ, β) over S, determine whether
(ϕ, β) is effective in S.

2. Feasibility. Given an aats S and a formula ϕ of atl representing an objective, does
there exist a behavioural constraint β such that (ϕ, β) is an effective social law in S.

3. Synthesis. Given an aats S and a formula ϕ of atl representing an objective,
exhibit a behavioural constraint β such that (ϕ, β) is an effective social law in S if
such a constraint exists, otherwise answer “no”.

Synthese (2007) 156:1–19 11

Our first result, with respect to the effectiveness problem, is now immediate.

Lemma 4 The effectiveness problem for social laws may be solved in time polynomial
in the size of S and ϕ.

Proof Generate S′ = S † β, and check that S′, q0 |0 〈〈〉〉!ϕ. The first step can obviously
be done in polynomial time: it simply requires eliminating every forbidden transition
from τ , and modify ρ similarly. From Theorem 1, so can the second step. 9:

With respect to the trains example, is there a behavioural constraint β1, such that
(O1, β1) is an effective social law? Clearly there is. The constraint β1 must ensure that
the system never enters state q8: from examination of the state transition function
τ (see Fig. 2), we can see that τ (q5, j3) = τ (q6, j2) = τ (q7, j1) = q8, and there are
no other transitions leading to q8 (apart from when the trains have already crashed,
which we need not consider!) Consider the behavioural constraint β1 as follows.

β1(α) =

∅ if α = idleE
∅ if α = idleW
{q5, q6} if α = moveE
{q7} if α = moveW

The constraint ensures that:

• when both agents are waiting to enter the tunnel, the eastbound train is prevented
from moving;

• when the westbound train is already in the tunnel and the eastbound train is waiting
to enter the tunnel, then the eastbound train is prevented from moving; and

• when the eastbound train is already in the tunnel and the westbound train is
waiting to enter the tunnel, then the westbound train is prevented from moving.

Notice that this constraint is, in a sense, asymmetric, as it constrains the eastbound
train rather than the westbound train: we could equally well replace the first con-
straint with the requirement that if both trains are waiting to enter the tunnel, then
the westbound train is prevented from moving, thus enabling the eastbound train to
enter. Now, let S2 = S1 † β1. We claim that S2, q0 |0 〈〈〉〉!¬(inE ∧ inW); this can be
established by inspection. Thus:

Proposition 1 (O1, β1) is an effective social law in S1.

Of course, there are other, less “sensible” behavioural constraints that are effective
in S1 for O1. Consider β2:

β2(α) =
{

Q if α = moveE or α = moveW
∅ otherwise

This behavioural constraint prevents both trains from moving, and yet:

Proposition 2 (O1, β2) is an effective social law in S1.

Clearly, our original objective needs some refinement. Consider objective O2:

O2 = O1 ∧
∧

i∈{E,W}
(waitingi → 〈〈i〉〉♦(ini ∧O1))

12 Synthese (2007) 156:1–19

This objective ensures that, not only do the trains never crash, but that both trains
can eventually safely enter the tunnel if they are waiting. Consider β3, which works
by forbidding trains from lingering in the tunnel, but is otherwise the same as β1:

β3(α) =

{q4, q7} if α = idleE
{q2, q6} if α = idleW
{q5, q6} if α = moveE
{q7} if α = moveW

Proposition 3 (O2, β3) is an effective social law in S1.

However, objective O2 may still need further refinement, as less sensible behavio-
ural constraints can still be effective in S1:

Proposition 4 (O2, β2) is an effective social law in S1.

So, consider objective O3:

O3 = O1 ∧
∧

i∈{E,W}

(awayi → 〈〈i〉〉♦waitingi) ∧
(waitingi → 〈〈i〉〉♦(ini ∧O1)) ∧
(ini → 〈〈i〉〉 © awayi)

This objective ensures that, not only do the trains never crash, but both trains will
at some point enter the waitingi state. The objective also ensures that, once in the
waitingi state, the train does eventually enter the state where it has safely entered the
tunnel. Once the train is in the tunnel, it will not linger there, but its next state will be
where it has safely left the tunnel and gone into the awayi state.

Proposition 5 (O3, β2) is not an effective social law in S1, but (O3, β3) is.

The first issue to which we address ourselves is the computational complexity of
the feasibility problem. As it turns out, the feasibility problem in our framework in
no harder, for objectives expressed as arbitrary atl formulae, then the corresponding
problem studied by Shoham and Tennenholtz, where objectives were expressed as sets
of focal states (see above); and for objectives propositional logic objectives, it is easier.

Theorem 2 The feasibility problem for objectives expressed as arbitrary atl formulae
is np-complete, and remains np-complete for the ctl fragment of atl, and also the
universal (Lu) fragment. However, for objectives expressed as propositional formulae,
the feasibility problem is decidable in polynomial time.

Proof With respect to the np-completeness results, membership in np may be seen by
the following non-deterministic algorithm:

1. guess a behavioural constraint β;
2. verify that β is effective.

Since dom β = AcAg, step (1) can be done in (non-deterministic) polynomial time
O(|AcAg ×Q|), while from Lemma 4, step (2) requires only polynomial time.

That the feasibility problem for atl objectives is np-hard follows immediately from
the fact that the Useful Social Law problem of Shoham–Tennenholtz, (proven to be
np-complete in [Shoham & Tennenholtz, 1996, p. 612]), can be directly reduced to
our feasibility problem, by encoding focal state sets as shown in Eq. 1: the reduction

Synthese (2007) 156:1–19 13

is clearly possible in polynomial time. However, to see that the effectiveness prob-
lem for the Lu fragment is np-complete, we need to work a little harder. We reduce
the directed Hamiltonian cycle problem (dhc) [(Papadimitriou, 1994), p. 209] to the
effectiveness problem for Lu objectives.

An instance of dhc is given by a directed graph H = 〈V, E ⊆ V×V, ν0 ∈ V〉, where
ν0 is a distinguished “start” node. The aim is to determine whether or not H contains
a directed Hamiltonian cycle starting from ν0, i.e., a cycle containing every vertex
ν ∈ V, in which no vertices are repeated.1 The idea of the reduction is to encode the
graph H directly in the state transformer function τ : actions correspond to edges of
the graph. Formally, given a directed graph H = 〈V, E〉, we define a single-agent aats
SH = 〈QH , qH

0 , AgH , AcH
1 , ρH , τH , $H , πH〉 as follows:

• for each vertex ν ∈ V, we create a state qν ∈ QH , and in addition we create a
“sink” state qsink;

• we set q0 = ν0;
• we create a single agent, Ag = {a1};
• for each edge (ν, ν′) ∈ EH where ν′ '= ν0, we define an action α(ν,ν′), define

τH(qν , α(ν,ν′)) = qν′ , and define ρH accordingly;
• for each edge (ν, ν′) ∈ EH where v′ = ν0, we define an action α(ν,sink), define

τH(qν , α(ν,sink)) = qsink, and define ρH accordingly;
• we create an action αloop, which may be performed only in state qsink, such that

τH(qsink, αloop) = qsink, and define ρH accordingly;
• for each vertex ν ∈ V, we create a proposition pν ∈ $H ; and finally,
• we define πH(qν) = {pν}.
We then define the objective OH by

OH=̂ϕH
1 ∧ ϕH

2

where:

ϕH
1 =̂

∧

ν∈V

〈〈〉〉♦pν

ϕH
2 =̂

∧

ν∈V

pν → 〈〈〉〉 © 〈〈〉〉!¬pν

We now claim that there exists a dhc in graph H starting from ν0 iff the objective OH

is feasible in aats SH . To see this, note that constraint ϕH
1 ensures that every vertex

is visited, while ϕH
2 ensures that no vertex is visited more than once. Thus, the paths

through any transition system resulting from the imposition of a behavioural con-
straint that is effective for OH will be dhcs in H, with the agent ending up in νsink and
repeating the action αloop infinitely often. Since OH is a formula of Lu, we are done.

The final result—that the feasibility problem for objectives expressed as proposi-
tional logic formulae may be decided in polynomial time – is an immediate corollary
of the following result, which shows that, for objectives expressed as formulae of prop-
ositional logic, the feasibility problem reduces directly to model checking in atl. 9:
Theorem 3 Suppose ϕ is a propositional logic formula (representing an objective), and
S is an aats. Then S |0 〈〈Ag〉〉!ϕ iff ϕ is feasible in S.

1 Of course, we strictly speaking do not need the start node, since if the graph contains a Hamiltonian
cycle then we can start from any state—but it simplifies the exposition.

14 Synthese (2007) 156:1–19

Proof

(→) Assume S |0 〈〈Ag〉〉!ϕ. By the semantics of atl, we know that ∃σAg ∈ (Ag such
that ∀λ ∈ comp(σAg, q0), we have S, λ[u] |0 ϕ for all u ∈ N. In fact, since σAg
is a grand coalition strategy, comp(σAg, q0) will be a singleton; let λ∗ denote its
member; so ∀u ∈ N : S, λ∗[u] |0 ϕ. We must show that this implies there exists
a behavioural constraint β such that S † β |0 〈〈〉〉!ϕ; we construct β as follows:

for each i ∈ Ag,
for each α ∈ Aci,

set β(α) = {q|σi(q) '= α}.
We claim that, for any q0-computation λ of S † β, we have S † β, λ[u] |0 ϕ for
all u ∈ N. To see this, observe that there will in fact be a single q0 computation
of S † β, namely λ∗, and we know that ∀u ∈ N, S, λ∗[u] |0 ϕ. We appeal to the
fact that ϕ is a propositional formula, and that π is the same in S and S † β, and
conclude that for all u ∈ N : S † β, λ∗[u] |0 ϕ.

(←) Assume ϕ is feasible in S. Then there exists a behavioural constraint β such that
S†β, q0 |0 〈〈〉〉!ϕ. Let 0 denote the set of q0-computations of S†β. Then by the
semantics of atl, for all λ ∈ 0 and for all u ∈ N, we have S † β, λ[u] |0 ϕ. We
need to show that this implies S |0 〈〈Ag〉〉!ϕ. By the semantics of atl, S, q0 |0
〈〈Ag〉〉!ϕ iff ∃σAg ∈ (Ag such that ∀λ ∈ comp(q0, σAg), and ∀u ∈ N, we have
S, λ[u] |0 ϕ. We show how to construct such a σAg. We start by constructing from
β a non-deterministic strategy σ n

i : Q → 2Aci for each agent i ∈ Ag, as follows:

for each i ∈ Ag,
for each q ∈ Q,

set σ n
i (q) = {α|q /∈ β(α) ∧ q ∈ ρ(α)}.

Now, say a (conventional deterministic) strategy σi is consistent with σ n
i if

σi(q) ∈ σ n
i (q), for all q ∈ Q. Now, let σAg = 〈σ1, . . . , σn〉 be any grand coa-

lition strategy profile such that each σi is consistent with the corresponding
non-deterministic strategy σ n

i . We claim that, thus defined, ∀λ ∈ comp(σAg, q0)

we have S, λ[u] |0 ϕ for all u ∈ N. To see this, observe that by construction we
have comp(σAg, q0) ⊆ 0, as defined above. We know that ∀λ ∈ 0, and for all
u ∈ N, we have S † β, λ[u] |0 ϕ. Since ϕ is propositional, its valuation depends
only upon the state in which it is interpreted. Since π is unchanged in S and
S † β, it must be that ∀λ ∈ 0,∀u ∈ N : S, λ[u] |0 ϕ. 9:

Notice that, as a direct corollary to Theorem 3, the synthesis problem for proposi-
tional logic objectives may also be solved in polynomial time: for if the answer to the
model checking problem is “yes”, then the witness to this will be a strategy for the
grand coalition from which, as the proof of the theorem illustrates, we can extract a
behavioural constraint implementing the objective.

To appreciate that Theorem 3 does not hold for arbitrary formulae, consider the
following simple one agent aats (one may also assume this agent to be a grand coa-
lition Ag). Suppose we have to states, q0 and q1, in the first, the atom p is false, in the
second it is true. Moreover, we have four actions, a0, a1, b0 and b1. Both ai actions are
possible in q0, both bi actions in q1. Also, any action xi (x ∈ {a, b} takes the system
to qi. More formally: τ (q0, a0) = τ (q1, b0) = q0, and τ (q0, a1) = τ (q1, b1) = q1. Thus,
our agent i can always take the system to a p-state, but also he can ensure the system’s

Synthese (2007) 156:1–19 15

next state will be one in which ¬p is true. Let ϕ = ¬p ∧ 〈〈i〉〉♦p. In this system S we
have S |0 〈〈Ag〉〉!ϕ which expresses that the agent has a strategy to ensure that always
¬p is true, at the same time always having the opportunity to make p true. However,
if we want any behavioural constraint β to be such that S † β |0 〈〈〉〉!ϕ, we see that
this impossible: to ensure that ϕ is always true in all runs, p has to be always false, so
β has to forbid any transition to the state q1, in which case the second conjunct of ϕ,
i.e., 〈〈i〉〉♦p can never be made true anymore.

Theorem 3 illustrates a close relationship between the feasibility problem and
model checking, which begs the question as to what extent the result can be extended
for objectives beyond propositional logic. We have the following.

Theorem 4 Suppose υ ∈ Lu is a universal atl formula (representing an objective), and
S is an aats. Then S |0 〈〈Ag〉〉!v implies v is feasible in S.

Proof (Sketch) The basic structure of the proof is as Theorem 3, but as v is no longer
a propositional formula, but a universal atl formula, we make use of Lemma 3. 9:

4.1 Objectives with explicit action constraints

We now consider objectives for laws that explicitly refer to the legality or otherwise of
actions. The following example illustrates the idea.

Example 3 If α is an action, then let the proposition 1(α) mean “action α is legal”.
Consider the following three objectives in the context of the trains system, as discussed
earlier.

O5 = ¬(inE ∧ inW) ∧ 1(moveE) ∧ 1(moveW)

O6 = ¬(inE ∧ inW) ∧ 1(moveE)

O7 = ¬(inE ∧ inW) ∧ 1(moveW)

Objective O5 requires that not only do the trains never crash, but that both trains are
always able to move. Any behavioural constraint for this objective must not prevent
the trains from moving if they choose to do so. Objective O6 is similar, but only re-
quires that the Eastbound train is always able to move; and O7 only requires that the
Westbound train is always able to move.

In our basic social laws framework, we have no way of expressing or reasoning
about social laws with such objectives. We now show how the basic framework can
be extended to include such constraints. In particular, we show how this can be done
in the context of the mocha model checking system (Alur, Henzinger, Mang, Qadeer,
Rajamani, & Taşiran, 1998). mocha takes as input a specification of an aats, expressed
in the reactive modules language, and a formula of atl, and is capable of either check-
ing whether this formula is true in the aats, or else giving a counter example. The
actual syntax of the reactive modules language used in mocha is rather complex, and
so we adopt the following simplified syntax in the interests of easy comprehension. A
reactive modules agent (they are called “atoms” in the reactive modules literature)
has the following structure:

agent name reads in writes out
P1 =→ α1;
P2 =→ α2;
· · ·
Pk =→ αk.

(2)

16 Synthese (2007) 156:1–19

where name is the name of the agent, in ⊆ $ is a list of boolean variables that the
agent observes, out ⊆ $ is a list of boolean variables that it controls, and provides to
the rest of the system, and the Pj =→ αj structures are guarded commands, where Pj is
a predicate over the variables the agent observes and controls (i.e., a boolean expres-
sion over variables in ∪ out), and αj ∈ Acname is an action. Actions can be understood
as functions that take as input the variables visible to the agent (in∪out), and produce
as output an assignment for the variables controlled by the agent (out). The idea is
that at each time step, each agent generates the set of rules whose pre-conditions are
satisfied by the current state of the system. One of these rules is non-deterministically
chosen for execution – this involves simply executing the corresponding action, which
produces an assignment for the variables under its control (out), which is the value
they take in the next state of the system. Of course, a guarded command may have ?
as a pre-condition, in which case it is always enabled for execution.

It should be clear how a collection of such agents maps to an aats, as defined in
Sect. 2. The most important point is that the pre-conditions to guarded commands
correspond to the pre-condition function ρ: given a state of the system q and guarded
command P =→ α, then q ∈ ρ(α) iff q |0 P.

We now show how an aats, expressed in such a framework, can be extended to
permit objectives referring to the legality or otherwise of actions. The idea is to define
a transformation on aatss:

·◦ : aats → aats

such that the transformed system includes the 1(α) propositions as before, but other-
wise has the same properties.

Given an aats S = 〈Q, q0, Ag, Ac1, . . . , Acn, ρ, τ , $, π〉, defined using the reactive
modules language as above, the system S◦ is created as follows.

First, for each action α ∈ Ac, we create:

• A new propositional variable 1(α), with the intended interpretation that 1(α) will
be true in a state if the action α is legal according to the behavioural constraint
that we are looking for.

• A new agent, which controls the variable 1(α), as follows.

agent α-controller reads $ writes 1(α)

? =→ 1(α) := ?;
? =→ 1(α) := ⊥.

Thus, in every possible state, the agent α-controller has two actions available: make
1(α) true, or make 1(α) false. Note that because the condition on the guard of each
of these actions is ?, the α-controller agent can always perform these actions. We
will denote by controllers the set of all controller agents introduced in this way.

We then take each of the original agents i in the system, and transform it as follows.

• We replace each guarded command P =→ α for agent i with a rule as follows.

1(α)′ ∧ P =→ α

Notice that the first conjunct of the guard is “primed”; this notation in reactive
modules means the value that 1(α) has been assigned in the current round, i.e.,
the value of this variable after it has been assigned by the α-controller agent. Thus
agent i may perform the action α iff the original guard condition P is true in the

Synthese (2007) 156:1–19 17

current state, and the new agent controlling 1(α) has assigned this variable the value
? in the current state. In this way, the α-controller agent can determine whether or
not α is performed.

• Next, if in is the set of variables that i reads, then we replace in by in ∪{1(α)|α ∈
Aci}. In other words, the agent i reads those 1-variables that determine whether
its actions are legal.
Notice that agent i is not dependent on the 1-variables of any other agent’s actions,
and hence any strategy computed for i by mocha will not be dependent on the
1-variables of other agents.

Now, we can prove:

Theorem 5 Suppose ϕ is a propositional logic formula (representing an objective), and
S is an aats. Then

S◦ |0 〈〈controllers〉〉!

ϕ ∧

∧

i∈Ag

∨

α∈Aci

1(α)

iff ϕ is feasible in S.

Proof (Sketch) The structure of the proof is as Theorem 3: if S◦, q0 |0 〈〈controllers〉〉!ϕ,
then the controller agents controllers have a strategy for enabling/disabling actions
such that if this strategy is followed, the law is implemented. From this strategy, we
can extract a behavioural constraint that implements the law. The additional condition
ensures that every agent has at least one action available in every state, and so the
strategy controlling the 1(α) variables really does map to a behavioural constraint, as
defined earlier. Conversely, if there is a behavioural constraint β such that (ϕ, β) is an
effective social law in S◦, then we can extract a strategy for the controllers such that
this strategy ensures ϕ is always true. 9:

Notice that the obvious analogue of Theorem 4 also holds, although space restric-
tions prevent more discussion.

Proposition 6 Objective O5 is not feasible in S1, while both objectives O6 and O7 are
feasible.

Using this framework, we can also investigate more general properties of social laws.
Consider behavioural constraints that act as dictatorships (cf. [Pauly, 2002, p. 17]). A
behavioural constraint is a dictatorship if, once it is implemented, it never presents an
agent with more than one possible action at any given time; that is, if an agent has no
choice about what action it may perform. Formally, a behavioural constraint β with
respect to an aats S is a dictatorship if

∀i ∈ Ag,∀q ∈ Q, |options(i, q)| = 1

where options(i, q) is evaluated in S † β.

Example 4 The following is a dictatorship behavioural constraint for the trains
scenario:

β4(α) =

{q0, q4, q6} if α = idleE
{q0, q5, q6} if α = idleW
{q5} if α = moveE
{q4} if α = moveW

18 Synthese (2007) 156:1–19

Theorem 6 Suppose ϕ is a propositional logic formula (representing an objective), and
S is an aats. Then ϕ is feasible in S by a dictatorship behavioural constraint iff

S◦ |0 〈〈controllers〉〉!

ϕ ∧
∧

i∈Ag

∨

α∈Aci

1(α)

 ∧

∧

α1∈Aci

∧

α2∈Aci,
α1 '=α2

¬(1(α1) ∧ 1(α2))

 .

Proof (Sketch) As before, except that we have an additional constraint, which en-
sures that no more than one action from an agent’s action set is enabled at any given
time. 9:

Proposition 7 (O2, β4) and (O3, β4) are effective social laws in S1.

5 Related work

The closest approach to ours in the literature is the original framework of Moses,
Shoham, and Tennenholtz. Shoham and Tennenholtz were the first to precisely artic-
ulate the notion of social laws for multiagent systems, and set up a basic formal frame-
work within which computational questions about social laws could be formulated
(Shoham & Tennenholtz, 1992; Shoham & Tennenholtz, 1996; Shoham & Tennenholtz,
1997). The particular application domain was that of traffic laws for robotic agents.
The basic framework was extended by Fitoussi and Tennenholtz, to consider simple
social laws – essentially, social laws that could not be any simpler without failing
(Fitoussi & Tennenholtz, 2000). In related work, Moses and Tennenholtz developed a
deontic epistemic logic for representing properties of multiagent systems with norma-
tive structures in place (Moses & Tennenholtz, 1995). Although semantically similar
to atl (and atel (van der Hoek & Wooldridge, 2003b)), their logic was quite different
to atl in terms of the syntactic constructs it provided, and the emphasis was primarily
on deriving axioms capturing static aspects of artificial social systems and social laws.

6 Conclusions

In this paper, we have demonstrated how the Alternating-time Temporal Logic of
Alur, Henzinger, and Kupferman provides a natural and powerful framework within
which to express and reason about social laws. Following a formulation of social laws
within atl, we demonstrated how the effectiveness, feasibility, and synthesis problems
could be understood as model checking problems for atl, and also demonstrated how
our basic framework could naturally be extended to include social laws that require
explicit constraints on actions.

There are many possible routes for future investigation. One obvious question is
the extent to which other notions such as knowledge can be incorporated into the
framework. For example, one could imagine a social law with the objective that cer-
tain facts about agents must remain private to those agents; epistemic extensions to
atl seem to provide a natural language for representing such objectives (van der
Hoek & Wooldridge, 2003a, b).

Synthese (2007) 156:1–19 19

References

Alur, R., Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic. Journal of the
ACM, 49(5), 672–713.

Alur, R., Henzinger, T. A., Mang, F. Y. C., Qadeer, S., Rajamani, S. K., & Taşiran, S. (1998). Mocha:
Modularity in model checking. In CAV 1998: Tenth International Conference on Computer-aided
Verification (LNCS Volume 1427) (pp. 521–525). Berlin, Germany: Springer-Verlag.

Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge, England: Cambridge
University Press.

Clarke, E. M., Grumberg, O., & Peled, D. A. (2000). Model Checking. Cambridge, MA: The MIT Press.
Dignum, F. (1999). Autonomous agents with norms. Artificial Intelligence and Law, 7, 69–79.
van Drimmelen, G. (2003). Satisfiability in alternating-time temporal logic. In Eighteenth Annual

IEEE Symposium on Logic in Computer Science (LICS 2003) (pp. 208–217). Ottawa, Canada.
Durfee, E. H. (1999). Distributed problem solving and planning. In G. Weiß (Ed.), Multiagent systems

(pp. 121–164). Cambridge, MA: The MIT Press.
Emerson, E. A. (1990). Temporal and modal logic. in J. van Leeuwen (Ed.), Handbook of theoretical

computer science volume B: Formal models and semantics (pp. 996–1072). Amsterdam, The
Netherlands: Elsevier Science Publishers B.V.

Fitoussi, D., & Tennenholtz, M. (2000). Choosing social laws for multi-agent systems: Minimality and
simplicity. Artificial Intelligence, 119(1–2), 61–101.

van der Hoek, W., & Wooldridge, M. (2002). Tractable multiagent planning for epistemic goals. In
Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2002) (pp. 1167–1174). Bologna, Italy.

van der Hoek, W., & Wooldridge, M. (2003a). Model checking cooperation, knowledge, and time—a
case study. Research in Economics, 57(3), 235–265.

van der Hoek, W., & Wooldridge, M. (2003b). Time, knowledge, and cooperation: Alternating-time
temporal epistemic logic and its applications. Studia Logica, 75(1), 125–157.

Moses, Y., & Tennenholtz, M. (1995). Artificial social systems. Computers and AI, 14(6), 533–562.
Papadimitriou, C. H. (1994). Computational complexity. Reading, MA: Addison-Wesley.
Pauly, M. (2001). Logic for Social Software. PhD thesis, University of Amsterdam, ILLC Dissertation

Series 2001–10.
Pauly, M. (2002). A modal logic for coalitional power in games. Journal of Logic and Computation,

12(1), 149–166.
Shoham, Y., & Tennenholtz, M. (1992). On the synthesis of useful social laws for artificial agent

societies. In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92),
San Diego, CA.

Shoham, Y., & Tennenholtz, M. (1996). On social laws for artificial agent societies: Off-line design.
In P. E. Agre, & S. J. Rosenschein (Eds.), Computational theories of interaction and agency
(pp. 597–618). Cambridge, MA: The MIT Press.

Shoham, Y., & Tennenholtz, M. (1997). On the emergence of social conventions: Modelling, analysis,
and simulations. Artificial Intelligence, 94(1–2), 139–166.

Wooldridge, M. (2002). An introduction to multiagent systems. JohnWiley & Sons.

