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Abstract

The Higgs mechanism is very powerful: it furnishes a description of the elec-
troweak theory in the Standard Model which has a convincing experimental ver-
ification. But although the Higgs mechanism had been applied successfully, the
conceptual background is not clear. The Higgs mechanism is often presented as
spontaneous breaking of a local gauge symmetry. But a local gauge symmetry is
rooted in redundancy of description: gauge transformations connect states that
cannot be physically distinguished. A gauge symmetry is therefore not a sym-
metry of nature, but of our description of nature. The spontaneous breaking of
such a symmetry cannot be expected to have physical e↵ects since asymmetries
are not reflected in the physics. If spontaneous gauge symmetry breaking cannot
have physical e↵ects, this causes conceptual problems for the Higgs mechanism, if
taken to be described as spontaneous gauge symmetry breaking.

In a gauge invariant theory, gauge fixing is necessary to retrieve the physics
from the theory. This means that also in a theory with spontaneous gauge sym-
metry breaking, a gauge should be fixed. But gauge fixing itself breaks the gauge
symmetry, and thereby obscures the spontaneous breaking of the symmetry. It
suggests that spontaneous gauge symmetry breaking is not part of the physics,
but an unphysical artifact of the redundancy in description.

However, the Higgs mechanism can be formulated in a gauge independent way,
without spontaneous symmetry breaking. The same outcome as in the account
with spontaneous symmetry breaking is obtained. It is concluded that even though
spontaneous gauge symmetry breaking cannot have physical consequences, the
Higgs mechanism is not in conceptual danger. The mechanism relies on the non-
zero ground state value of the Higgs field, rather than on spontaneous symmetry
breaking.
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1 Introduction

The Higgs mechanism is an important part of the Standard Model of particle
physics. It provides the theory with mass for the gauge bosons of the weak inter-
action and for the fermions. The electroweak theory in which it plays a prominent
role had a convincing experimental verification. The Higgs mechanism is gener-
ally described as a case of spontaneous symmetry breaking, such as in Peskin and
Schroeder [36, Section 20.1] and Weinberg [54, chapter 21].

The notion of spontaneous symmetry breaking (SSB) will be at the basis of
this essay. To place the abstract ideas of SSB that will be discussed in a concrete
context, a very simple example of SSB will be described here, that can also be
found in Ryder [38, pp. 282, 283]. The example emphasizes that spontaneous
symmetry breaking is not the same as explicit breaking of a symmetry.
Explicit symmetry breaking is caused by an external force that actively breaks the
symmetry. It appears as a symmetry breaking term in the Lagrangian or in an-
other formalism from which the equations of motion can be derived. Spontaneous
symmetry breaking however does not require such an external force; this is where
the term ‘spontaneous’ comes from. The equations of motion and the Lagrangian
then still obey the spontaneously broken symmetry. The symmetry considered in
this example is the rotational symmetry of a rod around its axis as in figure 1(a).
The symmetry can be broken by applying an external force to one end of the rod:
the rod will bend and lose its rotational symmetry as in figure 1(b). This is explicit
symmetry breaking: it is caused by an external force that enters the equations of
motion. The case of spontaneous symmetry breaking is encountered if a force is
applied in the longitudinal direction of the rod.1 The rod will now also bend and
is no longer rotationally invariant (figure 1(c)). It is worth noting two properties
of this spontaneously broken state. The first is that the direction in which the
rod bends is arbitrary - there are several ‘ground states’ that could all equally
well be occupied: the ground states are degenerate. The second thing to notice
is that the di↵erent directions of bending (the di↵erent ground states) are related
by the original rotational symmetry. The symmetry has thus not disappeared but
is ‘hidden’ in the relation between the ground states. This reflects the fact that
the equations of motion still obey the symmetry, although the ground states do
not. For this reason spontaneous symmetry breaking is sometimes called a ‘hidden
symmetry’.

The usual account of the Higgs mechanism describes it as a case of spontaneous
symmetry breaking. The spontaneously broken symmetry is however not a phys-
ical symmetry as in the example above. The rotational symmetry in the example
relates observably di↵erent states: the ground states of the rod are physically dif-
ferent. In the Higgs mechanism the symmetry that is spontaneously broken is not
a physical symmetry, but a gauge symmetry. A gauge symmetry relates states
that are physically the same, but di↵er in their mathematical description. It is
not a symmetry of the physical states; it is a symmetry of the description of a
physical state. A more comprehensive study of the nature of gauge symmetries is
presented in section 2.

Since gauge transformations relate di↵erent descriptions of the same state,
spontaneous gauge symmetry breaking is di↵erent from the spontaneous symme-
try breaking of the physical symmetry above. The degenerate ground states of
the system are not physically di↵erent in the case of gauge symmetry breaking.

1Although an external force is also applied here, this case can be justified as being spontaneous
symmetry breaking by considering that the applied force works perpendicular to the bending direction
of the rod.
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(a) Unbroken symmetry: the
rod in its original state is rota-
tionally invariant

(b) Explicitly broken symme-
try: the rod bends due to an ex-
ternal force and loses rotational
invariance

(c) Spontaneously broken
symmetry: the rod bends
in an arbitrary direction
and loses rotational invari-
ance

Figure 1: Spontaneous symmetry breaking as seen in the bending of a rod

It therefore does not matter which ground state the system ‘picks’: all states de-
scribe the same physics. The asymmetry of the ground states has no physical
results. Since a gauge symmetry is not a physical symmetry, spontaneous break-
ing of this symmetry cannot be expected to have physical consequences. But the
Higgs mechanism does have physical consequences: it gives mass to the particles
in the standard model. This causes a conceptual problem about the Higgs mech-
anism: if gauge symmetry breaking cannot have physical consequences, how can
the Higgs mechanism which is a case of gauge symmetry breaking, have any?

This conceptual problem has concerned philosophers of physics since Earman
[9] in 2002 called for the investigation of this subject. In Brading and Castellani [6,
part III] (2003) many aspects of symmetry breaking are addressed. Smeenk [43]
gives a good overview of the role of gauge symmetry breaking in the Higgs mecha-
nism. A debate on the ontology and explanatory power of the Higgs mechanism is
found in three subsequent papers by Lyre [31], Wüthrich [56] and again Lyre [32].
Kosso [29] investigates the epistemology of broken symmetries and questions the
analogy between electromagnetism and the weak theory as regards their basis in
gauge symmetry. Indeed, the conceptual discussion about the Higgs mechanism
is not only due to philosophers of physics. Articles by Witten [55] and ’t Hooft
[47, pp. 65 - 95] also contribute to the debate.

Di↵erent approaches to spontaneous symmetry breaking are followed in the
literature. For example Earman in Brading and Castellani [6, pp. 335-346] fol-
lows an algebraic approach to symmetry breaking. This approach is di↵erent from
the approach that will be followed in this essay. The algebraic approach is ax-
iomatic: it is based on abstract algebras, and their state spaces. Spontaneous
symmetry breaking is then studied through unitarily inequivalent representations.
The heuristic approach in this essay follows the historical line of development and
is the approach adopted by most physicists: spontaneous symmetry breaking in
the Standard Model is developed in the classical case, and from there extended to
quantum field theory. Throughout this essay symmetry breaking will be consid-
ered in the classical domain. It is possible to stay in the classical domain because
the presence of spontaneous symmetry breaking is already manifest before quan-
tization, and the conceptual problems discussed in this essay thus already appear
in the classical case.

In recent papers by Struyve [44], Ilderton et al. [26], Chernodub et al. [7], Fad-
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deev [12] and Masson and Wallet [33], it has been suggested that the Higgs mech-
anism can be described without spontaneous symmetry breaking. These papers
discuss gauge invariant approaches to the Higgs mechanism. A gauge invariant
approach to the Higgs mechanism is however not a completely new discovery, as
pointed out by Struyve [44]. Higgs himself [25] (1966) already mentioned a gauge
invariant approach, and it is also discussed by Rubakov [37, chapter 6] (1999). In
this essay the gauge invariant approach is discussed in section 6. It will be argued
that although concerns about spontaneous gauge symmetry breaking are legiti-
mate, the content of the Higgs mechanism is not threatened. The gauge invariant
approach shows that the Higgs mechanism is based not on spontaneous breaking
of a gauge symmetry, but rather on the non-zero vacuum expectation value of the
Higgs field.

In section 2 of this essay the concept of symmetry will be introduced: the
distinction between global and local symmetries, and their relation to gauge sym-
metry is discussed. Section 3 will place the Higgs mechanism in its physical and
historical context. It will be seen why the Higgs mechanism plays such an impor-
tant role in the Standard Model. After that, spontaneous symmetry breaking will
be investigated. In section 4 spontaneous breaking of a global symmetry is dis-
cussed, and in section 5 the discussion proceeds to local gauge symmetries. This is
the case of spontaneous symmetry breaking that is usually attributed to the Higgs
mechanism. In section 6, it is shown that the Higgs mechanism can be described
without relying on spontaneous symmetry breaking.

2 Global, local and gauge symmetries

At the classical level, a symmetry is a transformation that preserves relevant
physical properties. More precisely, a symmetry transformation of a system (such
as the positions of particles or the value of a field at each point in space-time)
leaves the action of each history (i.e. time-sequence of states) invariant. Since the
equations of motion are satisfied by a history whose action is an extremum, the
invariance of the action under a symmetry implies that the transformed history
also obeys the equations of motion. The action is built from the Lagrangian, so
a symmetry can also be described as a transformation that leaves the Lagrangian
invariant. An example of a symmetry is seen in the Introduction; the rod in figure
1(a) is symmetric under rotation around its axis. In the context of field theory,
symmetries are transformations of fields that leave the action or Lagrangian in-
variant. Symmetries can be classified in terms of their properties. In this section
the distinction between global and local symmetries is described, and light is shed
on their relation to gauge symmetry.

A global symmetry has a parameter that is constant throughout space-time.
The symmetry transformation is thus executed by the same “amount” at every
point. The rotational symmetry of the rod in the introduction is a global sym-
metry: the rod is symmetric under a rotation that is the same at every point in
space, and throughout time. More generally a rotation can be implemented by a
constant rotation matrix R

ij

. (R
ij

is rotation matrix if it is in the group SO(N),
thus if it is an orthogonal matrix with unit determinant. i and j run over 1, ..., N .
For a rotation in three dimensions N = 3.) A rotation applied to fields �

j

is
then �

0
i

= R

ij

�

j

. The fields that this rotation relates are physically distinct; the
orientation of a field is a measurable quantity. Another example of a global sym-
metry is a phase transformation of a field, where the phase transforms by the same
amount at every point in space-time. A phase transformation is described by a
global U(1) group of transformations. The U(1) transformation will be considered
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throughout this essay since it is the building block of a simple but adequate model
of spontaneous symmetry breaking. A global U(1) transformation of a field is thus

�(x) �! e

i↵

�(x), (1)

where ↵ is a global (constant) parameter. A phase transformation like this is
di↵erent from a rotation, because unlike the rotational symmetry, phase trans-
formations of a field are not observable. The complex phase of a field does not
appear in measurable quantities, that are in general built from pairs of �⇤(x), the
complex conjugate field, and �(x). There are two ways to interpret the unobserv-
able nature of the complex phases.2 In one interpretation it is concluded that
states described by a di↵erent complex phase are physically the same and di↵er
only in mathematical description. Another way to look at it is that the states
are observationally indistinguishable, but are nevertheless physically di↵erent. In
the first of these two cases, the global symmetry is labeled as a gauge symme-
try, while in the second case it is not. A gauge symmetry is a symmetry that
relates states that are physically the same. The states it connects are then only
di↵erent in their mathematical structure. The presence of a gauge symmetry thus
reveals a redundancy in description: there is more description, more mathematical
structure, than is strictly necessary to describe the physical reality.

When it is believed that the complex phase transformation relates physically
equivalent states, the global U(1) symmetry is a gauge symmetry. The term gauge
symmetry is however more often used in the context of local symmetries. In the
next part of this section the origin of this will be disclosed: a local symmetry is
necessarily a gauge symmetry if it is to be part of a deterministic theory.

A local transformation has a parameter that depends on space-time. In the case
of rotation, the angle of the rotation can change for di↵erent locations and times.
For U(1) it means that the parameter ↵ in equation (1) is a space-time dependent
function ↵(x). A local transformation is fundamentally di↵erent from a global
transformation. The di↵erence lies in their consequences for the determinism or
indeterminism of the theories concerned. There are several ways to describe deter-
minism of a theory. For example an approach through the Hamiltonian formalism
is possible, but here the question of determinism will be approached through the
principle of least action.

Determinism as understood in terms of the action principle is discussed by
David Wallace in Brading and Castellani [6, pp. 163 - 173]. His approach gives
a very good insight into the relation between symmetries and determinism and
especially the connection between local and gauge theories, and will therefore be
the backbone of the discussion here.

David Wallace approaches determinism of a theory through the least action
principle. In classical mechanics, to describe the motion of a particle, an action is
ascribed to every possible path the particle can take between two fixed points. The
action is a function of the path of the particle, such that the path that extremizes
the action obeys the equations of motion of the system. Through extremizing the
action it can thus be determined which path will be realized between two fixed
points. The principle of least action can be extended to field theory, where rather
than the position of a particle the values of a field are considered. The term ‘path’
is now not accurate, since the field has values at every point in space, and will
therefore be replaced by the term ‘history’ (following David Wallace). The history
between two fixed field configurations, for which the action is an extremum will

2The distinction made here follows Struyve [44].
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be the realized history. The theory is deterministic if this history is unique, i.e. if
there is only one history that extremizes the action between two fixed configura-
tions. So let us now ask: How is this idea of determinism related to global and
local symmetries?

Recall that a symmetry is defined as a transformation that keeps the action
invariant. So if a transformation is applied to a history that extremizes the action,
the transformed history will thus also extremize the action. There are now two
histories that extremize the action, and thus are realized. Will this necessarily vio-
late determinism, which, recall, says that there should be a unique history between
two endpoints? No, this is not always the case. If the symmetry also changes the
endpoint of the history, the transformed history minimizes the action for a changed
situation. So determinism is not violated. But if the endpoints stay the same un-
der the symmetry transformation, while a part of the history does change, then
the theory will be indeterministic. There is then more than one realizable his-
tory for a given initial and final configuration of the field; knowledge of the initial
and final configuration is not enough to uniquely determine the history of the field.

The presence of a global symmetry cannot make a theory indeterministic in
such a way: the global parameter ensures that transformations of the field are the
same throughout time. It ensures that a non-trivial transformation of the history
at any time implies that the initial and final configurations transform non-trivially
as well. This is illustrated in figure 2(a). The initial and final field configurations
can never be fixed while the rest of the history is transformed, and so the theory
remains deterministic.

The only exception to this would occurs if the initial and final field configu-
rations are invariant under the transformation. By the definition of determinism
given above, the theory would then be indeterministic. But this would only hap-
pen for a certain theory and for certain endpoints and certain transformations,
and so would not be a general feature of the theory. This indeterminism for the
global symmetry does not occur if we slightly reformulate determinism. Thus de-
terminism can also be defined as the requirement that knowledge of an arbitrarily
short segment of the history uniquely determines the rest of the history. Adopting
this definition, a global symmetry can never make a theory indeterministic.

For a local symmetry, however, this is not the case. The time dependence
of a transformation for a local symmetry will ensure that a transformation can
leave the initial and final configurations invariant, while transforming the history
between those two points. Thus for the local U(1) symmetry in equation (1) with
↵ = ↵(t,x), this is achieved if the parameter ↵(x) vanishes at the initial and final
times, t

i

and t

f

, for every x, while it has an arbitrary non-zero value at at least
one point x for a time t, for which t

i

< t < t

f

. Since such a transformation is
a symmetry of the theory, the transformed history will extremize the action for
the same initial and final configuration. A theory with a local symmetry will thus
always be indeterministic. This is illustrated in figure 2(b).3

A local symmetry is connected to indeterminism because of the time depen-
dence of its transformation parameter. Since it is desirable that a theory is deter-
ministic, it will here be investigated under what circumstances this can still be the
case for a local symmetry. To retain determinism field configurations connected by
a local transformation must be physically identified. Histories that are related by a
local transformation are then physically the same, and the theory is deterministic

3The alternative definition of determinism that was mentioned in the last paragraph will naturally
by the same reasoning also lead to indeterminism in the case of theory with a local symmetry.

7



(a) A global symmetry must have the same
parameter at each time. The theory remains
deterministic.

(b) A local symmetry has a time-dependent
parameter. The theory is indeterministic.

Figure 2: In contrast to a global symmetry, a local symmetry is necessarily indeter-
ministic.

since the initial conditions specify a unique history. Since the local symmetry now
relates physically identical states, it is a gauge symmetry. Thus, in a deterministic
theory a local symmetry must thus necessarily be a gauge symmetry.

To describe the physics of the system by the equations of motion, every phys-
ical state must make an unambiguous appearance in these equations: that is, a
single representative needs to be picked from the descriptions that are identified
as the same state. This procedure is called ‘gauge fixing’. A gauge can be fixed
by imposing a gauge condition on the field descriptions, that picks out a repre-
sentative for each physical field. This gauge condition becomes part of the theory.
When a gauge is fixed, a theory loses its gauge symmetry, for a gauge transfor-
mation would transform the fields in such a way that they no longer satisfy the
gauge condition. The transformed fields do not fit into the theory and therefore a
gauge transformation is not a symmetry of the theory.

Aspects of global, local and gauge symmetries have now been discussed. It has
been seen that a local symmetry is connected to indeterminism. If the states that
are related by the local transformation are identified, determinism is retained; the
local symmetry is then a gauge symmetry. A gauge needs to be fixed to be able to
describe the physics that the theory represents. Upon gauge fixing the theory loses
its invariance under the local gauge transformation. It remains to be discussed
how global and local symmetries are implemented in the Lagrangian of a theory.

A general Lagrangian for a single complex scalar field � has the form

L = @

µ

�@

µ

�

⇤ � V (�). (2)

The example of a U(1) transformation as in equation (1) will be used here to
demonstrate global and local symmetries of the Lagrangian. Since the kinetic
term of the Lagrangian is invariant under the global U(1) transformation, U(1)
is a symmetry of the Lagrangian if the potential V (�) is also invariant under the
transformation. For example in complex �

4 theory, for which the potential is
V (�) = (��⇤)2, the theory is invariant under a global U(1) transformation.

8



For a local U(1) symmetry the situation is however more complicated, since
the kinetic term in equation (2) is not invariant under a local gauge transforma-
tion. The derivatives in the kinetic term will also act on the space-time dependent
parameter ↵(x), so that extra terms appear in the Lagrangian upon a local trans-
formation. The Lagrangian of equation (2) is thus not gauge invariant.

It is nevertheless possible to construct a Lagrangian of a di↵erent form that
obeys the local U(1) symmetry. In a naive account the above Lagrangian is altered
such that it is gauge invariant, thereby imposing the existence of a new field: the
gauge field. This gauge field (A

µ

) has the following gauge transformation:

A

µ

�! A

µ

+
1

q

@

µ

↵(x), (3)

where q is the charge of the scalar field. It interacts with the gauge fields in such
a way that the interaction compensates for the non-invariance of the kinetic term.
As such it appears in the ‘covariant derivative’: D

µ

= @

µ

� iqA

µ

, that takes the
place of the normal derivative @

µ

in the Lagrangian. The gauge field also has its
own (gauge invariant) dynamical term: F

µ⌫

F

µ⌫ . F

µ⌫

is the field strength of the
gauge field:

F

µ⌫

= @

µ

A

⌫

� @

⌫

A

µ

. (4)

The complete U(1) gauge invariant Lagrangian then has the form

L = �1

4
F

µ⌫

F

µ⌫ +D

µ

�D

µ

�

⇤ � V (�). (5)

This is the Lagrangian that describes quantum electrodynamics. It is thus the
basis of an important theory in physics, whose predictions are experimentally
confirmed with high precision.

U(1) is an Abelian gauge symmetry, which means that all elements of the group
commute. There are also symmetries for which the elements do not commute, such
as for the SU(2) symmetry that occurs in the electroweak theory of the Standard
Model. The elements in the Lagrangian of this non-Abelian symmetry are a bit
di↵erent. The gauge symmetric theory for SU(2) was developed by Yang and Mills
[57] in 1954, and in honor of these two physicists the theory is known as Yang-Mills
theory. Under a local SU(2) transformation the field transforms as

� �! exp(i↵i(x)
�

i

2
)�, (6)

where �i are the Pauli matrices: the three non-commuting generators of the SU(2)
transformations. Since SU(2) has three generators there are also three gauge fields
A

i

µ

(i = 1, 2, 3). The covariant derivative for a SU(2) gauge invariant Lagrangian

is D
µ

= @

µ

�iqA

i

µ

�

i

2 . Due to the non-commutativity of the generators of this sym-

metry, the field strength F

µ⌫

has an extra term: F i

µ⌫

= @

µ

A

i

⌫

�@

⌫

A

i

µ

+q✏

ijk

A

j

µ

A

i

⌫

.
The altered covariant derivative and field strength for the SU(2) symmetry de-
scribe the Yang-Mills theory when inserted in the Lagrangian in equation 5.

The examples in this essay will contain the Abelian U(1) symmetry, but can
be extended to non-Abelian SU(2) and to SU(2)⇥U(1) that describes the full
electroweak theory of the Standard Model. The extension from an Abelian to
a non-Abelian symmetry does not influence the conceptual di�culties discussed
in this essay. Nevertheless one complication for non-Abelian gauge symmetries
should be mentioned. For a non-Abelian gauge symmetry it is not possible to
completely fix the gauge. Fields that are connected by a gauge transformation are
said to lay on the same orbit - a ‘line’ can be drawn that connects these states. A
gauge fixing condition crosses each orbit once and thereby selects a representative
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for each physical state. In the case of a non-Abelian gauge theory no gauge fixing
condition can be found that picks out a single representative for each state. Every
condition crosses the orbits on which the fields lie more than once, as is shown
in figure 3(b). This is known as the Gribov ambiguity, named after Vladimir
Gribov who presented the ambiguity in 1978 [19] for the Coulomb gauge. Singer
[42] proved not much later that for topological reasons the ambiguity also applies
for any other gauge.4 The ambiguity only arises for non-perturbative situations,
when the magnitude of the fields becomes large, as proved by Daniel and Viallet
[8], and also emphasized by Jackiw et al. [27] and Esposito et al. [11]. Since the
Higgs mechanism operates in the regime of perturbation theory, the Gribov am-
biguities do not directly a↵ect most of the discussions in this essay. Nevertheless
in section 6 for the gauge invariant approach to the Higgs mechanism, Gribov’s
ambiguity does play a role, that will be discussed.

(a) A gauge fixing condition must cross
each orbit once.

(b) For a non-Abelian gauge symmetry
any condition crosses some orbits more
than once.

Figure 3: Due to the Gribov ambiguity, no gauge fixing is possible for a non-Abelian
gauge theory.

It has now been seen how gauge invariant Lagrangians for U(1) and SU(2) can
be constructed, but the method through which the Lagrangian in equation (5) is
obtained above is naive. There seems to be no ground for imposing local invariance
on the Lagrangian. Although in many treatments the gauge invariant Lagrangian
is constructed through this naive account, there is also a more convincing route
to obtain this Lagrangian. A more natural approach is adopted by Weinberg
[53, section 5.9].5 He shows that a massless spin 1 vector field (A

µ

) cannot be
a four-vector under Lorentz transformations. He does this by considering the
action of the creation and annihilation operators for massless spin 1 fields.6 The
transformation of A

µ

(x) under a Lorentz transformation ⇤ is

U(⇤)A
µ

(x)U�1(⇤) = ⇤⌫

µ

A

⌫

(⇤x) + @

µ

⌦(x,⇤), (7)

4The ambiguity causes problems when quantizing a gauge field, since the functional integration
(in the path integral approach) over-counts the duplicated fields. A solution to this is to restrict
integration to fields in a region where the duplication ambiguity does not occur. This region is known
as the Gribov region.

5Martin in Brading and Castellani [6, pp. 29 - 60] mentions this approach.
6Weinberg here looks at the quantized field. The approach in this essay has been classical up till

here, but for this argument the quantum nature of the field is used.
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where ⌦(x,⇤) is a function of the creation and annihilation operators. To imple-
ment the vector field in a Lorentz invariant theory it must not only be invariant
under the Lorentz transformation (A

µ

�! ⇤⌫

µ

A

⌫

) but also under the transfor-
mation A

µ

�! A

µ

+ @

µ

⌦. This last transformation is recognized as the gauge
transformation (3). The gauge invariance of the Lagrangian follows then as a more
natural result of the Lorentz transformation of the massless spin 1 vector field A

µ

.

In this section global, local and gauge symmetries have been discussed. Global
symmetries have a global parameter, whereas the parameter of local transforma-
tions is space-time dependent. Local symmetries are therefore connected with
indeterminism, but can be part of a deterministic theory if they are gauge symme-
tries; i.e. if they connect physically equivalent states. To extract physics (like the
equations of motion) from a theory with a local gauge symmetry a gauge needs to
be fixed. The gauge-fixed theory is no longer gauge symmetric.

A gauge invariant Lagrangian has the form of equation (5). The interaction
with the gauge field A

µ

is necessary for gauge invariance.

In the next section a short historical overview is given of how these gauge
invariant theories have become the backbone of the Standard Model of physics,
and the essential role that the Higgs mechanism plays in it.

3 Mass and renormalization

The Higgs mechanism is an essential part of the Standard Model. It describes
how the gauge field A

µ

in Lagrangian in equation (5) can be massive. In this
section it will be explored why the Higgs mechanism is so important. Why is a
gauge invariant Lagrangian used to describe the electroweak theory, and why is
the Higgs mechanism necessary for mass generation?

In the 1940s quantum electrodynamics was finalized and its predictions were
experimentally verified to high precision. Due to the work of Bethe [5], Tomon-
aga [49][50], Schwinger [39] and Feynman [14] between 1946 and 1949, infinities
arising in the theory could be dealt with by renormalization. Counterterms were
introduced in the Lagrangian that cancel the infinities in the integrals. The coun-
terterms can be absorbed in the ‘bare’ coupling constants, bare mass and bare
fields of the theory. Schwinger [40] in 1948 calculated the value for the anoma-
lous magnetic moment of the electron to second order (one-loop). The predictions
by Schwinger were in wonderful agreement with the measurements by Kusch and
Foley [30] (1948). And at present, the predicted and experimental values of the
anomalous magnetic moment of the electron are of such high precision and in such
agreement that QED is the most precisely tested theory of physics.[36]

Thus at the beginning of the 1950s QED had taken up the position of a well
established theory. The weak interactions were however not yet described in a
satisfying way. Fermi [13] in 1933 described weak beta decay as a contact in-
teraction, the interaction occurring at one point. His theory was accurate, but
it was generally believed that for higher energies a description is required where
the interaction is mediated by particles, analogous to the photon in QED.[20].
The particles that mediate the weak force must have properties di↵erent from
the photon: the weak interaction is short-ranged, whereas electromagnetism is a
long range interaction. This manifests itself in the mass of the particles. In 1935
Yukawa [58] found a relation between the mass of the intermediate particle and

11



the range of the interaction. This is expressed in the Yukawa potential:7

U(r) =
g

2

4⇡r
e

�mr

. (8)

Here r is the range of the interaction and m is the mass of the intermediate
particle. The potential decays exponentially for m 6= 0. The decay rate is propor-
tional to m, so the decay is faster and the interaction range shorter for a heavy
intermediate particle. For a massless intermediate particle like the photon, the
exponential term reduces to e

0 = 1 and the potential in equation (8) becomes the
long range Coulomb potential of QED. The weak interaction is known to be of
very short range (which is the underlying feature that makes the contact model
of Fermi such a good approximate description), and must therefore be described
by massive intermediate particles.

The success of QED from the 1940s inspired physicists to develop a model for
the weak interactions analogous to QED. The intermediate particles should be de-
scribed as gauge bosons in a gauge invariant Lagrangian. In 1954 Yang and Mills
[57] constructed a non-Abelian gauge theory based on the SU(2) symmetry, in the
hope that this would fit the weak interactions. Glashow [16] in 1960 extended
this idea to the group SU(2)⇥U(1) that should be in the theory underlying the
combined electromagnetic and the weak interactions.

The main reason to seek a gauge invariant model for the weak interactions anal-
ogous to QED is the renormalizability of QED. Although it was not yet proven for
the general case, it was at that time generally believed that the gauge invariance
of the Lagrangian is crucial to ensure renormalizability (a general proof for this
would not be established until the 1970s by ’t Hooft). The massive intermediate
particle of the weak interaction however did not fit nicely in a gauge invariant
theory. The gauge invariant Lagrangian of QED is linked to masslessness of the
intermediate particle. In the previous section it has been shown how Weinberg
[53, section 5.9] justifies the gauge invariant Lagrangian from the Lorentz trans-
formation (equation (7)) of a massless spin 1 vector field A

µ

. The masslessness
of the vector field is explicitly necessary for the derivation of this Lorentz trans-
form, and thus for the natural appearance of the gauge field in the gauge invariant
Lagrangian. The masslessness of the gauge field in a gauge invariant theory also
follows from the fact that a mass term of the form m

2
A

µ

A

µ is not gauge invariant.
Including such a term in the Lagrangian of equation (5) would destroy the gauge
symmetry of the Lagrangian.

The mass term in the Lagrangian not only destroys the gauge symmetry, but
also the hope of renormalizing the theory. The renormalization of a massive gauge
field would require an expression that is not compatible with unitarity of the scat-
tering matrix S. That is: an expression of the massive gauge field that respects
unitarity would make the theory non-renormalizable. A clear description of this
can be found in an overview of renormalization and gauge invariance, as presented
by ’t Hooft [48] in Kyoto in 2006.

The mass of the weak interaction gauge bosons thus seems to be incompatible
with a renormalizable theory. A di↵erent approach to the masses of the gauge
bosons is needed. The solution to the problem comes from an analogy with a
process in condensed matter: superconductivity.8

7For a historical discussion of the application of the potential to the strong and weak nuclear forces,
see Weinberg [53, pp. 29, 30]. A physical derivation is found in Peskin and Schroeder [36], Tong [51]
or the original paper by Yukawa [58].

8Discussions of the analogy between spontaneous symmetry breaking in particle physics and super-
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Superconductivity was in 1950 described by Ginzburg and Landau as sponta-
neous breaking of the gauge symmetry of electromagnetism. This description of
superconductivity is macroscopic. In 1957 Bardeen, Cooper and Schrie↵er [2, 3]
developed a microscopic theory in terms of the interactions between electrons
and phonons. The theory became known as the BCS theory. As Gor’kov [18] in
1959 showed, the macroscopic Ginzburg-Landau model can be deduced from the
microscopic BCS theory.

Nambu and Jona-Lasinio [34] applied the Ginzburg-Landau model of sponta-
neous symmetry breaking to field theory. But the application of this model to field
theory seemed to be incorrect when in 1962 Goldstone, Salam and Weinberg [17]
prove ‘the Goldstone theorem’: whenever a symmetry is spontaneously broken
a massless particle must be present. Particles that could serve as those ‘Gold-
stone bosons’ are not known to exist, so an application of spontaneous symmetry
breaking to field theory seems impossible. But in the same year Schwinger [41]
wrote an article in which he emphasized the possibility of combining mass with
gauge fields. This article inspired Anderson [1], who described an exception to the
Goldstone theorem for a superconductor: he noted that below a certain ‘plasma
frequency’ electromagnetic waves do not propagate in a charged free-electron gas
- the photon can under these circumstances be interpreted as massive.9 Anderson
concluded his article with the suggestion that a similar process in particle physics
could be responsible for giving mass to Yang-Mills gauge bosons. This is the hint
that led to the development of the Higgs mechanism.

Little more than a year after the 1962 article of Anderson, Higgs [23, 24, 25],
Englert and Brout [10] and Guralnik, Hagen and Kibble [21] each independently
found a mechanism to incorporate spontaneous gauge symmetry breaking in a
gauge invariant field theory. This mechanism, that became known as ‘the Higgs
mechanism’, gives the gauge bosons a mass. Weinberg [52] in 1967 and Salam inde-
pendently applied the mechanism to SU(2)⇥U(1) gauge theory. The SU(2)⇥U(1)
symmetry is partly broken to a U(1) subgroup, so that of the four gauge bosons
associated with SU(2)⇥U(1), three (the W+, W� and Z bosons) become massive,
while the photon remains massless. In this model not only do the gauge bosons
become massive through the Higgs mechanism; fermions get their mass in a similar
way.

The motivation to look for an alternative method of giving mass to gauge
bosons, was to renormalize the weak interactions. Recall that an explicit mass
term in the gauge invariant Lagrangian (equation (5)) would make the theory
non-renormalizable. The Higgs mechanism provided massive gauge bosons, with-
out such a term. But renormalization of a theory with the Higgs mechanism was
not yet proved. Thus the application of the Higgs mechanism to SU(2)⇥U(1) as by
Weinberg was not an acknowledged description of the weak interactions, as long
as it was unknown if the theory could be renormalized. In 1971 Gerard ’t Hooft
[46], in close collaboration with his PhD supervisor Veltman, showed that theo-
ries with massive gauge bosons due to spontaneous gauge symmetry breaking are
renormalizable. ’t Hooft and Veltman established this through a procedure called
dimensional regularization. ’t Hooft explicitly showed how the model of leptons
developed by Weinberg in 1967 can be renormalized.

After the renormalizability of Weinberg’s model had been shown, the model is
recognized as an accurate description of the unification of the weak and electro-

conductivity can be found in Weinberg [54, section 21.6] and Witten [55].
9Anderson argues that the longitudinal degree of freedom that is usually attributed to the plasmon

can be interpreted as the longitudinal component of a massive photon.
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magnetic interactions. The theoretical description was followed by experimental
confirmations: the predicted neutral current10 was experimentally found at CERN
in 1973 by Hasert et al. [22]; the W and Z bosons were found in 1983, also at CERN.
In the summer of 2012, scientists at CERN announced the discovery of a particle
consistent with the Higgs boson: this implies that the Higgs mechanism truly is
responsible for mass generation.

Would it be possible to describe the electroweak theory without the Higgs
mechanism? Other theories have been developed, but none of them has achieved
the generally accepted status that the Higgs mechanism has. One of these theories
is technicolor. Technicolor is intended as the analog of the BCS theory of super-
conductivity: it should give a ‘microscopic’ explanation for the mass generation
in the Standard Model. In the simplest technicolor model mass is generated by a
bound state of two ‘techniquarks’. The drawback of the model is that technicolor
does not automatically create fermion masses. ‘Extended technicolor’ models have
been developed that take care of this, but they add complications to the theory,
that make technicolor unsatisfactory as model for mass generation. To sum up:
there is no satisfactory analog to the BCS theory in particle physics; and the Higgs
mechanism is currently the best explanation for mass generation.

The great achievement of the model of the electroweak theory is that it contains
massive gauge bosons, but is nevertheless renormalizable. The Higgs mechanism
plays an important role in combining these two requirements. The role of the
Higgs mechanism is so important, that in the context of the electroweak theory it
would be foolish to question its validity.

Nevertheless the Higgs mechanism should be the subject of a conceptual discus-
sion. The Higgs mechanism describes how gauge bosons become massive through
spontaneous breaking of a local symmetry. Why is this problematic? Recall the
simple example of spontaneous symmetry breaking in the Introduction. In the
spontaneously broken case, the ground states of the rod are degenerate and asym-
metric, as in figure 1(c). But in the Higgs mechanism the broken symmetry is a
local symmetry. In section 2 it was discussed that a local symmetry is necessarily a
gauge symmetry: in a deterministic theory it must relate physically indistinguish-
able states. The physical indistinguishability also applies to the ground states of
the system in the broken case. These states are thus not degenerate, and not
physically asymmetric as in the example of the rod, since all orientations corre-
spond to the same physical state. Thus the spontaneously broken symmetry in
the Higgs mechanism is a gauge symmetry, that does not apply to physical states,
but to the description of a physical state. Breaking this symmetry cannot have
physical consequences. But nevertheless the Higgs mechanism is ascribed physical
consequences: the gauge bosons acquire a mass.

In this essay it will be argued that this discrepancy is not a serious problem
for the Higgs mechanism. Even though spontaneous gauge symmetry breaking as
such cannot have physical consequences, this does not threaten the Higgs mecha-
nism. The Higgs mechanism can be described without relying on gauge symmetry
breaking, as will be discussed in section 6. That discussion will be preceded by
a section on global symmetry breaking (section 4) and a discussion of the Higgs
mechanism as spontaneous gauge symmetry breaking (section 5).

10The neutral current supports interactions that involve the exchange of a neutral Z boson
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4 Spontaneous breaking of global symmetry

The idea of gauge symmetry breaking is designed in analogy with global symmetry
breaking, but has a di↵erent outcome and a di↵erent conceptual content. To form
a clear concept of spontaneous gauge symmetry breaking it is therefore essential
to start by forming an idea of spontaneous breaking of a global symmetry. Part
of the discussion will be the description of the Goldstone theorem. This theorem
predicts the existence of a massless particle for each broken symmetry. Since these
particles are not present in the case of spontaneous gauge symmetry breaking, the
breakdown of the Goldstone theorem marks a di↵erence between global and local
symmetry breaking.

In section 5 the ideas of global symmetry breaking will be used to describe the
Higgs mechanism as spontaneous breaking of a local gauge symmetry. It will be
studied how the Goldstone theorem breaks down for gauge symmetry breaking.
After that, light will be shed on a di↵erent account of the Higgs mechanism: an
account that does not need gauge symmetry breaking.

The discussion of spontaneous global symmetry breaking will be started o↵
with the example of a ferromagnet. After that spontaneous symmetry breaking
in the global U(1) model is described, thereby using the language of classical field
theory. At the end of this section the Goldstone theorem will be discussed: it states
that for every broken continuous symmetry there must be a massless particle. The
general proof of the Goldstone theorem that will be presented there applies to the
domain of quantum mechanics.

4.1 Spontaneous symmetry breaking in a ferromagnet

The purpose of this example is to qualitatively explain spontaneous symmetry
breaking. The example of the ferromagnet is widely used in literature.11 A ferro-
magnet can be modeled as spins on a grid. At high temperature the spins point in
arbitrary directions, as in figure 4(a). Macroscopically (globally) the ferromagnet
is invariant under rotations due to the disordered formation of the spins. The
expectation value of macroscopic quantities such as the magnetization vanish in
this situation. When the temperature is lowered below a critical temperature, the
Curie temperature, the spins start to align. The magnetization becomes non-zero
and points in some specific direction. Thus the alignment of the spins breaks the
invariance of the ferromagnet under global rotations. In this situation the same
two comments can be made as were made for the example of the rod in the In-
troduction: the direction in which the spins align is arbitrary, and the di↵erent
directions are related by the original symmetry of the ferromagnet: rotations. The
symmetry is thus again hidden.

The description of a ferromagnet bears a close analogy to field theories. The
ferromagnet can be seen as a statistical system in which the free energy is mini-
mized. Below the Curie temperature, the free energy is minimized if the magne-
tization has a non-zero value. In the Landau-Ginzburg theory the free energy is
expressed in terms of the magnetization, in a form that is analogous to (Euclidean)
field theory where the Hamiltonian is expressed in terms of the fields [36, Section
11.3]. The description of spontaneous symmetry breaking in a ferromagnet is thus
very analogous to spontaneous symmetry breaking in field theory. Sponaneous
breaking of a global symmetry in field theory is the subject of the next subsection.

11See for example Ryder [38, section 8.1] and Zee [59, pp.199, 200].
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(a) The ferromagnet for T > T

c

.
The global rotational symmetry
is unbroken.

(b) The ferromagnet for T < T

c

.
The global rotational symmetry
is spontaneously broken.

Figure 4: Two dimensional model of spontaneous breaking of global rotational sym-
metry in a ferromagnet.

4.2 Spontaneous breaking of global U(1) symmetry

The discussion of global symmetry breaking will be centered around a simple
model: �

4 theory with a U(1) symmetry. This simple model will provide insight
into the analogies with local gauge symmetry breaking, that will also be consid-
ered for the U(1) model. U(1) is an internal symmetry, that describes for example
conservation of electric charge.

The U(1) transformation of a complex field � that will be considered here looks
like

�(x) �! e

i↵

�(x), (9)

where ↵ is a constant and hence a global parameter, independent of space-time.
Such a global parameter defines a global symmetry, as discussed in section 2. The
Lagrangian of complex �

4 theory is invariant under this global U(1) symmetry. It
is

L = @

µ

�@

µ

�

⇤ � µ

2
��

⇤ � �(��⇤)2, (10)

In a theory without symmetry breaking the second term is the mass term, with
µ

2
> 0 and the potential V = µ

2
��

⇤ + �(��⇤)2 has the form of a parabola. This
is sketched in figure 5(a). There is a unique vacuum that is symmetric: pertur-
bations around the ground state are symmetric under the U(1) phase rotation.
For spontaneous symmetry breaking the sign of the mass term is however chosen
negative instead of positive: µ2

< 0. The mass can be seen as imaginary; the field
is tachyonic. A tachyonic field is however unstable and will condense into a stable
state. The potential has the shape of a Mexican hat as sketched in figure 5(b).
The local maximum of the potential at �(x) = 0 is an unstable point associated
with the tachyonic field. The field will condense into a stable ground state. From
the figure it is clear that there is not a unique ground state for this system. There
is a set of degenerate vacuum states, lying on a ring in the complex plane (as
indicated by the red ring in the figure).

The value of the fields in the ground states can be found in a very standard
procedure by setting the derivative of the potential to zero. For the case µ

2
> 0

the minimum is found to be at � = 0, as is expected on inspection of the sketch
of the parabola-shaped potential. Since in the unbroken case the ground state
is thus at � = 0, perturbations around this ground state are expressed in small
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(a) For µ2
> 0 there is a unique ground state

at � = 0, sharing the U(1) symmetry of the
Lagrangian.

(b) For µ2
< 0 the ground state is degenerate.

Each ground state is asymmetric under the
U(1) symmetry of the Lagrangian.

Figure 5: The potential corresponding to the Lagrangian in equation (10) for two
di↵erent values of µ2.

values of the field �. The situation is however di↵erent if the symmetry is broken
in the ground state. When µ

2
< 0 the field � = 0 describes a local maximum,

rather than a minimum. The minima are found by evaluating

0 =
@

2
V (�)

@�

2
= µ

2 + 2���⇤
. (11)

From this it follows that ��

⇤ = �µ

2

2� and hence that the ground states all have
the same absolute value |�0|:

v := |�0| =
p
�0�

⇤
0 =

r
�µ

2

2�
(12)

The minima of this system are thus degenerate; there are multiple states with
the same vacuum energy. The di↵erent orientations in the complex plane define
di↵erent states. The orientation of these states is comparable to the direction of
alignment of the spins in the ferromagnet that was described in section 4.1. These
ground states are asymmetric under U(1): applying the U(1) transformation to
any of the vacuum states will rotate it to a di↵erent orientation that describes a
di↵erent physical state. For the spontaneous symmetry breaking in the rod and
in the ferromagnet two comments were made that apply equally to this case: each
of the ground states has an equal chance to be the ground state of the physical
system, and the ground states are related to each other by the U(1) symmetry
of the Lagrangian. Relating this situation to quantum mechanics might provoke
suspicion: through tunneling the real ground state could surely be a superposition
of the individual ground states, which would not be degenerate. But although
such a situation could occur in ordinary quantum mechanics, it does not apply to
quantum field theory. The fields live in an infinite volume and thus have infinitely
many degrees of freedom. Tunneling cannot happen in this case. All vacuum
states are orthogonal. This is extensively discussed by, for example, Weinberg [54,
pp. 163-167].

After identifying the vacua the next step is now to analyze the content of this
theory, by taking a closer look at the Lagrangian of equation (10). To analyze this
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Figure 6: The Mexican hat potential of spontaneously broken U(1) symmetry, with
excitations of the Goldstone field indicated by the orange arrow.

Lagrangian it is necessary to set up a perturbation expansion around the ground
state. Since the ground state of � is non-zero, it is not possible to perturb around
this field. � must be expressed in terms of a constant part that reflects the non-
zero value of the ground state and a variable field that is small for perturbations
around the ground state. That can be achieved by writing � as

�(x) = (v + ⌘(x))ei⇠(x). (13)

⌘(x) and ⇠(x) are real fields while �(x) is a complex field, so writing �(x) in terms
of two real fields is valid. If this expression is plugged into the Lagrangian, the
particle content of the theory should be more straightforwardly visible:

L = @

µ

⌘@

µ

⌘ + (v + ⌘)2@
µ

⇠@

µ

⇠ � µ

2(v + ⌘)2 � �(v + ⌘)4

= @

µ

⌘@

µ

⌘ + (v + ⌘)2@
µ

⇠@

µ

⇠ � 4�v2⌘2 + �v

4 � 4�v⌘3 � 4�⌘4. (14)

Here µ2 = �2�v2 is used for the elimination of µ2 out of the expression, after which
some terms cancel. The Lagrangian now shows that there is a mass term for the
⌘ field, with the mass given by m

2
⌘

= 4�v2. The coe�cient of this mass term is
positive. There is no mass term for the ⇠ field. The massless field is the Goldstone
boson, that always shows up for spontaneous breaking of a global symmetry. The
occurrence of this massless particle can be inferred from the Mexican hat shape
of the potential. In figure 6 the freedom of the Goldstone field is marked with a
green arrow - it is the angular displacement. A perturbation in this direction does
not face any resistance since the energy in the adjacent state is the same. This
field is therefore massless.

The presence of a massless boson for each broken symmetry is formulated in
the Goldstone theorem. The general proof for this is due to Goldstone, Salam and
Weinberg in 1962 [17].12 A slightly altered proof built from the same principles, is
given by Gilbert [15]. This second proof gives a clear insight into the assumptions
made and will be discussed in section 4.3. This will be useful in section 5 when
considering why the Goldstone theorem does not hold for gauge symmetries.

12The proof can also be found in Weinberg [54, section 19.2] and in Osborn [35, section 1.3]. A
proof has also been presented by Dr Wingate in the lectures on the Standard Model in part III of the
Cambridge Mathematical Tripos.
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4.3 The Goldstone theorem

The Goldstone theorem proves the existence of massless bosons in a theory with a
spontaneously broken (global) symmetry. The most general proof of the Goldstone
theorem is formulated in the language of quantum mechanics. In this section the
classical approach will be departed from temporarily. This will change some things:
for example the field and charge will now be operators. In this section the details
of the proof of the Goldstone theorem will follow a discussion by Gilbert [15].13

In the proof it will be shown that states must exist, that have zero mass and
spin 0 - the Goldstone bosons. Before proceeding to the details of the proof some
basic ideas are stated and an outline of the proof will be given.

The Goldstone theorem uses the notion that according to Noether’s first theo-
rem, for every global symmetry there is a conserved current j

µ

, such that @µ

j

µ

= 0.
From this conserved current a charge can be formed. For a global symmetry this
charge is time-independent. The charge (which is now an operator) is given by

Q =

Z
d

3
xj

0(x), (15)

and it generates the transformation of the fields �

i, where i labels the di↵erent
fields in the theory. This is seen from the commutation relation between the charge
and the field:

[Q(t),�i(x)] = ⌧

ij

�

j(x), (16)

where a summation runs over the repeated indices j.14 The non-zero vacuum
expectation value as a result of spontaneous symmetry breaking can then be ex-
pressed as

h0| [Q,�

i(x)] |0i = ⌧

ij h0|�j(x) |0i 6= 0. (17)

The proof of the Goldstone theorem centers around the Fourier transform of
the vacuum expectation value of the commutator of the current J

µ

(x) and field
�(0):

M

i

µ

(k) :=

Z
d

4
x h0| [J

µ

(x),�i(0)] |0i eikx. (18)

This quantity is the starting point of the Goldstone theorem. The evaluation of
this quantity itself is however not the goal of the proof; the objects of interest are
the intermediate states that will be inserted in this relation. States can be inserted
in equation (18) between J

µ

(x) and �

i(0) as long as they form a complete set of
states that satisfy the completeness relation

P
n

|ni hn| = 1. The eigenstates of

the momentum operator P̂ , that satisfy P̂ |ni = p

n

|ni form such a set of states.
The Goldstone theorem will prove that one of these states must necessarily be a
spin zero, massless particle: the Goldstone boson.

The set of states
P

n

|ni hn| = 1 will now first inserted into equation (18). The
form that the quantity M

i

µ

(k) then takes is used to present the outline of the rest
of the proof of the Goldstone theorem.

13This form of the proof can also be found in Bernstein [4, section II].
14This proof can be generalized to multiple charges Q, each arising from a di↵erent symmetry. These

symmetries can all independently be broken. For each broken symmetry the existence of a Goldstone
boson can then separately be proven. The generalization does not give additional insight into the
Goldstone theorem and its breakdown in the case of spontaneous breaking of a local symmetry. It will
therefore be omitted here.
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Inserting the intermediate states
P

n

|ni hn| = 1 in equation (18) gives:

M

i

µ

(k) : =

Z
d

4
x h0| [J

µ

(x),�i(0)] |0i eikx (19)

=
X

n

Z
d

4
x

�
h0| J

µ

(x) |ni hn|�i(0) |0i � h0|�i(0) |ni hn| J
µ

(x) |0i
�
e

ikx

.

The x-dependence of the current can be expressed as J

µ

(x) = e

�iP̂x

J

µ

(0)eiP̂x,

where P̂ is the momentum operator. The momenta of the states |ni are p
n

. Using
this, the expression above can be evaluated to give:

M

i

µ

(k) =
X

n

Z
d

4
x

⇥
e

ip

n

x h0| J
µ

(0) |ni hn|�i(0) |0i � e

�ip

n

x h0|�i(0) |ni hn| J
µ

(0) |0i
⇤
e

ikx

=
X

n

(2⇡)4
⇥
�(p

n

+ k) h0| J
µ

(0) |ni hn|�i(0) |0i � �(p
n

� k) h0|�i(0) |ni hn| J
µ

(0) |0i
⇤
.

(20)

From this relation a first observation can already be made about the intermediate
states. Any intermediate state |ni that contributes non-trivially to M

i

µ

(k) must

give a non-zero value to the matrix element
⌦
n

��
�

i(0)
��0
↵
. For this matrix element

to be non-zero, the states �i(0) |0i and |ni must not be orthogonal. The state |ni
must thus have the same quantum numbers as the field �

i. Since �

i is a scalar
field it has no spin. To make a non-zero contribution to M

i

µ

(k), the state |ni must
thus have spin zero as well. It can furthermore not be the vacuum state, since �

i

acting on the vacuum state creates a one-particle state. If |ni is not orthogonal
to �

i(0) |0i it must thus be a one-particle state with spin zero. The goal of the
Goldstone theorem is now to show that M i

µ

(k) is non-zero, such that the spin zero
particle must necessarily exist. Because M

i

µ

(k) will turn out to be proportional
to c1�(k2). c1 is shown to be non-zero, so that the spin zero particle must exist,
while the delta function in k

2 ensures that the particle is massless. The existence
of Goldstone bosons is then proven.

The next step in the proof is to write equation (20) in a general form. In
equation (20) M i

µ

(k) is written in terms of the intermediate states. The goal is to
find that some of these states must be massless bosons. This will be deduced from
a general expression for M

i

µ

(k) that is constructed from the Lorentz structure.
Since J

µ

is a four-vector the matrix elements h0| J
µ

(0) |ni must be proportional to
a four-vector. The four-vector present in the theory is p

n,µ

. Following Gilbert [15]
the matrix element is expressed in terms of this four-vector in order to maintain
manifest Lorentz covariance:

h0| J
µ

(0) |ni = a(p2
n

)p
n,µ

, (21)

where a(p2
n

) is an arbitrary function of p2
n

, the only Lorentz scalar that can be
formed. This expression is manifestly Lorentz covariant. If manifest Lorentz co-
variance were not required, a term proportional to an arbitrary four-vector ⌘

µ

could be added to the general expression in equation (21).

Here we note that Higgs [23] pointed out that this is the case for a gauge sym-
metry, thereby destroying the argument of the Goldstone theorem. Inspired by
the possibility of spontaneous breaking of gauge symmetries Higgs developed the
Higgs mechanism in a subsequent paper.15 The breakdown of the Goldstone the-
orem will be discussed in the next section. For now manifest Lorentz covariance

15Guralnik et al. [21] and Englert and Brout [10] independently developed descriptions of the same
mechanism.
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is required and the general form in equation (21) is used.16

The matrix element hn| J
µ

(0) |0i is similarly expressed in a general form as
hn| J

µ

(0) |0i = b(p2
n

)p
n,µ

. Using the general forms for these matrix elements in
equation (20) gives

M

i

µ

(k) = (2⇡)4
X

n

⇥
�

4(p
n

+ k)a(p2
n

)p
n,µ

⌦
n

��
�

i(0)
��0
↵
� �

4(p
n

� k)
⌦
0
��
�

i(0)
��
n

↵
b(p2

n

)p
n,µ

⇤

= (2⇡)4
�
�a(k2)k

µ

⌦
n

��
�

i(0)
��0
↵
✓(�k0)� b(k2)k

µ

⌦
0
��
�

i(0)
��
n

↵
✓(k0)

�
.

(22)

The step functions ✓(k0) and ✓(�k0) arise because the states |ni are required to be
physical states and thus have p0 = E

n

> 0. This leads to �(E
n

+ k0) = 0 if k0 > 0
and �(E

n

� k0) = 0 if k0 < 0. The expression is now rewritten in a convenient
form, replacing the step functions by a function ✏(k0) that is given by

✏(k0) =

⇢
�1 if k0 < 0,
1 if k0 � 0.

(23)

The general form that M i

µ

now takes is

M

i

µ

= ✏(k0)⇢
i

1(k
2)k

µ

+ ⇢

i

2(k
2)k

µ

, (24)

where ⇢i1 and ⇢

i

2 are functions of a(k2), b(k2) and the matrix elements
⌦
n

��
�

i(0)
��0
↵

and
⌦
0
��
�

i(0)
��
n

↵
.17

Now M

i

µ

(k) is written in this general form, it is possible to show that ⇢i1 and ⇢

i

2

are proportional to delta functions. This can be done by considering the conserva-
tion of the current @

µ

J

µ = 0. This implies that @µ

M

i

µ

(k) = ik

µ

M

i

µ

(k) = 0, where
the derivative is evaluated for M

i

µ

(k) as in equations (18) and (20) respectively.
Applying this to the general expression in equation (24) gives

✏(k0)⇢
i

1(k
2)k2 + ⇢

i

2(k
2)k2 = 0, (25)

which results in two constraining equations; one for k0 < 0 and one for k0 > 0:

⇢

i

1(k
2)k2 + ⇢

i

2(k
2)k2 = 0;

�⇢

i

1(k
2)k2 + ⇢

i

2(k
2)k2 = 0. (26)

The only solution to these equations is ⇢

i

1(k
2) = c

i

1�(k
2) and ⇢

i

2(k
2) = c

i

2�(k
2),

where c

i

1 and c

i

2 are undetermined parameters, that could at present still be zero.

It should be remembered that the i indices label di↵erent fields in the theory.
To prove the presence of Goldstone bosons, at least one of the parameters for a field
should be non-zero. If both parameters were zero, ⇢i1 and ⇢

i

2 and consequently
M

i

µ

would vanish, so that no conclusions can be drawn about the intermediate
states. But if one of the parameters is non-zero the delta function �(k2) ensures
that there are intermediate states that have k

2 = 0, and hence must be massless.
The last part of the proof of the Goldstone theorem is thus to show that c

i

1 6= 0

16The explicitness of this assumption in the proof by Gilbert is the reason that here this proof is
discussed, rather than that of Goldstone, Weinberg and Salam.

17More precisely, the functions are:

⇢

i

1(k
2) = (2⇡)4

2

⇥
�a(k2)

⌦
n

��
�

i(0)
��0
↵
+ b(k2)

⌦
0
��
�

i(0)
��
n

↵⇤

⇢

i

2(k
2) = (2⇡)4

2

⇥
�a(k2)

⌦
n

��
�

i(0)
��0
↵
� b(k2)

⌦
0
��
�

i(0)
��
n

↵⇤
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or ci2 6= 0.

To do this, the non-zero vacuum expectation value of � (equation (17)) that
has so far not been used, is put into play. It will be shown that c1 is proportional
to the non-zero vacuum expectation value. Therefore the zeroth component of
M

i

µ

(k) needs to be considered:

M

i

0 =

Z
d

4
x

⌦
0
�� ⇥
J0(x),�

i(0)
⇤ ��0

↵
e

ikx (27)

= ✏(k0)k0⇢
i

1(k
2) + k0⇢

i

2(k
2), (28)

where respectively the original definition of M i

µ

(equation (18)) and its general
form (equation (24)) are used. Now the existence of Goldstone bosons can be
proved by considering the integral of M i

0 over k0, setting k = 0. The results of
doing this for M i

0 as in equations (27) and (28) are then compared. For M i

0 as in
equation (27) the integral becomes:18

Z
dk0(M

i

0)k=0 =

Z
d

4
x

Z
dk0

⌦
0
�� ⇥
J0(x),�

i(0)
⇤ ��0

↵
e

ik

o

x0

=

Z
d

4
x 2⇡�(x0)

⌦
0
�� ⇥
J0(x),�

i(0)
⇤ ��0

↵

= 2⇡

Z
d

3
x

⌦
0
�� ⇥
J0(x, 0),�

i(0)
⇤ ��0

↵

= 2⇡
⌦
0
�� ⇥
Q,�

i(0)
⇤ ��0

↵

= 2⇡⌧ ij
⌦
0
��
�

j(0)
��0
↵
6= 0. (29)

In the last lines the assumption of spontaneous symmetry breaking as in equation
(17) is used:

h0| [Q,�

i(x)] |0i = ⌧

ij h0|�j(x) |0i 6= 0.

The integral over k0 is then again evaluated, for the general expression of M i

0 as
in equation (28). To evaluate this expression the following identity is used:

�(k2) =
�(|k|� k0)

2|k| +
�(|k|+ k0)

2|k| . (30)

The integral can be evaluated to give
Z

dk0(M
i

0)k=0 =

Z 1

�1
dk0

⇥
✏(k0)k0c

i

1 + k0c
i

2

⇤
�(k2)

=

Z 0

�1
dk0(�k0c

i

1 + k0c
i

2)
�(|k|+ k0)

2|k|

+

Z 1

0
dk0(k0c

i

1 + k0c
i

2)
�(|k|� k0)

2|k|

=
|k|
2|k| (c

i

1 � c

i

2) +
|k|
2|k| (c

i

1 + c

i

2) = c

i

1. (31)

Now equations (29) and (31) are combined to find c

i

1 6= 0. Since c1 is non-zero,
⇢

i

1 and thus M

i

µ

(k) are non-vanishing.19 There must thus be matrix elements⌦
n

��
�

i(0)
��0
↵
for some states |ni that are non-zero. For these matrix elements to

18The metric + - - - is used.
19The presence of the ✏(k0) function prohibits the cancellation of a non-zero value of c1 by any value

of c2. It can also be proved that c1 =
⌦
0
��
�

j(0)
��0
↵
/2⇡, but the proof of this will not be of extra value

for the present purposes.
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be non-zero |ni must have the quantum numbers of �i(0): it must have spin zero.
The proportionality to �(k2) implies the masslessness of this state. Furthermore
it cannot be the vacuum state, since it is not orthogonal to the one-particle state
that results from �

i(0) acting on the vacuum (�i(0) |0i). This thus establishes the
proof of the existence of a massless particle with spin 0: the Goldstone boson.

In this section spontaneous symmetry breaking for a global symmetry has been
discussed. It is shown how a massless boson appears for the U(1) symmetry, and
the appearance of Goldstone bosons has in general been proven by the Goldstone
theorem. In the next section it will be seen that for spontaneous breaking of a
gauge symmetry this massless particle will not be present. Rather, the component
of the field that would become the Goldstone boson disappears after gauge fixing.
The degree of freedom left over is picked up by the gauge field that becomes
massive. This is the context of the Higgs Mechanism which will be discussed in
the next section.

5 The Higgs mechanism as spontaneous gauge
symmetry breaking

In the previous section, spontaneous breaking of a global symmetry has been dis-
cussed. In this section the Higgs mechanism will be presented as the spontaneous
breaking of a gauge symmetry. The Goldstone bosons that appeared upon the
breaking of a global symmetry in the last section will not be found for sponta-
neously broken gauge symmetry: the Goldstone theorem breaks down. In this
section the Higgs mechanism is described as spontaneous breaking of a simple
U(1) gauge symmetry. After that it will be shown why the Goldstone theorem
breaks down. Thereby it will be seen that the possibility to fix a gauge plays an
important role in the di↵erence between global and gauge symmetry breaking.

5.1 The Higgs mechanism

The simple Abelian U(1) gauge theory that will be discussed here describes electro-
magnetism. The gauge boson that in this model become massive through sponta-
neous symmetry breaking is the photon. In nature photons are generally massless
particles, since electromagnetism is a long range force. The U(1) symmetry is then
unbroken. A situation in which photons are massive is in a superconductor where
the U(1) gauge symmetry is spontaneously broken. This was briefly described
in section 3. The Higgs mechanism explains how a field with an (asymmetric)
non-zero ground state can be the source of massive gauge bosons.

The Higgs mechanism can also be applied to non-Abelian gauge theories such
as the SU(2)⇥U(1) gauge symmetry that describes the electroweak interaction.
It is in this model that the Higgs mechanism found its most important applica-
tion: the mechanism allows the W and Z bosons to be massive. The non-Abelian
gauge symmetry has an extra di�culty rising from the Gribov ambiguity. This
theorem states that a gauge cannot be completely fixed for a non-Abelian gauge
theory. Instead of picking one representative for states that are related by a gauge
transformation, more than one representative state is picked. As was discussed
in section 2, the Gribov ambiguity is not a problem for perturbation theory - the
regime in which we will operate in this section. In section 6 the Gribov ambiguity
must be considered, when the gauge invariant approach to the Higgs mechanism
is discussed.
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The cornerstone in the Higgs mechanism is the assumption of a new field,
the Higgs field, whose non-zero vacuum expectation value breaks the U(1) gauge
symmetry of the Lagrangian. This feature is implemented in the Lagrangian in a
similar fashion as for the case of global symmetry breaking. The field is given a
negative parameter for its mass term (µ2

< 0); thus becoming tachyonic.
The Lagrangian for �4 theory with a U(1) gauge symmetry, has the form

L = �F

µ⌫

F

µ⌫

+D

µ

�D

µ

�

⇤ � µ

2
��

⇤ � �(��⇤)2. (32)

The gauge field A

µ

interacts with the field � in such a way that the Lagrangian is
invariant under the gauge transformations of � and A

µ

, as seen in equations (1)
and (3). As discussed before, a mass term would break the gauge invariance of
the Lagrangian.

In the Higgs mechanism �(x) is the Higgs field and µ

2
< 0, so that the po-

tential has the Mexican hat shape as in figure 5(b). To analyze the theory in a
perturbation expansion, it is as in the global case necessary to expand around
a variable field that is small for perturbations around the ground state. There-
fore the field is again written out in a polar decomposition, similar to the global
symmetry case:

�(x) = (⇢(x) + v)ei⇠(x) (33)

where again v =
q

�µ

2

2� , and ⇢(x) and ⇠(x) are real scalar fields. Plugging this
into the Lagrangian equation (32) gives:

L = �F

µ⌫

F

µ⌫

+ (@
m

u+ iqA

µ

)(⇢+ v)ei⇠(@µ � iqA

µ)(⇢+ v)e�i⇠

�µ

2(⇢+ v)2 � �(⇢+ v)4

= �F

µ⌫

F

µ⌫

+ @

µ

⇢@

µ

⇢+ (⇢+ v)2@
µ

⇠@

µ

⇠ + q

2(⇢+ v)2A2
µ

�2q(⇢+ v)2@
µ

⇠(x)Aµ � 4�v2⇢2 � �⇢

4 � 4�⇢3v + �v

4

= �F

µ⌫

F

µ⌫

+ @

µ

⇢@

µ

⇢+ v

2
@

µ

⇠@

µ

⇠ � 4�v2⇢2 + q

2
v

2
A

2
µ

� 2qv2@
µ

⇠(x)Aµ

+ cubic and quartic terms. (34)

To see the particle content of this theory, only the quadratic terms in this equa-
tion are interesting. The term q

2
v

2
A

2
µ

shows that the gauge field A

µ

has become
massive, due to its interaction with the constant part of the Higgs field. One of
the components of the Higgs field, ⇢(x), is massive due to the term 4�v2⇢2. The
other component ⇠(x) seems to be a massless Goldstone mode, like in the global
case. ⇠(x) is however not a physical particle: it is a function that results from
the freedom to pick a gauge. The freedom to pick a gauge can be used to set
�(x) = (⇢(x) + v) (so that thus ⇠(x) = 0). This choice of gauge is called the
‘unitary gauge’. It shows the particle content of the theory clearly, and is there-
fore used here. With another gauge, such as the Lorenz or Coulomb gauge the
outcome is the same but the physics is less straightforwardly visible.

To see that �(x) = ⇢(x) + v defines a gauge, it must be noted that this can be
achieved by a gauge transformation with ↵(x) = �⇠(x):

�(x) �! e

�i⇠(x)
�(x);

A

µ

�! A

µ

� 1

q

@

µ

⇠(x). (35)

With the gauge fixing, the gauge symmetry is removed from the Lagrangian. The
fields no longer have the freedom to transform under gauge transformations, be-
cause the one representation �(x) = ⇢(x)+v is fixed. In this gauge the Lagrangian
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then looks like

L = �F

µ⌫

F

µ⌫

+ @

µ

⇢@

µ

⇢� 4�v2⇢2 + q

2
v

2
A

2
µ

+ cubic and quartic terms. (36)

This Lagrangian now clearly shows that there is a massive gauge field and that
the Higgs field has one massive component. There are no massless particles in this
theory, and the field ⇠(x) has completely disappeared from the Lagrangian.

Looking at the outcome of the Higgs mechanism as compared to the global
case, it is hard to believe that both result from a similar mechanism. For the
gauge symmetry, instead of ending up with a massless Goldstone boson, there is
a massive gauge field. Why did the local gauge invariance of our theory change
the mechanism so severely? Part of the answer lies in the inapplicability of the
Goldstone theorem to gauge symmetries. This will be considered below. In section
6, a gauge independent formulation of the Higgs mechanism will be described, that
provides more insight to what makes the Higgs mechanism so di↵erent.

5.2 Breakdown of the Goldstone theorem

The way in which the Goldstone theorem breaks down depends on the gauge in
which the theory is evaluated. The result of course is the same for every choice
of gauge: no massless bosons. The role of gauge fixing in the breakdown of the
Goldstone theorem can give insight into the position of gauge symmetry break-
ing with respect to global symmetry breaking. Accordingly, the breakdown of
the Goldstone theorem will be considered here for two choices of gauge: the uni-
tary gauge and the Coulomb gauge. These choices cover two interesting cases.
In the unitary gauge the Goldstone theorem itself does not break down, but the
‘Goldstone bosons’ can nevertheless be rotated away. In the Coulomb gauge the
Goldstone theorem does break down: some of the assumptions made become in-
valid. The discussion in this section applies to the case of Abelian gauge theory.
In the non-Abelian case gauge fixing is not always unambiguously possible due to
the Gribov ambiguity. But this section nevertheless gives insight in the role of
gauge fixing in the Higgs mechanism.

The unitary gauge was used for spontaneous gauge symmetry breaking in sec-
tion 5.1, equation (35). In the Higgs mechanism as described above, the unitary
gauge is used to reveal the particle content of the Lagrangian. Choosing the uni-
tary gauge, the Goldstone theorem is not violated, but the Goldstone bosons (⇠)
are ‘rotated’ away as is described by Weinberg [54, pp.295-296]. It is possible to
make a rotation such that all the fields are orthogonal to the Goldstone fields. The
rotation is explicitly only possible if the Lagrangian is symmetric under a local
transformation. The rotation of the fields that rotates away the Goldstone bosons
is

�̃

i

(x) =
X

k

�

�1
ij

(x)�
j

(x), (37)

where �(x) is a suitable rotation of the fields and �̃

i

(x) are the rotated fields, that
do not include the Goldstone bosons. The specific rotation (with a fixed parame-
ter �(x) as in equation (37)) that makes the fields �̃ orthogonal to the Goldstone
bosons is in fact equivalent to choosing the unitary gauge. The Goldstone the-
orem does not break down for this gauge choice, but the ‘Goldstone bosons’ are
not physical particles.

The Coulomb gauge shows a di↵erent e↵ect. The gauge fixing constraint is
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given by r ·A = 0.20 This gauge preserves Lorentz covariance, although this is
not manifest in the description. This will violate the Goldstone theorem, as Higgs
[23] was the first to point out.21 In the Goldstone theorem the quantity M

i

µ

(k) is
written in a general form. This general form was chosen to show manifest Lorentz
covariance, and therefore be proportional to k

µ

, as in equations (21) and (24).
Thereby proportionality to an arbitrary four-vector ⌘

µ

was disregarded through
the argument of preservation of manifest Lorentz covariance. Since in the Coulomb
gauge this argument does not hold, the vector ⌘

µ

should now not be disregarded.
For gauge theories a general form must first be found for M

i

µ

(k)
A

, the quantity
equivalent to M

i

µ

from equation (18) but with A

µ

taking the place of J
µ

. The
general form of this quantity then also contains proportionality to the arbitrary
vector ⌘

µ

:

M

i

µ

(k)
A

=

Z
d

4
x h0| [A

µ

(x),�i(0)] |0i eikx

= a

i(k2, ⌘k)k
µ

+ b

i(k2, ⌘k)⌘
µ

+ c

i

⌘

µ

�

4(k). (38)

⌘

µ

is a four-vector in a given Lorentz frame, that can be chosen to be ⌘ = (1, 0, 0, 0).
The two Lorentz scalars that can occur in the considered functions are k2 and ⌘k.
Now this general expression and the relation between current J

µ

and gauge fields
A

µ

22 can be used to construct a general expression for M

i

µ

(k)
J

, the quantity
under consideration in the Goldstone theorem (equation (18)). It turns out that
the general expression then is

M

i

µ

(k)
J

= b

i(k2, ⌘k)
⇥
k

2
⌘

µ

� k

µ

(⌘k)
⇤
. (39)

It is not possible to prove the existence of Goldstone bosons from this expression.
The procedure in the Goldstone theorem was to use conservation of the current
to show k

µ

M

i

µ

(k) = 0, and from that find that the terms in M

i

µ

(k) must be pro-
portional to delta functions. But for the general structure as in equation (39)
this procedure fails, since k

µ

M

i

µ

(k)
J

is trivially zero. No conclusions can thus
be drawn from the general structure of M i

µ

(k) and the Goldstone theorem breaks
down.

The mathematical descriptions of what happens to the Goldstone bosons in the
case of gauge symmetry thus depend on the gauge in which the theory is analyzed.
From the discussion in this section it is important to notice the essential role that
gauge fixing plays. This puts the asymmetry of the ground state in a di↵erent
light: the gauge fixing procedure itself breaks this symmetry. What is the status
of an asymmetric vacuum, if gauge fixing is essential to see the physical content of
a theory? To investigate this and the role that gauge fixing plays, we will discuss
in section 6 accounts of the Higgs mechanism where gauge fixing is not employed.

6 The Higgs mechanism without spontaneous sym-
metry breaking

The procedure that was used in section 5 to describe the Higgs mechanism, uses
explicit gauge fixing by requiring that �(x) = ⇢(x) + v (thereby setting the imag-
inary part of �(x) to zero). But this gauge fixing gets rid of the gauge symmetry,

20In momentum-space this constraint takes the form (kA(k)) + (⌘k)(⌘A(k)) = 0, where ⌘ is a
four-vector that, by choosing a suitable Lorentz frame, can be set to ⌘ = (1, 0, 0, 0).

21Bernstein [4, section III] discusses the details of this.
22Namely the relation j

µ

(x) = @

@x

⌫

⇣
@A

⌫

(x)
@x

µ

� @A

µ

(x)
@x

⌫

⌘
.
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and thus obscures the meaning of gauge symmetry breaking. Happily, it is possible
to describe the Higgs mechanism in a gauge invariant way. This was already done
by Higgs, in a third paper on the mass of gauge bosons in 1966. Also, Kibble [28]
described this for non-Abelian gauge theories. In some recent papers these gauge
independent accounts of the Higgs mechanism are also discussed, either referring
to the old accounts or re-inventing them.23

The same result as in the discussion above is obtained by making convenient
field transformations. The only fields that remain in the theory are gauge invari-
ant. The fields that do transform under a gauge transformation are factored out
from the theory. These fields are what could be seen as the Goldstone bosons.
This procedure without gauge fixing is comparable to applying the field trans-
formations corresponding to the fixing of the unitary gauge (equation (35)), but
without considering ⇠(x) as a fixed function, so that the procedure is not a gauge
fixing. Rather ⇠(x) is still a variable field, and will disappear from the Lagrangian
in a ‘natural’ way. It can be shown that the fields that then still occur in the La-
grangian are invariant under the U(1) transformation. The new fields in terms of
which the Lagrangian is now written have a unique non-zero vacuum expectation
value. Through this non-zero value the same results are obtained as seen earlier
for the Higgs mechanism interpreted as spontaneous gauge symmetry breaking.

The procedure will be worked out in more detail below for U(1) gauge sym-
metry breaking. With a similar treatment it would be possible to do the same
for SU(2)⇥U(1), leaving a U(1) symmetry in the Lagrangian. This can be found
in Masson and Wallet [33]. But for the conceptual understanding of the role of
gauge symmetry the U(1) model is su�cient, so the case for SU(2)⇥U(1) is not
worked out here. It should be noted that the Gribov ambiguity cannot be ig-
nored for the non-Abelian case. The Gribov ambiguity indeed seems to appear
for the SU(2)⇥U(1) symmetry; but, as shown by Ilderton et al. [26] this can be
circumvented for the case in which the scalar Higgs field has a non-zero vacuum
value. Treatments of the gauge invariant approach to the Higgs mechanism for
SU(2)⇥U(1) are given by Chernodub et al. [7], Faddeev [12] and Masson and Wal-
let [33]. After describing the Higgs Mechanism in this gauge-independent way, a
discussion will follow on what this means for the understanding of spontaneous
gauge symmetry breaking.

For the description of the Higgs mechanism without symmetry breaking the
first important step is to write the theory in terms of gauge invariant variables.
This will make the theory independent of the gauge group under consideration.
The starting point is again the U(1) gauge invariant Lagrangian for �

4 theory
as in equation (32). Through field transformations the set of fields (A

µ

,�) is
transformed to a set of new fields (B

µ

, ⇢, ⇠). The old and new fields are related by

B

µ

= A

µ

� 1

q

@

µ

⇠(x);

�(x) = ⇢(x)ei⇠(x), (40)

where B

µ

(x) is a vector field and ⇠(x) and ⇢(x) are real scalar fields. ⇢(x) can be
chosen positive.

These transformations look a lot like the transformations that determined the
gauge fixing in equation (35). They are however not the same. The di↵erence

23Recent papers are Struyve [44], Masson and Wallet [33], Chernodub et al. [7] and Faddeev [12].
The gauge independent account is also discussed in Rubakov [37, section 6.1].
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between the two transformations is that in the gauge fixing ⇠(x) was a fixed field,
but now ⇠(x) is one of the variable fields. While earlier after the gauge fixing, the
gauge transformation could no longer be applied to the fields, now the gauge is not
fixed and the gauge transformations can be applied to the fields. Doing so, it can
be seen what the e↵ect of the U(1) transformations of �(x) and A

µ

(x) (equations
(1) and (3)) on the fields is:

B

0
µ

(x) = A

0
µ

(x)� 1

q

@

µ

⇠

0(x) = A

µ

(x) +
1

q

@

µ

↵(x)� 1

q

@

µ

⇠

0(x);

e

i↵(x)
�(x) = �

0(x) = ⇢

0(x)ei⇠
0(x)

. (41)

These transformations imply that B
µ

(x) and ⇢(x) are invariant under U(1), while
⇠

0(x) = ⇠(x) + ↵(x). This is clear if equation (41) is worked out further:

B

0
µ

(x) = A

µ

(x)� 1

q

@

µ

(⇠0(x)� ↵(x)) = A

µ

� 1

q

@

µ

⇠(x) = B

µ

(x);

�(x) = ⇢(x)ei⇠(x) = ⇢

0(x)ei(⇠
0(x)�↵(x))

. (42)

From the transformation ⇠

0(x) = ⇠(x) + ↵(x) it follows that the field ⇠(x) is a
pure gauge variable. It is the only one in the set of new fields that is not gauge
invariant. The Lagrangian in equation (32) can be rewritten in terms of the new
fields to give

L = �B

µ⌫

B

µ⌫

+ (@
µ

+ iqB

µ

)⇢(@
µ

� iqB

µ

)⇢�m

2
⇢

2 � �⇢

4
, (43)

where B

µ⌫

= @

µ

B

⌫

� @

⌫

B

µ

. The field ⇠(x) does not appear in this description;
it has been factored out. All fields in this theory are now invariant under the
U(1) gauge transformation; the U(1) symmetry has no grip on this theory.24 Now
the U(1) symmetry has been factored out, the ground state of the system is no
longer degenerate. There is a unique ground state with B

µ,0 = 0 and ⇢0 = v.
To describe perturbations around this ground state, the field ⇢(x) is rewritten

as ⇢(x) = v + ⌘(x), with ⌘(x) a variable field and v =
q

�µ

2

2� as before. The

Lagrangian that describes perturbations is now

L = �B

µ⌫

B

µ⌫

+ @

µ

⌘@

µ

⌘ + µ

2
⌘

2 + q

2
v

2
B

µ

B

µ + cubic and quartic terms, (44)

where only the quadratic part is shown explicitly. This Lagrangian is the same as
in equation (36), section 5, obtained for the Higgs mechanism with spontaneous
symmetry breaking. The Lagrangian contains a massive gauge boson B

µ

(x) and
one massive component of the Higgs field ⌘(x). The model is renormalizable; and
this can be shown by the same method as renormalizability for the equivalent
Lagrangian in equation (36) has been shown by ’t Hooft.

It has been shown how a description of the Higgs mechanism can be given
where gauge symmetry breaking plays no role. There are two reasons that this
treatment seems to be so di↵erent from the treatment involving gauge symmetry
breaking in section 5.1. The first one of course is that no gauge has been fixed,
because the procedure works with a gauge independent Lagrangian. The second
di↵erence is the order in which the two steps in the treatment of the previous sec-
tion are executed. The gauge symmetry seems to be spontaneously broken if first
the vacuum expectation value of the field is analyzed, and after that the gauge is
fixed as in section 5.1. These two steps could be done the other way around. If

24It might look like a discrete symmetry ⇢(x) �! �⇢(x) still remains from the gauge symmetry, but
this is not so. ⇢(x) is chosen to be positive in the field transformations equation (40), and thus does
not allow for this transformation.

28



the gauge were fixed first, there would be a unique vacuum state and there would
be no spontaneous symmetry breaking either.

Spontaneous breaking of the gauge symmetry is thus not a necessary step in
the Higgs mechanism. Is the possibility of describing the Higgs mechanism as
gauge symmetry breaking then still problematic? No, spontaneous gauge symme-
try breaking is not connected to the description of physics, since the meaning of
the symmetry breaking disappears once the physics comes into play and a gauge
is fixed. The possibility of giving a gauge independent description of the Higgs
mechanism underlines that.

Then if it is not spontaneous gauge symmetry breaking, what is the underly-
ing feature of the Higgs mechanism? The approaches discussed have one crucial
element in common: the non-zero vacuum expectation value of the Higgs field. A
further conceptual study of the Higgs mechanism should focus on this. What does
it mean for a field to have non-zero expectation value? Morrison [6, pp. 347 - 363]
discusses this. What the Higgs mechanism misses is an analog of the BCS theory
of superconductivity: there is no currently accepted “deep” explanation for the
non-zero vacuum value of the Higgs field.

7 Conclusions

Local symmetries in a deterministic theory are necessarily gauge symmetries - they
relate physically identical states. The spontaneous breaking of such a symmetry
cannot have any physical consequences. Nevertheless, the Higgs mechanism is
generally described as the spontaneous breaking of a local gauge symmetry. And
the Higgs mechanism furnishes the mass generation of the W and Z gauge bosons
in the electroweak theory: important physical consequences. This gives rise to an
apparent conceptual problem.

To study this, spontaneous breaking of a local symmetry was compared to
breaking of a global symmetry. It was seen that through the fixing of a gauge
the Goldstone theorem of the global case breaks down. The possibility to fix a
gauge by a local transformation marked the di↵erence between global symmetry
breaking and spontaneous symmetry breaking of a gauge symmetry as in the Higgs
mechanism. That gauge fixing makes spontaneous gauge symmetry breaking so
di↵erent from global symmetry breaking is not surprising: the gauge fixing breaks
the symmetry that should be broken in spontaneous symmetry breaking.

By considering a gauge independent approach to the Higgs mechanism, it has
been seen that gauge symmetry breaking is not an essential ingredient of the
Higgs mechanism. Gauge symmetry breaking is a mathematical artifact from
the redundancy in description related to a gauge symmetry, but is not directly
responsible for any of the physics of the Higgs mechanism. It has been shown that
the Higgs mechanism does not rely on spontaneous gauge symmetry breaking and
so is not threatened by the absence of physical implications of the spontaneous
breaking of a gauge symmetry. It is the non-zero vacuum expectation value of
the Higgs field that has physical implications. The fundamental question that the
Higgs mechanism does not answer, and which we leave open, is why and how the
Higgs field has a non-zero vacuum expectation value.
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