
THEORIES WITH THE INDEPENDENCE PROPERTY

M. VAN DE VEL

Abstract. A first-order theory T has the Independence Property
provided T ⊢ (Q)(Φ ⇒ Φ1 ∨ · · · ∨ Φn) implies T ⊢ (Q)(Φ ⇒ Φi)
for some i whenever Φ, Φ1, . . . , Φn are formulae of a suitable type
and (Q) is any quantifier sequence. Variants of this property have
been noticed for some time in logic programming and in linear
programming.

We show that a first order theory has the independence property
for the class of basic formulae provided it can be axiomatised with
Horn sentences. This condition, called crispness, is to some extent
also necessary, but the properties are not equivalent.

The existence of so-called free models is a useful intermediate
result. The independence property is also a tool to decide that a
sentence cannot be deduced. We illustrate this with the case of
the classical Carathéodory theorem for Pasch-Peano geometries.

1. Introduction

I once noticed a student making the following kind of mistake.

Given that Φ(x) implies Φ1(x) ∨ · · · ∨ Φn(x) for all x,
consider an arbitrary x satisfying Φ. Then x satisfies
Φi for some i. Since an arbitrary x satisfying Φ satisfies
this Φi, conclude that Φ(x) implies Φi(x) for all x.

This “result”, and in fact, this naive use of “an arbitrary x”, can some-
times be justified. We say that a first-order theory T has the In-
dependence Property with respect to a specified class F of formulae
provided the following holds. If T ⊢ (Q)(Φ ⇒ Φ1 ∨ · · · ∨ Φn) then
T ⊢ (Q)(Φ ⇒ Φj) for some j whenever Φ, Φ1, . . . , Φn are in F . The
expression (Q) refers to an arbitrary finite quantifier sequence. We
explicitly include the case of (Q) ∨n

i=1 Φi.
Such a property shows up in constraint logic programming (see [9]

for a survey), theories of feature trees ( [1], [2], [3], [18] ), and constraint
systems in real linear programming ([11]). In each of the cited exam-
ples, the class of formulae is some collection of so-called constraints,
which is part of a standard class of “basic formulae” (comparable with
facts in logic programming; see below).
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Occasionally, there are some differences with our viewpoint. In linear
programming, for instance, there are actually two classes of formulae
involved in the implications under consideration: one for “polyhedral”
formulae in the antecedent and one for ”affine” formulae in the conse-
quent. Moreover, [11] takes the viewpoint of a sequent calculus. Some-
times the independence property is expressed in terms of satisfaction by
a given model: If M |= (Q)(Φ⇒ Φ1∨· · ·∨Φn) then M |= (Q)(Φ⇒ Φj)
for some j. Yet another format of the property occurs, involving en-
tailment of implications of type

(Q)(Φ⇒ Φ1 ∨ · · · ∨ Φn)⇒ ∨n
j=1(Q)(Φ⇒ Φj).

Finally, in nearly all cases, only universal quantifiers are considered
(existential ones in contrapositional formulations).

Most of the cited papers consider the independence property as a
part of a decision procedure for solving equalities. Interestingly, it has
also been used to prove that the theory at hand is complete (the theory
of free equality with infinitely many operators [14]; the theory CFT of
constraint feature trees [2]; the theory FT of feature trees [3]). We
take the viewpoint of mathematical logic and model theory to develop
some general results about the independence property. For most of the
variant properties encountered, we give evidence that they amount to
the same. Algorithmic features are not considered.

In section 2 we describe the class of basic formulae and a general
type of “crisp” axioms which provide sufficient conditions for a theory
to have the independence property for basic formulae. (Crisp sentences
are logically the same as Horn sentences [5, p. 407].) Conversely, we
show that a theory with the independence property, of which all non-
crisp axioms are universal or positive, is logically equivalent with a crisp
theory. We also consider a “strong” independence property, where (in
the above notation) Φ is allowed to be a Horn formula. Adding crisp
axioms to a theory with a “strong” independence property preserves
the latter property. Finally, we found theories with the (strong) inde-
pendence property which are not crisp, but such theories seem rare.

An intermediate result is the existence of so-called free models for
crisp theories. Basic sentences, valid in a free model, can be deduced.
Such models embody the famous closed-world assumption: if a fact
can’t be proved, consider it false. On a related topic, an initial model
M of a theory has the property that for each model M ′ there is a
unique homomorphism M → M ′. Such models are easily seen to be
free. The existence of initial models of equational theories is known
since the early days of universal algebra ([4, p. 73]); it was extended
later to theories with universal definite Horn sentences. It is shown in
[15, cor. 4.6] that the existence of initial models requires a theory with
∀∃ axioms. In fact, such theories can be axiomatized with ∀∃ Horn sen-
tences and (up to a technical additional condition) this characterises
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theories with initial models ([15, thm. 5.9]). While initial models of
necessity have a trivial automorphism group, we show that crisp theo-
ries with non-trivial models do have free models with arbitrarily large
automorphism groups.

(Counter)examples and use of the independence property are dis-
cussed in section 3. A fairly detailed description of Pasch-Peano theory
is included, with a discussion of Carathéodory’s theorem.

The name “Independence property”, occuring in several papers on
feature trees, is preferred among more specific names such as “indepen-
dence of negative constraints” or “independence of disequalities”. The
oldest reference to the property seems to be Colmerauer [6]. The most
general approach so far seems to be [11], where connections between (a
sequent formulation of) the independence property and Horn sentences
can be found. However, example 2 in this paper is an overstatement
(see the remark following lemma 2.3 below).

Do not confuse the independence property with the “disjunction
property”, which refers to a property in intuitionistic logic [8].

2. The main results

2.1. Preliminaries. For undefined concepts and notation in logic we
refer to [5] and [16]. Let L be a first-order language. Given a formula Φ
in L, an array X of n distinct variables, and an array T of n terms, then
Φ[T ← X] denotes the result of substituting the ith variable by the ith

term (i = 1, . . . , n). If X is the array of all free variables of Φ, then ∀Φ
stands for the universal closure ∀XΦ of Φ. Similarly, the existential
closure ∃XΦ is abbreviated by ∃Φ. For X empty, both expressions
reduce to Φ.

A sentence is a formula without free variables whereas a proposi-
tion is a formula with no variables at all. An atomic formula is of
type P (t1, . . . , tn), where P is an n−ary predicate symbol of L and
t1, . . . , tn are terms of L, or (in a language with equality) an equa-
tion of terms. An elementary formula is a conjunction of one or more
atomic formulae and a basic formula is a formula of type (Q)Φ, where
(Q) represents a finite sequence of quantifiers (universal or existential)
and Φ is elementary.

A theory in a first-order language is just a set of sentences (axioms)
in that language. Two theories are (logically) the same if they have the
same consequences. A universal theory has an axiom system consisting
of sentences of type ∀Φ, where Φ contains no quantifiers. When talking
about models, an interpretation is (usually) implicitly assumed.

Part (a) of the following fact is well-known, [5]. Part (b) is a simple
form of Herbrand’s Theorem, which follows easily from (a) and [16,
prop. 10.92].
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Proposition 2.1. Let (L, T ) be a universal theory with L having at
least one constant.

(a) For each model M of (L, T ) there is a submodel M ′ ⊆M of (L, T )
consisting of all interpreted variable-free terms.

(b) Let Φ be a formula in L with only one free variable x such that
(L, T ) ⊢ ∃xΦ. Then there exist variable-free terms t1, . . . , tm of L
such that

(L, T ) ⊢ Φ[t1 ← x] ∨ · · · ∨ Φ[tm ← x].

2.2. Crisp theories. Below, (Q) represents a finite (possibly empty)
sequence of quantifiers. We may (and always will) assume that all
variables occurring in a quantifier array are distinct. A formula will be
called crisp provided it is of type

(Q)(Ψ1 ∧ · · · ∧Ψn),

where each formula Ψi has one of the following formats.

(1) Φ, with Φ a basic formula.
(2) ¬Φ, with Φ a basic formula.
(3) Φ1 ⇒ Φ2, with Φ1 and Φ2 basic formulae.

Quantifiers occuring in the basic formulae can be replaced with quan-
tifiers to the right of (Q). In this prenex normal form, crisp sentences
amount to the same as Horn sentences; cf. [5, p. 407].

A theory is called crisp provided it has an equivalent axiom sys-
tem, consisting of crisp sentences. Some crisp theories are discussed in
section §3.

We will occasionally make use of reduced products or reduced powers
of models. We refer to [5, chapt. 4] for these constructions.

Theorem 2.2. A theory is crisp iff it is stable under reduced products.

In this form (without the Continuum Hypothesis), the result is due to
Galvin ([7, thm. 2]). As a particular and rather straightforward case,
proved originally by Horn, crisp sentences are stable under (direct)
products.

Lemma 2.3. Let (L, T ) be a crisp theory in a language L and let Pj

for j ∈ J be atomic propositions in L. If T ∪ {¬Pj} is consistent for
each j, then T ∪ {¬Pj : j ∈ J} is consistent.

Proof. For each j ∈ J let Mj |= T ∪ {¬Pj} and let M :=
∏

j Mj. We

may assume that each axiom of T is a Horn sentence. Then M |= T .
The atomic proposition Pj is not valid in M since it fails at the jth

factor. �

The conclusion of the previous lemma can be restated in this form:
if Pi for i = 1, . . . , n are atomic propositions and T ⊢ ∨n

i=1Pi, then



THE INDEPENDENCE PROPERTY 5

T ⊢ Pi for some i. This is a primitive form of the independence prop-
erty, mentioned in an exercise of [17, pp. 94-95] as early as 1967. In
[11, example 2], it is claimed that the above property actually holds
for universally closed definite Horn clauses. No proof is given, but it is
suggested that this, too, is a consequence of the stability of models un-
der products. The following is a counterexample (without quantifiers).
Let Pi and Qi for i = 1, 2 be atomic propositions. Consider the theory
T := {Pi ⇒ Qi : i = 1, 2}. Then

T ⊢ (P1 ⇒ Q2) ∨ (P2 ⇒ Q1)

whereas T 6⊢ P1 ⇒ Q2 and T 6⊢ P2 ⇒ Q1.
To improve on the independence property, we have to proceed more

carefully.

Proposition 2.4. A consistent and crisp universal theory (L, T ) has
a model M such that for each basic sentence Φ in L,

M |= Φ iff (L, T ) ⊢ Φ.

Proof. We expand L to a language L′ with a countably infinite sequence
of additional constants. By Lemma 2.3 and Prop. 2.1(a), there is a
model M of (L′, T ) such that

(1) M |= ¬P for each atomic proposition P of L′ such that ¬P is
consistent with T .

(2) Each member of M is the interpretation of a variable-free term of
L′.

We verify that this model is as required. Let M |= (Q)Φ, where Φ is a
quantifier-free elementary formula of L′ and (Q) represents a sequence
of quantifiers involving different variables. If (Q) is the empty sequence,
then Φ is an elementary proposition and the result follows from (1).
Proceeding by induction, suppose (Q) has length n > 0, let M |= (Q)Φ,
and suppose the result valid for quantifier sequences of length n − 1.
We have two cases to consider.

(i) (Q) = ∃x(Q′), where x does not occur in (Q′). Then there is
m ∈M satisfying the interpretation of (Q′)Φ. By assumption (2), m is
the interpretation of a variable-free term t of L′. So M |= (Q′)Φ[t← x]
and by the induction hypothesis, (L′, T ) ⊢ (Q′)Φ[t ← x]. Therefore,
(L′, T ) ⊢ ∃x(Q′)Φ.

(ii) (Q) = ∀x(Q′), where x does not occur in (Q′). Let c be one
of the additional constants of L′ not occurring in Φ. We have M |=
(Q′)Φ[c← x] and by the induction hypothesis, (L′, T ) ⊢ (Q′)Φ[c← x].
Generalization on the constant c then yields (L′, T ) ⊢ ∀x(Q′)Φ, [16,
prop. 11.17].

After completing the induction, we see that the result follows by
restricting to formulae in L. �
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By a free model of a theory (L, T ) is meant a model M with

M |= Φ iff (L, T ) ⊢ Φ

for each basic sentence Φ in L. Note that every model of a complete
theory is free. In fact, it satisfies the condition for all sentences, not
just basic ones. For crisp theories, the restriction to basic sentences
is essential; the defining property may fail for sentences of type ¬Φ or
Φ1 ⇒ Φ2 with Φ, Φ1, Φ2 basic.

We now arrive at the first main result, linking crispness with the
existence of free models and with the independence property. In fact,
we can obtain a slightly stronger conclusion involving the following
version of the property: A theory (L, T ) has the Strong Independence
Property provided T ⊢ (Q)(Φ ⇒ Φ1 ∨ · · · ∨ Φn) entails T ⊢ (Q)(Φ ⇒
Φj) for some j whenever Φ1, . . . , Φn are basic formulae and Φ is crisp
(rather than just basic). As usual, the expression (Q) refers to an
arbitrary finite quantifier sequence. Again, we explicitly include the
case of (Q) ∨n

j=1 Φj . (The phrase “with respect to the class of basic
formulae” has been omitted above, and will mostly be omitted in the
future.)

Theorem 2.5. (1) A crisp theory has the strong independence prop-
erty.

(2) A consistent crisp theory has free models.

Proof. We establish part (1) first for a universal crisp theory (L, T ).
Let Φj for j = 0, 1, . . . , n be formulae in L of which Φ0 is crisp, the
other ones being basic, such that

T ⊢ (Q)(Φ0 ⇒ ∨
n
j=1Φj).

We may assume that no free variables occur in the deduced formula
and that Φ0 has no quantifiers (we can live with universal quantifiers).

The aimed result is valid in case the quantifier sequence (Q) is empty.
Indeed, under the given circumstances, all formulae Φj are sentences.
If the theory T ∪{Φ0} is inconsistent, there is nothing left to be proved.
So assume T is consistent with Φ0. We have a universal crisp theory
(L, T ∪ {Φ0}), which has a free model M , cf. Prop. 2.4. By the
Deduction Theorem,

(L, T ∪ {Φ0}) ⊢ ∨
n
j=1Φj ,

and hence we find that
M |= ∨n

j=1Φj .

The expression to the right is a disjunction of sentences. Hence there
is j ∈ {1, . . . , n} with

M |= Φj .

Now Φj is a basic sentence in L. As M is a free model, we find

(L, T ∪ {Φ0}) ⊢ Φj ,
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whence (L, T ) ⊢ Φ0 ⇒ Φj by the Deduction Theorem again.
We allow Φ0 to be absent. In this case, the steps involving the

deduction theorem are skipped.
Suppose next that the quantifier array (Q) has length > 0. Let L′ be

the language obtained from L by adding a countably infinite sequence
of new constants. Starting with the sentence

(Q)(Φ0 ⇒ ∨
n
j=1Φj)

(stage 0), we shall peal off the quantifiers of (Q) from left to right. Let
Θ denote the formula following the sequence (Q). At each stage k, we
shall obtain a statement of type

T ⊢
∨

α∈Ik

(Q′)Θ[Tα ← Xk, Cα ← Yk].

where (Q′) is (Q) minus the leftmost k quantifiers. The variables cor-
responding to the missing quantifiers fall into two arrays Xk and Yk.
Each member of Xk comes from an existential quantifier and each mem-
ber of Yk comes from a universal quantifier. The members of Cα are
distinct constants of L′ not in L and members of Tα are variable-free
terms of L′. Each index α ∈ Ik is a sequence of length k, consisting of
non-negative numbers.

At the initial stage k = 0, the index collection I0 contains only
the empty sequence, the disjunction has only one member, and no
substitution takes place. Suppose at stage k ≥ 0 we have obtained the
above statement with a nonempty right end (Q′) and indices α ∈ Ik.
We have to distinghuish two cases.

(I) (Q′) = ∀y(Q′′), where y does not occur in (Q′′). For each α ∈ Ik,
take a distinct constant cα of L′ not in L and not occurring in the
formula following (Q′′). Then

(L′, T ) ⊢
∨

α∈Ik

(Q′′)(Θ[Tα ← Xk, Cα ← Yk][cα ← y]).

We introduce a new index set Ik+1, whose members are sequences of
type α0 with α ∈ Ik. The array Tα is renamed Tα0; Xk is renamed
Xk+1; the array Cα0 is the old array Cα with the new constant cα

appended, and y is appended to Yk to form the array Yk+1.
(II) (Q′) = ∃x(Q′′), where x does not occur in (Q′′). We can put

the quantifier ∃x in front of the disjunction
∨

α. The theory T being
universal, we can apply Prop. 2.1(b). There are variable-free terms ti
of L’ for i = 1, . . . , nk+1, such that

(L′, T ) ⊢
∨

i

∨

α∈Ik

(Q′′)(Θ[Tα ← Xk, Cα ← Yk][ti ← x]).

We introduce a new index set Ik+1 with indexes of type αi, where
i = 1, . . . , nk+1. For each new index αi, the array Tαi is the old array
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Tα with the term ti appended. The variable x is appended to Xk and
the array Cαi is just the old array Cα.

This completes the induction, leaving us with a deduction

(1) (L′, T ) ⊢
∨

α

(

Φ0[Tα, Cα]⇒ ∨n
j=1Φj [Tα, Cα]

)

with the listed properties and an empty quantifier sequence in front
of the implications. Here, and in the sequel, we are using [Tα, Cα]
as shorthand for the substitution [Tα ← X, Cα ← Y ]. Elementary
proposition logic yields that

(L′, T ) ⊢ ∧αΦ0[Tα, Cα]⇒ ∨α ∨
n
j=1 Φj [Tα, Cα]

Note that ∧αΦ0[Tα, Cα] is crisp. The no-quantifier case of the indepen-
dence property yields indices α∗ and j∗ such that

(L′, T ) ⊢ ∧αΦ0[Tα, Cα]
)

⇒ Φj∗[Tα∗, Cα∗].

This can be weakened to

(L′, T ) ⊢ ∧αΦ0[Tα, Cα]⇒ ∨αΦj∗[Tα, Cα],

and again by elementary proposition logic we obtain

(L′, T ) ⊢
∨

α

(

Φ0[Tα, Cα]⇒ Φj∗[Tα, Cα]
)

.

Now we trace back our steps through the quantifier elimination pro-
ces. Suppose we are at stage k > 0 and that we recovered a statement
of type

(L′, T ) ⊢
∨

α∈Ik

(Q′)
(

Φ0[Tα, Cα]⇒ Φj∗[Tα, Cα]
)

,

where we restored a right end (Q′) of (Q) in front of each disjunction
term. If we originally reached this stage by case I, all indexes are of
type α0 with α ∈ Ik−1. The terms array Tα0 is just Tα. In the constants
array Cα0, the last element cα is removed, and the resulting array is
Cα. By generalisation on constants, cα may be replaced by the k-th
variable y in the original quantifier arrangement (Q) and the currently
restored sequence is ∀y(Q′) regardless of α.

If we originally reached the current stage by case II, all indexes are
of type αi with α ∈ Ik−1 and i = 1, . . . , nk+1. The array Cα is the same
as Cαi. The array Tα obtains from Tαi by deleting the last term ti. At
each position where the term ti was introduced, we now put back the
original variable x and we let each disjunction term be preceded by ∃x
(so-called ∃-introduction). Note that the disjunction terms, indexed
by αi with fixed α, are now identical. Only one copy with index α is
maintained.

After completing the induction we obtain

(L′, T ) ⊢ (Q)(Φ0 ⇒ Φj∗).
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The additional constants of L′ are no longer involved and we can restrict
ourselves to the language L.

To obtain the result for general crisp theories, we use a method of
restricted skolemisation. Given a sentence (Q)Θ, written in prenex
normal form with Θ quantifier-free, we can obtain a formula of type
∀Y ΘSk as follows. The universal quantifier sequence ∀Y is what re-
mains of (Q) after all existential quantifiers are dropped. This goes
from left to right and at each stage (say, at the quantifier ∃x), a dis-
tinct new term is added to the language. This term depends exactly on
all variables occurring in universal quantifiers in (Q) to the left of ∃x,
and it will replace all occurences of x in Θ. When all existential quan-
tifiers are gone, we are left with the formula ∀ΘSk. Note the logical
implication ∀Y ΘSk ⇒ (Q)Θ.

We may assume that T is a collection of crisp sentences. Applying
the above construction on each member of T , we obtain a collection
T Sk of crisp and universal sentences in an extended language LSk. By a
routine argument, (LSk, T Sk) is a conservative extension of the original
theory. Suppose that

(L, T ) ⊢ (Q)(Φ0 ⇒ ∨
n
j=1Φj),

where Φ0 is crisp and Φj for j = 1, . . . , n are basic. By an observation
above,

(LSk, T Sk) ⊢ (Q)(Φ0 ⇒ ∨
n
j=1Φj).

As shown in part (i), we obtain an index j ∈ {1, . . . , n} with

(LSk, T Sk) ⊢ (Q)(Φ0 ⇒ Φj).

The Skolem expansion being conservative, We conclude that

(L, T ) ⊢ (Q)(Φ0 ⇒ Φj).

To see that a consistent crisp theory has free models (part (2)), we
use a restricted Skolem expansion as explained in the previous para-
graph. This expansion is consistent, universal, and crisp, whence it
has a free model, cf. prop. 2.4. Restricting the interpretation to the
original language yields a model as required. �

Recall ([16, p. 402]) that a formula is positive if it can be built
exclusively with the connectives ∧,∨, ∀, ∃. Here is some additional
information on free models and on the necessity of crispness for the
independence property.

Theorem 2.6. (1) In a language with equality, a consistent crisp the-
ory which entails ∃x, y ¬(x ≈ y) has free models with arbitrarily
large automorphism groups.
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(2) If a theory has the independence property and all non-crisp axioms
are universal or positive, then the theory is logically equivalent to
a crisp theory.

(3) If a theory with the strong independence property is extended with
crisp axioms, then the extended theory has the strong independence
property.

Proof. We first verify part (1). Let (L, T ) be a crisp theory with
(L, T ) ⊢ ∃¬(x ≈ y). The elementary class of a crisp theory is sta-
ble under products by theorem 2.2. It follows that T (and, in fact,
every consistent crisp extension of it) has infinite models.

The argument proving 2.5(2) shows that any free model of the (re-
stricted) skolemisation of (L, T ) is a free model of the original theory.
Also, the skolemisation entails ∃¬(x ≈ y). Therefore, without loss of
generality, we may assume that T is universal.

Let (L, <) be a linearly ordered set of any infinite cardinality and
let L′ arise from L by adding the members of L as constants.

Consider the collection Σ of all sentences of type

(2) ¬ a ≈ b (a 6= b ∈ L)

(3) Φ[A← X]⇔ Φ[B ← X],

where Φ is any formula in L with an array X of n free variables, and
A, B, are n−tuples in L, listed in increasing order. By virtue of [5,
lemma 3.3.9], the theory (L′, T ′ ∪ Σ) is consistent for each consistent
crisp extension (L, T ′) of (L, T ) . In the sequel we shall consider the
subset Σ′ of Σ, consisting of the inequalities in (2) and all equivalences
of type (3) involving atomic formulae Φ only. So, all sentences of Σ′

are crisp. This leads us to a free model (M, I) of T ∪Σ′ containing the
set L. The theory T ∪ Σ′ being universal, we may replace M by the
submodel, consisting of all interpreted terms I(t) of L′; cf. prop. 2.1(a).
Note that this is another free model of T ∪ Σ′.

We first show that the restriction of M to L is a free model of T .
Suppose Φ is a basic sentence of L such that M |= Φ. Then T ∪Σ′ ⊢ Φ.
If T 6⊢ Φ, we have a consistent crisp extension T ∪ {¬Φ} which (as
observed above) must be consistent with Σ′, a contradiction.

Let C ⊆ M denote the set of interpreted constants of L′; note that
L ⊆ C. Modifying part of the argument in [5, thm. 3.3.11c], we achieve
our goal by proving that every bijection f : C → C, which restricts to
an order isomorphism of L and which is the identity outside L, extends
uniquely to an isomorphism of M . The prescription is as follows:

f(I(t)(I(c1), . . . , I(cn))) := I(t)(f(I(c1)), . . . , f(I(cn)))
with c1, . . . , cn constants of L′.

This follows from the requirements; uniqueness is not an issue.
To verify that we have a well-defined function, suppose that

I(s)(a1, . . . , am) = I(t)(b1, . . . , bn).
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Here, we assume that s, t are terms of L′, m, n ≥ 0, a1, . . . , am, b1, . . . bn ∈
L, and a1 < · · · < am, b1 < · · · < bn. Constants outside of L are
not mentioned explicitely. This equation is an instance of an atomic
formula Φ(x1, . . . , xp) in L′, where max(m, n) ≤ p ≤ m + n and
c1 < · · · < cp is an ordered listing of all ai and bj . By construction,

M |= Φ(c1, . . . , cp)⇔ Φ(f(c1), . . . , f(cp)),

which yields

I(s)(f(a1), . . . , f(am)) = I(t)(f(b1), . . . , f(bn)).

We next claim that the extension f : M → M is a homomorphism.
This means

(i) f(I(t)(x1, . . . , xn)) = I(t)(f(x1), . . . , f(xn)) for each n-ary term
symbol t of the language and for each x1, . . . , xn ∈M .

(ii) if I(P )(x1, . . . , xn)) then I(P )(f(x1), . . . , f(xn))) for each n-ary
predicate symbol P of the language and for each x1, . . . , xn ∈M .

The first statement holds by the prescription of the extension; the
second statement follows with an argument as above by using suitable
sentences in Σ′.

Observe that the identity function of C leads to the identity function
on M . Hence, uniqueness of the induced function leads to its functo-
riality, from which it follows that an isomorphism of the ordered set L

leads to an isomorphism of M .

To establish part (2) of the theorem, suppose (L, T ) is a theory with
the independence property such that all non-crisp axioms are universal
or positive. Let Θ be a non-crisp axiom of T . Rewrite Θ in normal
conjunctive form as

(Q) ∧i∈I (∨p∈Ji
P i

p ∨ ∨n∈Ki
¬N i

n)

with a quantifier array (Q) and atomic propositions P i
p and N i

n of L.

(i) Θ is a universal sentence. Rewrite Θ as

∧i∈I∀(∧n∈Ki
N i

n ⇒ ∨p∈Ji
P i

p).

Applying the independence property to each conjunct separately,
we obtain

T ⊢ ∀ ∧i∈I (∧n∈Ki
N i

n ⇒ P i
p(i))

for a suitable choice of p(i) ∈ Ji for each i ∈ I. For conjuncts with
no “positive” atomic propositions P , resp., with no “negative”
atomic propositions N , the expression ∧n∈Ki

N i
n ⇒ P i

p(i) should
be replaced by, respectively,

¬(∧n∈Ki
N i

n), and P i
p(i).

In any case, the resulting crisp sentence is a consequence of T and
in turn implies Θ.
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(ii) Θ is a positive sentence. Then Θ can be rewritten in the form

(Q)(∨k∈K ∧l∈Lk
P k

l ).

Direct application of the independence property yields an index
k ∈ K such that T ⊢ (Q) ∧l∈Lk

P k
l . The resulting crisp sentence

is a consequence of T and in turn implies Θ.

As for a proof of part (3), it suffices to consider one additional crisp
axiom Ψ. Suppose

T ∪ {Ψ} ⊢ (Q)(Φ⇒ ∨n
i=1Φi).

Applying the Deduction theorem and a logical equivalence, we obtain

T ⊢ (Q)(Ψ ∧ Φ⇒ ∨n
i=1Φi).

By the strong independence property, T ⊢ (Q)(Ψ ∧ Φ⇒ Φi) for some
i > 0. We conclude that T ∪ {Ψ} ⊢ (Q)(Φ⇒ Φi) for this i. �

Part (1) confirms that free models are not the same as initial models,
well-known from (a.o.) equational theories. By its very definition, an
initial model must have a trivial automorphism group.

In the argument proving part (2), the assumed format of non-crisp
axioms is such that the independence property can somehow be applied.
Attempting a proof for general theories, a version of the independence
property is suggested that deals with sentences of type

(Q) ∧i (Φi
0 ⇒ ∨jΦ

i
j)

with Φi
0 and Φi

j basic for all i, j. (For some i, the part “Φi
0 ⇒” may

be missing.) Note that every sentence can be put into the suggested
format, which would give this version of the independence property an
amazingly wide range of application.

However, we do have an example of a crisp theory which does not
satisfy the desired strengthening of independence.

Consider a language with two constants c, d and with five unary pred-
icate symbols P, P ′, Q1, Q2, Q. The crisp axiom collection T consists
of the following.

(i) Pc⇒ Q2c.
(ii) Pd⇒ Q1d.
(iii) P ′d⇒ Pc.
(iv) P ′c⇒ Pd.
(v) ¬(Pc ∧ Pd).

It is easily seen that

T ⊢ ∃y((Py⇒ Q1y ∨Q2y) ∧ (P ′y ⇒ Qy)).

On the other hand, we have two models with universe {c, d} and two
interpretations of the predicates such that, respectively:
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model 1 P P ′ Q1 Q2 Q

c + – – + ?
d – + + ? –

model 2 P P ′ Q1 Q2 Q

c – + ? ? –
d + – + – ?

(Missing information at a question mark is irrelevant.) The first model
does not satisfy ∃y((Py ⇒ Q1y) ∧ (P ′y ⇒ Qy)), whereas the second
model does not satisfy ∃y((Py⇒ Q2y) ∧ (P ′y ⇒ Qy)) .

The argument proving part (3) does not extend to cover the (non-
strong) independence property. However, we can adapt the argument
to show that the (non-strong) independence property is preserved if
axioms of type β, ¬β, β1 ⇒ β2, with β, β1, β2 basic, are added.

Our next results deal with sentences of type

(Q)(Φ⇒ ∨n
i=1Φi)⇒ ∨

n
i=1(Q)(Φ⇒ Φi),

(Q)(∨n
i=1Φi)⇒ ∨

n
i=1(Q)(Φi),

where Φ is a basic (or crisp) formula, Φ1, . . . , Φn are basic formulae,
and (Q) is a sequence of quantifiers. We refer such sentences as “ad-
missible”, with the adjective “strong” in case the formula Φ is allowed
to be crisp. As before, we allow sentences with “Φ⇒” missing.

Proposition 2.7. (1) A consistent theory, which is maximal with
the strong independence property, is complete.

(2) A consistent theory with the independence property is consistent
with each admissible sentence.

(3) A consistent theory with the strong independence property is
consistent with the set of all strongly admissible sentences.

Proof. Suppose T is a consistent theory which is maximal with the
strong independence property. By virtue of theorem 2.6, part (3), each
crisp sentence, consistent with T , can be deduced from T . Hence, all
models of T satisfy exactly the same crisp sentences. By [5, thm. 6.3.18],
every sentence in L is logically a Boolean combination of crisp sen-
tences. Hence all models of T satisfy exactly the same sentences of L;
therefore, T is a complete theory.

As to parts (2) and (3), let T be a consistent theory with the (strong)
independence property. We first consider the case of a single (strong)
admissible sentence, with notation as above. Suppose it is inconsistent
with T . Then T ⊢ (Q)(Φ⇒ ∨n

i=1Φi) and T ⊢ ¬∨n
i=1 (Q)(Φ⇒ Φi). As

T has the (strong) independence property, the first of these statements
yields an index i and a proof of (Q)(Φ⇒ Φi). Hence there is a proof of
∨n

i=1(Q)(Φ⇒ Φi), contradicting that T is consistent. (The alternative
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format is treated similarly.) This establishes (2); we continue with a
proof of (3).

Note that a consistent theory with the strong independence prop-
erty obviously extends to a maximal one. Hence it suffices to prove
the result for a maximal consistent theory T with the strong indepen-
dence property. Then T is complete by part (1). Strongly admissible
sentences being individually consistent with T , they are entailed by
it. �

So far we have been unable to extend parts (1, 3) of prop. 2.7 to
cover the (non-strong) independence property.

Corollary 2.8. (1) A complete theory has the (strong) independence
property if and only if it entails the theory A (SA) of all (strong)
admissible sentences.

(2) A consistent theory with the strong independence property has a
model M such that M |= (Q)(Φ ⇒ ∨n

i=1Φi) iff M |= (Q)(Φ ⇒ Φi)
for some i (Φ crisp, Φi basic).

Proof. Let T be a complete theory with the (strong) independence
property. By proposition 2.7(2), a (strong) admissible sentence is
consistent with T . Hence it is entailed by T . Conversely, let T be
a complete theory that entails all (strong) admissible sentences. If
T ⊢ (Q)(Φ ⇒ ∨n

i=1Φi) with Φ basic (crisp) and Φi for i = 1, . . . , n
basic, then we can use the appropriate (strong) admissible sentence to
conclude that T ⊢ ∨n

i=1(Q)(Φ ⇒ Φi). As T is complete, this yields
an index i with T ⊢ (Q)(Φ ⇒ Φi). (The alternative format is treated
similarly.)

As to part (2), let T be a consistent theory with the strong indepen-
dence property. By Zorn’s Lemma and 2.7(1), T has a complete ex-
tension with this property. This extension entails all strong admissible
sentences by part (1). Any model of it is a model of T as required. �

Contrasting with the statement in part (2), certain models of a crisp
theory may fail to satisfy the independence property. Here is a note-
worthy example, based on an observation in [10]. Consider the theory
FE of free equality in a language L with equality and operator symbols
(among which is at least one constant). The axioms of FE are

(1) ∀(f(x1, . . . , xn) ≈ f(y1, . . . , yn) ⇒ ∧n
i=1xi ≈ yi), where f is an

n-ary operator.
(2) ∀¬(f(x1, . . . , xnf

) ≈ g(y1, . . . , yng
)), (where f, g are distinct op-

erator symbols of arity nf and ng respectively.
(3) ∀x¬(x ≈ t), where t is a term other than x in which x occurs.

Obviously, this theory is crisp. The Herbrand universe, consisting of
all variable-free terms of L, is a model of FE . If L has finitely many
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operator symbols, then the model satisfies the sentence

∀x∃Y1 . . . Yk(∨
k
i=1x ≈ fi(Yi)),

where {f1, . . . , fk} are all operator symbols of L and Yi is an array
of variables the size of fi’s arity. All variables involved are distinct.
However, if k > 1 then the model fails all sentences ∀x∃Yi(x ≈ fi(Yi))
for i = 1, . . . , k.

For another example, see the discussion of Pasch-Peano theory in
§3).

To have all models of a theory T satisfy the strong independence
property means that T entails the theory SA of all strong admissible
sentences. This is another, much stronger, format found in the litera-
ture; it is exclusively used with complete theories, in which case corol-
lary 2.8(1) provides a justification. Alternatively, a model complete the-
ory (L, T ) with the strong independence property entails SA. Indeed,
by [5, thm. 3.5.1], for each model M of T , the theory (LM , T ∪ ∆M )
is complete (where ∆M is the diagram of M and LM contains all ele-
ments of M as constants). It has the strong independence property by
theorem 2.6(3), and hence entails SA by corollary 2.8(1).

In our search for examples of a non-crisp theory with the indepen-
dence property, we took a closer look at the theory SA.

Theorem 2.9. Let L be a non-trivial language. Then the theory SA in
L, consisting of all strong admissible sentences, is nonempty and con-
sistent. Moreover, each subtheory of SA has the strong independence
property. If its axioms are taken from SA, then a subtheory is stable
under reduced powers.

Proof. We assume that the language L is non-trivial just to make sure
that the collection SA is nonempty. The theory SA is consistent by
proposition 2.7(3).

We next prove that any subtheory T of SA has the strong indepen-
dence property. Suppose

T ⊢ (Q)(Ψ⇒ ∨n
i=1Φi),

where Ψ is crisp and each Φi is basic. Let Θ denote the entailed formula.
Its negation is

¬Θ = (Q′)(Ψ ∧ ∧n
i=1¬Φi),

where (Q′) is the complementary quantifier sequence. We see that
¬Θ is a crisp sentence inconsistent with T and hence with SA. By
proposition 2.7(2), ¬Θ must be a contradiction. Hence ⊢ (Q)(Ψ ⇒
∨n

i=1Φi). As the “empty” theory is crisp, we conclude that ⊢ (Q)(Ψ⇒
Φi) for some i. Then certainly T ⊢ (Q)(Ψ⇒ Φi).

As to the final part, note that (with our usual notation) each strong
admissible sentence can be written equivalently as

(Q′)(Ψ ∧ ∧n
i=1¬Φi) ∨ ∨

n
i=1(Q)(Ψ⇒ Φi).
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As before, (Q′) is the complementary quantifier sequence of (Q). Ap-
parently, this is a disjunction of crisp sentences. By [7, Thm. 6], a
theory based on such sentences is stable under reduced powers. �

Example 2.10. There is a non-crisp theory with the strong indepen-
dence property.

Proof. We consider a language with four binary predicate symbols
P, P1, P2, P3. For convenience, we use the following abbreviations.

Ψi := ∀x∃y(P (x, y) ∧ ¬Pi(x, y)), i = 1, 2, 3;

Ψi,j := ∀x∃y(P (x, y) ∧ ¬Pi(x, y) ∧ ¬Pj(x, y)), i 6= j ∈ {1, 2, 3},

Ψ1,2,3 := ∀x∃y(P (x, y) ∧ ¬P1(x, y) ∧ ¬P2(x, y) ∧ ¬P3(x, y)).

The reader may verify that each of the following two packages is con-
sistent:

{Ψ1, Θ2.3 := ∃x∀y(P (x, y)⇒ P2(x, y) ∧ P3(x, y))},

{¬Ψ1, Ψ2, Ψ3,¬Ψ2,3}.

Note the conjunction in Θ2.3, which makes the formula different from
¬Ψ2,3. Let M1 and M2 be a model of the first, resp., the second package.
Both models satisfy the admissible (contrapositional) sentence

(∗) ∧i Ψi ⇒ Ψ1,2,3.

In fact, both parts of the implication fail on each model. On the other
hand, if a ∈ M1 is a value of x that must exist by Θ2.3, and if b ∈ M2

is a value of x that exists by ¬Ψ2,3, then taking (a, b) ∈M1×M2 as x,
we find that the formula

∃y(P (x, y) ∧ ¬P1(x, y) ∧ ¬P2(x, y) ∧ ¬P3(x, y))

does not hold in M1 ×M2. Yet the product does satisfy ∧iΨi.
Being unstable under products of models, the theory with just the

axiom (*) is not crisp by theorem 2.2. Being a subtheory of SA, the
theory (*) has the strong independence property by theorem 2.9. �

The above example arose from a failed attempt to prove that indi-
vidual admissible sentences are product-stable. However, we were able
to verify the following. First, a sentence of type

(Q)(Φ⇒ ∨n
i=1Φi)⇒ ∨

n
i=1(Q)(Φ⇒ Φi),

with Φ crisp and Φi elementary for i = 1, . . . , n, can be seen to be
stable for products with two factors provided n = 2. Secondly, if n > 2,
then the theory T , consisting of the above sentence and all versions,
involving only 2, 3, .., n − 1 of the Φi, is stable for products with
two factors. Hence T is stable under arbitrary products. By theorem
2.9, T is stable for reduced powers. We can now use [7, Thm. 3(f)] to
conclude that the theory T is stable under reduced products and hence
is crisp.
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Being unions of such theories, both SA and its subtheory A of ad-
missible sentences are crisp.

3. Examples and conclusions

The requirements for a theory to be crisp are quite generous. As a
result, there is an abundance of theories with a crisp axiomatization.
We discuss some natural (counter)examples in the fields of algebra and
order, partial functions, convex geometry, and record logics.

3.1. Algebra, order, and functionality.

(i). Universal algebra is about first order languages with equality and
with terms. In the narrow sense, one considers theories consisting of
(universally quantified) term equations. Such theories are crisp. Below,
we shall encounter crisp theories of (abelian) groups, of rings, and of
Boolean algebras.

Often, equational theories are extended with other non-equational
axioms. In most cases, these are negations of equalities or implications
between equalities. Such theories are crisp too. The theory of torsion-
free Abelian groups has the additional axiom scheme

∀x(nx ≈ 0⇒ x ≈ 0) (n = 2, 3, · · · ),

where nx stands for n−fold addition of x. There is a similar crisp
axiom scheme describing divisible Abelian groups:

∀x∃y ny ≈ x (n = 2, 3, · · · ).

The theory of nontrivial torsion-free divisible Abelian groups is com-
plete ([16, Thm. 21.8, p. 351]) in addition to being crisp.

The theory of non-trivial atomless Boolean algebras is another exam-
ple of a complete and crisp theory. Given the usual axioms of Boolean
algebra, the condition of being atomless can be phrased as

∀x
(

∀y(x ∩ y ≈ 0 ∨ x ∩ y ≈ x)⇒ x ≈ 0
)

(which is logically crisp). As to the completeness of this theory, see
([16, Thm. 21.7, p. 351]). The negation of the atomless condition is a
notorious example of a non-crisp sentence that is stable under products
([5, Example 6.2.3, p. 409].

Tarski’s axioms for relation algebra (cf. [13]) involve constants (0, 1, ID)
and Boolean operators (union ∪, intersection ∩, complement −) in ad-
dition to a binary “composition product” x; y and a unary “reverse
operator” ⌣x. The axioms are those of Boolean algebra, together with
the axioms of a monoid for composition (with identity element ID) and
technical equivalences known as Schröder’s law :

(x; y) ∩ z ≈ 0 ⇔ (⌣x; z) ∩ y ≈ 0 ⇔ (z; ⌣y) ∩ x ≈ 0.

Thus, the theory of relation algebras is crisp.
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There are some noteworthy examples of non-crisp theories in the
realm of algebra. For instance, CUR (commutative unitary ring) theory
is crisp, but no crisp extension of CUR can entail the theory of entire
rings. Indeed, assuming the independence property, the sentence

∀(x · y ≈ 0⇒ x ≈ 0 ∨ y ≈ 0)

cannot be derived unless 0 ≈ 1 is adopted. In particular, there is no
crisp theory of fields.

In all of universal algebra, fundamental use is made of so-called sim-
ple algebras, characterized by the property of having no homomorphic
images except the obvious ones. For many common algebras, a first-
order characterisation of simplicity is known. By theorem 2.6(a), a
first-order theory that entails simplicity cannot be crisp. It is instruc-
tive to inspect such a first-order characterisation. For instance, simple
relation algebras are characterised by the sentence

∀x(x ≈ 0 ∨ 1; x; 1 ≈ 1).

This shows there is no crisp theory of simple relation algebra unless
0 ≈ 1 is adopted.

For algebraic theories based on universal definite Horn sentences,
the existence of free models with prescribed “generators” as additional
constants is a well-known fact. Such models are provided by so-called
initial models, and are usually constructed via generators and relations
between them; cf. [4, p. 73].

(ii). The theory of partial order and the theory of strict partial order are
axiomatized with universal definite Horn sentences and hence they are
crisp. Any coherent combination of both within one theory, however,
is almost never crisp, as it somehow entails the sentence

∀xy(x ≤ y ⇒ x < y ∨ x ≈ y).

By virtue of the independence property, we would find that the partial
order coincides with equality.

The theory of dense strict partial order and the theory of unbounded
strict partial order are crisp too. No crisp extension of the theory of
partial order can entail the theory of total order since the sentence
∀(x ≤ y ∨ y ≤ x) cannot be derived unless ∀x∀y x ≈ y is adopted.

Suppose T is a crisp theory of partial order in some language L. If
Φ is a basic formula in L with one free variable1, then the sentence

∃xΦx⇒ ∃y
(

Φy ∧ ∀z(Φz ⇒ y ≤ z)
)

,

is crisp up to logical equivalence. We may extend T with all sentences
of this type, with Φ a basic unary formula, to obtain a crisp first-order
approximation to a theory of well-order. Except in trivial cases, this
imitation will never entail a total order.

1For convenience, Φx denotes the formula obtained from Φ by substituting the
free variable of Φ by x
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Theories of partially ordered algebraic structures are another source
of crisp theories: axioms linking algebraic operations with partial order
are almost invariably crisp.

(iii). The theory of partial functions is crisp. Indeed, partial function-
ality of f can be described by the Horn sentence

∀xy1y2(f(x, y1) ∧ f(x, y2)⇒ y1 ≈ y2).

In this way, we obtain crisp descriptions of “partial” algebras. For
instance, a groupoid is defined as a small category where each ho-
momorphism is an isomorphism. Alternatively, it is a partial algebra
with a unary predicate I(x) satisfied by the identity morphisms, with
a unary reverse operator ⌣x, and with a binary partial composition
operator which we treat as a ternary predicate C(x, y, z). The result
of composition is its third argument. Except for partial functionality
of C, the axioms are the following.

(G-1): (Associativity) ∀(C(x, y, u) ∧ C(u, z, t) ⇒ ∃v(C(x, v, t) ∧
C(y, z, v))).

(G-2): (Identity) ∀(x ≈ y ⇔ ∃w(Iw ∧ C(x, w, y))).
(G-3): (Left inverse) ∀(C(x, y, z)⇒ C(⌣x, z, y)).
(G-4): (Right inverse) ∀(C(x, y, z)⇒ C(z, ⌣y, x)).

The resulting theory is crisp and reduces to standard group theory
if we (crisply) require a unique identity and a total composition. If,
instead, the functionality requirement of C is dropped, we arrive at a
crisp axiom system for so-called atom structures of complete relation
algebras, [12].

3.2. The theory of Pasch-Peano spaces.

Many geometries are based on a ternary predicate Bxyz expressing
that y is “between” x and z. Among the usual axioms are the following
crisp ones, defining so-called Pasch-Peano spaces [19, I§4].

(PP-1) (Idempotence) ∀xy(Bxyx⇒ y ≈ x)
(PP-2) (Extensiveness) ∀xyBxxy

(PP-3) (Symmetry) ∀xyz(Bxyz ⇒ Bzyx)
(PP-4) (Pasch axiom) ∀uu′vv′w(Buu′w∧Bvv′w ⇒ ∃x(Buxv′∧Bu′xv))
(PP-5) (Peano axiom) ∀uvwx

(

∃y(Buxy∧Bvyw)⇒ ∃y(Buyv∧Byxw)
)

A frequent additional condition is density,

∀xy
(

x ≈ y ∨ ∃z(Bxzy ∧ ¬x ≈ z ∧ ¬y ≈ z)
)

.

Let Td denote the resulting theory of dense Pasch-Peano spaces. We
can rewrite the density axiom as

∀xy∃z
(

(z ≈ x ∧ z ≈ y) ∨ (Bxzy ∧ ¬x ≈ z ∧ ¬y ≈ z)
)

.
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This suggests extending the language (L, say) to a language L′ with
an additional binary term t, and to extend the theory Td to a theory
T ′ with two additional axioms:

(1) ∀xy(txy ≈ x ∨ txy ≈ y ⇒ x ≈ y)
(2) ∀xyBx(txy)y.

The extended theory is crisp because the offending density axiom can
now be derived from the logically crisp axioms (1) and (2). Also, it is
easy to see that (L′, T ′) is a conservative extension of (L, Td). By theo-
rem 2.2, the former theory is stable under reduced products. Hence, as
all models of (L, Td) obtain from models of (L′, T ′) by restriction, the
expansion theorem [5, thm. 4.1.8] yields that (L, Td) is stable under
reduced products. We conclude from theorem 2.2 that dense Pasch-
Peano theory is crisp.

There is an interesting class of basic formulae with a well-established
geometric meaning. Given a finite array X of points x1, . . . , xn (n ≥ 2)
the convex hull of X in a Pasch-Peano space consists of those points z

that can be obtained inductively by requiring Bx1zx2 if n = 2 and by
requiring Byzxn, where y is in the convex hull of x1, . . . , xn−1 if n > 2.
Working this out, the statement that z is in the convex hull of n ≥ 2
points X is seen to be expressed by a basic formula of type ∃Y ΦnXY z

with n + 1 free variables X, z, and with an array Y of n − 2 bounded
variables. The resulting convex set is called a polytope with vertices X

and, by virtue of the Peano axiom (PP-5), its construction does not
depend on the naming order of the vertices in X. It is known [19, ch. I,
§4] that the Pasch axiom (PP-4) boils down to Kakutani’s separation
property of disjoint polytopes by complementary half-spaces. (This
statement and its proof properly belong to set theory.)

It is also customary to define n-dimensionality of a geometry in terms
of the existence of n + 1 “affinely independent” points. For instance,
to state that a Pasch-Peano geometry is (at least) two-dimensional, we
may proceed with three distinct constants a, b, c, with a 6≈ b and

∀z1z2

(

Baz1b ∧Baz2b ∧Bz1z2c⇒ z1 ≈ z2

)

.

It is (at least) three-dimensional provided there is a fourth constant d

with a, b, c as above and with d satisfying

(†) ∀z1z2

(

∃Y Φ3abcY z1 ∧ ∃Y Φ3abcY z2 ∧Bz1z2d⇒ z1 ≈ z2

)

,

where ∃Y Φ3abcY z expresses that z is in the convex hull of a, b, c and Y

is an array of length one (single variable). Proceeding inductively, we
can crisply state that a Pasch-Peano geometry is at least n-dimensional
by adding an (n+1)th constant satisfying an additional formula of type
(†) with Φn instead of Φ3 and with the array of the previous n constants
instead of “abc”.
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To formulate “exactly n-dimensional”, we require that the space be
the affine hull of the array C of n + 1 constants, involved in the defi-
nition of “at least n-dimensional”:

∀x∃vw
(

¬v ≈ w ∧ ∃Y Φn+1CY v ∧ ∃Y Φn+1CY w ∧ Bvwx
)

.

Note that the description of dimension with new language constants
is just a matter of convenience, not of necessity. The above array C of
n + 1 constants may be replaced by an array V of unused variables. A
crisp definition of “exactly n-dimensional” then amounts to a lengthy
conjunction of all previous sentences, with C replaced by V , and an
existential quantifier sequence ∃V in front of it.

Assume that a finite number of polytopes P , Pi are given by a crisp
description of relative vertex positions. The theory of Pasch-Peano
spaces (with or without density or dimension axioms) having the in-
dependence property, there can be no proof that P is included in the
union of the polytopes Pi, unless P is already included in some Pi. Re-
markably, many examples of Pasch-Peano spaces have an abundance of
non-trivial point configurations with covering polytopes. One familiar
situation occurs when a polytope is covered by its faces (a face is the
convex hull of all but one of the vertices). The classical Carathéodory
theorem in Euclidean n-space states that this is always the case if a
polytope has n + 2 (or more) vertices. Such a statement can never be
obtained in a theory with the independence property.

Nevertheless, Carathéodory’s result has been rederived in terms of
Pasch-Peano spaces2 (see [19, ch. II§1]) and, expectably, the additional
asumptions involved are in conflict with the independence property.
Except for density and dimension, two conditions are used:

• (straightness) ∀
(

Buvw ∧ Bvwx⇒ Buvx ∨ v ≈ w
)

,

• (decomposability) ∀
(

Bxyz ∧Bxuz ⇒ Bxuy ∨Byuz
)

.

Roughly, straightness is needed to make conditions, involved in the
definition of dimension, look more symmetric. Decomposability is the
main ingredient in the actual proof of Carathéodory’s theorem. In fact,
it is a one-dimensional variant of the theorem.

By virtue of theorem 2.5(1), the theory of Pasch-Peano spaces (with
or without density or dimension axioms) has free models with arbitrar-
ily large automorphism groups, but nothing seems to be known about
them. In our proof that general free models exist, an important step is
the addition of fresh constants to a language, which find their place in

2Our current treatment of “dimension” is rather biased towards a traditional
view on geometry. The author’s monograph [19] contains other results on
Carathéodory’s theorem as well, where Pasch-Peano spaces are drawn from non-
traditional sources as well, e.g., distributive lattices with Bxyz meaning x ∩ z ≤
y ≤ x ∪ z. Dimension is defined here with the breadth of the lattice. It is the only
addition needed and hence it violates the independence property.
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a free model to function as “generic elements”. The following citation
from the introduction of [15] illustrates our perspective.

The art of finding “generic” examples has been pushed
to the extreme in Euclidean plane geometry, where we
convince ourselves of many theorems by just drawing
one picture of a non-degenerate case.

Contrasting with this observation, even in Euclidean plane, no single
picture is generic for Carathéodory’s theorem.

In closing this topic, we note that Euclidean n-space, seen as a
model of Pasch-Peano theory with density and n dimensions, including
straightness and decomposability3, definitely does not satisfy the inde-
pendence property. In particular, the “independence property” of real
linear programming escapes from our approach.

3.3. Logic with records.

In [20], we considered minimal axiom schemes for so-called logics with
records and we proved a result which makes such logics interesting out-
side the framework of logic programming as well: Every first order
theory can be faithfully interpreted into a logic with records, with pro-
vision for an assortment of additional requirements. All axiom schemes
for records and all additional demands are crisp. The interpretation
transforms original atomic formulae into specific basic formulae.

Hence every crisp first order theory has faithful crisp interpretations
into logics with records. More generally, by virtue of theorem 2.6,
part (3), every theory with the strong independence property has a
faithful interpretation into a logic with records and with the strong
independence property.

3.4. Problems.

(1) It follows from 2.5, part (1), and 2.6, part (2), that the indepen-
dence property and the strong independence property are equiva-
lent for theories whose non-crisp axioms are universal or positive.
Are the properties equivalent in other circumstances?

For instance, by virtue of corollary 2.8(1), the independence
property and strong independence property are equivalent for com-
plete theories if and only if the theories A (of admissible sentences)
and SA (of strong admissible sentences) are logically the same. If
either of these equivalent statements fails, there is a complete and
non-crisp theory with the independence property. This would settle
another natural question in the negative.

3It was a major achievement of the last century to prove that convex subspaces
of Euclidean n-space can be characterised with the aid of the listed axioms (n ≥ 3;
completeness is required, too). See [19, Chap. 4 §1] for a detailed account.
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(2) We note that all non-crisp theories discussed in §3 can be recog-
nised as such by deriving a contradiction with the independence
property. This may suggest that non-crisp theories with the (strong)
independence property are fairly exceptional. So far, we made little
progress in finding (counter)indications for this.

3.5. Conclusion. Outside the logic or linear programming communi-
ties, the independence property of first-order theories seems to have
remained largely unobserved. The importance of the independence
property in logic or linear programming is, that it is part of a decision
algorithm. Often, it also serves as a step in proving a theory to be
complete. The property may as well serve the same purposes at other
occasions, though this has not been investigated here.

The discussion of theories in §3 may illustrate a different use of the
independence property as a tool to decide that certain sentences are
not provable.

Finally, free models provide a flexible alternative for the traditional
initial models, which require a more specialised axiom format. Some
natural questions on crispness and on the (strong) independence prop-
erty remain unsolved.
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