
1

REASONING ABOUT SPACE: THE HOLE STORY

Achille C. Varzi
Department of Philosophy, Columbia University (New York)

(Published in Logic and Logical Philosophy, 4 (1996), 3–39.)

1. INTRODUCTION

Much of our naive reasoning about space involves reasoning about holes and holed
objects. We put things in holes, through holes, around them; we jump out of a hole
or fall into one; we compare holes, measure them, enlarge them, fill them up.

What exactly holes are, or even whether such dubious entities do indeed exist,
these are of course questions one eventually needs to address in order to make good
sense of such forms of reasoning. For instance, treating holes as (parts of) material
objects, say, by identifying them with hole-linings [21], would call for an account
of the altered meaning of certainpredicates or prepositions. (What would ‘inside’
and ‘outside’ mean? What would it mean to ‘enlarge’ a hole?) On the other hand, a
non-realist attitude would require some radical eliminative strategy, some systematic
way of paraphrasing every hole-committing sentence by means of a sentence that
does not refer to or quantify over holes [20] (the cheese is holed, but there is no hole
in it). This might well be a favorable strategy, provided the language contain all the
necessary shape-predicates: after all, holes are a paradigm example of nothings.

The general philosophical hypothesis underlying the present work is that one
should resist these ways out in favor of a realist, common-sense attitude. Holes are
enigmatic, and it may be utterly difficult to specify adequate identity and individua-
tion criteria for them. Yet, if there is an ontology inherent in our everyday reasoning
about the world, then this ontology comprises holes (and cognate entities such as
cracks, cuts, or fissures) along with stones and chunks of cheese. This view stems
from joint work with Roberto Casati and has been largely presented in [3], where a
basic formalism is also introduced to spell out the major tenets and consequences of
a realist theory. The purpose of this paper is to elaborate on that formalism and to il-
lustrate how it can be exploited to provide a framework for more general patterns of
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qualitative spatial reasoning. In particular, after a general outline, I shall focus on
some issues pertaining to the modelling, the representation, and the taxonomy of
spatial inclusion. This is a topic that has received much attention in recent work in
spatial reasoning, also in connection to a variety of applications, from naive physics
to natural language semantics. My hope is to show that explicit commitment to holes
as bona fide individuals introduces a novel and revealing (albeit certainly far from
complete) perspective also with respect to such issues.

2. THE BASIC THEORY

I shall begin with the general picture: countenancing holes calls for some explicit
theory (i.e., set of principles) about these entities—their identity conditions, their
part-whole relations, their patterns of interaction with the environment. The picture
will be necessarily schematic and in large strokes, and I shall have to refer to previ-
ous work for the underlying motivations. I shall, however, take the opportunity to
introduce some novelties and refinements into the account which will result into a
simplified and somewhat more refined theory—particularly for the purpose of quali-
tative spatial reasoning—than the one originally outlined in [3].

Various independent domains come to interact in the development of this gen-
eral picture. Focusing on the extensional core, four main domains may be distin-
guished:

— ontology (holes are parasitic entities);
— mereology (holes may bear part-whole relations to one another);
— topology (holes are one-piece things located at the surfaces of their hosts);
— morphology (holes are fillable, and can be penetrated by other objects).

I shall deal with these domains in turn, working within the framework of a first-or-
der language with descriptions. The underlying logical machinery will be deliber-
ately left vague. (In effect, why should holes make a difference?) A preferred option
is a free quantification theory with some means for dealing with improper descrip-
tions, but a more classical framework might provide a viable basis as well. As for
the notation, I shall use ‘¬’, ‘∧’, ‘∨’, ‘→’, and ‘↔’ as connectives respectively for
negation, conjunction, disjunction, material implication, and material equivalence (in
decreasing order of strength); ‘∀’ and ‘∃’ for the universal and existential quanti-
fiers; and ‘ι’ for the definite descriptor. As a rule, the outermost quantifiers in uni-
versally quantified formulas will be omitted to simplify readability.
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2.1. Ontology. Holes are sui generis. They are spatiotemporally located, like
stones and chunks of cheese, but they are not made of anything. They are not just
regions of space either; for holes can move (as happens anytime you move a piece of
Swiss cheese), whereas spatial regions cannot. In fact holes are always in or
through something else, and this makes them ontologically parasitic entities: they
cannot exist without (or be removed from) a material host. You can’t have the hole
without the doughtnut, so to say.

This form of ontological dependence likens holes to other underpriviledged
entities, such as surfaces or other boundary elements (see e.g. [6]). It should be
distinguished from the purely conceptual or de dicto dependence exemplified by sen-
tences such as “every sister has a sibling”: there cannot exist sisters without sib-
lings, but it is not true of any sister that she could not have existed as an only child.
By contrast, a hole cannot exist except as a hole in something, so it suffers from a
form of truly de re dependence. (This also explains the difference between the de-
pendence of the the hole on the doughnut vs. the dependence of the latter on the
former. Surely you cannot have a holeless doughnut. But that is a form of concep-
tual dependence, nothing more. If you cut your doughnut into pieces, the hole goes,
the doughnut stays—though its shape is now different.) This form of de re depen-
dence in turn should be distinguished from stronger forms, such as the dependence
of a grimace on a face. That grimace can only exist as an expression on that face.
But one can in principle change the host’s matter, its shape, or even the entire host
without affecting the hole in it. In other words, holes are not rigidly dependent on
their hosts (in the terminology of [34]). Something is a hole if and only if it is a hole
in something.

It is of course impossible to do justice to these distinctions without resorting in
some way to modal notions. However, for our purposes the opposition between
rigid and generic dependence is not essential, and we can initially content ourselves
with emphasizing the de dicto/de re opposition. This could be done directly, by as-
suming a primitive relation of dependence and then asserting that all holes (entities
of a kind) bear that relation to some material objects. (The relation will have to be
governed by suitable axioms, e.g. along the lines of [12].) Alternatively, we can
simply express the desired feature by taking as a starting point a relational primitive,
say ‘H(x, y)’, to be read as “x is a hole in (or through) y”. This is the strategy fol-
lowed in [3], and I shall adhere to it in the present context. We may loose something
in expressive power, but it goes straight to the point: there are no holes simpliciter—
holehood is a relational property. An interesting generalization would be to rely on a
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three-place relation, ‘H(x,  y,  z)’,  meaning “x is a hole in (or through) y relative to z”.
This would do justice to the intuition that the notion of a hole is somewhat context-
dependent. (A roof-window is a hole in the roof in some respect, but not in others.
It lets the light in, not the rain.) However I shall not pursue this line of generaliza-
tion, for reasons of simplicity and also because the relevant distinctions can even-
tually be dealt with by taking into account the way a hole can be filled (Section 2.4
below). A see-through filler is no light deterrent, but it stops the rain; a cloth filler
will make a nice curtain, but it’ll rain in.

Let then ‘H(x, y)’ stand for “x is a hole in (or through) y”. We take this rela-
tion to be governed by the following basic axiom, which defines the main constraint
on the hole-host relationship:

AH1 H(x, y) → ¬H(y, z).

That is, the host of a hole is not itself a hole. It follows immediately that H is ir-
reflexive and asymmetric; no hole is a hole in itself, and there is no room for holey
loops:

TH1 ¬H(x, x)
TH2 H(x, y) → ¬H(y, x).

Moreover, AH1 suffices to certify some basic facts about holes. For instance, holes
are holeless, i.e., cannot host other holes, and cannot exist unless some other sort of
entity also exists:

TH3 H(x, y) → ¬H(z, x)
TH4 ∃x∃yH(x, y) → ∃x¬∃yH(x, y).

This is not to deny that a hole may be part of another hole (contrary to [2]). Nor
does TH3 rule out the possibility that a hole can be located inside another hole.
Imagine placing a holed piece of Gruyère inside a hole in a bigger chunk of Emmen-
thaler. Or think of the topologists’ “hole through the hole in the hole”: a hole con-
nects one face of a cube to an opposite face after bifurcating into two separate chan-
nels for part of the way, and a second hole passes between the two channels to con-
nect two other faces. Such situations are perfectly consistent with the view that a
hole cannot be a hole in another hole. Every hole needs a material host and cannot,
therefore, be the host of other holes. But holes are immaterial and can, therefore, be
interpenetrated by other entities—including other holes. Something can be spatially
enclosed in a hole without being a part thereof. The rest of the theory is concerned
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precisely with these situations—with the multiple ways a hole can bear spatial rela-
tions with other things, be they immaterial bodies, material objects, or simply re-
gions of space.

2.2. Mereology. The principles governing the relevant part-whole relation-
ships can be formulated within the framework of formal mereology, eventually
supplemented with specific axioms on H. The parts of a hole are not in the hole in
the same sense in which the hole is in its host; and the relationship of a hole to its
host is not a relation of part to whole. Putting a coin in the hole of a doughnut does
not make it become part of the doughnut. Nor does the coin occupy part of the
doughnut—say, a “negative” part, as some have suggested [19]. Holes have no-
thing in common with their hosts, however negatively you look at them, and the
holehood relation must be supplemented by an independent parthood relation. (This
is not uncontroversial, and I refer to [5] for further elaborations.)

The exact format of the background part-whole apparatus is arguably not quite
binding. That is, it should be independently motivated, and I should like to think
that hole-related reasoning is compatible with a variety of mereological theories. For
the sake of definiteness, however, I shall here rely on a version of classical exten-
sional mereology based on the primitive relation “x is a (possibly improper) part of
y”, written ‘P(x, y)’. This has the following axioms

AP1 P(x, y) ↔ ∀z (O(z, x) → O(z, y))
AP2 ∃xφ → ∃z∀y  (O(y, z) ↔ ∃x (φ ∧ O(x, y))),

where ‘O’ (overlap) is defined as usual as sharing of a common part:

DP1 O(x, y)  = df  ∃z (P(z, x) ∧ P(z, y)).

Thus, by AP1 parthood amounts to inclusion of overlappers: this ensures that P be
an extensional partial ordering (reflexive, antisymmetric, and transitive) whereas O
is reflexive and symmetric, but not transitive. By AP2, every satisfied condition φ
picks out a unique entity consisting of all φers, viz. their “fusion”. This is perfectly
standard and yields a classical extensional mereology in the sense of [34], corre-
sponding to a Boolean algebra with the bottom element removed. As I said, other
accounts are in principle compatible with the present purposes, but I prefer to rely
on the classical account for definiteness and for reasons of simplicity. Of course this
is not uncontroversial. In particular, AP2 is sometimes questioned on the grounds
that it has counter-intuitive instances when φ is true of scattered entities (each and
every table, or my nose and your favorite restaurant). From a purely mereological
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prospective, however, I think this is not an issue. One may feel uncomfortable with
treating unheard-of Goodmanian mixtures as individuals. But which individuals are
more “natural” than others—which sums count as genuine wholes—is not a mereo-
logical question. In fact it is a question that cannot even be formulated in mereologi-
cal terms, and requires reference precisely to the sort of topological notions consid-
ered below. (See [42, 43] for developments of this argument.)

Other derived notions that will be used in the following include proper part-
hood (PP), identity (=), and the operations of general sum (σ) and product (π) jus-
tified by AP2, along with the usual quasi-boolean functors for binary sum (+),
product (×), difference (–), and complement (~):

DP2 PP(x, y) = df P(x, y) ∧ ¬P(y, x)
DP3 x=y = df P(x, y) ∧ P(y, x)
DP4 σxφ = df ιz∀y  (O(y, z) ↔ ∃x (φ ∧ O(x, y)))
DP5 πxφ = df σz ∀x (φ → P(z, x))
DP6 x+y = df σz (P(z, x) ∨ P(z, y))
DP7 x×y = df σz (P(z, x) ∧ P(z, y))
DP8 x–y = df σz (P(z, x) ∧ ¬O(z, y))
DP9 ~x = df σz (¬O(z, x)).

(The functors introduced by DP4–DP9 will of course be partially defined—i.e., they
may correspond to improper descriptions unless we go with the fiction of a null in-
dividual that is part of everything, as in [23]. This introduces some complexities into
the underlying logic: we may adopt a Russellian theory of descriptions (as in [22]),
or we may opt for some free logic (compare [35]). Again, since these questions do
not depend specifically on the application at issue, I shall leave them open.) We can
also add some mixed notions, such as being a (proper) hole-part:

DP10 HP(x, y) = df P(x, y) ∧ ∃zH(x, z)
DP11 PHP(x, y) = df PP(x, y) ∧ ∃zH(x, z).

Thus, a (proper) hole-part is a (proper) part which qualifies as a hole—though not a
hole in the same entity of which it is a part. (This is not ruled out by the definition,
but will soon become apparent.)

On these grounds, the specific axioms on the interplay between P and H are
now as follows. First of all, we have a sort of extensionality axiom, likening hole-
hood to other ontologically fundamental properties. I have left it open whether a hole
can have more than one host. In fact it can, given our general mereological set-up: a
hole in the pocket is a hole in the jacket, if the pocket is part of the jacket. More im-
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portantly, however, we want to ensure that two distinct holes cannot share exactly
the same hosts (at a given time)—that is, if two holes are distinct, one must always
be able to cut any common host (if any) into two disjoint parts, one of which will
host exactly one hole (not the other). More generally, the intended relation between
holes and hosts is defined by the following axiom:

AP3 ∃yH(x,  y) ∧ ∀y(H(x,  y) → H(z,  y)) → P(z, x).

from which the advertised form of extensionality follows immediately via DP3:

TP1 ∃yH(x,  y) ∧ ∀y(H(x,  y) ↔ H(z,  y)) → x=z.

As most extensionality principles, AP3 and TP1 may of course fail if we take part-
hood and identity as relations across time. You can destroy some of the hosts (e.g.,
by destroying some parts thereof) without affecting the identity of the hole. How-
ever, relative to a fixed temporal instant AP3 and TP1 express important principles
of the “hole in” relation: without them, it would be hard to put any upper bound on
the number of immaterial parasites that can inhabit what—in ordinary thinking—is
the region of a single hole. (Some potential counterexamples to TP1 are discussed in
[3], the emphasis being on the possibility that two distinct holes may at times be per-
fectly co-located. However it is not clear whether exact co-location should imply
identity of hosts. If we do not make that assumption, AP3 will be a safe and simple
identity criterion for the purpose of extensional reasoning. On the other hand, note
that this result is only achieved thanks to AP2, which allows one to single out any
definable part. In the absence of AP2, or in the context of a different mereological
set-up, AP3 might have to be suitably weakened to avoid identifying holes which
happen to share a non-separable host.)

In addition to the extensionality axiom, we then have axioms concerning spe-
cific patterns of part-whole relations. The following is a basic set:

AP4 H(x, y) → ¬O(x, y)
AP5 H(x, y) ∧ H(z, w) ∧ O(x, z) → O(y, w)
AP6 H(x, y) ∧ H(x, z) → ∃w (PP(w , y× z) ∧ H(x, w))
AP7 H(x, y) ∧ H(z, y) → ∀w (HP(w , x+ z) → H(w , y)).

AP4 expresses the above-mentioned idea that a hole in an object is not a part of that
object—indeed, it does not even overlap with it. Of course, this does not rule out
that a hole may overlap the host of another hole: the sum of the hole in John’s
pocket and the slice of Swiss cheese on Mary’s plate—an entity whose existence is
admitted by AP2—is a scattered individual, partly material and partly immaterial,
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hosting every hole in that piece of cheese. On this basis, AP5 guarantees that over-
lapping holes must have overlapping hosts, while the remaining two axioms are es-
sentially meant to ensure that H and P interact in the appropriate way given AP4–
AP5. By AP6, the common part of any two hosts of a hole must itself be a host of
the hole. More specifically, this must be true of some proper part of that common
part: there is no way one can pick out a smallest host for a given hole. (This reflects
an underlying assumption to the effect that space is dense. Minor adjustments would
be required to accommodate different views.) By AP7, we also have it that the
common host of two (or more) holes is likewise a host of any hole-part thereof.
This implies inter alia a form of monotonicity of H with respect to P: the hole-parts
of a hole are hosted by every host of the hole. This is a form of left monotonicity. In
[3] there is also a right monotonicity axiom to the effect that any extension of a
hole’s host is itself a host of that hole, unless it is a hybrid entity overlapping the
hole itself (e.g., the extension obtained by summing the host and part of the hole).
The proviso is needed to avoid collision with AP4. But actually something stronger
is required: as it stands that axiom would imply for instance that if you take a brick
with a hole full of plaster, the given hole is also a hole in the sum brick+plaster—
which is false. The correct formulation should strengthen the relevant proviso to the
general case of spatial (as opposed to mereological) overlap between the hole and the
host’s extension. This form of overlap can be treated as a topological relation, and
the axiom is therefore postponed to the next section. (See AC7 below.)

Several other important facts follow immediately from AP4–AP7. For exam-
ple, it follows that a host cannot be part of a hole (a strengthening of AH1), or that
mereological atoms (i.e., things that have no proper parts) are bound to be holeless.
Here is a sample list of such basic theorems:

TP2 H(x, y) → ¬P(x, y) (by AP4)
TP3 H(x, y) ∧ H(x, z) → O(y, z) (by AP5)
TP4 H(x, y) → ∃z(PP(z, y) ∧ H(x, z)) (by AP6)
TP5 H(x, y) ∧ H(x, z) → ¬H(x, y–z) (by AP6)
TP6 H(x, y) ∧ P(y, z) → ¬H(x, z–y) (by AP6)
TP7 H(x, y) ∧ HP(z, x) → H(z, y) (by AP7)
TP8 ¬∃zPP(z, y) → ¬∃xH(x, y). (by AP6)

Further stipulative principles can of course be added to strengthen the theory.
For instance, in [3] we also have an axiom to the effect that no hole is atomic
(though a hole’s parts need not necessarily be hole-parts):
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AP8 H(x, y) ∧ ∃zP(z, x).

This rules out the possibility of treating as a holed object the result, say, of remov-
ing a point from a sphere (in agreement with standard topological practice). Holes
are spacious, after all. Here, however, I shall confine myself to the core theory de-
fined by AP3–AP7, leaving out any further stipulative principles such as AP8.

2.3. Topology. I see topology as providing a natural next step after mereology
in the development of a comprehensive part-whole theory [41, 43]. Parthood is a re-
lational concept, wholeness a global property. And in spite of a natural tendency to
think of mereology as a theory of parts and wholes, the latter notion cannot be ex-
plained in terms of the former. For every whole there is a set of (possibly potential)
parts; for every set of parts (i.e., arbitrary objects) there is by AP2 a complete
whole, viz. its mereological sum. But there is no way, mereologically, to draw a
distinction between “good” and “bad” wholes; there is no way one can distinguish
between a one-piece entity, such as a stone or a rope, and a scattered entity made up
of various disconnected parts, such as a broken cup or an archipelago (or a soccer
tournament, in the temporal realm) by reasoning exclusively in terms of parthood.
Thus, the notion of connectedness runs afoul of plain mereology, and a theory of
parts and wholes really needs to incorporate a topological machinery of some sort.
This becomes apparent especially in connection with qualitative reasoning about
space and time: here mereology proves useful to account for certain basic relation-
ships among things or events; but one needs topology to account, say, for the fact
that two objects or events can be continuous with each other, or for the relation of
something being inside, abutting, or surrounding something else. (My present con-
cern will be with the mereotopology of spatial structures; I have explored eventive
and other temporal structures in joint work with Fabio Pianesi [25, 26, 27].)

There are many ways of combining mereology and topology, and the patterns
of interaction between these two domain are still a rather underdeveloped field of re-
search. A most neutral way is simply that of adding a topological component to a
mereological basis, using for this purpose a new primitive or set of primitives. This
is the strategy favored here. Following in the footsteps of [45], the topological
primitive will be a binary relation of topological connection (we could as well use
the notion of boundary, or that of interior parthood: see [26, 36, 38, 42] for some
such alternatives). This relation will be denoted by ‘C(x, y)’ and will be read “x is
connected with y”. However, our domain does not merely consist of spatial or spa-
tiotemporal regions but also (rather) of the sort of entities that may inhabit such re-
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gions—ordinary entities such as stones, chunks of cheese, holes. Accordingly,
connection will be taken to express co-location at (rather than sharing of) some point
in space-time. More precisely, on the intended interpretation something x is con-
nected with something y if and only if either x and the closure of y or y and the clo-
sure of x are co-located at some point (where the closure is, as usual, the thing to-
gether with its boundary; see [4, 24] for a discussion of the interplay between
mereotopology and locative structures). This extension in the meaning of ‘C’ is im-
portant, as it obviously affects the entire topological machinery to be considered.  

Coming now to the specific format of this topological component, its exact
formulation is once again a flexible matter, and various options are in principle
available. I shall therefore only spell out the necessary axioms. These include the
following two, which ensure that C be reflexive and symmetric (via AP1):

AC1 C(x, x)
AC2 P(x, y) → ∀z (C(x, z) → C(z, y)).

Many systems developed under the impact of [7, 8] also assume the converse of
AC2 (or something to that effect), with the consequence of reducing mereology to
topology: see e.g. [1, 28, 29, 30, 31, 32, 44]. However, this is too strong on the
present interpretation of C: an object can be totally inside a hole, hence totally con-
nected with it, without actually sharing any parts with it (think again of the holed
piece of Gruyère floating inside a hole in the Emmenthaler). This is indeed the rea-
son why we have to interpret ‘C’ as suggested: insofar as holes are immaterial, they
can be interpenetrated by other entities; hence we cannot investigate the topology of
the entities in our domain of discourse by studying the topology of the regions that
they occupy. Holes do not occupy the region at which they are located.

Given AC1–AC2, we can then define various auxiliary notions such as self-
connectedness (SC), spatial enclosure (E), spatial overlapping, or intersection (I),
external connection, or abutting (A), superposition (S), interior parthood (IP),
tangential parthood (TP), interior enclosure (IE), or tangential enclosure (TE):

DC1 SC(x) = df ∀y  ∀z (y+z=x → C(y, z))
DC2 E(x, y) = df ∀z (C(z, x) → C(z, y))
DC3 I(x, y) = df ∃z (E(z, x) ∧ E(z, y))
DC4 A(x, y) = df C(x, y) ∧ ¬I(x, y)
DC5 S(x, y) = df I(x, y) ∧ ¬O(x, y)
DC6 TP(x, y) = df P(x, y) ∧ ∃z(A(z, x) ∧ A(z, y))
DC7 IP(x, y) = df P(x, y) ∧ ¬TP(x, y)
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DC8 TE(x, y) = df E(x, y) ∧ ∃z(A(z, x) ∧ A(z, y))
DC9 IE(x, y) = df E(x, y) ∧ ¬TE(x, y).

Note that some of these relations are made available precisely by the possibility that
topologically connected entities bear no mereological relationship to one another,
leaving room for a much richer taxonomy than usually recognized: overlapping is
included in, but does not coincide with, intersection, which in turn is properly in-
cluded in the relation of connection. The basic picture is given in Figure 1 (see [43]
for a fuller account). It also bears emphasis that these notions induce a mereotopol-
ogy on the locative structure corresponding to the entities in our ontology, via the
equation E(x, y) ⇔ P(r(x), r(y)), where r(x) is the region at which x is exactly lo-
cated. For more on this I refer to [4].

C
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I
E
IE

C
I

C

O
P

C
I
E

O
P
IP

C
I
E
IE
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I

Figure 1. Some basic mereotopological relations (from [26], p. 97); dashed lines indicate actual
sharing of parts, as opposed to mere spatiotemporal co-localization.

Moreover, given AP2 the following mereologized versions of the usual notions
of interior (i), exterior (e), closure (c), and boundary (b) are legitimately defined:

DC10 i(x) = df σyIP(y, x)
DC11 e(x) = df i(~x)
DC12 c(x) = df ~e(x)
DC13 b(x) = df ~(i(x)+e(x)).

(Like the operators in DP4–DP9, these operators may be partially defined as we do
not assume the existence of a null individual.) Hence we can distinguish between
open and closed entities as usual:

DC14 Op(x) = df x=i(x)
DC15 Cl(x) = df x=c(x).
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All of these notions are rather well-behaved and allow one to capture a number of
important mereotopological notions and facts without however forcing our ontol-
ogy. To be sure, other axioms would be needed to get reasonably close to a full
topological theory. For instance, we can obtain structures corresponding to ordinary
topological spaces by imposing (the analogues of) the usual closure conditions:

AC3 Cl(x) ∧ Cl(y) → Cl(x+y)
AC4 ∀x(φ → Cl(x)) → (z=πxφ → Cl(z))

or, equivalently,

AC3' Op(x) ∧ Op(y) → (z=x×y → Op(z))
AC4' ∀x(φ → Op(x)) → Op(σxφ).

In the following, however, I shall not need the full strength of the theory defined by
such additional axioms, so I shall not digress here. (See [43] for some material in
this direction.)

Moving now to the specific topological or mereotopological axioms for H, I as-
sume the following:

AC5 H(x, y) → SC(x)
AC6 H(x, y) → A(x, y)
AC7 H(x, y) ∧ P(y, z) → (H(x, z) ∨ I(x, z))
AC8 H(x, y) ∧ PHP(z, x) → ∃w(P(w , y) ∧ C(w , x) ∧ ¬C(w , z)).

These guarantee that holes are non-scattered entities (AC5) connected to their mate-
rial hosts (AC6), and that a hole’s proper hole-parts (if any) cannot be connected to
the very same parts of the host as the hole itself (AC8). (This excludes, for instance,
that a single hole be identified with an infinitely descending “pile” of nested holes.)
Moreover, AP4 is now derivable from AC6. As for AC7, it expresses the intuition,
anticipated in the previous section, that holehood be also right monotonic (condition-
ally) with respect to parthood: typically a mereological extension a hole’s host is it-
self a host of the hole. The conditional proviso can now be properly expressed by
requiring that the extended thing be spatially discrete from the hole: it must not
overlap the hole, either mereologically (as with the hybrid sum consisting of the host
plus the hole) or spatially (as with the sum consisting of the host plus, say, a filler
of the hole). This explains the disjunctive form of the consequent of AC7, which
might otherwise collide with AP4 (in case of mereological overlap) or with AC6 (in
case of mere superposition). Perhaps there are circumstances in which AC7 may still
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sound too strong, for instance in relation to the problematic nature of holes in arti-
facts. There is a hole in the handle; the handle is part of the door; is the hole also a
hole in the door? It is hard to find non-stipulative answers to these questions. But if
cases like this are found disturbing, AC7 will have to be further weakened by im-
posing suitable restrictions on the part-whole relation linking the initial host y and
the relevant extension z.

In [3] we also had an axiom to the effect that every hole has a self-connected
host: this reflected the intuition that although every hole has infinitely many decreas-
ing hosts (by AP7), which in turn may grow indefinitely (by AP5), every hole has a
privileged host, namely the maximally self-connected one. Every other host would
be either a potential part of this one, or a topologically scattered mereological sum
including it as a proper part. However, I am now inclined to regard this as too re-
strictive, i.e., stipulative. Take a piece of cheese with a round cavity hidden inside
it, and suppose there is a small round piece of cheese floating right in the middle of
the cavity. There are reasons to regard this as an empty cavity in a scattered host,
rather than a bigger cavity in a self-connected host partially filled by the small piece.
In any event, not much of what follows depends on this point, so the present formu-
lation does not mark a significant departure from the original theory in this respect.

Another hole-specific principle that could be added to AC5–AC8 is that holes
are topologically open entities—they are bounded from the outside. This principle
was not considered in [3], but is arguably an important feature of holes: they lack a
surface of they own; their boundaries belong to their hosts.

AC9 H(x, y) → Op(x).

One could view this as a topological manifestation of the basic ontological truth
about holes: they are parasitic upon the things hosting them. However, the exact
formulation of this axiom is not straightforward. Consider the boundary between the
hole and that part of its complement which is not occupied by the host. If the hole is
open, then that part of its boundary should be part of the complement too. But then
consider the complement of the sum hole+host: this complement must be closed in
the proximity of the hole, but open elsewhere; for elsewhere the complement is in
contact with the host, and the host is closed. (And it follows from our definition that
two closed entities cannot be in contact.) This might well be the case, but it would
call for an explanation. Alternatively, we could simply say that there is no boundary
between the hole and the complement. That is, there is merely a fiat boundary (in the
terminology of [37]), as opposed to a bona fide boundary of the usual sort: the hole
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is an (open) undetached part of the complement. This distinction is detailed else-
where [42], but it would take us too far afield to spell it out in the present context.

Let us then focus on the basic theory defined by AC5–AC8. Among the new
theorems that can be obtained from these axioms, we have then that two holes don’t
add up to a hole unless they are connected (though the converse need not hold: two
holes superimposed on each other don’t make a hole), that a hole is connected with
every host of its hole-parts, that the hole-parts of a hole are all abutting the hosts of
that hole, and so on:

TC1 H(x +y, z) → C(x, y) (by AC5)
TC2 H(x, y) ∧ H(z, w) → ¬P(y, z) (by AH1 + AP5 + AC7)
TC3 H(x, y) ∧ H(x, z) → H(x, y+z) (by AP4 + AC7)
TC4 H(x, y) ∧ H(x, z) → H(x, y×z) (by AP4 + AP6 + AC7)
TC5 H(x, y) ∧ IP(z, y) → ¬H(x, z)) (by AP4 + AC6)
TC6 H(x, y) ∧ IE(z, x) → ¬H(z, y). (by AC6)
TC7 H(x, y) ∧ H(z, w) → (P(z, x) → A(z, y)) (by AP4 + AP8 + AC6)
TC8 H(x, y) ∧ H(z, w) → (P(z, x) → A(x, w)) (by AC6)

Moreover, topology now allows us to express certain fundamental differences
between holes of different kind. There are three main kinds: superficial holes (or
hollows) which correspond to simple depressions or indentations in the surface of
the host, and could in principle be eliminated by elastic deformation; perforating
holes (tunnels) which introduce non-eliminable topological discontinuities (deter-
mining an increase in the topological genus of the host); and internal holes (cavities)
which are completely hidden inside the host, and which therefore mark a splitting in
the host’s complement. These distinctions can be uniformly expressed in terms of
the intuitive notion of an opening, or “free face”. Let a free face (FF) of a hole x,
relative to a given host y, be a maximally free boundary (FB) of the hole, i.e., a
maximally connected part of the hole’s (fiat) boundary that is nowhere connected
with the host:

DC16 FB(z, x, y) = df  P(z, b(x)) ∧ ¬C(z, y)
DC17 FF(z, x, y) = df FB(z, x, y) ∧ ∀w(FB(w , x, y) ∧ C(w , z) → P(w ,  z)).

(We shall only have use for these definitions when x and y are as specified .) Then
cavities are those holes that have no free faces: the boundary of a cavity is entirely
part of the host’s boundary, and there is no way you can get out of the cavity with-
out digging through the host. Hollows, on the other hand, do have a free face: you
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can easily pour water into them. In fact hollows have exactly one free face, and this
distinguishes them from full-fledged perforations, which always involve at least two
openings—an entrance and an exit, as it were. (If you pour water into them, it runs
out from the other side.) Formally, then, the basic distinction between internal holes
(IH), perforating holes (IH), and superficial holes (SH) may be characterized as
follows:

DC18 IH(x, y) = df H(x, y) ∧ ¬∃zFF(z, x, y)
DC19 PH(x,  y) = df H(x,  y) ∧ ∃z∃w(FF(z,  x,  y) ∧ FF(w ,  x,  y) ∧ ¬C(z,  w))
DC20 SH(x,  y) = df H(x, y) ∧ ¬IH(x, y) ∧ ¬PH(x, y).

On this basis several basic facts are easily established. For instance, in addition
to various simple properties about cavities (they can only abut things that overlap
their hosts, and they must be disconnected from the remaining part of their hosts’
complement), we can prove that cavities are maximal holes, in fact maximally con-
nected holes (they cannot be proper parts of other holes and they include every hole
with which they are connected), that a hole cannot qualify as a hollow with respect
to any part of a host relative to which it already qualifies as a tunnel, or that a hole
that qualifies as a tunnel with respect to a hollow’s host cannot be part of that hollow
(the host would have topologically incompatible properties). Formally:

TC9 IH(x, y) → ¬C(x, ~(x+y))
TC10 IH(x, y) ∧ A(z, x) → I(z, y)
TC11 IH(x, y) ∧ H(z, y) → ¬PP(x, z)
TC12 IH(x, y) ∧ H(z, w) ∧ C(z, x) → P(z, x)
TC13 PH(x, y) ∧ SH(x, z) → ¬P(z, y)
TC14 PH(x, y) ∧ SH(z, y) → ¬P(x, z).

(On the assumption that x is a hole in y, some of these conditionals can be strength-
ened to biconditionals, yielding alternative ways of inducing the basic taxonomy of
hole types. For instance, both TC9 and TC10 could serve the purpose of defining
internal holes.)

a c
b
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Figure 2. Internal hole, or cavity (a); superficial hole, or hollow (b); perforating hole, or tunnel (c).

The simplicity of these results is a sign of the expressive power of the hole-
based approach. As related work in the area of qualitative topological reasoning
makes clear [13, 14], the characterization of important topological differences—such
as the difference between a sphere and a doughnut—seems to run afoul of the basic
logic of ‘C’ and calls for independent accounts. Explicit reference to holes makes the
account straightforward.

2.4. Morphology. The final component of the theory is concerned with con-
cepts and principles that go beyond the confines of part-whole reasoning, showing
at the same time the intrinsic limits of mereotopology and the need for more explicit
morphological (shape-oriented) analysis. The motivation is simple. The hole taxon-
omy outlined above reflects certain peculiar topological properties of the host objects
which do not, in effect, prevent a uniform treatment: to be a hole is to be a hollow, a
tunnel, or a cavity. However, this unity cannot be accounted for by means of mereo-
topological notions: mereology says nothing at all about it; and topology allows us
to distinguish an object perforated by a tunnel (a torus) from an object without (a
sphere), but it is of no use to tell a hollowed object from hollowless ones. Topologi-
cally, hollows don’t count. And the reason is that topology is object-oriented: holes
count only insofar as they mark topological discontinuities in their hosts. To account
for all the differences, and to appreciate the underlying conceptual unity, we must
therefore look directly at the hole, not the object. And the idea behind the morpho-
logical component is that we should do so by relying on a fundamental property of
holes, arguably their characteristic property: they are fillable. They are spacious and
involve concavities, and therefore they can be filled.  

Indeed much of our reasoning about holes depends upon our ability to reason
about their potential “guests”, not only about their actual hosts—a form of comple-
mentary reasoning that can be very effective. Of course, there is a sense in which we
may properly speak of filling as a relation between a filler (say, a cork) and a mate-
rial object (the neck of a bottle). In this sense the guest fills the host, not the hole.
However, this sense is parasitic on what appears to be a more fundamental notion of
filling, whereby some stuff or material body fills (parts of) a hole in another material
body. To fill the neck of a bottle is, strictly speaking, to fill the opening of the bot-
tle, which is part of the hole (tunnel) that goes through the neck. It is this relation
that we consider here. We indicate it by ‘F(x,  y)’, read “x fills y”. In [3] this is taken
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to express perfect filling, a notion that is intuitively meant to capture the idea that a
good filler perfectly heals the concave discontinuity introduced by the hole in its host
object. (The healing is defined by the minimal surface(s) demarcated by the hole’s
edge(s), corresponding to the hole’s free face(s); I’l l come back to this shortly.) We
can, however, assume a more general notion of filling, allowing for incomplete
fillers as well as for complete but improper (protruding) fillers. Taking ‘F’ to
express such a general notion, we can then easily define complete, proper, and exact
(or perfect) fillers respectively:

DF1 CF(x, y) = df ∀z (P(z, y) → F(x, z))
DF2 PF(x, y) = df ∀z (P(z, x) → F(z, y))
DF3 EF(x, y) = df CF(x, y) ∧ PF(x, y).

Thus, a hole’s exact filler can be regarded as the least upper bound (relative to the
partial ordering induced by P) of the hole’s proper fillers, or—equivalently—as the
greatest lower bound of its complete fillers. The equivalence of this characterization
with one taking EF as primitive is thus apparent.

a b c d

Figure 3. Filling a hole exactly (a); properly, but not completely (b); completely, but not properly
(c); generically, i.e., neither completely nor properly (d).

Various specific notions are easily defined using the above. For instance, a
filler which, though possibly incomplete, from the outside looks indistinguishable
from a complete one (relative to some opening) may be called a lid of the hole. That
is, a lid completely covers (hides) some free face of the hole. (A lid may of course
be proper or improper, depending on whether it is enclosed in the hole.) Moreover,
an interesting intermediate notion is that of a bridge: a lid band connecting two op-
posite sides of the hole. Likewise, among a hole’s fillers we may single out those
that act as divisors: they separate the hole into two parts. (There are two kinds:
“vertical” and “horizontal” ones, as it were. The former do not separate any party of
the hole from its complement; the latter do.) There is no need here to go into such
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details. But such lines of development are worth mentioning insofar as they are
indicative of the conceptual richness implicit in the notion of a filler.

As general axioms governing the filling relation, and more generally the inter-
play between morphology and mereotopology, we then assume the following:

AF1 F(x, y) → S(x, y)
AF2 F(x, y) ∧ E(y, x) → CF(x, y)
AF3 F(x, y) ∧ E(x, y) → PF(x, y)
AF4 ∃xφ ∧ ∀x(φ → F(x, y)) → F(σxφ, y).

AF1 says that filling is a form of superposition: fillers share a location with the filled
entities, but there is no sharing of parts. In particular, by AF2 and AF3, the two
possible ways in which a hole and its filler may stand in a relation of spatial en-
closure correspond to the two main types of filling: holes are enclosed in their com-
plete fillers, and enclose their proper fillers. (Hence, they are exactly co-located with
their exact fillers.) This guarantee that proper and complete filling be related in the
appropriate way given the underlying mereological structure: a complete filler com-
pletely fills every part of a hole, while every part of a proper filler properly fills the
hole. Likewise, it follows that every hole is enclosed in its complete fillers and en-
closes its proper fillers, which implies that a hole’s perfect filler can never intersect
the hole’s own host. Here are the formal renderings of these basic facts, along with
the advertised equivalences showing that the choice of ‘F’ as a primitive as opposed
to ‘EF’ is not a substantial matter:

TF1 CF(x, y) → E(y, x)
TF2 PF(x, y) → E(x, y)
TF3 EF(x, y) → E(x, y) ∧ E(y, x)
TF4 CF(x, y) ∧ P(z, y) → CF(x, z)
TF5 PF(x, y) ∧ P(z, x) → PF(z, y)
TF6 CF(x, y) ↔ ∃z (P(z, x) ∧ EF(z, y))
TF7 PF(x, y) ↔ ∃z (P(z, y) ∧ EF(x, z))
TF8 F(x, y) ↔ ∃z (P(z, x) ∧ PF(z, y))
TF9 F(x, y) ↔ ∃z (P(z, y) ∧ CF(x, z)).

As for AF4, this axiom will not play any specific role in the following, but it is
added here for the sake of completeness. TF5 shows that every part of a proper filler
is in turn a filler, but of course this form of monotonicity does not hold in the op-
posite direction: the sum filler+hole, for instance, is not a filler of the hole (by AF1)
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even if it includes a filler. However, we would like to say that in some cases enlarg-
ing a filler yields a bigger filler. At the very least, the result of putting together two
or more fillers should always yield a filler. This is precisely what AF4 guarantees.
Among other things, we have the following closure conditions:

TF10 PF(x, y) ∧ PF(z, y) → PF(x+z, y)
TF11 CF(x, y) ∧ CF(z, y) → CF(x+z, y).

AF1–AF4 define the basic framework needed to express the idea that holes are
fillable entities. There is admittedly much in common between the relations of filling
and that of superposition; indeed there are very close and interesting relationships
between the fundamental algebra of filling and the structure of spatial location (this
is detailed in [4]). Yet the two must be kept separate: superposition is a purely geo-
metric relation which may hold among entities of various kind (among events, for
instance, at least according to some theories); filling is a substantial relation express-
ing the fundamental pattern of interaction between holes and material bodies, and
that is what makes it relevant for the purpose of morphological analysis. This is not
explicit yet in the general background theory defined by AF1–AF4. But it can be
made explicit as soon as we proceed to the specific axioms governing the interplay
between the new morphological primitive, F, and the fundamental relation of the
hole-theory, H:

AF5 F(x, y) → ∃z∃w (H(z, w) ∧ P(y, z))
AF6 ∃z∃w (H(z, w) ∧ P(x, z)) → ¬F(x, y).

AF5 expresses the idea that fillability is an exclusive property of holes and parts
thereof. Conversely, AF6 says that holes and parts of holes don’t fill anything. This
is not merely to express the intuition that holes are immaterial. Surely insofar as they
are immaterial they cannot fill anything—they always leave room for things. But it
will be useful to allow for some flexibility in this regard. It will be useful, for in-
stance, to treat the airy plug that always floats inside an “empty” hole as a filler of
that hole—a perfect filler, albeit a very feeble one. The reason to exclude holes from
the domain of F is, rather, that we want once again to put a clear upper bound on the
number of immaterial parasites that can inhabit what—in ordinary thinking—is the
region of a single hole. If holes could be fillers, nothing (not even the extensionality
axiom AP3) would prevent an infinity of holes to be exactly co-located, each filling
the next one in an endless sequence of perfectly superimposed holes. Besides, as we
shall see shortly, we must leave room for the possibility that a filler be itself holed,
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and this would collide with AH1 were holes allowed to qualify themselves as bona
fide fillers.

Given this, it is obvious that AF1 implies that filling is irreflexive, whereas
AF6 implies that it is also asymmetrical and secondarily non-serial: fillables can’t
fill. Further simple consequences of the axioms are listed below:

TF12 ¬F(x, x) (by AF1)
TF13 F(x, y) → ¬F(y, x) (by AF1 + AF6)
TF14 F(x, y) → ¬F(y, z) (by AF1 + AF6)
TF15 H(x, y) → ¬F(z, y) (by AH1 + AP5–6 + AF5)
TF16 H(x, y) → ¬F(y, x) (by AC6 + AF1)
TF17 H(x, y) ∧ EF(z, x) →A(z, y) (by AC6 + AF1–3)
TF18 H(x, y) ∧ CF(z, x) → E(x, z) (by AF2)
TF19 H(x, y) ∧ PF(z, x) → E(z, x) (by AF3)

It bears emphasis that nothing prevents the possibility that an exact filler be
holed, or that a hole in a complete filler be completely filled by the hole’s host.
(Think of a wedding ring frozen inside an ice cube: the ring is a holed exact filler of
the doughnut-shaped cavity in the cube, and the cube is a complete inexact filler of
the hole in the ring.) This is not only intuitively correct. By exploiting this possibil-
ity, we can actually improve our basic taxonomy in more than one way. We can dis-
tinguish, for instance, between an ordinary, spherical internal cavity and a dough-
nut-shaped one (a cavity-tunnel in the terminology of [3]): the latter is characterized
by the possession of a perfect filler which is doughnut-shaped, hence perforated by
a tunnel; the former has a topologically spherical perfect filler. And we can distin-
guish between these two cases and the case of an internal cavity whose perfect filler
involves an internal cavity—a cavity completely filled by (part of) the host of the
bigger cavity. (This is a case of a hole with no self-connected host, as discussed
above.) We may call these three types of internal holes simple cavities (SIH),
doughnut cavities (DIH), and capsule cavities (CIH), respectively:

DF4 DIH(x, y) = df IH(x, y) ∧ ∀z(EF(z, x) → ∃wPH(w , z))
DF5 CIH(x, y) = df IH(x, y) ∧ ∀z(EF(z, x) → ∃wIH(w , z))
DF6 SIH(x, y) = df IH(x, y) ∧ ¬DIH(x, y) ∧ ¬CIH(x, y).
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Figure 4. A simple cavity (a), a doughnut-cavity (b), and a capsule cavity (c) are distinguished by
the topology of their fillers, respectively a ball (holeless), a doughnut (with a tunnel), and a capsule
(with an internal cavity).

Similar definitions will allow us to distinguish further subcategories of holes.
For instance, if we take x to be a superficial rather than internal hole, then DF4 turns
into a characterization of grooves. A groove is a circumcluding hollow (a sort of
“open” tunnel): the hole goes all around the host, and its exact filler involves a hole,
in fact a perforation (completely but improperly filled by the host). Likewise for the
other cases. Indeed the algebra of filling and its various ramifications form an inter-
esting topic of its own. One can investigate, for instance, to what extent the morpho-
logical complexity of a hole is mirrored in the topological structure of its “skin”,
i.e., that part of the host’s surface that is externally connected with the hole’s exact
filler. Further enrichments and refinements of the taxonomy can also be obtained by
investigating the many ways holes can be branching or knotted together, as sug-
gested in [5]. This shows once again that explicit commitment to holes may have
very advantageous consequences: if holes are bona fide entities, one can investigate
these aspects by relying explicitly on standard tree and knot theories.

At this point a final remark is in order. I have said that the morphological com-
ponent of the theory is meant to go beyond mereotopology in the direction of a more
shape-oriented account. This should not be taken to suggest that the morphological
axioms fix the intended interpretation of the theory so that ‘H(x, y)’ really means “x
is a hole in (or through) y”. They do not, in fact: the bizarre patterns in Figure 5 (b–
d) are perfectly compatible with everything said so far. Rather, the axioms are to be
taken as specifications of certain basic elucidations of (or constraints on) the notion
of a hole, which was and remains the fundamental primitive of the theory. We as-
sume holes to be intuitively understood (recognized, counted, etc.) and we introduce
axioms to make explicit certain features that we regard as constitutive of the hole
concept. This is the general idea behind the strategy followed here; and it is in this
sense that the intended model of the theory will not contain holes corresponding to
the bizarre shapes depicted in Figure 5.
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a cb d

Figure 5. Only a is a hole; b, c, d, and the like violate the intuitive condition that a hole’s perfect
fillers reconstruct the ideal surface of the host object.

Could we rule out such undesired interpretations explicitly? To some extent an
answer in the affirmative is possible, provided the language is suitably enriched; but
I have no sense of how one can aim at a complete theory. By way of illustration,
suppose we add a new primitive operator ‘h(x)’ associating each entity x with its
“convex hull”—intuitively, the region that would be enclosed if x were wrapped in a
taught rubber membrane (Figure 6). This operator could be axiomatized along the
lines of [10, 31, 32]:

Ah1 TE(x, h(x))
Ah2 h(h(x)=h(x)
Ah3 E(x, y) → P(h(x), h(y))
Ah4 P(h(x)+h(y), h(x+y))
Ah5 P(h(x×y), h(x)×h(y)).

(These axioms are only indicative and are not meant to form a complete system.
Actually the definition of a complete system is—I believe—still an open question;
see [9] for a recent assessment.) On this basis we could then add explicit principles
aimed at capturing the intuition that holes go hand in hand with concavities. In
particular, we could express a basic feature of this intuition by requiring that a hole
be always enclosed in the convex hull of its host:

AF7 H(x, y) → E(x, h(y)).

The undesired patterns in figure 5 will then be ruled out, and only the leftmost pat-
tern will qualify as a case of an object with a hole (a hollow, in effect).
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Figure 6. A blob with its convex hull. (Here the blob is self-connected, but the notion of a convex
hull applies as well to entities that consist of two or more disconnected pieces.)

This way of attacking the issue should not be overestimated. Perhaps it is
worth pointing out that AF7, together with AC6, imply the stronger condition that a
hole be always enclosed in that part of the convex hull that does not intersect the
host, i.e, the difference between the convex hull and the region occupied by the host:

TF20 H(x, y) → E(x, h(y)) ∧ ¬I(x, y).

However, this conditional does not hold in the other direction, hence we cannot ex-
ploit the convex hull operator to define holes. Obviously this is because not every
part of a hole qualifies as a hole, though it is enclosed wherever the hole is. But we
cannot rely on the converse of TF20 even if we considered exclusively those parts
of h(y)–σzE(z, y) that are maximally connected. There are two distinct reasons. For
one thing, the exact fillers of a hole satisfy exactly the same conditions as the hole it-
self as far as their location is concerned. An exact filler is enclosed in the very same
part of the convex hull as the hole it fills; yet fillers are material bodies, holes imma-
terial. Secondly, and more importantly, even if we focused exclusively on immate-
rial bodies, the converse of TF20 would be too strong: a sphere with a horn does
not have any hole, yet the result of removing it from its convex hull does leave room
for an immaterial body. The best we could say is something like this:

AF8 E(x, h(y)) ∧ ¬I(x, y) ∧ ∃zF(z, x) → ∃z(P(x, z) ∧ H(z, y)).

That is, the fillable entities that are enclosed in the relevant remainder of the convex
hull are parts of holes—whence a suitable characterization of hole parts follows us-
ing AF6. But of course, this would not serve the purpose of explaining away holes
in terms of convex hulls: for the notion of filling is conceptually dependent on that
of hole. That is what AF6 amounts to in the first place. (This is clear from the two
pairs of patterns in Figure 7. In each case the two patterns satisfy the same condi-
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tions; yet one corresponds to a hole, the other does not.) In short, holehood must be
assumed as a primitive even if its general geometric earmarks may be fully spelled
out. Some holes are just too peculiar, and run afoul of any purely geometric scheme.

bb

aa

c d

Figure 7. Holes are hard to define in terms of convex hulls: (a) a hole with a spike vs. (b) a spike
with no hole; (c) a hole in a scattered host vs. (d) some empty space between two scattered parts.

3. EXAMPLES AND  DEVELOPMENTS: THE GEOMETRY OF CONTAINMENT

The theory sketched above illustrates the level of formalization that can be achieved,
as well as the way different domains come to interact, when we set ourselves to
spell out a common-sense theory of such ordinary and yet philosophically neglected
entities as holes. The result is not only a theory about holes, though. It is also a
hole-based theory about space, or more precisely about spatial relations. And the
interplay among these different domains involved in the theory (ontology, mereol-
ogy, topology, and morphology) as well as between these and other domains (such
as kinematics or causality) is a fertile line of research not only from a formal onto-
logical perspective, but also for the purpose of spatial reasoning and representation.
In the remainder of the paper I would like to illustrate this fact in connection with
some indicative examples. In particular, I shall focus on some issues pertaining to
the modelling of spatial inclusion. My purpose is mostly taxonomic: I wish to show
that explicit commitment to holes can be quite helpful in singling out and keeping
track of some relevant distinctions (without pretense of completeness). But I also
hope to show that a full-blown theory will enjoy some derivative advantages with
regard to both conceptual adequacy and applicative range.

3.1. Insides. A preliminary example coming from natural language processing
is provided by the analysis of prepositions of spatial containment such as ‘in’ (or
‘inside’). Consider first how our machinery permits a clear account of the idiosin-
crasies involved in such arguments as the following:
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Ex1 There is a hole in the brick.
The brick is in the wall.

✓ There is a hole in the wall.

Ex2 There is a hole in the cheese.
The cheese is in the bucket.

✗ There is a hole in the bucket.

The different degree of acceptability of these inferences depends on the relationship
between the different occurrences of ‘in’ in the relevant premisses and conclusion.
The first argument is non-problematic because it simply reflects the monotonicity of
‘in’ as a relation of ontological dependence (first premiss) relative to ‘in’ as a rela-
tion of mereological parthood (second premiss)—a principle that here was actually
assumed as an axiom (AC7) of the topological segment. (Note how difficult it
would be to express this principle in a hole-free language, where the holehood rela-
tion is replaced by a holedness predicate.) By contrast, the illegitimacy of the second
inference can be explained in terms of failure of the transitivity of ‘in’ as we move
from the relation of ontological dependence (hole in the cheese) to that of spatial
containment (cheese in the bucket). In other words, the basic relation H is mono-
tonic with respect to actual parthood, but not to the (homonymous) relation of con-
tainment. Note of course that transitivity is restored if we take both premisses and
conclusion to express a relation of containment: in that case it follows unproblemati-
cally that the hole is contained in the bucket, though presumably this is not what is
ordinarily meant by the sentence in question.

Now, a satisfactory account of ‘in’ as a relation of spatial containment is by it-
self an intricate issue. Some authors have suggested an explanation in terms of con-
vex locative inclusion [15,  18,  46] or mereological inclusion in the convex hull of
the containing object [10, 28,  30,  31,  32]: something x is in something y just in case
(the region occupied by) x is part of the convex hull of (the region occupied by) y.
Thus, for instance, with reference to the leftmost pattern of Figure 8, the fly is in the
glass but the ant is not. As already indicated in [17], however, this approach fails to
appreciate the essential role of containing parts as opposed to other non-convex
parts. Think of a fly near the stem of a wine glass: it may well fall within the convex
hull of the glass, but that does not make it a fly in the glass (Figure 8b). In other
words, reference to the convex hull does not succeed in singling out the regions that
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are relevant for the purpose of spatial inclusion. Focusing exclusively on the convex
hull of the object’s containing parts (as considered in [39]) is also inadequate. For,
apart from the seeming circularity, the outer boundaries of such parts may them-
selves involve concavities (Figure 8c). This is pointed out in [1, 44], where a multi-
level account is proposed eventually emphasizing the functional dimension of con-
tainment. ([39] also defends a functional approach, further developed in [40].)

a b c

Figure 8. Inclusion in the convex hull is not a criterion for being in the glass. (From [44], p. 207).

Within the framework outlined above, where holes are accepted as bona fide
individuals, the difficulty can be approached perspicuously by relying on the anal-
ogy between filling and being in. Roughly, to be contained in an object is to be in a
hole of that object; and something is in a hole (wholly or partially) when it can be
said to fill the hole (properly or not):

DI1 IN(x, y) = df ∃z (H(z, y) ∧ F(x, z))
DI2 WIN(x, y) = df ∃z (H(z, y) ∧ PF(x, z))
DI3 PIN(x, y) = df IN(x, y) ∧ ¬WIN(x, y).

Thus, in the patterns corresponding to b and c in Figure 8, the fly is not in the glass
because it does not fill any hole in the glass. It is located within part of the convex
hull of the glass that is not occupied by the glass; but, as we saw, not every such
region corresponds to a hole. And only those that do should be taken into account in
relation to the question of spatial containment.

In making this suggestion, I take it of course that the containing part of a glass
determines a true hole—a hollow, in effect—though there are other senses in which
a glass can be said to be holed. (It may have a small perforation in the stem, for
instance—I shall come back this shortly.) At the same time, what exactly counts as a
hole or a containing part is not at issue here: the account is effective precisely insofar
as the existence of independent criteria for holehood is presupposed—e.g., insofar
as the space around the stem of a glass is not taken to be a hole. Surely one can
imagine to fill up that space with plasticine; but we have seen that reasoning
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exclusively in terms of filling is deceptive: the notion of filling depends essentially
on that of a hole. We have a criterion for something to be a filler of a hole, but holes
exist and are what they are prior to their fillers. (If we took the space around the
stem as a hole, then the fly would be in the glass, on the present account.)

It also bears emphasis that this suggestion is not meant to imply that every case
of containment is reducible to hole filling, flexible as the relevant notion of a hole
may be. If the glass has a handle, the hole (tunnel) defined by the handle should not
count for the purpose of deciding whether the fly is in the glass. Perhaps the stem or
the containing part itself is perforated: then, again, a fly in such a hole (perforation)
would not be in the glass. Or again, to use a related example from [40], the bulb is
in the socket, but the bottle is not in the cap—or so one could argue. (In other cases,
filling a hole is not even a necessary condition for containment: think of a bird in the
tree [17].) It is apparent that these counterexamples show the limits of the approach
insofar as the approach is purely geometric (topological or morphological): a full ac-
count calls for a decisive step into other territories. Most likely these include at least
some pragmatics, or functional and causal factors at large, as suggested in [1] and
[40]. However, the point remains that explicit reference to holes can mark an im-
provement as far as the geometric part of the story goes. It is true that geometry is
not the whole story; but this truth should simply be taken to imply that something
else (as I said, a pragmatic or functional explanation) will eventually have to be
taken into account. In other words, only some holes count for the purpose of rea-
soning about containment. But which holes do so count is not a question for the ge-
ometric analysis of the problem. (Formally, this means that the bound variable z in
DI1 will have to be further restricted, so that only holes of a certain kind and bearing
certain relations to the contained object should be taken as admissible values. In the
following, however, I shall presume such restrictions to be either forgiveable or
tacitly understood.)

Figure 9. Further difficulties with the relation of containment: in both cases the fly is in a hole
hosted by the glass, but not in the glass itself.
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3.2. Containing hulls.  On this basis—and within these limits—the picture can
be refined in various ways. To begin with, we can relax the requirement that x must
fill a hole in y in order for x to be in y: we might want to say the a hole is inside the
glass (just like the piece of cheese that hosts it), though we know that holes don’t fill
anything by AF6. To this end, we may simply extend DI1–DI3 by relying on the
relation of intersection (spatial overlapping) rather than filling:

DI1' IN'(x, y) = df ∃z (H(z, y) ∧ I(x, z))
DI2' WIN'(x, y) = df ∃z (H(z, y) ∧ E(x, z))
DI3' PIN'(x, y) = df IN'(x, y) ∧ ¬WIN'(x, y).

Of course, this implies that every hole is contained in its host (though immaterially,
so to say):

TI1 H(x, y) → IN'(x, y) ∧ ¬IN(x, y)

Alternatively, we could achieve the same characterization by revisiting the
original convex-hull operator (acting on a domain of regions) in terms of a “contain-
ing-hull” operator acting directly on objects. In our framework this can be intro-
duced as a function k yielding the fusion of any given object with its own holes:

DI4 k(x) = df σz (P(z, x) ∨ H(z, x)).

The following equivalences show that the basic notions defined in DI1'–DI3' could
then be characterized in terms of this operator:

TI2 IN'(x, y) ↔ I(x, k(y)–y)
TI3 WIN'(x, y) ↔ E(x, k(y)–y)
TI4 PIN'(x, y) ↔ IN'(x, y) ∧ ¬WIN'(x, y).

As is might be expected, these equivalences turn out to be analogous to those that
can be obtained from the convex-hull-based approach upon replacing convex hulls
by containing hulls (see [10] for a comparison). On the other hand, it follows from
AF7 that k(y) is always enclosed in h(y) (indeed tangentially enclosed, by Ah1),
though the converse may fail:

TI5 TE(k(x), h(y)).

Thus, only some of the relations defined in terms of h(y) hold upon replacement of
‘h’ by ‘k’. For instance, y might be a holeless non-convex object (such as the block
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with protruding spike of Figure 7), in which case k(y) would be (=y and) properly
enclosed in h(y).

Several additional notions could be introduced at this point. In particular, we
can immediately make the distinction between generic inside and “just inside”

DI5 JIN(x, y) = df WIN(x, y) ∧ A(~k(y))
DI6 JIN'(x, y) = df WIN'(x, y) ∧ A(~k(y)).

and we can make the picture more complete by defining also the relations of being
generically, wholly, or just “outside” a given object.

DI7 OUT(x, y) = df ¬I(x, k(y))
DI8 JOUT(x, y) = df OUT(x, y) ∧ ∃z(H(z, y) ∧ A(x, z)).
DI9 WOUT(x, y) = df OUT(x, y) ∧ ¬JOUT(x, y)

Thus, an object is properly inside another if and only if no part of it is outside, and it
is outside if and only if no part is inside:

TI6 PIN'(x, y) ↔ ∀z(P(z, x) → ¬OUT(z, y))
TI7 OUT(x, y) ↔ ∀z(P(z, x) → ¬PIN'(z, y)).

The natural transition from the two extreme positions, corresponding to the relations
WOUT and WIN' (or WIN, for that matter), is illustrated in Figure 10.

y y y y

x
x

x

x

Figure 10. Natural transition of an object x from wholly outside (left) to wholly inside (right) a
hollowed object y.

Note that none of the relations thus defined is fully transitive. They are not
asymmetric either, except for WIN and JIN, and of course they are not reflexive. On
the other hand, IN (IN'), WIN (WIN'), OUT, and WOUT satisfy certain basic
forms of dissectivity or monotonicity that have no analogue for PIN (PIN') or
JOUT: for instance, it is easily verified that the parts of whatever is wholly inside or
(wholly) outside an object y are also so related to y, although what is (partially) in y
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may obviously have parts that lie outside y, and what is just outside y may have
parts wholly outside it:

TI8 ¬IN(x, x)
TI9 ¬OUT(x, x)
TI10 WIN(x, y) → ¬WIN(y, x)
TI11 JIN(x, y) → ¬JIN(y, x)
TI12 JIN(x, y) ∧ JOUT(z, y) → ¬I(x, z)
TI13 IN(x, y) ∧ P(z, x) → IN(z, y)
TI14 IN'(x, y) ∧ P(z, x) → IN'(z, y)
TI15 WIN(x, y) ∧ P(z, x) → WIN(z, y)
TI16 WOUT(x, y) ∧ P(z, x) → WOUT(z, y).

It is immediately seen that this characterization can then be further specialized to
support richer taxonomies such as the ones introduced in [10, 30, 32], which are
based on the general convex-hull approach mentioned above. The generating schema
is the following:

DI10 Φ-Ψ-R(x, y) = df Φ(x, y) ∧ ψ(y, x) ∧ ¬R(x, y),

where in general Φ and Ψ are any of the containment relations defined above and R
is any of O, S, or C. I leave the computation of the number of distinct relations gen-
erated by D19 to the reader. Further notions can be obtained by fully exploiting the
albebra of spatial location, as indicated in [4].

3.3. Further modes of containment. As I said, it is not claimed that the relations
introduced above allow for a full account of the notion of spatial containment, or
even for a full solution of the fly-in-the glass problem. Even so, several useful
refinements can be introduced already at the geometrical level, including some
applications to naive-physical reasoning about containment (in the spirit of [16]).
For instance, we have already seen that we can distinguish between an inside that in-
volves true “filling” (as in DI1) from that of a “vacuous”, purely geometrical inside:

DI11 VIN(x, y) = df IN'(x, y) ∧ ¬IN(x, y).

The latter, but not the former, would apply to the case of the small hole inside a big-
ger one.

Likewise, in both cases we can account for the distinction between generic in-
side and strict topological inside, the latter occurring only in the presence of internal
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holes. And we may distinguish between partial and whole topological inside de-
pending on whether the guest object is partially or wholly enclosed in the relevant
hole, or, more generally, whether or not every part of the guest object is topologi-
cally inside the host object. The definition are as follows

DI12 TIN(x, y) = df ∃z(IH(z, y) ∧ F(x, z))
DI13 WTIN(x, y) = df ∀z(P(z, x) ∧ TIN(z, y))
DI14 PTIN(x, y) = df TIN(x, y) ∧ ¬WTIN(x, y).

(The corresponding notions for the vacuous case can be obtained by putting ‘I’ in
place of ‘F’ in DI12, though it probably makes little intuitive sense to speak of an
immaterial entity such as a hole being forcefully kept inside another hole: if it so
happens, it is because its host is kept inside. Similar remarks apply to the notions
defined below, which will only be given in terms of filling inside.) Of course this
implies that topological inside can never be partial unless the guest is scattered, and
that something is wholly topologically inside an object only if it cannot move to the
outside without cutting through the object itself (think of a maggot eating its way out
of a cavity in a wheel of Swiss cheese):

TI17 TIN(x, y) ∧ SC(x) → WTIN(x, y)
TI18 WTIN(x, y) ∧ ∀z(SC(z) ∧ C(z,  x) ∧ C(z,  ~k(y)) → I(z,  y)).

In a similar manner we can account for other cases in which the guest object
cannot be let free without cutting. Topological inside define one such case (Figure
11a); another is what may be labelled “constrained inside” (b): the hole is open and
the object inside it is or can be put in contact with the outside, but the presence of a
topological discontinuity constraints its freedom to move.

DI15 CIN(x, y) = df ∃z(H(z, y) ∧ F(x, z) ∧
∀w(EF(w ,  z) → ∃u(IH(u,  w) ∧ IE(u,  k(y)) ∧ E(u,  k(x))))).

From a naive-physical perspective this is perhaps one of the most important patterns
of interaction relating to holes: keeping material objects (fillers) in place, or at least
hindering their movement. There are of course many other such patterns besides
topological constraint. For instance, a plugger is typically a complete, non-exact
filler some parts of which are externally connected with the host but not with the
hole, so that its translational freedom [33] is constrained. Or take the last two cases
depicted in Figure 11 (c, d). Here the guest object is kept inside the host by virtue of
morphological constraints. Unlike a and b, the guest could be let free without alter-
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ing the topology; but unlike the basic pattern in Figure 10, x can be let free only if y
or x itself is suitably deformed. Again, we reach here a point where pure mereotopo-
logical reasoning shows its limits—shapes becomes crucial. And shapes are not the
end of the story either. A square complete filler will be kept in place by its square
hole, but a round filler will rotate in its circular hole. One would need here to inves-
tigate the frictional properties of the stuff of both host and guest, and an explicit step
into the territory of naive kinematics seems required in order to capture the relevant
distinctions. This, I believe, is a promising subject for further exploration.

a b c d

y y y y

x x x x

Figure 11: Patterns of constrained inside. In some cases the constraint is purely topological (a, b);
other cases depend crucially on the morphology of the contained and containing objects (c, d).
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define the lids (L) of a hole (intuitively, those possibly incomplete fillers that
from the outside “look like” exact fillers), and using lids we can define bridges (B)
and divisors (D):

DF7 L(x,  y) = df ∃z(P(z,  y) ∧ EF(x,  z) ∧ ∃w∃u(FF(w ,  y,  u) ∧ FF(w ,  z,  u)))
DF7 B(x,  y) = df SC(x) ∧ ∃z(SC(x) ∧ L(z,  y) ∧ PP(x,  z) ∧ ¬SC(z–x))
DF7 D(x,  y) = df F(x, y) ∧ ¬SC(y  × (~x))


