Vagueness and the Sorites

Robert van Rooij

1 Partial logic

Definition 1.
Let L be a predicate logical language. A (partial) model M for L is an ordered
pair (D,T), where

1. D is a non-empty set, the domain of the model.

2. For all individual constants it holds that Z(a) is an element of D. We
assume for simplicity that for each object d of D there exists at least one
individual constant a such that Z(a) = d.

3. for all n-ary predictate P we assume: Z(P) is a partial function from
D" in {0,1}.

Definition 2.
Let M = (D,T) and M’ = (D,I') be two partial models with both the same
domain. M’ is a refinement of M iff the following conditions are met:

(a) If P is n-ary and Z(P)({dy...d,)) =1, then T'(P)({dy . .. d,)) = 1;
(b) If P is n-ary and Z(P)({dy...d,)) =0, then Z'(P)({dy . . . d,)) = 0.

The principle of stability now says that if sentence ¢ is true/false in a model
M, then ¢ has to stay true/false if M is getting more precise. Formally, let
M' = (D,T’) be a refinement of M = (D,Z). Then it has to be the case that
for all ¢:

(i) If VM(QO) = 1, then VM/((,O) =1.
(ii) If VM((,O) = 0, then VM/(QD) =0.

Definition 3.
Let L be a language of predicate logic and M = (D,Z) a partial model for L.
Then

e Vu(Pay...a,) =14f Z(P)((Z(ap), ...
Vaa(Plao...an) = 0 i T(P)(Z(a), . T(@,))) = 0
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o V(=) =1 iff Vulp) =0
Vm(=p) =0 iff Vamp) =1

e Vu(p AY) =1 iff YVm(p) =1 and Ym(y) =1
Vrmle AY) =0 iff Vmlp) = 0 or V() =0

* Vml(e V) =1iff Vulp) =1 or V() =1
V(e V) =0 4ff Vam(p) = 0 and Vi (¥) = 0

® Vil =) =1iff Vaulp) =0 or V() =
Vamle = ¢) = 0 iff Vaulp) = 1 and V() = 0

o Vu(Iry) =1 iff Vu([*/x]p) =1 for at least one constant a
Vu(Fzp) =0 iff Vu([*/x]p) =0 for each contstant a

o Vv (Vay) =1 iff Vi([*/x]@) = 1 for each constant a
Vu(Vee) = 0 iff Vrm([*/x]p) =0 for at least one constant a.

2 Supervalutation

Definition 4.
Let L be a language of predicate logic. A supermodel M for L is an ordered
pair (D, J), where

1. D is a non-empty set, the domain of the modela;
2. J a (non empty) set of (partial) interpretations such that

(a) every I € J assigns to every constant a an element Z(a) of D;

(b) every T € J assigns to each n-ary predicate P a partial function
Z(P) from D" in 0, 1.
In addition, the following restriction must be obeyed:

(a) for allZ,7" € J and each individual constant a it holds that Z(a) =
Z'(a);

(b) there is a Iy € J such that for all T € J it is the case: T is a
refinement of Zo;

(c) for allT € J there is a L' € J such that I’ is a refinement of Z.
Definition 5 (Truth Definition).

Let M = (D, J) be a supermodel, and ¢ a sentence. By definition it holds
that:



e Wu(p) =1 iff Vippy(p) =1 forall total T € 7.
e Wilp) =0 iff Viozy(p) =0 forall total T € J.

o [n all other cases Wa(yp) is undetermined.

3 Dummett’s Diagnose

Variants of the Sorites are easy to come by. you need is a vague predicate
P, preferably one with a comparative form, the use of which is guided by the
following rule:

If two objects are observationally indistinguishable in the respects
relevant to P, then either both satisfy P or else neither of them
does.

Following Kamp [1981], we will refer to this principle, which expresses the
Equivalence of Observationally Indistinguishable objects, as EOIL.

With such a vague predicate P, one can nearly always associate a domain
D and a relation R with the following properties:

1. D is nonempty; the objects in D are similar in kind and (therefore)
comparable in the respects relevant to P.

2. R is the irreflexive and transitive relation on D consisting of the pairs
(d,e) of which the first member d is observationally more P than the
second member e.

3. There are objects d and e in D such that

(a) P clearly applies to d;
(b) P clearly does not apply to e;

(¢) There is a finite sequence of objects d = dy,dy,...,d, 1,d, = €
in D such that for any two successive objects d; and d;;; in this
sequence, neither d;Rd; 1, nor d; 1 Rd;.

Let us write x€y iff neither 2Ry nor yRx. Whenever z€y, x and y are ob-
servationally indistinguishable in the respects relevant to the predicate P, and
therefore it is tempting to read ‘z€y’ as ‘x is observationally just as P as y’.
We will not resist this temptation, even though we are aware that £ need not
be an equivalence relation. That is, £ is reflexive and symmetric, but not in



general transitive. It may very well occur that there is no discriminable differ-
ence between the objects x and y — x is observationally just as P as y — and
no discriminable difference between the objects y and z — y is observationally
just as P as z — whereas x and z can be discriminated — x is observationally
more P than z. It is easy to see now how the paradox can arise. The principle
EOI forces us to use the predicate P in a way that would only be coherent if
the relation £ were transitive.
For, what else does EOI express but:

(EOI' 1) For any z,y € D, if €y, then, if P applies to x, P applies
to y.

So, you cannot assign the predicate P to dy without having to assign it to
dy,dy, ds, ..., and, finally, to d, as well. EOI forces you to do so, even though
£ is not transitive: dy and d,, could be so far apart — d has got no hairs, d,, has
150,000 hairs; the temperature of dy is 2° C, the temperature of d,, is 80° C —
that it would seem perfectly all-right to say that dy is P — bald, or cold — but
that d, is not. From the above it will be clear that we are in a predicament:
either we accept EOI, in which case we are forced to conclude that the use
of at least some observational predicates is intrinsically inconsistent, or we
do not accept EOI, in which case it seems to follow that there are no truly
observational predicates.

Dummett is inclined to choose the first horn of this dilemma, and there is
something attractive in this point of view. After all, normally we are dealing
with just a few objects, all very well discernable from each other. In those
circumstances EOI does not give rise to inconsistency; normally, it serves its
purpose quite well. Only in exceptional situations — i.e. when we are con-
fronted with sequences of objects as described above — things go wrong. But
then, vague predicates like ‘cold’ and also ‘bald’ and ‘short’ and ‘heap’ are not
meant to be used in those situations; what we should use there is other, finer
tools; we should no longer talk in terms of ‘cold’, ‘short’ etc., but in terms
of degrees centigrade or millimeters or grains of sand. The Sorites Paradox
typically arises when the coarse tools of vague predicates are used side by side
with these finer tools, i.e. when one starts saying things like ‘if someone with
23567 hairs on his head is not bald, then neither is someone with 234566 hairs
on his head’. As such, it merely reflects that one should not use the coarse
tools in circumstances where only other, more delicate, ones are applicable. !

Dummett’s position seems a strong one, and, if a choice between the true
observational character of at least some predicates and the consistency of lan-

!'Note that this solution of the Sorites Paradox is completely in line with Wittgenstein’s
Philosophische Untersuchungen. See in particular sections 85-87: ‘A rule stands like a sign-
post ... The sign-post is in order—if, under normal circumstances, it fulfils its purpose’.
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guage really cannot be avoided, it is the only position an empiricist can take.
But there is a way out. One can loosen the ties between vague predicates
and observation, without having to cut them. How this can be done will be
explained right now. 2

Let us return to the observational relation R. The problem is that its
resolution is too poor: a basketball player x can in fact be shorter than a
basketball player y, without observationally being so. Or, to phrase it more
carefully, it may be that x cannot be seen to be shorter than y by the naked
eye, while a less crude measurement shows that he is. Our powers of discrimi-
nation are limited; that is why observational equivalence is not transitive. We
can, however, define a relation RP from R which, as it were, increases the
resolution:

Definition 6.

Let R be an irreflexive binary relation on a domain D. Define the sharpening
RP of R relative to D by: 2RPy if and only if

either (i) x,y € D and there is some z € D such that 2Ry and not 2Rz,

or (i1) x,y € D and there is some z € D such that xRz and not yRz.

Suppose you are confronted with three objects d; and dy, and d3; you cannot
discern any difference in length between d; and ds; you cannot discern any
difference in length between ds and ds either; but you can discern a difference
in length between d; and ds: d; is observationally shorter than d;. Wouldn’t
you then conclude that there must be a difference in length between d; and
ds even though you cannot see it by the naked eye? Wouldn’t you be inclined
to say then that d; is in fact shorter than ds, even though this is not obser-
vationally so? The following facts, the proofs of which are left as an ezercise,
are noteworthy:

e RCRP:
o RP is irreflexive;
e RP is transitive if R is.

Hence, if R is the relation ‘being visibly shorter than’, we are really allowed
to think of RP as a sharpening of that relation.

° (RD)D — RD.

Hence, if we were to call an irreflexive relation sharp if sharpening it in the
manner described above leaves it unchanged, then we could prove RP to be
sharp.

2The basic ideas goes back to Russell and Goodman.



e If DC D, then RP C RY.

Actually, the resolution may increase if elements are added to D: it is very
well possible that two objects that cannot be discriminated within D, can be
discriminated within D’.

e Define a relation £p from RP in a way analogous to the way & is defined
from R: z€py iff neither 2RPy nor yRPx. Then we find that even
though £ is not necessarily transitive, £p is. Indeed, &p is an equivalence
relation.

So, even if you do not want to call RP sharp — after all, adding elements
to D may make it sharper, the least you will have to say is that it is sharp
enough to avoid the kind of problems we got with R. That is, if we replace
the formalization (1) of the principle EOI given above by the following new
formalization:

(EIO 2) For any z,y € D, if xEpy and P applies to z, then P
applies to y,

contradictions need no longer arise. Suppose you are presented with a series
of objects as described in the beginning of this section. Given the first formu-
lutuion of te principle of EIO (EIO 1), you cannot assign the predicate P to
dy without having to assign it to di, ds, ds, ..., and finally to d, as well. But
given the second formulation (EIO 2), you need not be led into contradicting
yourself. Clearly, there must be three objects d;, d; .1, and d}, in the series such
that d;Rdy, but not d;;;Rdy. Choose such d;, d; 11, and di,and you can deny
the truth of the premise that if d; is P, d;;1 is — and this without giving up
the principle EOI: d; and d;,, are observationally distinguishable in a respect
relevant to P, since the purely observational predicate x’Rd; applies to d;, but
not to d; 1.

Are our new relations RP and &p really observational? Well, they are
clearly not directly observational like the relation R. In many cases it is
impossible to decide on the basis of direct observation whether R? (or £p)
applies to a pair of objects or not. This is because in the definition of RP
(and hence in the definition of £p) a quantification occurs. But, while R? and
Ep are not directly observational, they are certainly observational in the sense
that they are defined from a directly observational relation R by means of logic
alone. Every statement containing references to R? or £p can be translated
into an equivalent expression in which no reference is made to relations other
than R. Therefore, if (1) is replaced by (2), the links between the predicate P
and direct observation are not severed; the principle that the use of P should
be guided by mere observation is just replaced by the principle that it should
be guided by observation aided by reason.
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Side Remark

In the above, we have not made any use of the properties of the relation R,
except of its irreflexivity; so the method is very general. But in many cases —
and here the relation ‘being visibly shorter than’ may serve as an example —
R will satisfy certain extra principles, which have been stated in ?:

Definition 7 (Luce’s Axioms).L1 For no x € D,zRx;
L2 For any w,z,y,z € D, if wRx and yRz, then either wRz or yRx;

L3 For any x,y € D, if some z € D s such that xRz and zRy, then every
z € D will be such that either xRz or zRy.

Note that L1 and L2 imply transitivity. Think of R as the relation ‘being
visibly shorter than’ on the domain of basketballplayers. Then one way to
see what these axioms mean is to assume that at every moment there is a
real number ¢ such that you judge a basketball player x to be shorter than a
basketballplayer y just in case y’s length exceeds x’s length by ¢ millimeters
or more. So, instead of xRy we can write length(z) + ¢ < length(y). It
is easy to check that this last relation satisfies Luce’s Axioms. Once you
accept the validity of Luce’s Axioms for the relation ‘being visibly shorter
than’, you get certain desirable properties for the sharpening of this relation
in the bargain. The relation R? turns out to be almost-connected, i.e. for any
x,y, z € D the following holds: if 2RPy, then 2RPz or zRPy. Therefore, the
Ep-equivalence classes are linearly ordered by the relation that holds between
two Ep-equivalence classes {z € D|zEpd} and {x € D|zEpe} just in case dR e.
3

4 Contextual Resolution

So far we have paid hardly any attention to what — apart from vagueness —
is the most salient feature of the predicates that can be used in a Sorites type
of argument, namely their context dependency. At least two different kinds of

3To be more precise, the structure (D, RP, Ep) is what Hempel has called a quasi-series:
1. RP is irreflexive and transitive;

2. &p is an equivalence relation;

3. for any z,y € D, either 2RPy, or yRPz, or zEpy

Now, for each d € D, define [d] to be {z € D|zEpd} and define: [d] < [e] iff dRPe. This is
well-defined. Set D/Ep = {[d]|d € D}; then the structure (D/Ep, <) is a linear order. Such
linear orderings form the basic input for any form of quantitative measurement.



context-dependency are involved. The first kind results from the phenomenon
that the question whether or not a certain object may be called P (tall, warm,
yellow), does not only depend on the object itself, but also on the set of objects
it is compared with. What is tall, or warm, or yellow in one context can be
short, or cold or orange in another. For example, if you were asked to select
the short strokes from the right picture below, you might very well want to
include stroke b, whereas in the left picture, the very same stroke b may be
said to be one of the long strokes.

Note that it is not the fact that the capacities of our senses are limited and the
resulting poor resolution of observational relations that causes this behaviour
of vague predicates. The relative lenghts of the strokes drawn are clear enough,
still stroke b may be called long in one picture but not in the other.

We may contrast this property of vague predicates with a second kind of
context-dependency that does result from the fact that the resolution of an
observational relation may depend on the domain of discourse. Suppose that
you are presented with two different colour patches a and b not visibly differing
in shade (not aRb). Further suppose that a and b are the only objects in your
domain of discourse. You might be quite at a loss to answer the question
whether a is red or not, but even so EOI forces you to accept that if a is red,
b is red too. This is because a&y,pyb holds. Now, let’s change the domain of
discourse and add a third individual ¢ to it, such that a and ¢ are, but b and ¢
are not, visibly distinguishable. As soon as this addition is made, a and b are
no longer equivalent (not a{ap,c1b and so the conditional is no longer forced
upon you. Resolution generally depends on the number of comparable objects;
the smaller this number, the less resolution. In the worst case, when there are
only two objects in the domain, we are at the level of directly observational
relations: a&, b iff a&b.

It will now be clear what our amendment to Dummett’s analysis is: Dum-
mett is right in saying that if there is no discriminable difference between two
objects, then either P applies to both or to neither of them; but it should
be added that this holds only in contexts where no objects other than these
two are at stake. If the reference group gets larger the objects may become
distinguishable.

In ordinary discourse domains of evaluation seldomly stay fixed. Objects
are unceasingly being introduced into these domains and taken out again. This
can happen either by means of linguistic acts like the uttering of a sentence
or by non-linguistic acts like pointing at things, covering or uncovering them,
etcetera. One may exploit this phenomenon to obtain versions of the Sorites
paradox. The following is a quotation from ?:



In front of us is a large screen. Its extreme left is green, its
extreme right yellow, and there is a gradual transition from the
one colour to the other. The screen is subdivided into many small
squares, so small that each square appears to have a uniform hue
and moreover the colours of no two adjacent squares can be distin-
guished by sight. Compare the following two experiments.

1) We are both facing the screen which is entirely visible to you. I
begin by pointing at a little square on the extreme left and ask you
what its colour is. If you are not colourblind you will surely answer:
‘green’. I then point to the adjacent little square on the right and
ask the same question. Probably you will again say ‘green’ Then
I point at the square to the right of this one, and so on. After
a while your answers ‘green’ will become hesitant, increasingly so,
until the point is reached where you either say: ‘Now I don’t know
what to say any more’, or else some such thing as ‘this one really
looks more like yellow’.

2) This time the big screen is completely covered. I ask the same
question about the same squares in the same order. But now I
proceed as follows. When I ask my first question I only uncover
the first little square. After you have answered I reveal the square
next to it. Then, after your second answer I cover the first square
and uncover the third; after you have made your third reply, I cover
the second and uncover the fourth, etc.

How will the outcomes of these two experiments compare? In
all likelyhood you will carry on ‘green ’ for a longer time in the
second trial than in the first.

With the apparatus developed thus far, we can explain what is happening here.
In the first experiment, where you have all the patches before you, the domain
of discourse is relatively large and resolution is accordingly good. As soon
as you start to feel unsure about the greenness of the square currently being
pointed at, you will have no trouble in finding a square differentiating it from
its predecessor. You may therefore feel free to deny the present’s square being
green without any violation of the principle EOI. In the second experiment,
on the other hand, the differentiating objects are systematically being made
unavailable to you, and EOI forces you to keep on saying ‘green’, or so it
seems. Let us to put the above considerations together in a definition, which
spells out what constraints there are if you have to decide to which objects in
a certain set C' - this set determines the contert — the predicate P applies and
which objects in C' it does not.

Definition 8.



Let D and R be like above and let C be any subset of D. An admissable
interpretation for P in C' is any function Zc(P) from C into {0, 1} that meets
the following conditions:

(EOX) If x€cy, then Zc(P)(x) = Zo(P)(y);
(MON) If 2R and Zc(P)(y) = 1, then Zo(P)(x) = 1;

(DIS) If there are x,y € C such that Ry, then there are x,y € C' such that
Io(P)(@) # Zo(P)(y)-

Note that Zo(P) is a total function. Hence, if ¥Ry and Zo(P)(z) = 0, then
Ic(P)(y) = 0.

The definition leaves a lot of freedom, which is part of the reason why we
call a predicate P whose use is guided by these principles vague.

Cross contextual constraints

Once you have chosen an (admissable) interpretation for P in C, this puts
some further constraints on the decisions you can take when some new objects
are added to C'. You cannot start all over again when C' is extended to B; not
any old admissable interpretation of P in the context B is coherent with the
interpretation you have chosen in context C.

More precisely:

Definition 9.

Let C C B, Zc(P) an admissable interpretation of P over C, and Ig(P) an
admissable interpretation of P over B. Then Zg(P) is coherent with Zg(P)
iff the following two conditions are fulfilled:

(4 -) There are d € C such that Zo(P)(d) = 1 and Ip(P)(d) = 0 only if
there are e € B\ C such that Zg e) =

(

(P)(

(- +) There are d € C such that Zo(P)(d) = 0 and Zg(P)(d) = 1 only if
there are e € B\ C such that Tg(P)(e) =

Examples

Let D =1{1,2,3,4,5,6,7,8,9,10,11,12}, and set dRe iff d < e. Consider
the sets C' = {1,3,4,7,9,10}, and B = {1,3,4,7,9,10, 12} The following are
all admissable interpretations for the predicate small. (Here we set a number
in boldface when it is small according to the interpretation in question).

To(P) : {1, 3,4,7,9,10}

TL(P): {1, 3, 4,7,9,10}
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Tn(P): {1,3,4,7,9,10,12}

T4(P) : {1,3,4,7,9,10,12}
Starting from Zq(P), both Zg(P) and Zj(P) are coherent, but starting
from Z/.(P), only Z5(P) is. That is, if you have first decided that 1, 3, and 4

are the small numbers in the set 1,3,4,7,9,10, you are not allowed , when 12 is
added to this set, to call only 1 and 2 small.

Let B C C, Zg(P) an admissable interpretation of P in context B, and
Zc(P) an admissable interpretation of P in context C that is coherent with
Zp(P). It will be clear that the rules given above do not guarantee that

{d € B[Tp(P)(d) = 1} € {d € C|Zc(P)(d) = 1}

An informal example, which shows that this is how it should be, is easy to
find: take B the set of basketballplayers, C' the set of human beings, and P
the predicate ‘short’. All basketballplayers are human beings, but not all short
basketplayers are short human beings.

We are ready now to specify a truthdefinition for a language £ that has
as its logical vocabulary — (for negation), and — (for implication), and as
its non-logical vocabulary one vague predicate P, and individual constants
ap, a1, a9, .. ..

Definition 10.
A coherent model for this language L is a triple M = (D, R,Z) where

1. D and R have the properties described before;
2. T 1s a function that assigns

(a) an element of D to every individual constant a;

(b) an admissable interpretation Zo(P) for P in C' to each C'; whenever
C C ', Zc(P) must be coherent with Zo(P).

We will say that a context C'is decisive for a sentence ¢ if and only if Z(a) € C
for every individual constant a occurring in ¢. The truthdefinition is given in
two steps. First it is explained what it means for a sentence ¢ to be true in a
context C' that is decisive for ¢.

e Vu(P(a),C) =1iff Io(P)(Z(a) = 1;
o Vu(=p,C)=1iff Vy(p,C) = 0;

11



o Vil = 1,C) = Lif Vi, C) = 0 o Vag(4,C) = 1.

In the second step we want to extend the above to contexts that are not
decisive.

Let A be a set of sentences, and M = (D,R,Z) a coherent model and
C CD. Set

Ca = C U{Z(a)|a occurs somewhere in the sentences of A}.
Notice that C's is the minimal extension of C' that is decisive for all sentences
in A.

Now we can stipulate that for a given model M an arbitrary context C'
and an arbitrary set A of sentences the following will hold:

Vu(A,C) = 1iff for every € A, Vay(p,Ca) =1

Presumably, you wonder why the second step of the truthdefinition is formu-
lated not for sentences but for sets of sentences. The following example should
help to you to appreciate this manoeuvre.

Example
Consider any model M = (D, R,Z) such that

1. D={do,dy,...,dooo}:

2. for any i, 7, d;Rd; iff i < j + 50;

3. Z(a;) = d; for every i;

4. If dy € C, then Zo(P)(do) = 1; if digoo € C, then Zo(P)(d1g00) = 0

Then the following holds:

Vu({P(a;) — Plai11)}, ) =1 for every i < 1000;

Vu({P(a;) — P(aj+1)]i < 1000}, @) = 0.
In other words, a speaker is forced to accept each of the sentences P(a;) —
P(a;y1) taken in isolation. Still, this does not mean that he or she has to
accept all these sentences taken together. This is the key to our solution of the
Sorites. When a decision has to be taken concerning, say, P(as;) — P(ass)
taken in isolation, the objects dy7 and dag are to be compared in a context —
{da7,d2s} to be precise — in which they are observationally indistinguishable.
But when the whole set {P(a;) — P(a;11)|i < 1000} is at stake, do7 , and dag
will be distinguishable, because in that case they must be compared with all
other objects in D.

Definition 11.
A = ¢ iff for every coherent M = (D, R,Z) and C C D the following holds:
if VM(A, CAu{go}) =1, then VM(QO, CAU{@}) =1.
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Fact: A | ¢ iff A/ is classically valid.

Conclusion: The Sorites argument is valid. Moreover, each of its premises,
taken separately, is true. Still, the conclusion does not follow since taken all
together, the premises are false.
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