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Spatial reasoning is no abstract business. It is, to a great extent, reason-
ing about entities located in space, and such entities have spatial struc-
ture. If the table is in the kitchen, then it follows that the table top is
in the kitchen, and it follows because the top is part of the table. If the
concert took place at the stadium, then it didn’t take place in the the-
ater, for concerts are spatially continuous. Even when we reason about
empty places, we typically do so with an eye to the anatomy of their po-
tential tenants: space as such is perceptually remote and we can hardly
understand its structure without imagining what could fill the void.

This general feature of our spatial competence might suggest a deep
metaphysical truth, to the effect that concrete entities such as objects
and events are fundamentally prior to, and independent of, their spatial
receptacles. It might even suggest that space itself is just a fiction, a
picture of some kind: really there are only objects and events spatially
related to one another in various ways. Such was, for instance, the gist
of Leibniz’s stern relationism against Newton’s substantivalism, in spite
of the major role the idea of space plays in the sciences. At the same
time, one might argue that our understanding of the spatial structure of
objects and events, including their spatial relationhips, depends signif-
icantly on our understanding of the structure of space per se: that the
spatial features we attribute to objects and events are somehow inherited
from those of the spatial regions they occupy. Thus, for example, we are



2

inclined to say that ordinary objects have parts insofar as their spatial
regions have parts. We may be inclined to say that the top is part of
the table because of its salience and functional role, but we may just as
easily talk about the top half of a sphere, or its inner parts, in spite of
their lacking any cognitive or functional salience: we identify (and reify)
such parts in terms of the parts of the region the sphere occupies.

This tension (not to say this ambiguity) between concrete object-
oriented thinking and abstract space-oriented thinking is responsible for
many of the philosophical issues that lie behind any formal theory of
spatial reasoning. On the one hand, it is natural (if not necessary) to
supplement the theory with an explicit account of what kinds of thing
may enter into its scope, an account of the sorts of entity that can be
located in space—in short, an account of what may be collected under
the rubric of “spatial entities”. On the other hand, we also want the
theory to be independent of any specific ontological biases we might
have. Whatever spatial entities we are inclined to build into the basic
furniture of the world—subatomic particles, middle-size objects of the
garden variety, large scattered entities such as crowds, forests, archipela-
gos, galaxies—our reasoning about their spatial properties and relations
appears to be governed by the same general principles, and it is natu-
ral to think that such principles must reflect our understanding of the
structural features of the spatial environment in which such entities are
located. In short, although a theory of spatial reasoning may be viewed
as an example of applied logic, it may also be regarded as an example
of a formal theory whose principles do not necessarily depend on the in-
tended domain of application except to the extent that the domain must
include entities that properly qualify as spatial entities of some sort.

The purpose of this chapter is to take a closer look at these delicate
matters. Rather than doing this in general, however, we shall look at
how the subtle interplay between purely spatial intuitions and intuitions
about concrete spatial entities shows up in the construction of a formal
theory. More specifically, we shall consider three sorts of theory, each of
which occupies a prominent position in recent literature: (1) mereology,
or the theory of parthood relations; (2) topology, broadly understood as
a theory of qualitative spatial relations such as continuity and contigu-
ity; and (3) the theory of location proper, which deals explicitly with the
relationship between an entity and the spatial region it occupies. Ar-
guably, such theories may be viewed as jointly contributing to an overall
appraisal of our spatial competence, and over the last few years there
has been considerable progress in each direction. At this point there is
some need for a philosophical pause, and our purpose in this chapter is
to go some way in the direction of a systematic assessment.
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1. Philosophical issues in mereology
Let us begin with mereology. This is often defined as the theory of the
part-whole relation, but such a definition is misleading. It suggests that
mereology has something to say about both parts and wholes, which is
not true. As we shall see in Section 2, the notion of a whole goes beyond
the conceptual resources of mereology and calls for topological concepts
and principles of various sorts. By itself, mereology is best understood
as the theory of the parthood relation, regardless of whether the second
term of the relation may be said to qualify as a whole entity. Thus, for
instance, it is a mereological fact that my hand is part of my arm just
as it is a mereological fact that it is part of my body, although it may
plausibly be argued that only my body qualifies as a whole (maximally
connected) object; my arm doesn’t.

It is also worth pointing out that mereology has a long pedigree, which
makes it a central chapter, not only of formal theories concerned with
spatial reasoning, but of any theory in the realm of formal logic and on-
tology broadly understood. Its roots can be traced back to the early days
of philosophy, beginning with the Pre-Socratic atomists and continuing
throughout the writings of Plato (especially the Parmenides and the
Thaetetus), Aristotle (the Metaphysics, but also the Physics, the Top-
ics, and De partibus animalium), and Boethius (In Ciceronis Topica).
Mereology occupies a prominent role also in the writings of medieval
ontologists and scholastic philosophers such as Peter Abelard, Thomas
Aquinas, Raymond Lull, and Albert of Saxony, as well as in Jungius’s
Logica Hamburgensis (1638), Leibniz’s Dissertatio de arte combinatoria
(1666) and Monadology (1714), and Kant’s early writings (especially the
Monadologia physica of 1756). As a formal theory of the parthood re-
lation, however, mereology made its way into our times mainly through
the work of Franz Brentano and of his pupils, especially Husserl’s third
Logical Investigation (1901). The latter may rightly be considered the
first attempt at a rigorous formulation of the theory, though in a format
that makes it difficult to disentangle the analysis of mereological con-
cepts from that of other formal notions (such as the relation of ontolog-
ical dependence). It is not until Leśniewski’s Foundations of a General
Theory of Manifolds (1916) that a pure theory of parthood was given
an exact formulation. And because Leśniewski’s work was largely in-
accessible to non-speakers of Polish, it is only with the publication of
Leonard and Goodman’s The Calculus of Individuals (1940) that mereol-
ogy has become a chapter of central interest for modern ontologists and
logicians. Indeed, although Leśniewski’s and Leonard and Goodman’s
theories came in different logical guises, they are sufficiently similar to
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be recognized as a common basis for most subsequent developments.
The question that interests us here is how such developments—and the
variety of motivations that lie behind them—reflect and affect our un-
derstanding of mereology as a formal theory of spatial reasoning.1

1.1 ‘Part’ and parthood
To this end, the first thing to observe is that the word ‘part’ has many
different meanings in ordinary language, not all of which correspond to
the same relation. In a way, it can be used to indicate any portion of a
given entity, regardless of whether the portion itself is attached to the
remainder, as in (1), or undetached, as in (2); cognitively salient, as in
(1)–(2), or arbitrarily demarcated, as in (3); self-connected, as in (1)–(3),
or disconnected, as in (4); homogeneous, as in (1)–(4), or gerrymandered,
as in (5); material, as in (1)–(5), or immaterial, as in (6); extended, as
in (1)–(6), or unextended, as in (7); spatial, as in (1)–(7), or temporal,
as in (8); and so on.

(1) The handle is part of the mug.
(2) This cap is part of your pen.
(3) The left half is your part of the cake.
(4) The cutlery is part of the tableware.
(5) This stuff is only part of what I bought.
(6) That area is part of the living room.
(7) The outermost points are part of the perimeter.
(8) The first act was the best part of the play.

All of these cases illustrate the notion of parthood that forms the focus of
mereology. Often, however, the English word ‘part’ is used in a restricted
sense. For instance, it may be used to designate only the cognitively
salient relation illustrated in (1) and (2). In this sense, the parts of an
object x are just its “components”, i.e., those parts that are available as
individual units regardless of their interaction with the other parts of x.
(A component is a part of an object, rather than just part of it; see e.g.
Tversky 1989). Clearly, the properties of such restricted relations may
not coincide with those of parthood broadly understood, so the principles
of mereology should not be expected to carry over automatically.

Also, the word ‘part’ is sometimes used in a broader sense, for instance
to designate the relation of material constitution, as in (9), or the relation
of mixture composition, as in (10), or even a relation of conceptual
inclusion, as in (11):

1For a historical survey of mereology, see Henry (1991), Burkhardt and Dufour (1991), and
Simons (1991c). For systematic comparisons, see Simons (1987) and Ridder (2002).
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(9) The clay is part of the statue.
(10) Gin is part of martini.
(11) Writing detailed comments is part of being a good referee.

The mereological status of these relations, however, is controversial. The
constitution relation exemplified in (9) was included by Aristotle in his
threefold taxonomy (Metaphysics, ∆, 1023b), but many contemporary
authors would rather construe it as a sui generis, non-mereological re-
lation (see Rea 1997 and references therein).2 Similarly, the ingredient-
mixture relationship exemplified in (10) is subject to controversy, as the
ingredients may involve significant structural connections besides spatial
proximity and may therefore fail to retain important characteristics they
have in isolation (see Sharvy 1983). As for statements such as (11), it
may simply be contended that the term ‘part’ appears only in the surface
grammar and disappears at the level of logical form, for instance if (11)
is paraphrased as “A good referee is one who writes detailed comments”.
For more examples and tentative taxonomies, see Winston et al. (1987),
Gerstl and Pribbenow (1995), and Iris et al. (1988).

Finally, it is worth stating explicitly that mereology is typically con-
strued as a piece of formal ontology, i.e., a theory of certain formal
properties and relations that are exemplified across a wide range of do-
mains, whatever the nature of the entities in question. Thus, although
both Leśniewski’s and Leonard and Goodman’s original theories betray
a nominalistic stand, reflecting a conception of mereology as a parsimo-
nious alternative to set theory,3 most contemporary formulations assume
no ontological restriction on the field of ‘part’. The relata can be individ-
ual entities as in (1)–(8), but also abstract entities such as propositions,
sets, types, or properties, as in:

(12) That premise is part of my argument.
(13) The domain of quantification is part of the model.
(14) The colon is part of the title.
(15) Humanity is part of personhood.

(The example in (11) may perhaps be read as expressing a mereological
relation between properties, too.) This “ontological innocence” of mere-
ology plays of course an important role in the appraisal of what principles

2Actually, if the statue is identified with the lump of clay, as some would argue (e.g. Noonan
1993 vs. Johnston 1993), and if identity is treated as a limit case of (improper) parthood, as
we shall indeed suppose, then the relation of material constitution is a mereological relation.
This, however, is the subject of controversy and we shall come back to it in due time.
3To be sure, the original calculus of individuals had variables for classes; the class-free version
is due to Goodman (1951). On the link between mereology and nominalism, see Eberle (1970).
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should hold unrestrictedly: greater generality means fewer axioms, and
here the tension between the tasks of an applied logic and those of a
purely formal theory shows up most vividly. In the following we focus
primarily on the spatially salient uses of ‘part’, but it is important to
keep this tension in mind when it comes to assessing the philosophical
underpinnings of the most controversial tenets of mereology.

1.2 Basic principles
With these provisos, let us proceed to unpack the theory. We may ideally
distinguish two sorts of mereological principles. On the one hand, there
are principles that may be thought of as purely “lexical” axioms fixing
the intended meaning of the relational predicate ‘part’. On the other,
there are principles that go beyond the obvious and aim at greater so-
phistication and descriptive power. Exactly where the boundary should
be drawn, however, is by itself a matter of controversy.

1.2.1 Parthood as a partial ordering. The obvious is this:
regardless of how one feels about matters of ontology, if ‘part’ stands for
the general relation exemplified by all of (1)–(8) above, then it stands
for a partial ordering—a reflexive, transitive, antisymmetric relation:

(16) Everything is part of itself.
(17) Any part of any part of a thing is itself part of that thing.
(18) Two distinct things cannot be part of each other.

As it turns out, virtually every theory put forward in the literature
accepts (16)–(18), though it is worth mentioning some misgivings that
have occasionally been raised.

Concerning reflexivity, one might observe that many legitimate senses
of ‘part’ do not countenance saying that a whole is a part of itself.
For instance, Rescher (1955: 10) cited the biologists’ use of ‘part’ for
the functional subunits of an organism as a case in point. This is of
little import, though. Taking reflexivity as constitutive of the meaning
of ‘part’ amounts to regarding identity as a limit (improper) case of
parthood. A stronger relation, whereby nothing counts as part of itself,
can obviously be defined in terms of the weaker one, hence there is no
loss of generality (see Section 1.2.2). Vice versa, one could frame a
mereological theory by taking proper parthood as a primitive instead.
This is merely a question of choosing a suitable primitive.

The transitivity principle, (17), is more controversial. Several authors
have observed that many legitimate senses of ‘part’ are non-transitive.
Examples would include: (i) a biological subunit of a cell is not a part of
the organ of which that cell is a part; (ii) a handle can be part of a door
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and the door of a house, though a handle is never part of a house; (iii) my
finger is part of me and I am part of the team, yet my finger is not part of
the team. (See again Rescher 1955, Cruse 1979, and Winston et al. 1987,
respectively; for other examples see Iris et al. 1988, Moltman 1997, and
Johansson 2004 inter alia). Arguably, however, such misgivings stem
again from the ambiguity of ‘part’. What counts as a biological subunit
of a cell may not count as a subunit, i.e., a distinguished part of the organ,
but that is not to say that it is not part of the organ at all. Similarly,
if there is a sense of ‘part’ in which a handle is not part of the house
to which it belongs, or my finger not part of my team, it is a restricted
sense: the handle is not a functional part of the house (a “component”),
though it is a functional part of the door and the door a functional part
of the house; my finger is not directly part of the team, though it is
directly part of me and I am directly part of the team. It is obvious that
if the interpretation of ‘part’ is narrowed by additional conditions (e.g.,
by requiring that parts make a functional or direct contribution to the
whole), then transitivity may fail. In general, if x is a φ-part of y and y is
a φ-part of z, x need not be a φ-part of z: the predicate modifier ‘φ’ may
not distribute over parthood. But that shows the non-transitivity of ‘φ-
part’, not of ‘part’. And within a sufficiently general framework this can
easily be expressed with the help of explicit predicate modifiers (Varzi
2005). In any event, it seems clear that spatial parthood is transitive:
whether we construe this as a restricted notion or identify it with the
general notion of parthood, (17) holds.

Finally, concerning the antisymmetry postulate (18), two sorts of
worry are worth mentioning. On the one hand, some authors main-
tain that the relationship between an object and the stuff it is made of
provides a perfectly ordinary example of symmetric parthood: accord-
ing to Thomson (1998), for example, a statue and the clay it is made
of are part of each other, yet distinct. This is highly controversial and
there is a large philosophical literature devoted on this topic (see e.g.
the papers in Rea 1997). For the moment, let us simply observe that
the example trades once again on the ambiguity of ‘part’. We have
already mentioned that material constitution is best regarded as a sui
generis, non-mereological relation. Whether this relation may obtain
between two spatially coincident objects is an interesting question, but
we should postpone its discussion to where it belongs: the theory of spa-
tial location (Section 3.3). On the other hand, one may wonder about
the possibility of unordinary cases of symmetric parthood relationships.
Sanford (1993: 222) refers to Borges’s Aleph as a case in point: “I saw
the earth in the Aleph and in the earth the Aleph once more and the
earth in the Aleph ...”. In this case, a plausible reply is simply that
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fiction delivers no guidance to conceptual investigations: conceivability
may well be a guide to possibility, but literary fantasy is by itself no
evidence of genuine conceivability (van Inwagen 1993: 229). Still, one
may observe that the possibility of mereological loops is not pure fan-
tasy. In view of certain developments in non-well-founded set theory
(Aczel 1988), one might indeed suggest building mereology on the ba-
sis of a notion of parthood that may violate (18). This is particularly
significant insofar as set theory itself may be reformulated in mereolog-
ical terms—a possibility that is explored in the works of Bunt (1985)
and especially Lewis (1991). At present, however, no systematic study
of non-well-founded mereology has been put forward in the literature.
Moreover, we are interested here in mereology as a tool for spatial rea-
soning, and in this regard the possibility of symmetric loops does indeed
appear to be pure fantasy. In the following we shall therefore confine
ourselves to theories that accept the antisymmetry postulate along with
reflexivity and transitivity: parthood is a partial ordering.

1.2.2 Other mereological concepts. It is convenient at this
point to introduce some degree of formalization. Let us use ‘P’ for the
binary predicate constant ‘... is part of ...’. Taking the underlying logic
to be a standard predicate calculus with identity, the above minimal
requisites on parthood may then be regarded as forming a first-order
theory characterized by the following proper axioms for ‘P’:

(P.1) Pxx Reflexivity
(P.2) Pxy ∧ Pyz → Pxz Transitivity
(P.3) Pxy ∧ Pyx→ x = y Antisymmetry

(Here and in the following we simplify notation by dropping all initial
universal quantifiers. Unless otherwise specified, all formulas are to be
understood as universally closed.) A number of additional mereological
predicates can then be introduced by definition. For example:

(19) EQxy =df Pxy ∧ Pyx Equality
(20) PPxy =df Pxy ∧ ¬Pyx Proper Parthood
(21) PExy =df ¬Pxy ∧ Pyx Proper Extension
(22) Oxy =df ∃z(Pzx ∧ Pzy) Overlap
(23) Uxy =df ∃z(Pxz ∧ Pyz) Underlap

An intuitive model for these relations, with ‘P’ interpreted as spatial
inclusion, is given in the diagram of Figure 1.1.

Note that ‘Uxy’ is bound to hold if we assume the existence of a
“universal entity” of which everything is part. Conversely, ‘Oxy’ would
always hold if we assumed the existence of a “null entity” that is part
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x1

x2

x3

x4 = y

x5

Uxny Oxny PPxny EQxny PExny

n = 1 + – – – –
n = 2 + + – – –
n = 3 + + + –
n = 4 + + – + –
n = 5 + + – – +

–

Figure 1.1. Basic mereological relations. (Shaded cells indicate parthood.)

of everything. In the domain of spatial entities, the latter assumption
is of course implausible (Geach 1949).4 The former assumption may be
challenged, too (Simons 2003, Varzi 2006), but it seems reasonable, if
not obvious, in case the only spatial entities countenanced by the theory
are regions of space. We shall come back to these issues in Section 1.4.

Note also that the definitions imply (by pure logic) that EQ, O, and U
are reflexive and symmetric; in addition, EQ is also transitive—an equiv-
alence relation. By contrast, PP and PE are irreflexive and asymmetric,
and it follows from (P.2) that both are transitive. Since the following
biconditional is also a straightforward consequence of the axioms:

(24) Pxy ↔ (PPxy ∨ x = y)

it should now be obvious that one could in fact use proper parthood as
an alternative starting point for the development of mereology, using the
right-hand side of (24) as a definiens for ‘P’. This is, for instance, the
option followed in Simons (1987), where the partial ordering axioms for
‘P’ are replaced by the strict ordering axioms for ‘PP’:

(25) ¬PPxx
(26) PPxy ∧ PPyz → PPxz
(27) PPxy → ¬PPyx

Ditto for ‘EP’, which was in fact the primitive relation in Whitehead’s
(1919) semi-formal treatment of the mereology of events. Other options
may be considered, too. For example, Goodman (1951) used ‘O’ as a
primitive and Leonard and Goodman (1940) used its opposite:

(28) Dxy =df ¬Oxy Disjointness

4In other contexts one may feel differently: see Martin (1965) and Bunt (1985) for theories
with a null individual, and Bunge (1966) for a theory with several null individuals.
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However, the relations corresponding to such predicates are weaker than
PP and PE and no biconditional is provable from (P.1)–(P.3) that would
yield a corresponding definiens of ‘P’ (though one could of course define
‘P’ in terms of ‘O’ or ‘D’ in the presence of further axioms; see below ad
(45)). Thus, other things being equal, ‘P’, ‘PP’, and ‘PE’ appear to be
the only reasonable options. Here we shall stick to ‘P’.

Finally, note that Identity could itself be introduced by definition, due
to the following corollary of the antisymmetry postulate (P.3):

(29) x = y ↔ EQxy

Accordingly, the theory could be formulated in a pure first-order lan-
guage by assuming (P.1) and (P.2) and replacing (P.3) with the following
variant of the standard axiom schema for ‘=’ (where φ is any formula):

(P.3′) EQxy → (φx↔ φy) Indiscernibility

One may in fact argue on these grounds that parthood is in some sense
conceptually prior to identity (as in Sharvy 1983: 234), and since ‘EQ’
is not definable in terms of ‘PP’ or ‘PE’ without resorting to ‘=’, the
argument would also provide evidence in favor of ‘P’ as the most basic
primitive. As we shall see in Section 1.3.2, however, the link between
parthood and identity is philosophically problematic. In order not to
compromise our discussion, in the following we shall therefore continue
to work with a language with both ‘P’ and ‘=’ as primitives.

1.3 Decomposition principles
Let M be the theory defined by the three basic principles (P.1)–(P.3).
M may be viewed as embodying the common core of any mereological
theory. Not just any partial ordering qualifies as a part-whole relation,
though, and deciding what further principles should be added to (P.1)–
(P.3) is precisely the question a good mereological theory is meant to
answer. It is here that philosophical issues begin to arise.

Generally speaking, such refinements may be divided into two main
groups. On the one hand, one may extend M by means of decomposition
principles that take us from a whole to its proper parts. For example, one
may consider the idea that whenever something has a proper part, it has
more than one—i.e., that there is always some mereological difference (a
remainder) between a whole and its proper parts. This need not be true
in every model for M : a world with only two items, only one of which is
part of the other, would be a counterexample, though not one that could
be illustrated with the sort of geometric diagram used in Figure 1.1. On
the other hand, one may extend M by means of composition principles
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Figure 1.2. Three unsupplemented models. (Parthood relationships are represented
by connecting lines going uphill.)

that go in the opposite direction—from the parts to the whole. For
example, one may consider the idea that whenever there are some things
there exists a whole that consists exactly of those things—i.e., that there
is always a mereological sum (or fusion) of two or more parts. Again,
this need not be true in a model for M , and it is a matter of controversy
whether the idea should hold unrestrictedly.

1.3.1 Parts and remainders. Let us begin with the first sort
of extension. And let us start by taking a closer look at the intuition
according to which a whole cannot be decomposed into a single proper
part. There are various ways in which one can try to capture this basic
intuition. Consider the following (from Simons 1987: 26–28):

(P.4a) PPxy → ∃z(PPzy ∧ ¬z = x) Weak Company
(P.4b) PPxy → ∃z(PPzy ∧ ¬Pzx) Strong Company
(P.4) PPxy → ∃z(Pzy ∧ ¬Ozx) Supplementation

The first principle, (P.4a), is a literal rendering of the idea in question:
every proper part must be accompanied by another. However, there is
an obvious sense in which (P.4a) only captures the letter of the idea,
not the spirit: it rules out the unintended model mentioned above (see
Figure 1.2, left) but not, for example, an implausible model with an
infinitely descending chain in which the additional proper parts do not
leave any remainder (Figure 1.2, center).

The second principle, (P.4b), is stronger: it rules out both models as
unacceptable. However, (P.4b) is still too weak to capture the intended
idea. For example, it is satisfied by a model in which a whole can be
decomposed into several proper parts all of which overlap one another
(Figure 1.2, right), and it is may be argued that such models do not do
justice to the meaning of ‘proper part’: after all, the idea is that the
removal of a proper part should leave a remainder, but it is by no means
clear what would be left of z once x (along with its parts) is removed.
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It is only the third principle, (P.4), that appears to provide a full
formulation of the idea that nothing can have a single proper part. Ac-
cording to this principle, every proper part must be “supplemented” by
another, disjoint part, and it is this last qualification that captures the
notion of a remainder.

Should (P.4) be incorporated into M as a further fundamental prin-
ciple on the meaning of ‘part’? Most authors (beginning with Simons
himself) would say so. Yet here there is room for disagreement. In fact,
it is not difficult to conceive of mereological scenarios that violate not
only (P.4), but also (P.4b) and even (P.4a). For example, in Brentano’s
(1933) theory of accidents, a soul is a proper part of a thinking soul
even though there is nothing to make up for the difference (see Chisholm
1978; Baumgartner and Simons 1994). Similarly, in Fine’s (1982) the-
ory of qua objects, every basic object (John) qualifies as the only proper
part of its incarnations (John qua philosopher, John qua husband, etc.).
Now, such putative counterexamples are controversial and, more impor-
tantly for our present concerns, they appear to be of little significance if
mereology is to be thought of as a theory of space. The spatial relations
illustrated by our initial examples (1)–(7) all seem to satisfy (P.4) and, a
fortiori, (P.4a) and (P.4b). Nonetheless there are counterexamples also
in the realm of truly spatial mereologies. The best illustration comes
from Whitehead’s (1929) theory of extensive connection: on this the-
ory, a topologically closed region includes its open interior as a proper
part in spite of there being no boundary elements to distinguish them—
the domain only consists of extended regions. Whether the omission of
boundary elements such as points, lines, and surfaces is a reasonable
thing to do when it comes to the task of modeling our understanding
of space, and whether in the absence of such elements the distinction
between open and closed regions is still legitimate, are questions that
every theory of space must of course address. In Section 2.4 we shall
see that answering in the affirmative involves serious philosophical and
technical complications. But we shall also see that several theories are
available to do the job, including theories that occupy a prominent role
in the current literature on qualitative spatial reasoning. One may rely
on the intuitive appeal of (P.4) to discard such theories as implausible,
but one may as well turn things around and regard the adequacy of such
theories as a good reason not to accept (P.4) unrestrictedly. As things
stand, it therefore seems appropriate to regard such a principle as pro-
viding a minimal but substantive addition to (P.1)–(P.3), one that goes
beyond the mere lexical characterization of ‘part’ provided by M . For
future reference, let us label the resulting mereological theory MM (for
Minimal Mereology).
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Figure 1.3. A weakly supplemented model.

1.3.2 Supplementation, extensionality, identity. There is
another way of expressing the supplementation intuition that is worth
considering. It corresponds to the following axiom, which differs from
(P.4) in the antecedent:

(P.5) ¬Pyx→ ∃z(Pzy ∧ ¬Ozx) Strong Supplementation

Intuitively, this says that if an object fails to include another among
its parts, then there must be a remainder. It is easily seen that (P.5)
implies (P.4), so any theory rejecting at least (P.4) will a fortiori reject
(P.5). (For instance, on Whitehead’s boundary-free theory of extensive
connection, a closed region is not part of its interior even though each
part or the former overlaps the latter.) However, the converse does not
hold. The diagram in Figure 1.3 illustrates a model in which (P.4) is
true, since each proper part counts as a supplement of the other; yet
(P.5) is false.

The theory obtained by adding (P.5) to (P.1)–(P.3) is thus a proper
extension of MM . Let us label this stronger theory EM , for Extensional
Mereology, the attribute ‘extensional’ being justified precisely by the
exclusion of countermodels that, like the one just mentioned, contain
distinct objects with the same proper parts. In fact, the following is a
theorem of EM :

(30) ∃zPPzx→ (∀z(PPzx→ PPzy) → Pxy)

from which it follows that no composite objects with the same proper
parts can be distinct:

(31) (∃zPPzx ∨ ∃zPPzy) → (x = y ↔ ∀z(PPzx↔ PPzy))

(The analogue for ‘P’ is, of course, already provable in M , since part-
hood is reflexive and antisymmetric.) Thus, EM is truly an extensional
theory incorporating the view that an object is exhaustively defined by
its constituent parts. This goes far beyond the intuition that lies behind
the weak supplementation principle (P.4). Does it go too far?

On the face of it, it is not difficult to envisage scenarios that would cor-
respond to the diagram in Figure 1.3. For example, we can obtain a coun-
terexample to (P.5) by identifying x and y with the sets {{z1}, {z1, z2}}
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and {{z2}, {z1, z2}} (i.e., with the ordered pairs 〈z1, z2〉 and 〈z2, z1〉, re-
spectively), interpreting ‘P’ as the ancestral of the improper membership
relation (i.e., of the union of ∈ and =). But sets are abstract entities;
can we also envisage similar scenarios in the spatial domain?

Here is a case where the answer may differ crucially depending on
whether we are interested in modeling a domain of concrete spatial en-
tities or just the domain of the regions of space that they occupy. In the
latter case there is little room for controversy: spatial regions are exten-
sional, if anything is, unless of course we favor a Whitheadian conception
of space. In the former case, however, the answer is controversial. There
are two sorts of objection worth considering. On the one hand, it is
sometimes argued that sameness of parts is not sufficient for identity, as
some entities may differ exclusively with respect to the arrangement of
their parts. For example, it is sometimes argued that: (i) two words can
be made up of the same letters, as with ‘fallout’ and ‘outfall’; (ii) the
same flowers can compose a nice bunch or a scattered bundle, depending
on the arrangements of the individual flowers; (iii) a cat can survive the
annihilation of its tail, but the amount of feline tissue consisting of the
cat’s tail and the rest of the cat’s body cannot survive the annihilation
of the tail, hence they have different properties and must be distinct by
Leibniz’s law in spite of their sharing exactly the same ultimate mere-
ological constituents. (See Hempel 1953: 110, Eberle 1970: §2.10, and
Wiggins 1968, respectively; variants of (iii) may also be found in Doepke
1982, Lowe 1989, Johnston 1992, and Baker 1999, inter alia.) On the
other hand, it is sometimes argued that sameness of parts is not neces-
sary for identity, as some entities may survive mereological change. If a
cat survives the annihilation of its tail, then the tailed cat (before the
accident) and the tailless cat (after the accident) are one and the same
in spite of their having different proper parts (Wiggins 1980). If any of
these arguments is accepted, then clearly (31) is too strong a principle
to be imposed on the parthood relation. And since (31) follows from
(P.5), it might be concluded that EM is on the wrong track.

Let us look at these objections separately. Concerning the necessity
of mereological extensionality, i.e., the left-to-right conditional in the
consequent of (31):

(32) x = y → ∀z(PPzx↔ PPzy)

it is perhaps enough to remark that the difficulty is not peculiar to exten-
sional mereology. The objection proceeds from the consideration that
ordinary entities such as cats and other living organisms (and possibly
other entities as well, such as cars and houses) survive all sorts of gradual
mereological changes. Yet the same can be said of other types of change
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as well: bananas ripen, houses deteriorate, people sleep at night and eat
at lunch. How can we say that they are the same things, if they are not
quite the same? Indeed, (32) is just an instance of the identity axiom

(ID) x = y → (φx↔ φy)

and it is well known that this axiom calls for revisions when ‘=’ is given
a diachronic reading. Arguably, any such revisions will affect the case
at issue as well, and in this sense the above-mentioned objection to (32)
can be disregarded. For example, if the basic parthood predicate were
reinterpreted as a time-indexed relation (Thomson 1983), then the prob-
lem would disappear as the tensed version of (P.5) would only warrant
the following variant of (32):

(32′) x = y → ∀t∀z(PPtzx↔ PPtzy)

Similarly, the problem would disappear if the variables in (32) were
taken to range over four-dimensional entities whose parts may extend
in time as well as in space (Heller 1984, Sider 2001), or if identity itself
were construed as a contingent relation that may hold at some times
but not others (Gallois 1998). Such revisions may be regarded as an
indicator of the limited ontological neutrality of extensional mereology.
But their independent motivation also bears witness to the fact that
controversies about the necessity of extensionality stem from larger and
more fundamental philosophical conundrums and cannot be assessed by
appealing to our intuitions about the meaning of ‘part’.

The worry about the sufficiency of mereological extensionality, i.e.,
the right-to-left conditional in the consequent of (31):

(33) ∀z(PPzx↔ PPzy) → x = y

is more to the point. However, there are various ways of resisting such
counterexamples as (i)–(iii) on behalf of EM . Consider (i)—two words
made up of the same letters. Insofar as we are dealing with truly spatial
entities, this is best described as a case of different word tokens made
up of distinct tokens of the same letter types. There is, accordingly, no
genuine violation of (33) in the opposition between ‘fallout’ and ‘outfall’
(for instance), hence no reason to reject (P.5) on these grounds. (Besides,
even with respect to abstract types, it could be pointed out that ‘fallout’
and ‘outfall’ do not share all their proper parts: the string ‘lo’, for
instance, is only included in the first word.) What if one of the two
word tokens is obtained from the other by rearranging the same letter
tokens? In that case the reply misfires, but so does the ojection: the
issue becomes once again one of diachronic non-identity, with all that it
entails (Lewis 1991: 78f).
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Case (ii)—the flowers—is not significantly different. The same, con-
crete flowers cannot compose a nice bunch and a scattered bundle at
the same time. Case (iii), however, is more delicate. There is a strong
intuition that a cat really is something over and above the amount of
feline tissue consisting of its tail and the rest of its body—that they have
different survival conditions and, hence, different properties—so it may
be thought that here we have a genuine counterexample to mereological
extensionality. On behalf of EM , it should nonetheless be noted that
the appeal to Leibniz’s law in this context is debatable. Let ‘Tibbles’
name our cat and ‘Tail’ its tail, and let us grant the truth of

(34) Tibbles can survive the annihilation of Tail.

There is, indeed, an intuitive sense in which the following is also true:

(35) The amount of feline tissue consisting of Tail and the rest of
Tibbles’s body cannot survive the annihilation of Tail.

However, this intuitive sense corresponds to a de dicto reading of the
modality, where the description in (35) has narrow scope:

(35a) Necessarily, the amount of feline tissue consisting of Tail and
the rest of Tibbles’s body has Tail as a proper part.

On this reading (35) is hardly negotiable (in fact, logically true). Yet
this is irrelevant in the present context, for (35a) does not amount to an
ascription of a modal property and cannot be used in connection with
Leibniz’s law. (Compare the following fallacious argument: The number
of planets might have been even; 9 is necessarily odd; hence the number
of planets is not 9.) On the other hand, consider a de re reading of (35):

(35b) The amount of feline tissue consisting of Tail and the rest of
Tibbles’s body necessarily has Tail as a proper part.

On this reading the appeal to Leibniz’s law would be legitimate (modulo
any concerns about the status of modal properties) and one could rely on
the truth of (34) and (35), i.e., (35b), to conclude that Tibbles is distinct
from the relevant amount of feline tissue. However, there is no obvious
reason why (35) should be regarded as true on this reading. That is,
there is no obvious reason to suppose that the amount of feline tissue
that in the actual world consists of Tail and the rest of Tibbles’s body—
that amount of feline tissue that is now resting on the carpet—cannot
survive the annihilation of Tail. Indeed, it would appear that any reason
in favor of this claim vis-à-vis the truth of (34) would have to presuppose
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Figure 1.4. A strongly supplemented model violating complementation

the distinctness of the entities in question, so no appeal to Leibniz’s
law would be legitimate to establish the distinctess on pain of circularity
(Varzi 2000). This is not to say that the putative counterexample to (34)
is wrong-headed. But it requires genuine metaphysical work to defend it
and it makes the rejection of the strong supplementation principle (P.5)
a much harder task.

1.3.3 Complementation. There is a way of expressing the
supplementation intuition that is even stronger than (P.5). It corre-
sponds to the following thesis, which differs from (P.5) in the consequent:

(P.6) ¬Pyx→ ∃z∀w(Pwz ↔ (Pwy ∧ ¬Owx)) Complementation

This says that if y is not part of x, there exists something that comprises
exactly those parts of y that are disjoint from x—something that we may
call the difference or relative complement between y and x. It is easily
checked that this principle implies (P.5). On the other hand, the diagram
in Figure 1.4 shows that the converse does not hold: there are two parts
of y disjoint from x, namely z1 and z2, but there is nothing that consists
exactly of such parts, so we have a model of (P.5) in which (P.6) fails.

Any misgivings about (P.5) may of course be raised against (P.6). But
what if we agree with the above arguments in support of (P.5)? Do they
also give us reasons to accept the stronger principle (P.6)? The answer
is in the negative. Plausible as it may sound, (P.6) has consequences
that even an extensionalist may not be willing to accept. For example,
Figure 1.5 depicts a scenario that—it may be argued—corresponds ex-
actly to the model of Figure 1.4. It may be argued that although x and
z1 jointly constitute a larger part of y (the difference between y and z2),
and similarly for x and z2 (the difference between y and z1), there is
nothing consisting of z1 and z2 (the difference between y and x), since
these two pieces are disconnected. More generally, it appears that (P.6)
would force us to accept the existence of scattered entities, such as the
“sum” of your left and right arms, or the “sum” of Canada and Mex-
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Figure 1.5. Does the difference between y and x exist?

ico, and since Lowe (1953) many authors have objected to this thought
regardless of how one feels about extensionality. (One philosopher who
explicitly agrees to extensionality while distrusting scattered entities is
Chisholm 1987.) As it turns out, the extra strength of (P.6) is therefore
best appreciated in terms of the sort of mereological aggregates that
this principle would entail, aggregates that are composed of two or more
parts of a given whole. This suggests that any additional misgivings
about (P.6), besides its extensional implications, are truly misgivings
about matters of composition. We shall accordingly postpone their dis-
cussion to Section 1.4, where we shall attend to these matters more fully.
For the moment, let us simply say that (P.6) is, on the face of it, not a
principle that can be added to M without further argument.

1.3.4 Atomism and other options. One last important
family of decomposition principles concerns the question of atomism.
Mereologically, an atom (or “simple”) is an entity with no proper parts:

(36) Ax =df ¬∃yPPyx Atom

Are there any such entities? And if there are, is everything entirely
made up of atoms? Does everything comprise at least some atoms? Or
is everything made up of atomless gunk? These are deep and difficult
questions, which have been the focus of philosophical investigation since
the early days of philosophy and have been center stage also in many
recent disputes in mereology (see, for instance, van Inwagen 1990, Sider
1993, Zimmerman 1996a, and the papers collected in Hudson 2004).
Here we shall confine ourselves to a brief examination.

The two main options, to the effect that there are no atoms at all,
or that everything is ultimately made up of atoms, correspond to the
following postulates, respectively:

(P.7) ∃yPPyx Atomlessness
(P.8) ∃y(Ay ∧ Pyx) Atomicity

These postulates are mutually incompatible, but taken in isolation they
can consistently be added to any mereological theory X considered here.



Spatial Reasoning and Ontology: Parts, Wholes, and Locations 19

Adding (P.8) yields a corresponding Atomistic version, AX; adding (P.7)
yields an Atomless version, ĀX. Since finitude together with the anti-
symmetry of parthood (P.3) jointly imply that mereological decomposi-
tion must eventually come to an end, it is clear that any finite model of
M (and a fortiori of any extension ofM) must be atomistic. Accordingly,
an atomless mereology ĀX admits only models of infinite cardinality. (A
world containing such wonders as Borges’s Aleph, where parthood is not
antisymmetric, might by contrast be finite and yet atomless.) An exam-
ple of such a model, establishing the consistency of the atomless version
of most mereological theories considered in the this chapter, is provided
by the regular open sets of a Euclidean space, with ‘P’ interpreted as
set-inclusion (Tarski 1935).

Now, one thing to notice is that, independently of their motivations,
atomistic mereologies admit of significant simplifications in the axioms.
For instance, AEM can be simplified by replacing (P.5) and (P.8) with

(P.5′) ¬Pyx→ ∃z(Az ∧ Pzy ∧ ¬Pzx)

which in turns implies the following atomistic variant of the extensionality
thesis (31):

(37) x = y ↔ ∀z(Az → (Pzx↔ Pzy))

Thus, any atomistic extensional mereology is truly “hyperextensional”
in Goodman’s (1958) sense: things built up from exactly the same atoms
are identical. An interesting question, discussed at some length in the
late 1960’s (Yoes 1967, Eberle 1968, Schuldenfrei 1969) and taken up
more recently by Simons (1987: 44f) and Engel and Yoes (1996), is
whether there are atomless analogues of (37). Is there any predicate that
can play the role of ‘A’ in an atomless mereology? Such a predicate would
identify the “base” of the system and would therefore enable mereology
to cash out Goodman’s hyperextensional intuitions even in the absence
of atoms. This question is particularly significant from a nominalistic
perspective, but it also bears on our present concerns. For example,
it is a relevant question to ask in connection with the Whiteheadian
conception mentioned in Section 1.3.1, according to which space con-
tains no parts of lower dimensions such as points or lines (see Forrest
1996, Roeper 1997). In special cases there is no difficulty in providing
a positive answer. For example, in the ĀEM model consisting of the
open regular subsets of the real line, the open intervals with rational end
points form a base in the relevant sense. It is unclear, however, whether
a general answer can be given that applies to any sort of domain. If not,
then the only option would appear to be an account where the notion of
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a “base” is relativized to entities of a given sort. In Simons’s terminol-
ogy, we could say that the ψ-ers form a base for the φ-ers if and only if
the following variants of (P.5′) and (P.8) and are satisfied:

(P.5∗) φx ∧ φy → (¬Pyx→ ∃z(ψz ∧ Pzy ∧ ¬Pzx))
(P.8∗) φx→ ∃y(ψy ∧ Pyx)

An atomistic mereology would then correspond to the limit case where
‘ψ’ is identified with ‘A’ for every choice of ‘φ’. In an atomless mereology,
by contrast, the choice of the base would depend each time on the level
of “granularity” set by the relevant specification of ‘φ’.

A second important consideration concerns the possibility of theories
that lie between the two extreme options afforded by Atomicity and
Atomlessness. For instance, it can be held that there are atoms, though
not everything need have a complete atomic decomposition, or it can
be held that there is atomless gunk, though not everything need be
gunky (Zimmerman 1996a). Again, formally this amounts to endorsing
a restricted version of either (P.7) or (P.8) in which the variables are
suitably restricted so as to range over entities of a certain sort:

(P.7φ) φx→ ∃yPPyx
(P.8φ) φx→ ∃y(Ay ∧ Pyx)

At present, no thorough formal investigation of such options has been
entertained (but see Masolo and Vieu 1999). Yet the issue is particularly
significant from the perspective of a mereological theory aimed at model-
ing the spatial world, especially if the theory is to countenance concrete
spatial entities along with the regions of space that such entities may
occupy. It is, after all, a plausible thought that while the question of
atomism may be left open with regard to the mereological structure of
material objects (pending empirical findings from physics, for example),
it must receive a definite answer with regard to the structure of space it-
self. This would amount to endorsing a version of either (P.7φ) or (P.8φ)
in which ‘φ’ is understood as a condition that is satisfied exclusively by
regions of space. Such a condition, of course, cannot be formulated in
the language of a purely mereological theory, but we shall see in Sec-
tion 3 that a suitably enriched theory, in which the relation of location
is explicitly articulated, can do the job properly. (Actually, it is hard to
conceive of a world in which an atomistic space is inhabited by entities
that can be decomposed indefinitely, so in this case it is reasonable to
suppose that any theory accepting (P.8φ) for regions would also endorse
the stronger principle (P.8). However, (P.7φ) would be genuinely inde-
pendent of (P.7), unless it is assumed that every mereologically atomic
entity should also be spatially atomic, i.e., unextended.)
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Similar considerations apply to other decomposition principles that
may come to mind at this point. For example, one may consider a
requirement to the effect that ‘PP’ forms a dense ordering, as already
Whitehead (1919) had it:

(P.9) PPxy → ∃z(PPxz ∧ PPzy) Density

As a general decomposition principle, (P.9) might be deemed too strong,
especially in an atomistic setting. However, it is plausible to suppose
that (P.9) should hold at least in the domain of spatial regions, regard-
less of whether these are construed as atomless gunk or as aggregates
of spatial atoms. Evidently much depends on the link one establishes
between the mereology of an object and that of its spatial location and
this, again, is a question to which we attend more fully in Section 3. For
the moment, let us simply observe that the sort of philosophical issues
that lie behind these options is significantly different from those con-
sidered in the previous sections. Whether something can have a single
proper part, whether parthood is extensional, or even whether it satisfies
the complementation principle (P.6) are issues that depend greatly on
our understanding of the parthood relation. They are, in an important
sense, conceptual questions. Whether there are mereological atoms, by
contrast, or whether mereological decomposition should obey a density
principle, are substantive questions that have nothing to do with our
understanding of parthood as such. (For more on these questions, and
on their general historical background, see Pyle 1995 and Holden 2004.)

1.4 Composition principles
Let us now consider the second way of extending M mentioned at the
beginning of Section 1.3. Just as we may want to fix the logic of P
by means of decomposition principles that take us from a whole to its
proper parts, we may look at composition principles that go in the op-
posite direction—from the parts to the whole. More generally, we may
consider the idea that the domain of the theory ought to be closed un-
der mereological operations of various sorts: not only fusions, but also
products, differences, and more. Here, again, there is room for several
philosophical considerations, some of which are particularly indicative
of the tension between space-oriented and object-oriented intuitions.

1.4.1 Bounds and fusions. Conditions on composition are
many. Beginning with the weakest, consider the claim that any two
suitably related entities have an upper bound, i.e., underlap:

(P.10ψ) ψxy → ∃z(Pxz ∧ Pyz) Boundedness
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Figure 1.6. A fusiona that is not a fusion, and a fusion that is not a fusionb.

Exactly how ‘ψ’ should be construed is an important question by itself—
a version of what van Inwagen (1990) calls the “special composition
question”. Perhaps the most natural choice is to identify ψ with mere-
ological overlap, the rationale being that such a relation establishes an
important tie between what may count as two distinct parts of a larger
whole. As we shall see momentarily, with ψ so construed, (P.10ψ) is
indeed uncontroversial. However, regardless of any specific choice, it is
apparent that (P.10ψ) is pretty weak, as it holds trivially in any domain
with a universal entity of which everything is part.

A somewhat stronger condition would be to require any pair of suit-
ably related entities to have a smallest underlapper—something com-
posed exactly of them and nothing else. This requirement is sometimes
stated by saying that such entities must have a mereological “sum”,
or “fusion”, though it is not immediately obvious how that should be
formulated in the formal language. Consider:

(P.11ψa) ψxy → ∃z(Pxz ∧ Pyz ∧ ∀w(Pxw ∧ Pyw → Pzw)) Fusiona
(P.11ψb) ψxy → ∃z(Pxz ∧ Pyz ∧ ∀w(Pwz → Owx ∨ Owy)) Fusionb
(P.11ψ) ψxy → ∃z∀w(Owz ↔ Owx ∨ Owy) Fusion

In a way, (P.11ψa) would seem the obvious choice, corresponding to
the idea that the fusion of two objects is just their least upper bound
relative to P. (See e.g. Bostock 1979, van Benthem 1983.) However, this
condition is too weak to capture the intended notion of a mereological
fusion. For example, with ψ construed as overlap, (P.11ψa) is satisfied
by the model of Figure 1.6, left: here the least upper bound of x and
y is z, yet z hardly qualifies as something “made up” of x and y since
its parts also include a third, disjoint item w. In fact, it is a simple fact
about partial orderings that among finite models (P.11ψa) is equivalent
to (P.10ψ), hence just as weak. By contrast, (P.11ψb) corresponds to a
notion of fusion (to be found e.g. in Tarski 1929) that may seem too
strong: it rules out the model on the left of Figure 1.6; but it also rules
out the model on the right, which depicts a situation in which z may be
viewed as an entity truly made up of x and y insofar as it is ultimately
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composed of atoms to be found either in x or in y. Of course, such a
situation violates the strong supplementation principle (P.5), but that’s
precisely the sense in which (P.11ψb) is too strong: an anti-extensionalist
might want to have a notion of fusion that does not presuppose strong
supplementation. The formulation in (P.11ψ) is the natural compromise:
it is strong enough to rule out the model on the left, but weak enough
to be compatible with the model on the right. This is, in fact, the
formulation that best reflects the notion of fusion to be found in standard
treatments of mereology, and in the sequel we shall mostly stick to it.
Note, however, that if (P.5) holds, then (P.11ψ) is equivalent to (P.11ψb).
Moreover, it turns out that if the stronger complementation axiom (P.6)
holds, then all of these principles are trivially satisfied in any domain in
which there is a universal entity: in that case, regardless of ψ, the fusion
of any two entities is just the complement of the difference between the
complement of one minus the other. (Such is the strength of (P.6), a
genuine cross between decomposition and composition principles.)

We can further strengthen these principles by considering infinitary
bounds and fusions. For example, (P.10ψ) can be generalized to a prin-
ciple to the effect that any non-empty set of entities satisfying a suitable
condition ξ has an upper bound. Strictly speaking there is a difficulty
in expressing such a principle in a language without set variables. We
can, however, achieve a sufficient degree of generality by relying on an
axiom schema where classes are identified by open formulas. Since an
ordinary first-order language has a denumerable supply of formulas, at
most denumerably many sets (in any given domain) can be specified in
this way. But for most purposes this limitation is negligible, as normally
we are only interested in those sets of objects or regions that we are able
to specify. Thus, the following axiom schema will do, where ‘φ’ is any
formula in the language and ‘ξ’ expresses the condition in question:

(P.12ξ) ∃wφw ∧ ∀w(φw → ξw) → ∃z∀w(φw → Pwz)

Likewise, the fusion axiom (P.11ψ) can be strengthened as follows:

(P.13ξ) ∃wφw ∧ ∀w(φw → ξw) → ∃z∀w(Owz ↔ ∃v(φv ∧ Owv))

and similarly for (P.11ψa) and (P.11ψb). (The condition ‘∃wφw’ guaran-
tees that ‘φ’ picks out a non-empty set, so there is no danger of as-
serting the unconditional existence of “null entities”—a mereological
fiction that we have already mentioned as implausible in the context
of spatial ontology.) It can be checked that these generalized formula-
tions include the corresponding finitary principles as special cases, tak-
ing ‘φw’ to be the formula ‘(w = x ∨ w = y)’ and ‘ξw’ the condition
‘(w = x→ ψwy) ∧ (w = y → ψxw)’.
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Finally, we get the strongest version of these composition principles
by asserting them as axiom schemas that hold for every condition ξ,
i.e., effectively, by foregoing any reference to ξ altogether. Formally this
amounts in each case to dropping the second conjunct of the antecedent.
For example, the following schema is the unrestricted version of (P.13ξ),
to the effect that every specifiable non-empty set of entities has a fusion:

(P.13) ∃wφw → ∃z∀w(Owz ↔ ∃v(φv ∧ Owv)) Unrestricted Fusion

The extension of EM obtained by adding every instance of this schema
has a distinguished pedigree and is known as General Extensional Mere-
ology, or GEM . It corresponds to the classic systems of Leśniewski and
of Leonard and Goodman. In fact, it turns out that adding (P.13) to
MM yields the same theory GEM , since (P.13) implies that every pair
of overlapping things has a maximal common part (a product):

(38) Oxy → ∃z∀w(Pwz ↔ (Pwx) ∧ Pwy))

which, in turn, implies the equivalence between the weak supplementa-
tion principle (P.4) and the stronger (P.5) (Simons 1987: 31). This is by
itself remarkable, for it might be thought that a composition principle
such as (P.13) should be compatible with the rejection of a decomposi-
tion principle that is committed to extensionality. On the other hand,
mereological extensionality is really a double-barreled thesis: it says that
two wholes cannot be decomposed into the same proper parts but also,
by the same token, that two wholes cannot be composed out of the same
proper parts. So it is not entirely surprising that as long as PP is well
behaved, as per (P.4), extensionality might pop up like this in the pres-
ence of substantive composition statements. (It is, however, noteworthy
that it pops up as soon as (P.4) is combined with a seemingly innocent
thesis such as (38), so the anti-extensionalist should keep that in mind.)

The intuitive idea behind all these principles is in fact best appreciated
in the presence of extensionality, for in that case the relevant fusions must
be unique. Just to confine ourselves to GEM , it is natural to consider
the following fusion operator (where ‘ı’ is the definite descriptor5):

(39) Σxφx =df ız∀w(Owz ↔ ∃v(φv ∧ Owv)) fusion

Then (P.13) and (P.5) can be simplified to a single axiom schema:

(P.14) ∃xφx→ ∃z(z = Σxφx) Unique Unrestricted Fusion

5We assume a classical logical background, with ‘ı’ defined as usual. Much of what follows,
however, would also apply in case a free logic were used instead, with ‘ı’ assumed as part of
the logical vocabulary proper. (See Simons 1991b for a free formulation of mereology.)
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and the full strength of the theory can be seen by considering that its
models are all closed under the following functors, modulo the absence
of a null entity:

(40) x+ y =df Σz(Pzx ∨ Pzy) sum
(41) x× y =df Σz(Pzx ∧ Pzy) product
(42) x− y =df Σz(Pzx ∧ Dzy) difference
(43) ∼ x =df ΣzDzx complement
(44) U =df ΣzPzz universe

(Absent the null entity, U has no complement while products are defined
only for overlapping pairs and differences for pairs that leave a remain-
der). Since these functors are the natural mereological analogue of the
familiar Boolean operators, with fusion in place of set abstraction, it
follows that the parthood relation axiomatized by GEM has the same
properties as the set-inclusion relation. More precisely, it is isomorphic
to the inclusion relation restricted to the set of all non-empty subsets of
a given set, which is to say a complete Boolean algebra with the zero
element removed—a fact that has been known since Tarski (1935).

There are other equivalent formulations of GEM that are notewor-
thy. For instance, it is a theorem of every extensional mereology that
parthood amounts to inclusion of overlappers:

(45) Pxy ↔ ∀z(Ozx→ Ozy)

This means that in an extensional mereology ‘O’ could be used as a
primitive and ‘P’ defined accordingly, and it can be checked that the
theory defined by postulating (45) together with the unrestricted fu-
sion principle (P.13) and the antisymmetry axiom (P.3) is equivalent to
GEM . Another elegant axiomatization of GEM , due to an earlier work
of Tarski (1929), is obtained by taking just the transitivity axiom (P.2)
and the unique unrestricted fusion axiom (P.14).

1.4.2 Composition, existence, and identity. Arguably, the
algebraic strength of GEM speaks in favor of this theory as an account
of the structure of space, since it is rather intuitive (and common prac-
tice) to understand spatial regions in terms of sets of points mereolog-
ically related by set-inclusion. As a general theory of the mereology of
all spatial entities, however, GEM reflects substantive postulates whose
philosophical underpinnings are controversial. Indeed, all composition
principles turn out to be controversial, just as the decomposition prin-
ciples examined in Section 1.3. For, on the one hand, it appears that
the weaker, conditional formulations, from (P.10ψ) to (P.13ξ), are just
not doing enough work: not only do they depend on the specification of
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the limiting conditions expressed by the predicates ‘ψ’ and ‘ξ’; they also
treat such conditions as merely sufficient for the existence of bounds
and fusions, whereas ideally we are interested in conditions that are
both sufficient and necessary. On the other hand, the stronger, uncon-
ditional formulations—most notably (P.13)—appear to go too far, not
only because they tend to obliterate any difference between weak and
strong supplementation, i.e., extensionality, but because they commit
the theory to the existence of a large variety of prima facie implausible
mereological composites. So what is the right way to go, at least insofar
as we are interested in the compositional structure of the spatial realm?

Concerning the first sort of worry, one could of course strenghten
every conditional formulation to a biconditional expressing both a nec-
essary and sufficient condition for the existence of an upper bound, or
a fusion. But then the question of how such conditions should be con-
strued becomes crucial. For example, in connection with (P.10ψ) we
have mentioned the idea of construing ‘ψ’ as ‘O’, the rationale being
that mereological overlap establishes an important connection between
what may count as two distinct parts of a larger whole. However, as
a necessary condition overlap is arguably too stringent. We may have
misgivings about the existence of scattered entities consisting of spa-
tially unrelated parts, such as the top of my body and the bottom of
yours, or the collection of my umbrellas and your left shoes. But in some
cases no such misgivings arise. In some cases it appears perfectly nat-
ural to countenance wholes that are composed of two or more disjoint
entities—a bikini, the solar system, a printed inscription consisting of
separate letter tokens (Cartwright 1975). More generally, intuition and
common sense suggest that some and only some mereological composites
exist, not all; yet it is doubtful whether the question of which composites
exist—van Inwagen’s “special composition question”—can be answered
successfully. Consider a series of almost identical mereological aggre-
gates that begins with a case where composition appears to obtain (e.g.,
the body cells that currently make up my body) and ends in a case
where composition would seem not to obtain (e.g., the same body cells
after their relative distance has been gradually increased to a huge ex-
tent). Where should we draw the line? It may well be that whenever
some entities compose a bigger one, it is just a brute fact that they do
so (Markosian 1998b). But if we are unhappy with brute facts, if we
are looking for a principled way of drawing the line so as to specify the
circumstances under which the facts obtain, then the question is truly
challenging. As Lewis (1986: 213) put it, no restriction on composition
can be vague, since existence cannot be a matter of degree; but unless
it is vague, it cannot fit the intuitive desiderata.
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For these reasons, although the axiom of unrestricted fusion has been
a major source of complaint since the early days of mereology (see again
Lowe 1953 and Rescher 1955, with replies in Goodman 1956, 1958), it
is a fact that most formally accomplished theories accept unrestricted
composition principles of some sort. Apart from whatever algebraic con-
siderations might motivate them, such principles suggest themselves as
the only non-arbitrary ways of answering the composition question. Be-
sides, it might be observed that any complaints against such principles
rest on psychological biases that have no bearing on how the world is
actually structured. In the words of van Cleve (1986: 145), little would
follow even if we did manage to come up “with a formula that jibed with
all ordinary judgments” about what counts as a unit and what does not,
for such judgments need not have any ontological transparency.

All of this speaks in favor of (P.13) and the like against their weaker,
conditional formulations, providing also an answer to the second worry
mentioned above: the prima facie ontological extravagance of a theory
such as GEM is not by itself a sign that the theory has gone too far.
There is, however, another worry that is worth mentioning in this con-
nection, and this further worry concerns the ontological exuberance—if
not the extravagance—of the theory. For even granting the impossibility
of drawing a principled line between natural fusions and unnatural ones,
one could still object that positing every conceivable fusion is utterly
unjustified. Why should mereology be committed to the existence of all
such things over and above their constituent proper parts?

There are two lines of response to this question. First, it could be
observed that the ontological exuberance associated with the relevant
composition principles is not substantive. This is obvious in the case of
a modest principle in the spirit of (P.10ψ), to the effect that entities of
the right sort have an upper bound. After all, there are small things
(my fingers) and large things (my body), and it is just a fact that the
latter encompass the former. But the same could be said with respect
to those stronger principles that require the large thing to be composed
exactly of the small things—to be their mereological fusion. For one
could argue that even a fusion is, in an important sense, nothing over
and above its constituent parts. The fusion is just the parts “taken to-
gether” (Lewis 1991: 81); it is the parts “counted loosely” (Baxter 1988:
580); it is, effectively, the same portion of reality, which is strictly a mul-
titude and loosely a single thing. This thesis, known in the literature as
“composition as identity”, is by no means undisputed (see e.g. van In-
wagen 1994, Yi 1999, Merricks 1999). Nonetheless it should be carefully
evaluated in connection with any worry about the ontological exuber-
ance of fusion principles. And if the thesis is accepted, then the charge
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of ontological extravagance loses its force, too. If a fusion is nothing over
and above its constituent parts, and if the latter are all right, there can
be nothing particularly extravagant in countenancing the former: it just
is them.

Secondly, one may observe that the worry in question bites at the
wrong level. If, given two entities, positing their sum were to count
as further ontological commitment, then, given any mereologically com-
posite entity, positing its proper parts should also count as further com-
mitment. After all, every entity is distinct from its proper parts. But
then the worry has nothing to do with the composition axioms; it is,
rather, a question of whether there is any point in countenancing a
whole along with its parts, or vice versa. And if the answer is in the
negative, then there seems to be no use for mereology tout court. From
the point of view of the present worry, it would seem that the only truly
parsimonious account would be one that rejects, not only some, but all
logically admissible fusions—in fact, all mereological composites whatso-
ever. Philosophically such an account is defensible (see Rosen and Dorr
2002) and the corresponding axiom is compatible with M :

(P.15) Ax Strong Atomicity

The following immediate corollary, however, says it all: nothing would
be part of anything else and parthood would collapse to identity.

(46) Pxy ↔ x = y

(This account is known as mereological nihilism, in contrast to the me-
reological universalism expressed by (P.13); see van Inwagen 1990: 72ff.)

In recent years, further worries have been raised concerning mereo-
logical theories with non-trivial composition principles—especially con-
cerning the full strength of GEM . It has been argued that unrestricted
composition does not sit well with certain intuitions about persistence
through time (van Inwagen 1990: 75ff), that it requires every entity to
necessarily have the parts it has (Merricks 1999), or that it leads to para-
doxes similar to the ones afflicting naive set theory (Bigelow 1996). Such
arguments are still the subject of on-going controversy and a detailed
examination is beyond the scope of this chapter. Some discussion of the
first point, however, is already available in the literature: see especially
Rea (1998), McGrath (1998), and Hudson (2001: 93ff). Hudson (2001:
95ff) also contains a discussion of the last point.

1.5 The problem of vagueness
Let us conclude this discussion of mereology by considering a question
that is not directly related to specific mereological principles but, rather,
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to the underlying notion of parthood that mereology seeks to system-
atize. All the theories examined so far, from M to GEM , assume that
parthood is a perfectly determinate relation: given any two entities x
and y, there is always a definite fact of the matter as to whether or not
x is part of y. However, it may be argued that this is a simplification.
Perhaps there is no room for vagueness in the idealized mereology of
pure space, but what about the real world? Think of a cloud, a for-
est, a pile of trash. What parts do they have, exactly? What are the
mereological boundaries of a desert, a river, a mountain? Some stuff is
positively part of Mount Everest and some stuff is positively not part,
yet there is borderline stuff whose mereological relationship to Everest
seems indeterminate. Even living organisms may, on closer look, give
rise to vagueness issues. Surely John’s body comprises his heart and does
not comprise mine. But what about the candy he is presently chewing:
Is it part of John? Will it be part of John only after he swallowed it?
After he started digesting it? After he digested it completely?

In the face of such examples, it might be thought that the conceptual
apparatus on which M and its extensions are based is too rigid. It might
be thought that the world includes various sorts of vague entities, and
that relative to such entities the parthood relation need not be fully de-
termined (van Inwagen 1990: ch. 13, Parsons and Woodruff 1995). There
are, in fact, various ways one could seek greater flexibility. One could
leave everything as is but change the underlying logic (and semantics),
for instance by allowing statements of the form ‘Pxy’ to receive no deter-
minate truth-value (as in Tye 1990), or to receive truth-values that are
intermediate between classical truth and falsity (as in Copeland 1995).
Or one could change the very basic apparatus of mereology, replacing
the ‘part of’ predicate with a new primitive ‘part of to a degree’: this
is, for example, the approach that led to the development of Polkowsky
and Skowron’s (1994) “rough mereology”, where parthood undergoes a
fuzzification parallel to the fuzzification of membership in Zadeh’s (1965)
fuzzy set theory. No matter how exactly one proceeds, obviously many
among the principles discussed above would have to be reconsidered, not
because of what they say but because of their classical, bivalent presup-
positions. For example, the extensionality theorem of EM , (31), says
that composite things with the same proper parts are identical, and this
would call for qualifications: the model in Figure 1.7, left, depicts x and
y as non-identical by virtue of their having distinct determinate parts;
yet one might prefer to describe a situation of this sort as one in which
the identity between x and y is itself indeterminate, since it is indeter-
minate whether they really have distinct parts. Conversely, the model
on the right depicts x and y as non-identical in spite of their having the
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Figure 1.7. Objects with indeterminate parts (in grey)

same determinate proper parts; yet again one might prefer to suspend
judgment owing to the indeterminacy the middle element.

That there are vague objects in this sense, however, i.e., objects whose
mereological composition may to some extent be objectively indetermi-
nate, is all but obvious. Surely a statement such as

(47) x is part of Everest

may lack a definite truth-value, if x lies somewhere in the borderline area.
But—it could be argued—this need not be due to the way the world is.
The indeterminacy of (47) may be due exclusively to semantic factors—
not to the vagueness of Everest but to the vagueness of ‘Everest’. When
the members of the Geodetic Office of India baptized the mountain after
the name of their British founder, they simply did not specify exactly
which parcel of land they were referring to (or which parcel of land
constituted the mountain they meant to name).6 The referent of their
term was vaguely fixed and, as a consequence, the truth conditions of a
statement such as (47) are not fully determined; yet this is not to say
that the stuff out there is mereologically vague. Each one of a large
variety of slightly distinct parcels of land has an equal claim to the
vaguely introduced name ‘Everest’, and each such thing has a perfectly
precise mereological structure. To put it differently, a statement such as

(48) It is indeterminate whether x is part of Everest

admits of a de re reading, as in (48a), but also of a de dicto reading, as
in (48b):

(48a) Everest is a y such that: it is indeterminate whether x is part
of y.

(48b) It is indeterminate whether: Everest is a y such that x is part
of y.

The first reading corresponds to the initial thought, to the effect that
Everest’s parts are indeed indeterminate, with the consequence that

6That mountains are just parcels of land is, of course, a substantive assumption: an anti-
extensionalist may want to deny it, as with Tibbles and the relevant amount of feline tissue
(Section 1.3.2). On the ontology of topographic entities, see e.g. Smith and Mark (2003).
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mereology ought to be revised as seen above. The second reading, by
contrast, corresponds to the idea that it is the semantics of ‘Everest’
that is indeterminate, and there is no reason to suppose that this is due
to some objective deficiency in the parthood relation—hence no reason
to require revisions in the apparatus of mereology itself. (Ditto for the
other cases mentioned above. The reason why it’s indeterminate whether
a certain molecule is part of a cloud, a tree part of a forest, or the candy
part of John, is not that such things are mereologically indeterminate;
rather, on a de dicto understanding the indeterminacy lies entirely in
our words, in the terms we use to pick out such things from a multitude
of slightly distinct but perfectly determinate potential referents.)

If the semantic conception is accepted, then, the problem of vagueness
dissolves. Or rather: it ceases to be an issue for mereology and it becomes
a problem for semantics broadly understood—a problem that manifests
itself in many contexts besides those under consideration. (How much
money do you need to be rich? How slowly can you run? How late can
I call you?) Again, there are many things one could do at this point. A
favored option is afforded by so-called supervaluational semantics, whose
first application to vagueness can be traced back to Fine (1975). Accord-
ing to such semantics, the truth-value of a sentence involving vague terms
is a function of its truth-values under the admissible precisifications of
those terms: the sentence is true if it is true under every precisification,
false if false under every precisification, and indeterminate otherwise.
Thus, if x is in the borderline area, then the indeterminacy of (47) is
explained by the fact that among the many admissible ways of precisify-
ing the term ‘Everest’, some would pick out a referent that extends far
enough to include x among its parts whereas others would not, which is
to say that (47) would be true on some but not all precisifications. By
contrast, if x were clearly part of Everest given the way the name is used
in ordinary circumstances, or if it were clearly not part of Everest, then
(47) would have a definite truth-value, for every precisification would
yield the same response (always true and always false, respectively). We
need not go into the details here. But three things are worth noting.

First, none of this will have any impact on the mereological axioms
considered so far. For those axioms are expressed as (implicitly) univer-
sally quantified formulas involving no singular terms except for variables,
and variables are not the sort of expression that can suffer from the phe-
nomenon of vagueness. Variables range over all entities included in the
domain of quantification and pick out their values independently of any
vagueness that may affect the non-logical vocabulary.

Second, any model that satisfies a given axiom or theorem satisfies
also any substitution instance that can be obtained by replacing one
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or more variables with corresponding names or descriptive terms. For
example, the following sentence is a substitution instance of (P.1):

(49) Everest is part of Everest.

and it is easily verified that a supervaluational semantics will make (49)
true in every model of M . For insofar as reflexivity is meant to hold for
every entity in the domain, the truth of (49) is guaranteed no matter
which entity we elect as the referent of ‘Everest’. Likewise, the following
is a substitution instance of (31), the extensionality theorem of EM :

(50) As long as they are non-atomic, Everest and Sagarmatha are
the same if and only if they have the same proper parts.

(‘Sagarmatha’ is the Nepalese translation of ‘Everest’, though there is no
guarantee that both names admit of the same precisifications.) Again,
it is easily verified that a supervaluational semantics will make (50) true
in every EM model. For no matter how we precisify the terms ‘Everest’
and ‘Sagarmatha’ by tracing a precise boundary around their referents,
the extensionality of parthood will guarantee that the referents coincide
just in case their proper parts coincide too.

Finally, it is worth emphasizing that a supervaluational semantics
is perfectly adequate to classical logic (Fine 1975, McGee 1997, Varzi
2001). For example, although it does not obey to the semantic principle
of bivalence, as with various instances of

(51) Either ‘x is part of Everest’ is true or ‘x is part of Everest’
is false,

it certainly satisfies the logical law of excluded middle: any instance of

(52) Either x is part of Everest or x is not part of Everest

is bound to be true, for it is true on any precisification of ‘Everest’.
Things would change, however, if the language were enriched by adding
an explicit sentential operator to express indeterminacy. In that case,
the following principle would give expression to the assumption that
parthood admits of no objective borderline cases:

(P.16) It is determinate whether Pxy, Determinacy

though it is obvious that this principle may have invalid instances as
soon as ‘x’ or ‘y’ is replaced by a vague singular term such as ‘Everest’,
as in (48). At the moment, the logic of determinacy operators is an
open area of research, especially in the context of a supervaluational
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semantics. (See Keefe 2000, §7.4 and references therein.) It is, however,
an important tool that any good theory of vagueness should countenance.
And it is bound to play a significant role in any application of the theory
to mereology and spatial reasoning broadly understood.

2. Philosophical issues in topology
Let us now move on to the second major ingredient of a comprehensive
theory of spatial reasoning—topology. There are many reasons for this
move, but the main one is simply this: one need go beyond the bounds
of a pure theory of parthood to come out with a true theory of parts and
wholes. For as we have already mentioned, mereology by itself cannot
do justice to the notion of a whole (a one-piece, self-connected whole
such as a stone or a whistle, as opposed to a scattered entity made up of
several disconnected parts, such as a bikini or a broken glass). Parthood
is a relational concept, wholeness a global property, and the latter just
runs afoul of the former.

Whitehead’s early attempts to characterize his ontology of events, as
presented at length in his Enquiry (1919) and in The Concept of Nature
(1920), exemplify this difficulty most clearly. The mereological system
underlying Whitehead’s ontology was not meant to admit of arbitrary
wholes, but only of wholes made up of parts that are “joined” or con-
nected to one another—specifically, finitary sums of such parts. Thus,
Whitehead was working with a composition principle patterned after
(P.11ψ), in fact with the corresponding biconditional, with ‘ψ’ under-
stood as a predicate expressing the relevant relation of connection. And
Whitehead’s characterization of this relation was purely mereological:7

(53) ψxy =df ∃z(Ozx ∧ Ozy ∧ ∀w(Pwz → Owx ∨ Owy))

Looking at the spatial patterns in Figure 1.8, we can see how this defi-
nition is intended to work. What distinguishes the connected sum x+ y
on the left from the disconnected sum in the middle? Well, in the for-
mer case it is easy to find regions, such as z, that overlap both x and y
without outgrowing the sum—regions that lie entirely within x+ y. By
contrast, in the middle pattern it would seem that every z overlapping
both x and y will also overlap their complement—the entity that sur-
rounds x+y. Thus, only the left pattern satisfies the condition expressed
by ‘ψ’; the pattern in the middle violates it. However, Figure 1.8 also
shows why this account is defective. For nothing guarantees that the

7The definition below corresponds to the formulation given in Whitehead (1920: 76). White-
head’s earlier definition (1919: 102) is slightly different but essentially equivalent.
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Figure 1.8. A connected sum (left) and two disconnected sums (middle, right)

item z overlapping two “joined” items x and y be itself in one piece, so
the pattern on the right depicts two entities that satisfy the condition
expressed by ‘ψ’, too. Yet this is a case where we should like to say that
x and y are not connected. Of course, Whitehead would disqualify the
counterexample because his ontology does not contain any disconnected
zs—but this is plain circularity. The account works on the assumption
that only self-connected entities can inhabit the domain of discourse, yet
that is precisely the assumption that (53) is meant to characterize.

These considerations apply mutatis mutandis to other attempts to
subsume topological connectedness within a bare mereological frame-
work (see e.g. Bostock 1979, Needham 1981, Ridder 2002). Nor is this
exclusively an ontological concern. These limits show up in any attempt
to account for a number of important spatial concepts besides connect-
edness, such as the distinction between a completely interior part and
a tangential part that is connected with the exterior, of the difference
between an open entity and a closed one. All of these—and many others
indeed—are relations that any theory concerned with the spatial struc-
ture of the world should supply and which cannot, however, be defined
directly in terms of plain mereological primitives.

2.1 ‘Contact’ and connection
It is here that topology comes into the picture. The connection relation
that Whitehead was seeking to characterize is a topological relation.
And if it cannot be defined in mereological terms, it must be formally
treated on independent grounds.

Before looking at how this can be done, it is important again to be-
gin with a couple of terminological caveats. As with ‘part’, the term
‘connection’, and cognate terms such as ‘contact’ and ‘touching’, have
different meanings in ordinary language, only some of which correspond
to the intended relation. Most notably, in ordinary language we do not
draw a clear distinction between a truly topological notion of connection
and a merely metric notion of contact. Consider:

(54) The handle is attached to the mug.
(55) The table is touching the wall.
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The relation exemplified by (54) is topological: the handle and the rest
of the mug form a unitary whole. For practical purposes there may be
room for free rein, depending on whether the handle is glued to the rest of
the mug (what Galton 2000, §4.2, calls “adhesion”) or truly continuous
with it (“cohesion”), but either way there is an obvious sense in which
we are dealing with a single, one-piece object. By contrast, the relation
exemplified by (55) is not topological but metric: the table is so close
to the wall that we are inclined to say they are connected. If space were
discrete, this might be the right thing to say. But if space is dense, as we
may plausibly assume, then the surfaces of two bodies can never truly
be connected, short of overlapping: there will always be a narrow gap
separating them. The narrower this gap, the easier it is to disregard
it for practical purposes, but genuine topological connection can only
obtain when the gap is reduced to zero. We shall see in Section 2.5.1
that some interesting topological relations may be introduced to capture
at least some uses of the metric relation of contact. Overall, however,
metric relations cannot be squeezed into the conceptual apparatus of
topology without the help of strongly simplifying assumptions on the
structure of space. (In this sense, a diagram such as Figure 1.8, left, is
ambiguous, since one might think of x and y as being merely close to
each other, as when we draw a picture of a table against a wall.)

A related issue concerns the distinction between connection patterns
that involve a single point of contact, as in (56), or an extended boundary
portion, as in (57), if not of an entire boundary, as in (58):

(56) Colorado is connected to Arizona.
(57) France is connected to Germany.
(58) The Vatican is connected to Italy.

To some extent this is a matter of convention. We may disregard (56)
as irrelevant, or we may treat it as an acceptable case.8 Since most
theories go for the second option, we shall follow them on this score.
As it turns out, under suitable conditions one can on such basis draw
all the relevant distinctions (Section 2.5), so the choice proves to be a
convenient one.

Finally, let us just mention the fact that topological connection is,
in a way, an idealized relation. Physically, as we know, the world con-
sists of objects that are not continuous (or dense) in the relevant sense,
and speaking of their boundaries is like speaking of the “flat top” of
a fakir’s bed of nails (Simons 1991a: 91). Physically, a mug is just a

8This may also depend on context. In chess, for example, the choice depends on whether we
are a rook or a bishop.
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swarm of subatomic particles whose exact shape and extension involves
the same degree of arbitrariness as a mathematical graph smoothed out
of scattered data. In this sense, the intuition behind the claim that
(54) provides a good example of topological connection betrays a naive
conception of the mid-size world. However, this is not to say that topol-
ogy is inadequate as a tool for practical spatial reasoning. For, on the
one hand, we are generally interested in describing the spatial struc-
ture of the world precisely insofar as objects are conceptualized as finite
chunks of dense matter with closed, continuous boundaries. Even if talk
of boundaries and contact were deemed unsuited to the ontology of the
physical sciences, one would therefore need it when it comes to the dense
entities carved out by ordinary discourse and to the spatial regions that
these occupy. On the other hand, the geographic examples in (56)–(58)
illustrate that at least some entities countenanced by common sense mea-
sure up to the strict standards of topological connection. We do want
to say that a geopolitical unit occupies a region of space that is strictly
dense in the relevant sense, even though the underlying territory may
consist of material stuff that on closer inspection is best described as a
gerrymandered aggregate of zillions of disconnected subatomic particles.

2.2 Basic principles and definitions
We are now in a position to take a closer look at the idea of a topological
extension of mereology—an extension that would take us beyond the
prospects of a pure theory of parthood to deliver a genuine theory of
parts and wholes. To this end, let us expand our formal language by
adding a second distinguished predicate constant, ‘C’, to be understood
intuitively as the relation of topological connection. The question of how
mereology can actually be expanded to a richer part–whole theory may
then be addressed by investigating how a P-based mereological system
of the sort outlined in Section 1 can be made to interact with a C-based
topological system.

Again, we may distinguish for this purpose “lexical” from substantive
postulates for ‘C’, regarding the former as embodying a set of minimal
prerequisites that any system purporting to explicate the meaning of
the concept of ‘connection’ must satisfy. And a natural starting point
is to assume that such lexical principles include at least the twofold
requirement that ‘C’ be reflexive and symmetric:

(C.1) Cxx Reflexivity
(C.2) Cxy → Cyx Symmetry

There is little room for controversy concerning the intuitive adequacy of
(C.1)–(C.2), provided that we take ‘C’ to express, not just the relation of
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external connection that may obtain between two disjoint entities that
share a common boundary (in some intuitive sense to be made precise),
but the relation of connection that may obtain between any two entities
that share at least a boundary. In this sense, mereological overlap qual-
ifies as connection, too. We shall come back to this idea shortly. First,
let us note that ‘C’ need not, on the intended interpretation, express
a transitive relation. France is connected to Germany and Germany to
Poland, but France and Poland are not connected—they do not share any
common boundary. We can, however, consider a notion of connection
that captures the fact that France is connected to Poland by Germany.
De Laguna (1922), a forerunner in the area of qualitative topological
reasoning, actually based his account on a three-place primitive corre-
sponding to this relation.9 In terms of ‘C’, De Laguna’s primitive is
easily defined:

(59) BCxyz =df Cxz ∧ Czy By-Connection

and we can accordingly introduce the desired notion of (possibly) indirect
or mediate connection as follows:

(60) MCxy =df ∃zBCxyz Mediate Connection

By an obvious generalization, we can also define:

(61) MCnxy =df ∃z1...zn(Cxz1 ∧ ... ∧ Czny) n-Connection

It follows immediately from (C.1) and (C.2) that each MCn is reflexive
and symmetric, and the union of all such relations is transitive. In the
absence of further principles, however, e.g., principles guaranteeing the
existence of an entity connected to all the intermediate links, such a
transitive union cannot be defined in the object language—unless we
allow for quantification over positive integers:

(62) TCxy =df ∃nMCnxy Transitive Connection

Now, let T be the first-order theory defined by the two basic axioms
(C.1) and (C.2), in analogy with the theory M defined by the basic mere-
ological axioms (P.1)–(P.3). T is, of course, extremely weak and a lot
will have to be added before we can say we have an interesting topology.
In particular, a model of T can be obtained simply by interpreting ‘C’
as mereological overlap, and what further principles should be added to
T so as to distinguish C from O is precisely one of the questions a good

9Strictly speaking, De Laguna’s primitive is interpreted as “x can be connected to y by z”,
so it involves a modal ingredient. For a formal treatment, see Giritli (2003).
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topological theory is meant to answer. For instance, should one assume
that connection is extensional, i.e., that things that are connected ex-
actly to the same entities are identical? Should one assume that any two
connected entities satisfy at least some form of Whitehead’s account in
(53)? Or consider the binary relation defined by

(63) Exy =df ∀z(Czx→ Czy) Enclosure

It follows from (C.1)–(C.2) that this relation is reflexive and transitive,
and if C is extensional, than E is also antisymmetric—a partial ordering.
Should one assume this relation to satisfy any analogues of the axioms
for parthood? For each mereological predicate defined in Section 1 using
‘P’ one could now introduce a corresponding topological predicate using
‘E’ instead. Should one assume any corresponding axioms?

As it turns out, it is difficult to answer these questions in an abstract
setting (see Cohn and Varzi 2003). Obviously, much depends on how
exactly ‘C’ is interpreted, and that in turn may depend on how one
thinks ‘C’ and ‘P’ should interact. Rather than pursuing these questions
in isolation, then, let us proceed immediately to examining the main
options for combining mereology and topology.

2.3 Bridging principles
The simplest option is just to append the T -axioms to our preferred mere-
ological theory, X, to obtain a corresponding “mereotopology” X + T ,
which can then be strengthened by supplying further axioms for ‘C’.
However, this would be of little interest unless one also adds some mixed
principles to establish an explicit “bridge” between X and T .

2.3.1 Parts and wholes. There is one sort of bridging princi-
ple that most theories, if not all, accept: it centers around the intuition
that no matter how P and C are fully characterized, they must be related
in such a way that a whole and its parts are tightly connected. Here are
three ways one can try to capture this intuition:

(C.3a) Pxy → Cxy Integrity
(C.3b) Oxy → Cxy Unity
(C.3) Pxy → Exy Monotonicity

The first principle, (C.3a), is perhaps the most immediate: just as
everything is connected to itself by (C.1), everything must be connected
to its constitutive parts. This is not to say that the parts must all be
connected to one another: the two main parts of a bikini are not. But
they are, in an obvious sense, connected to their sum; they are detached
from each other but not from the whole bikini.
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As it stands, however, (C.3a) is extremely weak. It doesn’t even
capture the idea that if something is part of two things, then those things
are thereby connected. This is not to say that they are connected by that
common part, in the sense defined in (59); they are connected because
of that common part. In other words, if sharing a common boundary is
to count as sufficient for connection, then a fortiori sharing a common
part ought to be sufficient, too. It is in this sense that overlap is to be
regarded a special (and somewhat trivial) case of connection. And the
second principle, (C.3b), makes this explicit.

(C.3b) is stronger than (C.3a), since parthood implies overlap. More-
over, since the converse need not hold (on pain of trivializing the notion
of connection), (C.3b) provides the intuitive grounds for defining a non-
trivial notion of external connection, or touching, that can only hold
between mereologically disjoint entities:

(64) ECxy =df Cxy ∧ Dxy External Connection

(Note that this relation is still symmetric, but not reflexive; it is actually
irreflexive, due to the irreflexivity of D.) This is an important notion,
which makes all the difference between mereology and mereotopology.
Yet (C.3b) is still too weak to capture the fundamental intuition that
we are after. For while this principle guarantees that overlapping a
part is sufficient for being connected to the whole, it doesn’t secure that
touching a part is also sufficient. Surely something can touch a mug
(say) just by touching its handle. So it is only with the third principle,
(C.3), that we get a plausible formulation of the basic idea. Connection,
if it is to behave properly, must be monotonic with respect to parthood.

It is easily checked that (C.3) implies (C.3b), hence (C.3a), so let us
just focus on (C.3), and let us call MT (for Minimal (mereo)Topology)
the corresponding extension of T .10 Whether (C.3) is to be classified as
a “lexical” principle may be controversial and will depend, in an obvi-
ous sense, on the underlying axioms for ‘P’. Nonetheless, the principle
itself is part of virtually every mereotopological theory in the literature,
either as an axiom (Varzi 1996a, Donnelly 2004) or as a theorem. And
although MT is still far from providing an adequate characterization of
the relation of topological connection, it provides the basis for the defi-
nition of a number of important spatial relations which, like EC, cannot
be distinguished within a purely mereological setting. In particular, we
can now express the difference between a proper part that lies entirely

10In fact, the result of adding (C.3) to T yields a slightly redundant theory; a more elegant
formulation can be obtained by dropping (C.2) and replacing (C.3) with the following variant:

(C.3′) Pxy ∧ Cxz → Czy
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Figure 1.9. Basic mereotopological relations. (Shaded cells indicate connection;
darker shading stands for parthood.)

within the interior of the whole and a proper part that is connected with
the exterior:

(65) IPPxy =df PPxy ∧ ∀z(Czx→ Ozy) Interior PP
(66) TPPxy =df PPxy ∧ ¬IPPxy Tangential PP
(67) EPExy =df PExy ∧ ∀z(Czy → Ozx) Exterior PE
(68) TPExy =df PExy ∧ ¬IPExy Tangential PE

Note that, given (64), interior parts satisfy the following:

(69) IPPxy ↔ (PPxy ∧ ¬∃z(ECzx ∧ ECzy))

Thus, tangential parts are those parts that reach far enough to touch
something with which the whole itself is just in touch. Similarly for
proper extensions. The diagram in Figure 1.9 indicates how these pred-
icates may represent a genuine addition to the mereological vocabulary
introduced in (19)–(23) and illustrated in Figure 1.1. We shall see in
Section 2.4 that this diagram may actually be misleading, owing to the
delicate role played by boundaries in the proper understanding of the
connection relation; but for the moment we take the intuitive, geometric
interpretation of the diagram to be adequate enough to serve its purpose.

2.3.2 Parthood vs. enclosure. Things begin to be controver-
sial as soon as we consider the possibility of stronger bridging principles.
Consider again the three principles above. Clearly the converse of In-
tegrity, (C.3a), is unacceptable. And unacceptable is also the converse
of Unity, (C.3b), for then connection would collapse on the relation of
mereological overlap and the definitions in (64)–(68) would lose their
intuitive appeal. On the other hand, the converse of the Monotonicity
principle (C.3) is not obviously unreasonable:

(C.4) Exy → Pxy Converse Monotonicity
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This says that a sufficient condition for one thing to be part of another
is that whatever is connected to the former is also connected to latter.
This sounds intuitive, and several authors would actually include (C.4)
as a further bridging principle on top of MT . Indeed, a principle along
these lines may already be found in Whitehead’s latest work, Process
and Reality (1929)—a remarkable fact, since the conjunction of (C.3)
and (C.4) yields a biconditional that would allow one to define parthood
in terms of connection:

(70) Pxy ↔ Exy

Thus, if (53) turned out to be a defective attempt to reduce topological
concepts to purely mereological ones, (C.4) (together with (C.3)) reflects
a reductionist attempt in the opposite direction, to the effect that mere-
ological concepts can be defined in terms of purely topological ones. And
although few have followed Whitehead on the first route, it is a fact that
many authors have taken the second strategy into serious consideration.
Clarke (1981) provides the most influential example, and the so-called
“Region Connection Calculus” originated with Randell et al. (1992) is
the best case in point when it comes to theories designed specifically for
applications to spatial reasoning (see also Gotts et al. 1996 and Cohn et
al. 1997). So the question deserves close scrutiny: Is (C.4) a reasonable
addition to the basic postulates of MT?

Never mind the fact that working with just one primitive may be
mathematically attractive. As it turns out, it is equally possible to rely
on a single primitive even in the absence of (C.4). For instance, one can
rely on the ternary relation ‘x and y are connected parts of z’ (Varzi
1994). Writing this as ‘CPxyz’, one could define ‘P’ and ‘C’ as follows:

(71) Pxy =df ∃zPxzy
(72) Cxy =df ∃zPxyz

and then go on to develop a theory based on the relative irreducibility
of these two predicates. (Note that (71) and (72) only carry minimal
presuppositions: that parthood be reflexive and that connected entities
have an upper bound.) So the issue is not formal economy—the use
of a single primitive. It is, rather, conceptual economy. In the exten-
sion of MT obtained by adding (C.4)—henceforth RMT , for Reductive
Mereotopology—the notion of parthood is fully subsumed under that of
connection, and the limits of mereology are overcome by turning the
original problem upside down: parthood cannot deliver the full story,
but connection can. However, there are at least two worries here.

The first worry concerns the material adequacy of the reduction. As
Masolo and Vieu (1999) have observed (but the point goes back to Ran-
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Figure 1.10. Two counterexamples to converse monotonicity

dell et al. 1992: §5.1), (C.4) appears to have implausible consequences
if the domain contains entities with atomic proper parts. Consider an
extended region (or object) x, and let y be x minus an atomic part z
(Figure 1.10, left). On any reasonable understanding of ‘C’, everything
connected to x is connected to y, since z is connected to both. So (C.4)
would force x to be part of y. Yet, intuitively, x should count as an ex-
tension of y: it is bigger, it contains z, it contains y as a further proper
part. Things get worse if we consider that (C.4) forces z itself to count
as part of y, since z is connected to y and anything else is connected
to z only if it overlaps y. Yet y was defined as x minus z. Of course,
such models would be ruled out if RMT were strengthened by adding
an atomlessness postulate such as (P.7). But this is precisely the point:
(C.4) does not merely reinforce the bridge between P and C; it actu-
ally embodies more substantive views about the mereological structure
of space. Besides, even the atomless variant ĀRMT would be open to
counterexamples. For we have the same sort of problem if we suppose
that z is a non-atomic proper part of x with no interior proper parts
of its own (Figure 1.10, right). To rule out this model, a stronger as-
sumption than (P.7) would be needed, corresponding to the thesis that
everything has interior proper parts:

(C.5) ∃xIPPxy Boundarylessness

In fact, it is precisely with the help of an axiom like (C.5) that we can
give expression to a Whiteheadian, boundary-free conception of space
(see below, Section 2.4.3). However, this is a controversial conception.
Why should our analysis of parthood force upon us a rebuttal of the
boundary concept? Why should we assume (C.5) in order to ensure a
coherent implementation of a basic bridging principle like (C.4)?

The second worry is more general. Consider an object and the stuff
it is made of—for instance, a statue and the corresponding amount of
clay. As we have seen, few would regard the relationship of material con-
stitution that holds between such entities as a case of proper parthood.
And there are many philosophers for whom constitution is not identity
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(improper parthood) either: see again the papers in Rea 1997. This is by
no means a pacific thesis, but never mind. The point is simply that the
relationship between the clay and the statue is not obviously an instance
of parthood. Yet, on any plausible understanding of ‘C’, whatever is
connected to the clay is bound to be connected to the statue, too, so
(C.4) would immediately settle the issue: the clay is part of the statue.
Indeed, since it is equally plausible to suppose that the same applies in
the opposite direction—whatever is connected to the statue is connected
to the clay—(C.4) implies that the statue and the clay are one and the
same thing. And this is a substantive tenet which, as such, ought not
to be built into the basic apparatus of mereotopology at the outset.

This worry is perhaps best appreciated by noting that the following
theorem is an immediate consequence of (C.1)–(C.4), provided P satisfies
the basic mereological axioms (P.1)–(P.3):

(73) ∀z(Czx↔ Czy) → x = y

In fact, (P.1) and (P.2) (reflexivity and transitivity) are derivable from
(70), and RMT turns out to be equivalent to the theory defined by
taking (73) as an axiom along with (C.1) and (C.2). (That is actually
the customary axiomatization since Clarke 1981; see also Biacino and
Gerla 1991.) Now, with parthood construed as enclosure, (73) is nothing
but the antisymmetry principle (P.3). Yet (73) does not merely assert
the antisymmetry of parthood; it says that connection is extensional—
that different things cannot connect to the same things. And this is just
as controversial as the thesis that parthood is extensional.

It could be replied that the analogy with mereological extensionality
is in fact helpful, since the original arguments in support of (P.5) (Sec-
tion 1.3.2) could now be offered on behalf of (C.4). Indeed, if a statue
and the clay are construed as things that, at some level of decomposition,
share the same constituents—e.g., the same molecules—the question of
whether constitution is identity just is the question of whether parthood
is extensional. However, the worry does not only apply to cases of mate-
rial constitution. Consider a shadow cast onto a wall. The shadow is not
part of the wall, yet anything connected to the shadow is—arguably—
connected to the wall. Or consider a stone inside a hole. The stone is
not part of the hole, yet one could argue that anything connected to the
stone is connected to the hole. Broadly speaking, the problem arises as
soon as we allow for the possibility that distinct entities occupy the same
space (Casati and Varzi 1999). That this is a real possibility is by itself
contentious and is one of the questions to be addressed by an explicit
theory of location (Section 3). But precisely for this reason, ruling it
out on mereotopological grounds would be utterly inappropriate.
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This last point is particularly worth stressing, for it shows once again
how the choice of a suitable set of principles may depend crucially on
whether we are interested in a theory aimed at modeling the domain of
all spatial entities or just a domain of pure spatial regions. The worry
mentioned above arises forcefully in the context of theories of the first
sort. It does, however, lose its force in relation to the second sort of
theory, since two regions cannot overlap spatially without overlapping
mereologically. Now, it is a fact that most authors committed to (C.4)
have been working on such a narrower understanding of their theory.
Whitehead’s own account was explicit in this regard: in the theory put
forward in Process and Reality (as in Clarke’s 1981 reformulation), the
field of C was meant to consist exclusively of spatial regions. On the
other hand, it is also a fact that a major motivation for developing a
theory of this sort has been the assumption that connection thus under-
stood is all that matters for practical purposes. For one can always treat
the relation of connection as the “shadow” (in De Laguna’s 1922: 450 apt
terminology) of the relation of physical contact or overlap that may ob-
tain between actual, concrete entities. In other words, such theories have
typically been developed on the assumption that the following principle
provides the necessary and sufficient link between the mereotopology of
pure space and the mereotopology of spatial entities broadly understood:

(74) x is connected to y if and only if the region occupied by x
is connected to the region occupied by y.

If so, however, then the problems mentioned above resurface even for
theories of this sort. For (74) will deliver an acceptable account if, and
only if, spatial co-location is regarded as metaphysically impossible.

2.3.3 Self-connectedness. There are other ways of supple-
menting MT with bridging principles that go beyond (C.3). In particu-
lar, consider again Whitehead’s early attempts to characterize topolog-
ical connection in terms of parthood, i.e. (53), with ‘ψ’ understood as
‘C’. As a definition, this was found defective. However, one may cer-
tainly consider adding the corresponding biconditional as an axiom—or
at least adding one of the two conditionals:

(C.6) Cxy → ∃z(Ozx ∧ Ozy ∧ ∀w(Pwz → Owx ∨ Owy)) Left Join
(C.7) ∃z(Ozx ∧ Ozy ∧ ∀w(Pwz → Owx ∨ Owy)) → Cxy Right Join

Would this be a good way of tightening the conceptual link between the
mereological and the topological ingredients of MT?

Consider (C.6). As it turns out, its status depends significantly on the
underlying axioms for ‘P’. If our mereological theory is strong enough
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to warrant the existence of a fusion for any pair of connected entities,
i.e., if it contains the relevant instance of (P.11ψ) as an axiom or (as in
GEM) as a theorem, then (C.6) itself is derivable as a theorem, since the
fusion of x and y is sure to qualify as a z satisfying the consequent. If,
however, our theory does not warrant all the relevant fusions, then (C.6)
may still be regarded as a plausible addition to MT . Perhaps the fusion
of any two connected entities turns out to be too large or gerrymandered
to be acceptable, but we may still think of connection as sufficient for
the existence of smaller fusions encompassing those portions of x and y
that are sufficiently close to their common boundary. For example, with
reference to Figure 1.11, left, suppose we are only willing to acknowledge
the existence of entities that are composed of at most two disconnected
parts. Then the fusion of x and y is out, but a fusion of x2 and y2, as
well as fusions of x and y2 and of x2 and y, would fit the bill. All of this
speaks in favor of (C.6), though it may be argued that the existential
import of this principle goes beyond the task of establishing a necessary
conceptual link between P and C.

As for (C.7), the picture is different. Assuming this principle is virtu-
ally tantamount to excluding disconnected entities from the domain—
not all of them, to be sure, but many of them. For example, if the
underlying mereology is sufficiently weak, (C.7) is compatible with the
existence of a disconnected composite such as c in Figure 1.11, right:
on the assumption that c has no further proper parts besides a1, a2,
and a3 (and parts thereof), the antecedent is false so (C.7) is vacuously
satisfied. But consider a bikini, or a printed inscription consisting of
separate letter tokens. As we have already noted, one need not buy into
unrestricted composition to appreciate the dignity of such things. Yet
their existence would be banned by (C.7). If x and y are the two main
parts of a bikini, then the consequent of (C.7) is false even though the
antecedent is made true by the bikini as a whole. So, on the face of it,
this direction of Whitehead’s biconditional is definitely too strong as a
general bridging principle and there is no philosophically neutral reason
to add it to MT . One can, however, consider weaker versions, to the
effect that the consequent of the conditional must hold whenever the
antecedent is made true by the right sort of entity:

(C.7φ) ∃z(φz ∧ Ozx ∧ Ozy ∧ ∀w(Pwz → (Owx ∨ Owy))) → Cxy

In particular, one can take ‘φ’ to express the property of being self-
connected. After all, this was precisely the intended import of White-
head’s flawed definition. And we have seen that the flaw of the definition,
in the if direction, was not conceptual but formal: it lied exclusively in
the impossibility of expressing the relevant restriction in mereological
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Figure 1.11. Left joining with partial fusions; right joining without connection.

terms. By making the restriction explicit, (C.7φ) overcomes the diffi-
culty and suggests itself as a natural bridging principle.

Surprisingly, it is not easy to express the property of self-connectedness
even in the extended language of mereotopology. If the axioms on P
are strong enough, we can follow the ordinary set-theoretic definition—
something is self-connected if it doesn’t consist of disconnected parts:

(75) SCx =df ∀yz(∀w(Owx↔ (Owy ∨ Owz)) → Cyz) Self-Conn.

In particular, in MT +GEM this becomes:

(76) SCx↔ ∀yz(x = y + z → Cyz)

This is a common definition in the literature, both among theorists sub-
scribing to the converse monotonicity principle (C.4) (see e.g. Clarke
1981, Randell et al. 1992) and among theorists rejecting it (Tiles 1981,
Varzi 1994, Smith 1996). However, if the axioms on P do not secure the
necessary composition patterns, the definition is inadequate. For exam-
ple, the object c in Figure 1.11, right, is anything but self-connected,
yet it (vacuously) satisfies the definiens of (75) unless we assume the
existence of at least one sum consisting of a1 and a2, a2 and a3, or a1

and a3. In the finitary case, the difficulty could be met by relying on the
notion of mediate connection: any two parts of a self-connected entity
must be at least n-connected for some n. More generally:

(77) PCx =df ∀yz(Pyx ∧ Pzx→ TCyz) Path Connectedness

This, however, involves quantification over numbers (see (62)), which
just confirms the expressivity limits in question. Moreover, (77) does
not work in the infinitary case: the unit interval on the real line is
connected, but we cannot account for this fact in terms of the relation-
ships between the reals themselves; reference to subintervals is neces-
sary, specifically reference to a subinterval and its relative complement.
So, overall it appears that the notion of self-connectedness can be ade-
quately grasped, via (75), only by theories that are at least as strong as
MT + (P.6), the complementation principle, though this is at present
an open question.
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Figure 1.12. An implausible model of MT + GEM .

2.3.4 Fusions. We conclude this discussion of bridging prin-
ciples by noting that even a theory as strong as MT + GEM+ any of
the above axioms is incapable of capturing all the relevant links between
mereology and topology. In particular, such a theory is consistent with
the following implausible thesis (Tsai 2005: 137):

(78) ∃z(Cz(x+ y) ∧ ¬Czx ∧ ¬Czy)

A model is given in Figure 1.12, where the curve line indicates the rele-
vant connection relationship (besides the obvious ones imposed by (C.3)).

Clearly, this is a sign that some additional bridging principle is on
demand. The following option suggests itself:

(C.8) z = Σxφx→ ∀y(Cyz → ∃x(φx ∧ Cyx)) Fusion Connection

Whether this is enough to establish a good correlation between the mere-
ological structure of composite objects and their topological behavior is a
question that can hardly be addressed in general terms. The plausibility
of (C.8), however, seems obvious. Since we have found good reasons to
also accept (C.4) and (C.7SC), the theory resulting by adding these three
principles to MT + GEM suggests itself as the natural topological ex-
tension of GEM . (Recall that (C.6) is already provable in MT +GEM .)
For future reference, we shall call this theory GEMT , for General Ex-
tensional Mereotopology.

2.4 Extensions and restrictions
As it turns out, GEMT does not officially appear in the literature,
mostly due to the limited study of such principles as (C.7SC) and (C.8).
(The closest relatives are the axiomatic systems advocated by Smith
1996 and Casati and Varzi 1999.11) A good thing about this theory, as

11In Casati and Varzi (1999), GEMT is identified with MT +GEM . Smith’s (1996) version
is based on a primitive ‘IP’ for (possibly improper) interior parthood. See also Pianesi and
Varzi (1996a, 1996b) for similar formulations based on the predicate ‘B’ and the operator ‘c’
defined below, respectively.
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also about the core fragment afforded by MT +GEM , is that it makes
it possible to supplement the mereotopological predicates and operators
discussed so far with a number of additional operators that mimic the
standard operators of point-set topology. For example:

(79) ix =df Σz∀y(Czy → Oxy) interior
(80) ex =df i(∼ x) exterior
(81) cx =df ∼ (ex) closure
(82) bx =df ∼ (ix+ ex) boundary

Like the mereological operators in (40)–(44), these operators are par-
tially defined in view of the lack of a null entity that is part of everything.
For instance, if x is a boundary, it has no interior, and if x is the universal
entity U , it has no exterior. Even so, in GEMT all of these operators
are rather well-behaved. In particular, we can get closer to standard
topological theories by explicitly adding the mereologized analogues of
the standard Kuratowski (1922) axioms for topological closure:

(C.9) Px(cx) Inclusion
(C.10) c(cx) = cx Idempotence
(C.11) c(x+ y) = cx+ cy Additivity

(These axioms are to be read as holding whenever c is defined for its
arguments. Here and below we omit the relevant existential conditions
to improve readability.) Indeed, (C.9) and (C.11) turn out to be provable
in MT +GEM ; see Tsai (2005: 141).

The possibility of supporting such developments is of course a good
indication of the strength of GEMT . Philosophically, however, this
strength may be regarded with suspicion, and several complaints have
been raised in the literature.

2.4.1 The open/closed distinction. The main sort of com-
plaint concerns the very notion of connection that the theory is meant to
characterize. So far we have worked mostly with an intuitive notion in
mind but obviously more can and must be said—and GEMT says a lot.
In particular, the Kuratowski extension of GEMT (KGEMT for short)
yields a full account of the intended interpretation of ‘C’: two things are
(externally) connected if and only if they share (only) a boundary, i.e.,
if and only if the closure of one overlaps the other, or vice versa:

(83) Cxy ↔ (Ox(cy) ∨ O(cx)y)
(84) ECxy ↔ (Cxy ∧ ¬C(ix)(iy))

Now, this shows in what sense the behavior of C in this theory closely
approximates that of standard set-theoretic topological connection; just
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let ‘x’ and ‘y’ range over sets of points and interpret ‘O’ as set intersec-
tion. On the other hand, one aspect in which ordinary point-set topol-
ogy appears to conflict with common sense—an aspect that has been
emphasized by authors interested in a mereotopological characterization
of qualitative spatial reasoning, such as Randell et al. (1992) and Gotts
et al. (1996)—is precisely the distinction between “open” and “closed”
entities on which it rests, and which GEMT preserves holus bolus:

(85) OPx =df x = ix Open
(86) CLx =df x = cx Closed

This distinction goes at least as far back as Bolzano (1851: §66f). But
already Brentano (1906: 146) regarded it as “monstrous”, and we have
already seen that the sort of idealization it embodies does not sit well
with the way we ordinarily speak. We may intuitively grasp the dif-
ference between an open and a closed interval on the real line—the
objection goes—and we may even understand how this difference ap-
plies to ideal three-dimensional manifolds such as Euclidean space. But
what does it mean to draw a similar distinction in the realm of concrete
spatial entities, where the very notion of a boundary is the result of a
conceptual idealization? What does it mean to say that some objects
are closed and some are not, and that contact is only possible between
objects of one type and objects of the other?

Besides, even if common sense and ordinary language were put aside,
the open/closed distinction seems to yield genuine paradoxes as soon as
we move from the realm of pure space to its worldly population: Con-
sider (i) what happens when a solid body splits into two halves. Before
the splitting the two halves were in contact, so we are to suppose that one
was closed and the other open, at least in the relevant contact area. But
then, after the splitting, only one of the two halves will have a complete
boundary. This may not be “monstrous”, but it certainly seems implau-
sible: the two halves—one should think—are perfectly indistinguishable.
On the other hand, consider (ii) what happens when two bodies come
into contact. We may imagine the same experiment performed twice.
First we take an open cube and push it toward a closed cube until they
touch. Then we do the same with two closed cubes. What reason can
we offer to explain the fact that in the latter case the two cubes will
not come into contact? As Zimmerman (1996a: 12) put it, what sort of
“repulsive forces” can be posited to explain such deferential behavior?

There is no quarrel that these are pressing questions. (For more ex-
amples, see Kline and Matheson 1987.) Nonetheless, there are various
things one can say in reply to such worries. Concerning (i), for example,
one could say that the paradox is grounded on a questionable model of
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Figure 1.13. Wrong (left) and right (right) topological models of splitting.

what happens when a process of “splitting” takes place (Varzi 1997).
Topologically, this is no bloodstained business. Dissecting a solid body
does not “bring to light” (Adams 1984: 400) a surface that was trapped
inside and that must by necessity belong to one of two severed halves.
Rather, the topological model is one of gradual deformation. Think of
a splitting oil drop. The drop grows longer and, as it grows, the middle
part shrinks and gets thinner and thinner. Eventually the right and left
portions come apart and we have two drops, each with its own complete
boundary. Ditto with any splitting object. A long, continuous process
suddenly results in an abrupt topological change: there was one surface,
one closed body, and now there are two (Figure 1.13). Of course, one
can still raise a question about the last point of separation: Where does
this one point belong—to the left half or to the right half? However, this
is just a sign of the magic that surrounds any sort of topological change,
as when you drill a hole through an object. The instantaneous event
of a sphere turning into a torus is just as magical, and this magic has
nothing to do with the open/closed opposition. It simply reflects the
fact that topological change marks one point at which common sense
reaches the limits of its theoretical competence, and a complete assess-
ment would require a step beyond pure part-whole theorizing. It would
require a step into the territory of qualitative kinematics, for example
(as in Davis 1993), if not an account in terms of the microscopic analysis
of matter. (What is—physically—the “last point of separation” involved
in the splitting?)
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This line of reply on behalf of KGEMT applies to (ii) as well—the
“merging” puzzle (Casati and Varzi 1999). Surely the positing of re-
pulsive forces to explain the peculiar behavior of the two closed cubes
would be utterly and unagreeably ad hoc. But there are other possibil-
ities. For instance, perhaps the two closed cubes will indeed come into
contact. From the fact that two closed entities cannot be in contact it
does not follow that they cannot come into contact, just as from the fact
that two parts are connected it does not follow that they cannot be sepa-
rated. Only, the coming into contact (just as the separation) determines
a true topological catastrophe: there is a breaking through the relevant
boundary parts and the two objects become one. (Think also of the
two drops of oil merging into each other.) The two processes are dual:
merging is the reverse of splitting. And both involve a seemingly magic
moment that runs afoul of the confines of extensional mereotopology and
calls for a thorough kinematic account.

One could still press the objection here by noting that the puzzles ad-
mit of perfectly static variants, where the appeal to kinematics would be
out of place. Consider the dilemma raised by Leonardo in his Notebooks:
What is it that divides the atmosphere from the water? Is it air or is it
water?. Or consider Peirce’s puzzle: What color is the line of demarca-
tion between a black spot and its white background? (1893: 98). More
generally, given any object, x, does the boundary belong to x or to its
complement? Does it inherit the properties—e.g., color properties—of x
or of ∼ x? There is no kinematic story to tell here. But how can one
answer without selecting one candidate at random?

Here one might reply that figure/ground considerations will help. Ac-
cording to Jackendoff (1987, Appendix B), for example, normally a fig-
ure owns its boundary—the background is topologically open. This may
well be the right thing to say vis-à-vis Peirce’s puzzle: the black spot
is closed, so the line is black. But what is figure and what is ground
when it comes Leonardo’s case? We do talk about the surface of the
water, not of the air. But what goes on at the seashore? Three things
meet—water, air, soil; how can figure/ground considerations help in such
contexts? Perhaps such dilemmas are not real. Galton (2003: 167f), for
example, argues that they arise as an artifact of the modeling process:
surely properties like color or material constitution only apply to ex-
tended bodies, so it wouldn’t make sense to ask whether a boundary-like
entity is air, water, or colored. There is, however, a less dismissive way
to meet the challenge on behalf of KGEMT . For one may acknowledge
that such dilemmas are real and yet insist on a friendly attitude towards
the open/closed distinction. The actual ownership of a boundary—one
might argue—is not an issue that a mereotopological theory must be
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able to settle. The theory only needs to explain what it means for two
things to be connected. Which things are open and which are closed is a
metephysical question that, plausibly enough, goes beyond the concerns
of the theory. If the ocean is a closed body, then it can only touch the
air if the latter is open. If it isn’t, then it can only touch the air if the
latter is closed. And if both water and air are open, they cannot truly
touch, though they may touch a closed piece of land. That’s all the
theory says, and there is no reason to think that the theory is wrong
just because it is difficult to classify actual things into open and closed.

One last problem is worth mentioning. Consider again the cutting of
a solid object in half. We have said that this process does not bring to
light a new surface. But, of course, we can conceptualize a new, potential
surface right there where the cut would be. In fact, we can conceptualize
as many boundaries as we like, even in the absence of any correspond-
ing discontinuity or qualitative heterogeneity among the parts. Think
of John’s waist, the equator, the Mason-Dixon line between Maryland
and Pennsylvania. As Smith (1995, 2001) has pointed out, such “fiat”
boundaries are a major ingredient of our picture of the world. Even
the surfaces of ordinary objects, as we have seen, may involve a certain
degree of fiat owing to the microscopic scatterdness of the underlying
stuff. Yet no fact of the matter can support the ownership of boundaries
such as these by one side rather than the other, hence there is no point
in deferring to a metaphysical theory of the extended entities at issue.
Isn’t this enough to give rise to the demarcation puzzle?

Once again the answer is in the negative. Fiat boundaries are not
physical boundaries in potentia. They are not the boundaries that would
envelop the interior parts to which they are associated in case those parts
were actually cut off. To think so would take us back to the wrong topo-
logical model illustrated in Figure 1.13, top. On a better model, fiat
boundaries are just placeholders for genuine physical boundaries and the
demarcation puzzle need not, therefore, lead to ontological anxiety. We
can say that a boundary of this sort stands for two boundaries, one for
each side. Or we can say that in drawing it we leave the question of its
belongingness (hence the open/closed distinction) indeterminate. We
do so because it is a question of no practical relevance. But precisely
for this reason the indeterminacy is innocuous: it is pragmatic, perhaps
semantic, not ontological—just like the sort of indeterminacy that af-
flicts the vagueness of parthood (Section 1.5). (It is in this sense that
the diagram in Figure 1.9 is partly indeterminate: in saying that x2 is
externally connected to y, for example, we did not specify which of these
two regions owns the boundary in the relevant contact area. Ditto for
all other cases of external connection, as in Figure 1.8, left.)
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2.4.2 Connection by coincidence. All of this, of course, is
subject to controversy. If the foregoing remarks are found compelling,
then the strength of KGEMT is vindicated and such theorems as (85)
and (86) deliver a full and correct understanding of ‘C’. If not, however,
then KGEMT will be deemed inadequate and the intended interpreta-
tion of ‘C’ remains unsettled. Are there any other options? We may
distinguish two main alternatives, depending on whether or not a re-
jection of the open/closed distinction is taken to be compatible with a
realist attitude towards the ontological status of boundaries.

The realist option finds its best expression in those theories that at-
tempt to provide a detailed reconstruction of the view Brentano put
forward in reaction to Bolzano’s “monstrous doctrine”, as in Chisholm
(1984, 1993) and Smith (1997). According to this view, boundaries are
genuine denizens of the world of spatial entities, but their lack of proper
interior parts makes them peculiar in two important respects (Brentano
1976, part I). First, they can never exist except as belonging to entities
of higher dimension. There are, in other words, no isolated points, lines,
or surfaces, for boundaries are, in Chisholm’s terms, dependent entities.
Second, and more to the point, insofar as boundaries are not possessed
of divisible bulk, they do not occupy any space and can therefore share
the same location with other boundaries. They can coincide, and the
topological relation of external connection is to be explained, not via the
open/closed opposition, but in terms of genuine boundary coincidence.
Thus, we can speak of the surface of an object. But this single surface is
to be recognized as being made up of two parts, two perfectly coinciding
boundaries bounding the object and its complement, respectively.

As is clear, a rigorous formulation of such theories is no straightfor-
ward business. For one thing, it is not immediately obvious how to
formulate the dependence thesis, both because of the modal ramifica-
tions that a good theory of ontological dependence would require (see
e.g. Correia 2005) and because the relevant notion of dimension is by it-
self hard to characterize mereotopologically (Chisholm 1984). Ignoring
such complications, and assuming GEM , one can capture the gist of the
thesis as follows (Smith 1996):

(C.12) SCx ∧ Bxy → ∃z(SCz ∧ BPxz ∧ ¬∃wBzw) Dependence

where

(87) Bxy =df Px(by) Boundary
(88) BPxy =df Bxy ∧ Pxy Boundary Part

In other words, every self-connected boundary is part of some self-
connected entity which it bounds and which is not itself a boundary.
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(The restriction to self-connected entities is to avoid that (C.12) be triv-
ially satisfied by a scattered z containing x as an isolated proper part.)
Without the full mereological support of GEM , however, things are sig-
nificantly more complex, among other reasons because of the apparent
elusiveness of the self-connectedness predicate ‘SC’ (Section 2.3.3.)

Secondly, and more to the point, a lot depends on how exactly one
understands the relation of spatial coincidence invoked by such theo-
ries to explain the phenomenon of (external) connection. Chisholm and
Smith treat it as an undefined primitive, suitably axiomatized so as
to guarantee that coinciding entities have coinciding parts. (See also
Smith and Varzi 2000 for a similar treatment of the relation of coinci-
dence between fiat boundaries.) Alternatively, one can embed the the-
ory of coincidence into a theory of spatial location broadly construed:
to say that things coincide is to say that they literally share the same
location. Clearly, the choice between these two options is not just a
matter of taste. Treating coincidence as a primitive is in principle com-
patible with different metaphysical conceptions of the nature of space,
whereas the second option is best understood within the framework of a
substantivalist (Newtonian) conception, i.e., a conception according to
which space is an entity in its own right. In any event, it is apparent
that both options yield theories that are not strictly mereotopological,
since a third primitive—coincidence or location, respectively—needs to
be brought into the picture to provide a full account of the connection
relation. We shall not go into the details of the first option here, but
we shall have more to say about the second option in Section 3. For
the moment, let us just observe that construing coincidence explicitly in
terms of spatial co-location amounts to a partial reduction of topology
to mereology: connection between entities of a kind (space occupiers)
is reduced to overlap between entities of a different kind (their spatial
receptacles), as per the following principle:

(89) x is connected to y if and only if the region occupied by x
overlaps the region occupied by y.

This is by itself interesting, though we are obviously left with the task
of providing an account of the topology of space as such. And if the
account is to match the strength of a theory such as KGEMT , then
the open/closed distinction will at least be partially preserved. It will
be obliterated from the Brentanian realm of space occupiers, but space
itself would be Bolzanian. (Compare the initial worry: we can grasp
how the distinction applies to ideal manifolds such as the real line or
Euclidean space; it is when it comes to the realm of ordinary objects
that their classification into “open” and “closed” is problematic.)
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Figure 1.14. Open, closed, and semi-closed discs with the same area.

2.4.3 Omitting boundaries. The alternative route is to avoid
the puzzles raised by the open/closed distinction by dismissing boundary
talk altogether. This is the anti-realist option.

Philosophically, this route is often motivated on its own grounds, for
instance because of the dubious ontological status of boundaries vis-à-vis
the microscopic analysis of the physical world (Stroll 1988), or because of
their suspect nature qua lower-dimensional entities (Zimmerman 1996b).
In the context of formal theories, however, the main motivation for do-
ing away with boundaries is precisely the rejection of the open/closed
distinction vis-à-vis common sense. To use an example from Gotts et
al. (1996: 57), Figure 1.14 depicts a disc with and without its boundary,
and with just part of its boundary. Of course, the depiction has to show
the boundary as having some finite thickness, which strictly speaking
it does not possess. But this is the very point that appears counter to
common sense: all three discs, if superimposed, would cover exactly the
same area; yet the second disc includes unextended parts that the oth-
ers do not, while the third includes some that the first does not. Such
discriminations—it is argued—are not warranted.

There are radical as well as moderate variants of this view. The
radical variants are represented by those theories that follow Whitehead
(1929) in doing away with all boundaries. This amounts to assuming the
boundarylessness axiom (C.5) in its full strength: everything has interior
proper parts. The moderate variants, by contrast, only assume some
weaker version of the axiom in which the variable is suitably restricted
so as to range over entities of a certain sort:

(C.5φ) φx→ ∃zIPPyx Restricted Boundarylessness

In particular, relative to our present concerns it is natural to construe
‘φ’ as a distinguished property of all concrete spatial bodies. This would
allow for the possibility that space as such include points and other
boundary-like elements, which means that the open/closed distinction
would be partially preserved. But as we have just seen, restricting the
distinction in this way may be enough to bypass the intuitive puzzles
that it raises, so this may well be a good compromise. For example,
Cartwright (1975) holds that concrete spatial bodies are the material
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content of (regular) open regions of space, connection relations between
the former being explained in terms of overlap relations between the
closures of the latter:

(90) x is connected to y if and only if the closure of the region
occupied by x overlaps the closure of the region occupied by y.

As a mereotopological theory, this is of course another hybrid—just as
the theory behind (89)—for it requires an explicit treatment of locative
relations. Still, there is no question that (90) allows for a systematic
boundary-free account of the mereotopology of concrete spatial bodies.
(The real challenge, rather, is to justify the claim that only some regions
are receptacles, e.g., only open regular regions; see Hudson 2002).

Let us focus on the radical variants. We have seen that positing (C.5)
is a necessary move for any reductive mereotopology based on the con-
verse monotonicity axiom (C.4), and it is a fact that most theories that
accept one axiom accept the other as well. But let us put that aside for a
moment and let us just focus on (C.5). Where X is any theory including
MT , let B̄X be the corresponding boundaryless extension obtained by
adding this axiom. What sort of mereotopology do we get?

As it turns out, the number of options is significantly constrained,
both mereologically and topologically. For example, surely X cannot
be atomistic, since (C.5) implies the atomlessness axiom (P.7). So any
model of B̄X is perforce infinitary. And surely the interaction between
compositional and decompositional principles will have to be carefully
re-examined. In particular, it is easy to verify that in B̄MT the weak
supplementation principle (P.4) is incompatible with the unrestricted
fusion axiom (P.13) and, more generally, with any version of the strong
fusion axiom (P.13ξ) in which the condition ‘ξ’ is satisfied by all interior
and tangential proper parts of any given thing. For suppose we allow
for such fusions. Then every entity would have an interior as well as a
closure, and the following would hold:

(91) PP(ix)(cx).

By (P.4), this would imply

(92) ∃z(Pz(cx) ∧ ¬Oz(ix)),

which in turn would imply

(93) ∃zPz(bx),

contradicting (C.5). Thus, B̄MT + (P.4) + (P.13) is inconsistent, as is
any theory B̄X including (P.4) along with (P.13ξ) with ‘ξ’ as indicated.



Spatial Reasoning and Ontology: Parts, Wholes, and Locations 57

This is not surprising, since the whole point of going boundary-free is,
in the present context, to avoid the open/closed distinction, hence the
distinction between interiors and closures reflected in (91). However,
this means that (C.5) prevents the formulation of any reasonably strong
theory unless we are willing to give up weak supplementation, and this
may certainly be regarded as a major drawback of the approach.

In fact, one may consider both options here. One may (i) regard the
compositional weakness of the theory as a necessary price to pay to
preserve mereological supplementation and avoid the topological conun-
drums surrounding the open/closed distinction. But one may also (ii)
go for a stronger theory with generalized or even unrestricted fusions,
dismissing the conundrums precisely by forgoing supplementation. After
all, it could be argued that the open/closed distinction is problematic
only insofar as it is cashed out in terms of a discrimination between en-
tities that do and entities that do not possess their boundaries, and in
the absence of boundaries the discrimination dissolves. In the literature
the first option is more widespread, its closest representative being the
greatly influential Region Connection Calculus (RCC) originated with
Randell et al. (1992)—a reductive extension of B̄MT+ (P.5) with bi-
nary sums and complements. But the second option, which is closer
to Whitehead’s original approach, is also well represented, as evidenced
by Clarke (1981), Biacino and Gerla (1991), and Asher and Vieu (1995)
inter alia (the first three admitting unrestricted fusion, the latter admit-
ting fusions of interior parts). Indeed, we have seen in Section 1.4.2 that
the idea of restricting mereological fusion in order to avoid undesired
entities is by itself suspicious. If we agree with the thought that a fusion
is nothing over and above the things that compose it, then the intuitive
problems raised by the open/closed distinction are hardly solved by es-
chewing formal commitment to such things as interiors and closures.
i.e., fusions of interior and of tangential parts. For such parts are all
there already (and, of course, one needs IPP and TPP to be distinct in
order to state (C.5) in the first place). In this sense, option (ii) might
be regarded as preferable on philosophical grounds, though the failure
of supplementation would remain a hindrance.

Unfortunately, all of these theories include the monotonicity axiom
as well as its converse, (C.4), i.e., they are all of the reductive sort,
which makes it difficult to assess their relative pros and cons vis-à-vis
the two options in question. In fact, not only do such theories include
(C.4) and (C.5); they also rest on a sui generis characterization of the
fusion operator in which C takes over the role of O, which makes it
difficult to compare them to KGEMT . For example, in Clarke’s theory,
which goes as far as to include analogues of the Kuratowski axioms,
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zxy

Figure 1.15. The interior of a closed disc x is a fusion, but not a fusion∗, of its parts.

the unrestricted fusion principle does not equal (P.13) but, rather, the
following schema:

(C.13) ∃wφw → ∃z∀w(Cwz ↔ ∃v(φv ∧ Cwv)) Topological Fusion

This leads to a correspondingly sui generis fusion operator:

(94) Σ∗xφx =df ız∀w(Cwz ↔ ∃v(φv ∧ Cwv)) fusion∗

(Recall that RMT treats C as extensional: see (73).) And it is easily
checked that Σ∗ does not coincide with the operator Σ defined in (39):
if parthood reduces to enclosure, then the interior of a closed entity x
qualifies as the fusion of x’s proper parts, but not as their fusion∗. (This
is because in the absence of boundaries the interior is sure to overlap
any y that x overlaps, and vice versa, though it will to be disconnected
from any z to which x is externally connected; see Figure 1.15). This
amendment is plausible enough. But it means that the mereotopological
operators defined in (40)–(44) and in (79)–(82) must be revised accord-
ingly, and at the moment there is no systematic comparison between the
behavior of such revised operators in a boundary-free theory and the
behavior of the original operators in a boundary-tolerant theory. Just
to give an example, note that re-defining ‘∼’ in terms of Σ∗:

(95) ∼∗ x =df Σ∗zDzx complement∗

implies that nothing is connected to its own complement and, therefore,
that the universe is bound to be disconnected. Of course we can rely on
a different notion of complement (as suggested in Randell et al. 1992:
168), or one can change the definition of self-connectedness in such a
way as to avoid at least the latter consequence (as suggested in Clarke
1985: 69). But this is playing with definitions. The “old” notions, when
revisited in terms of (94), continue to make good sense no matter how
we change the official nomenclature, so we can hardly leave it at that.

Perhaps the best way to assess the strengths and weaknesses of these
theories is to note that the departure from the ordinary conception of
fusion affects the very distinction between open and closed entities. Con-
sider the following variants of (79) and (85):
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(96) i∗x =df Σ∗z∀y(Czy → Oxy) interior∗

(97) OP∗x =df x = i∗x Open∗

It is easily checked that any theory at least as strong as B̄RMT + (C.13)
has the following theorem:

(98) OP∗x→ ¬ECxy.

Thus, open∗ entities never touch anything. It is only closed∗ and semi-
closed∗ entities (defined similarly), that can touch something without
sharing any parts.12 And if the open/closed distinction is replaced by
the open∗/closed∗ distinction, then the intuitive import of the relevant
misgivings is up for grabs, and the choice between a conservative at-
titude towards mereological supplementation (option (i)) and a liberal
attitude towards mereological composition (option (ii)) calls for inde-
pendent thinking. We are no longer dealing with a partitioning of the
domain into entities that do and entities that do not possess a boundary;
we are dealing with a partitioning into entities that do and entities that
do not connect externally.

Be that as it may, all of this suggests that a thorough comparison
between these two strategies for construing boundaryless mereotopolo-
gies is a challenging task (Cohn and Varzi 2003). What is clear is that
the strategies are mutually incompatible in spite of their common mo-
tivation and this, in all fairness to KGEMT , is disturbing. No matter
how one feels about subtracting or adding elements to the domain, there
is something puzzling in the thought that a topological “monstrosity”
should by cured through mereological surgery. Indeed, philosophically
this puzzling feature is especially striking when it comes to explaining
the intended interpretation of these theories. As it turns out, both can
be modeled on a domain with a standard point-set topology, interpreting
‘C’ as in (99) for type-(i) theories, and as in (100) for type-(ii) theories:

(99) x is connected to y if and only if the closure of x and the
closure of y have a point in common.

(100) x is connected to y if and only if x and y have a point in
common.

(See e.g. Randell et al. 1992: 167, Gotts 1996b and Pratt and Schoop
2000 vs. Clarke 1981: 205, Biacino and Gerla 1991, and Asher and Vieu

12Actually, Clarke’s definition of the closure operator does not exactly parallel (81). In our
notation it reads as follows:

c∗x =df Σ∗z¬Cz(i∗x).

However, this peculiarity does not affect the main point made in the text.
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1995, respectively). There is, of course, nothing wrong with this sort of
models when it comes to proving the consistency or even the complete-
ness of such theories. And there would be nothing wrong with (99) and
(100) as genuine models if we were dealing with boundaryless theories
of the moderate sort, as seen above. It is disturbing, however, that one
can hardly do any better when it is comes to theories that are meant
to be radically eliminativist—when it comes to explaining how contact
relations may obtain in a world that is truly lacking the topological glue
provided by points, lines, and surfaces even in the realm of pure space.
(Whether one can do better is an open question. For example, with
reference to type-(i) theories, Bennett 1996a suggests that RCC can be
interpreted by encoding it into the bimodal propositional modal logic
S4u, though the encoding is imperfect, as shown in Aiello 2000, and
its natural canonical model is itself topological, as evidenced in Renz
1998 and Nutt 1999. Likewise, Stell and Worboys 1997, Stell 2000, and
Düntsch et al. 2001 provide algebraic interpretations of RCC that dis-
pense with any reference to point-based topologies, but the ontological
transparency of such interpretations is itself a delicate matter.)

2.5 Expressivity and ontology
Let us conclude this philosophical excursus on topology with some gen-
eral considerations concerning the delicate interplay between the expres-
sive power of a theory and its ontological presuppositions. Regardless of
whether we rely on the full strength of KGEMT or on theories of weaker
import, we have seen that the move from mereology to mereotopology
represents an important step towards the formulation of an adequate
model of our spatial competence. The mereological distinction between
a whole and its parts is crucial, but so is the distinction between inte-
rior and tangential proper parts, or the distinction between a connected
whole and a scattered one, and such distinctions are intrinsically topo-
logical. This is not to say that mereotopological concepts exhaust the
picture; geometric and morphological considerations also play a signifi-
cant role when it comes to practical matters. But there is no question
that a great deal of our spatial competence is grounded on our capacity
to “parse” the world in terms of parthood and connection relationships.
The interesting question, rather, is whether such relationships can be
fully captured by the formal behavior of the binary predicates ‘P’ and
‘C’ when characterized by means of formal principles of the sort that we
have been discussing up to now, and to what extent the answer depends
on one’s specific views when it comes to matters of ontology. Here are
some indicative examples.
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Figure 1.16. Four patterns of external connection, from weakest to strongest.

2.5.1 Modes of connection. So far we have followed the
familiar course of explaining connection in general terms, i.e., irrespec-
tive of the size (dimension) of the relevant contact area. In introducing
that notion, however, we have mentioned the possibility of distinguishing
connection ties of different strength—e.g., ties involving a single point
of contact (as between Colorado and Arizona), an extended portion of a
common boundary (France and Germany), or an entire boundary (Vat-
ican and Italy). Even without bringing in boundaries, one may want to
draw such distinctions to fully grasp, for example, the difference between
a whole consisting of two spheres that barely touch from the whole con-
sisting of two halves of a single sphere: both wholes are self-connected,
but the second is surely more firmly connected than the first. And these
distinctions have ramifications. For example, since tangential parthood
is defined in terms of external connection, we may want to distinguish
those proper parts that barely touch the exterior from those that firmly
touch it—and so on. Moreover, the number of distinctions grows with
the dimensionality of the entities we consider. Figure 1.16 illustrates the
four main patterns of external connection (no overlap) that can be dis-
tinguished in 2D space. But in 3D we might want to further distinguish,
for example, two cubes barely touching at a vertex, two cubes barely
touching along an edge, two cubes touching along a face, and so on.
Now, can all such distinctions be expressed in terms of the mereotopo-
logical primitives ‘P’ and ‘C’ (or just ‘C’, if one goes reductive)?

As it turns out, within a sufficiently rich mereotopological theory such
asKGEMT the answer is in the affirmative. To illustrate, with reference
to Figure 1.16 the difference between the first two cases can be explained
as follows. In both cases, x and y are connected; but whereas in the first
case this simply means that one can go from x to y without ever going
through the exterior of the connected sum x+ y, in the second case it is
also possible to go from x to y without ever leaving the interior of x+ y.
More precisely, let us distinguish between the connectedness of a whole
(‘SC’) and the connectedness of its interior, and let us say that an object
is firmly self-connected just in case the latter condition holds:
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(101) FSCx =df SCx ∧ SCix Firm Self-Connectedness

Then we can say that two entities are firmly connected when they have
parts that add up to a firmly self-connected sum:

(102) FCxy =df ∃wz(Pwx ∧ Pzy ∧ FSC(w + z)) Firm Connection

This captures the difference between the second case of Figure 1.16,
where the relevant connection relationship is firm, and the first, where it
isn’t. The stronger connection patterns corresponding to the third and
fourth cases can then be defined by reference to the complement of x+y:

(103) CCxy =df FCxy ∧ ¬FCx(∼ (x+ y)) Complete Connection
(104) PCxy =df FCxy ∧ ¬Cx(∼ (x+ y)) Perfect Connection

(Strictly speaking, (103) and (104) would call for refinements, owing to
the possibility that x and y have internal holes; see Cohn and Varzi 2003
for a more general picture.) On this basis, the generalization to spaces of
higher dimensionality is not difficult. For instance, in 3D space the differ-
ence between two entities touching at a point and two entities touching
along an edge can be described by further distinguishing two patterns
of non-firm connection, depending on whether the common boundary is
atomic or a self-connected composite (a line segment, or curve).

Now, all of this is easy in KGEMT . When it comes to weaker theo-
ries, however, things get more difficult. For the definitions above involve
the self-connectedness predicate along with the interior, complement,
and fusion operators, all of which may be absent in a theory deprived of
the necessary compositional strength. For instance, in a boundaryless
theory with no open/closed (or open∗/closed∗) distinction, we can supply
for the lack of the interior operator by redefining firm self-connectedness
as follows (Bennett 1996b: 345):

(101′) FSCx =df ∀y(IPPyx→ ∃z(IPPzx ∧ Pyz ∧ SCz))

This makes it possible to go ahead with definitions (102)–(104) and cap-
ture the relevant distinctions in the 2D case. (See also Borgo et al. 1996
for a boundaryless theory in which FC is treated as primitive.) Yet it
is not clear how one can capture the further distinctions available in
3D and higher-dimensional spaces without appealing explicitly to the
dimensionality of the relevant boundaries or to special assumptions con-
cerning the structure of space (see Gotts 1994a). And of course things
get worse in a theory that lacks the complementation principle (P.6), for
in that case, as we have seen, the notion of self-connectedness is already
problematic. In short, the expressive power of a theory depends crucially
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on the underlying ontology, which in turn is reflected in the strength of
the relevant compositional and decompositional principles.

Similar considerations apply to further conceptual distinctions that
may be deemed relevant in the context of spatial reasoning. Consider
again the common-sense notion of contact exemplified by such state-
ments as (55): the table is touching the wall. We have said that this
notion is not topological but metric. This is actually true in KGEMT ,
assuming that both entities—table and wall—are treated alike, i.e., as
both closed or both open. For KGEMT has the following two theorems:

(105) ECxy → (CLx→ ¬CLy)
(106) ECxy → (OPx→ ¬OPy)

By contrast, in a boundaryless theory the picture is different. For ex-
ample, insofar as RCC admits of models satisfying (99), it can treat the
table and the wall as genuinely connected as long as their closures over-
lap. This may be at odds with physics, but it captures the common-sense
intuition. (Ditto for a moderate variant such as Cartwright’s—see again
(90).) So which of these accounts is better depends on the seriousness
with which we handle the spatial ontology of common sense. On the
other hand, none of this should be taken to imply that KGEMT lacks
the resources to account for the loose notion of connection countenanced
by common sense. Suppose we understand this notion in the following
sense: the table is touching the wall insofar as nothing can be squeezed
between them. The metric flavor of this notion lies in its modal ingre-
dient: to say that nothing can be squeezed between two objects is to
say that they are “vanishingly close” to each other—that their relative
distance is arbitrarily small. We can, however, define a predicate that
captures this ingredient in mereotopological terms: we can say that two
objects are at least loosely connected in the relevant sense when one is
connected to the closure of every open neighborhood of the other:

(107) LCxy =df ∀z(OPz ∧ Pyz → Cx(cz)) Loose Connection

(See Asher and Vieu 1995 for a similar definition.) This relation cap-
tures the intuition that nothing can lie between two entities that touch,
even when those entities are closed. And surely enough the definition
is consistent with KGEMT . So it is not that KGEMT lacks the con-
ceptual resources to do justice to common sense. It is, rather, that the
relation of loose connection is bound to be empty in those models of
KGEMT where the open entities form a dense ordering, i.e., where the
following holds:

(C.14) OPx ∧ OPy ∧ PPxy → ∃z(OPz ∧ PPyz ∧ PPzy) Open Density
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Figure 1.17. An interior tangential part?

And whether all models should satisfy this axiom is, on the face of it,
a question about the ontological make-up of the world. (One can argue
that as long as the open/closed distinction holds, common sense only
requires a denial of (C.14) when the variables are restricted to the range
of ordinary entities, as opposed to their spatial receptacles. For a full
account of the mereotopology of discrete space, see Galton 1999 and
2000, §2.6, and the generalizations in Li and Ying 2004.)

2.5.2 Dimensionality. Consider a second example. We have
seen that in a boundaryless theory everything must have interior proper
parts, as per (C.5). However, the notion of an interior part is itself,
in a way, a relative one, depending on the dimensionality of the space
we are considering (Galton 2004). In 1D space, the middle portion of a
line segment y, or any portion x that does not extend to y’s extremities,
would qualify as an interior part of y, so y itself would satisfy the axiom.
As soon as y is embedded in 2D (or higher) space, however, all of its parts
would be tangential, as they can all be connected to things to which y
itself would be externally connected—e.g. a disc z (Figure 1.17). Thus,
in such higher spaces y would not satisfy (C.5).

Now, this is not by itself a disturbing fact if we take boundaryless the-
ories to reflect a general intuition to the effect that all entities in the do-
main are of equal dimensionality. On the other hand, this very intuition
is philosophically problematic. It is puzzling that whether something
exists—a line segment, for instance—should depend on the dimension
of space, for one may want to declare one’s ontological commitments
while remaining neutral with respect to the difficult question of the
dimensionality of space. Indeed, this becomes a necessity if one does
not have the resources to address such a question in the first place. In
ordinary point-set topology, one can say that a domain is of dimension
< n if and only if every open cover O1, ..., Ok can be refined to a closed
cover C1, ..., Ck such that every point occurs in at most n+ 1 of the Cis.
This characterization is not available in mereotopology unless one goes
second-order, and surely it cannot be mimicked in a boundaryless the-
ory that eschews the open/closed distinction. Gotts (1994b) and Bennett
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(1996b) suggest a way to bypass such difficulties by means of a different
characterization, which only requires P (or rather: E) to be closed under
the operations of complementation and binary sum, but the adequacy
of such proposals is an open question. (By contrast, Galton 1996 shows
that an adequate characterization is available in a boundary-based the-
ory such as KGEMT , or weaker variants thereof; see also the layered
mereotopologies of Donnelly and Smith 2003 and Donnelly 2004). So,
again, we see here how the expressiveness of the theory depends crucially
on the ontology it countenances, which in turn may be hard to specify
within the theory itself.

2.5.3 Counting the holes. Finally, consider an example that
lies somewhere between the previous ones—the notion of a simply con-
nected whole, i.e., intuitively, a whole with no holes. Topologically,
as also from the perspective of common sense, this notion is just as
significant as the notion of a self-connected whole. Just as there is a
big difference between an apple and a bikini, there is a big difference
between an apple and a donut. Indeed, topology is often defined, in-
tuitively, as a sort of rubber-sheet geometry that focuses precisely on
these two differences, ignoring shape, size, and all sorts of other spatial
properties that concern geometry broadly understood. Now, we have
seen that self-connectedness is easily defined in mereotopological terms,
though the adequacy of the definition presupposes the complementation
principle (P.6) and is not, therefore, entirely neutral from an ontolog-
ical standpoint. What about simple connectedness? More generally,
the definition of self-connectedness can be extended so as to classify ev-
ery object in terms of the (maximum) number of self-connected parts
of which it consists—what is sometime called its “separation number”.
This can be done by defining a corresponding sequence of predicates,
one for each positive integer, as follows:13

(108) SN1x =df SCx Separation1

(109) SNn+1x =df ∃yz(x = y + z ∧ ¬Cyz ∧ SCy ∧ SNnz) Sep.n+1

Can we also provide a mereotopological characterization of the genus of
an object, so as to classify it in terms of the number of holes it has?
As it turns out, the answer to this question is in the affirmative, again
provided that we assume the complementation principle (P.6), but this
affirmative answer has interesting ontological ramifications.

Here is how the basic account goes (Gotts 1994a). Let us say that
something has dissectivity n (n a positive integer) just in case it is self-

13Here ‘n+ 1’ indicates arithmetical addition, as opposed to mereological summation.
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Figure 1.18. Simple connectedness and genus classification in 2D.

connected and can be decomposed into n+2 self-connected, disjoint parts
with the following property: two of them, y and z, are not connected,
whereas all the others are connected to both of them but disconnected
from one another. Formally, this amounts to the requirement that there
be two disconnected parts y and z that are connected by a remainder
whose separation number is n (‘connected by’ in the sense of (59)):

(110) DSnx =df SCx ∧ ∃yzw(x− (y + z) = w
∧ BCyzw ∧ ¬Cyz ∧ SNnw) Dissectivityn

Then we can say that something is simply connected just in case its
maximum dissectivity equals 1:

(111) SSCx =df DS1x ∧ ¬DS2x Simple Connectedness

With reference to Figure 1.18, for example, only the left pattern is simply
connected, for the others have higher dissectivity numbers. This is how it
should be, and it can be checked that the definition would yield the right
classification also with reference to objects of different dimensionality.
A donut has dissectivity 2, so it is not simply connected; a solid ball
is. Indeed, we can now use (110) also to provide a mereotopological
characterization of the genus of an object. Something is of genus n, i.e.,
has n holes (n ≥ 0), if and only if its maximum dissectivity is n+ 1:

(112) Gnx =df DSn+1x ∧ ¬DSn+2x Genusn

Again, Figure 1.18 illustrates the definition in the 2D case, but it can
be checked that (112) yields the correct classification also for objects of
higher dimensionality: a solid ball has genus 0, a donut has genus 1, a
pretzel has genus 2, and so on.

So this is the basic account, which fully answers the questions above:
provided we work with a mereotopology that is closed under complemen-
tation and binary sums, we can define simple connectedness and, more
generally, classify any object in terms of the number of holes it has.
There are, however, two additional questions one may ask at this point.
The first is whether this basic account can be refined so as to do justice
to further distinctions that could be drawn in view of the dimensionality
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Figure 1.19. A donut, a punctured block, and other deviant solids of the same genus.

issues discussed above. We may, for example, want to tell a genuine
donut from the deviant cases in Figure 1.19, all of which have the same
genus. And here, as one might expect, the answer depends more heav-
ily on the strength of the theory. In KGEMT we can go quite far; in
weaker theories we may not, as we may not be able to distinguish the
various kinds of non-firm connection that are needed to operate the rele-
vant discriminations. For example, Gotts (1994b, 1996a) has shown that
the issue can eventually be settled within the boundaryless framework of
RCC, but this result rests on various assumptions on the topology and
dimensionality of the entities in the domain that cannot themselves be
expressed in the language of the theory. More importantly, it rests on
the interpretation of ‘C’ given in (99): two bodies are connected if and
only if their closures have a point in common. We have seen that such
an interpretation is of dubious legitimacy in a boundaryless ontology (as
Gotts himself laments in 1996b). So, once again, we reach a point where
the expressive power of a theory depends crucially on the ontological
commitments that one is willing to make.

The second question is whether the basic account can be refined so
as to do justice to further distinctions that could be drawn in view of
the various ways—and there are many—in which an object can be per-
forated. And here it appears that even a strong, boundary-based theory
such as KGEMT may show its limits. In fact, there is a sense in which
the limits in question are not just the limits of the mereotopological ap-
proach of which the theory is expression; they are the limits of topology
as a general theory of space. Let us focus on the 3D case.

For one thing, we have been speaking of ‘holes’ in the sense of per-
forations, but we may also want to classify a self-connected object in
terms of the number of its internal ‘cavities’. To some extent this is
easy: on the assumption that the universe U is self-connected, it is suf-
ficient to identify the number of internal cavities with n − 1, where n
is the separation number of the object’s complement. In 2D space, this
coincides with the genus of the object—there is no difference between a
2D perforation and a 2D cavity. In 3D the numbers may diverge: a solid
donut has genus 1 but 0 cavities, since its complement is self-connected.
Dropping the assumption on U , we can express this as follows:

(113) ICnx =df SCx ∧ ∀y(SCy ∧ IPPxy → SNn+1(y − x)) Cavityn
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Figure 1.20. Cavities, donut-cavities, and donuts with donut-cavities.

This definition works for every object in any dimension (except, of
course, for U). But this is just the beginning. A cavity may come
in different forms. It may be a solid cavity, so to say, but it may it-
self be donut-shaped. It may also have the shape of an irregular donut
of the sort illustrated in Figure 1.19. Or it may be “knotted” in vari-
ous fashions—as a trefoil knot, for instance, or a granny knot. Clearly
such distinctions are not covered by (113). Moreover, consider an object
with two donut-shaped cavities. The cavities may lie next to each other,
so to say, or they may be interlocked like the rings of a necklace. Or
consider an object with a perforation—a donut—which also has an in-
ternal, donut-shaped cavity. The perforation may go through the “hole”
in the cavity or it may lie next to it. All of these and many others are
distinctions that are easily described in words just as they can easily
be depicted (Figure 1.20), and reflect significant differences in the spa-
tial structure of the objects in question. It is far from clear, however,
whether one can capture them in mereotopological terms.

Secondly, a perforation may come in different forms, too. It can be
straight or it can be knotted, and the knot may or may not wrap around
another perforation, just as it may or may not go through the “hole” of
an internal, donut-shaped cavity. It can also branch in the middle, so as
to have more than two openings. Indeed, it can branch in many different
fashions, as it can “merge” in various ways with internal cavities of var-
ious kinds. Again, all of these possibilities reflect significant distinctions
that are easily described in words and can easily be depicted, but it is far
from clear whether one can give a proper characterization in mereotopo-
logical terms—even with the full strength of KGEMT . In some cases
it is not even clear to what extent such a characterization should just
parallel the standard topological account of such patterns. Standardly,
for example, a block with two parallel, straight perforations is equivalent
to a block with a single, Y-shaped perforation—both have genus 2 (and
can be transformed into each other by mere elastic deformation). This
much can be said in mereotopological terms, using (112) above. But
here is where standard topological considerations might be regarded as
inadequate for a good description of the spatial structure of ordinary
objects, and of the intuitions underlying our spatial reasoning broadly
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Figure 1.21. Same genus, different holes.

understood. The topological equivalence between such patterns—and
between such patterns and many others; see Figure 1.21—appears to
deliver a partial account of the relevant spatial structures, for the genus
of an object only captures the intrinsic topology of the object, not the
way it relates to the environment. To get a better picture it seems nec-
essary to keep an eye on the holes, not just on the object. And this is
obvious from the fact that in describing such patterns we tend to do so
by describing the mereotopology of the holes and the way they relate to
each other; we do not describe the objects themselves. We tend to treat
holes as objects in their own right, as “negative objects” about which we
can say exactly the same sorts of thing we say about ordinary, “positive”
objects. And we count both sorts of objects in the same way: we count
two straight perforations and one Y-shaped perforation.

If this is correct, then there are two things one can say. One can say
(and accept) that the limits of mereotopology vis-à-vis such fine-grained
distinctions are just the limits of topology, mutatis mutandis. Or one
can say that the limits in question reflect precise ontological assump-
tions concerning the domain of application of the theory, specifically a
dismissive attitude towards the ontological status of holes. This is not
to say that holes are left out of the picture. Surely any theory with un-
restricted fusions has room for such things, for mereologically speaking
a hole is nothing but part of the object’s complement. Rather, the point
is that mereotopology by itself says nothing specific about which parts
of the complement qualify as holes. The boundaries of a hole simply
cannot be determined by purely mereological or topological considera-
tions. Of course, we have seen that mereotopology says nothing about
the boundaries of material objects either. But draw such boundaries as
you like, chose the objects you like, unless you also draw the boundaries
of their holes (if any) you cannot get a full picture of the mereotopolog-
ical structure of the objects themselves. And to draw the boundaries of
something is to confer ontological dignity to it.

In Casati and Varzi (1994, 1999) it is argued that this alternative way
of construing the limits of mereotopology has far reaching consequences.
Suppose we take holes seriously: a hole in an object is something with
well-defined boundaries. Then the fine-grained distinctions mentioned
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Figure 1.22. The objects of Figure 1.21 have topologically different internal skins.

above can be recovered by looking at the mereotopological interplay
between matter and void, at the properties of the boundary where an
object comes into contact with its holes. More precisely, let the interface
between two entities x and y be the product of their boundaries:

(114) x|y =df bx× by Interface

And let the internal skin of an object x be the interface between x and
the fusion of its holes. Using ‘H’ for the binary relation ‘is a hole in’,
this can be defined as follows:

(115) sx =df Σz∃y(Hyx ∧ z = y|x) skin

Then the distinctions in question are distinctions that reflect the mereo-
topology of an object’s skin. With reference to Figure 1.21, for example,
it can be checked that the skin of the doubly perforated block on the left
is the disconnected sum of two cylinders, i.e., topologically, two spher-
ical surfaces with two punctures each. By contrast, the block with a
Y-shaped hole has a connected skin that is equivalent to a spherical sur-
face with three punctures, while the other blocks have skins equivalent
to a torus with two punctures and to a bitorus with one puncture, re-
spectively (Figure 1.22). (Note that a puncture is not a hole but a mere
boundary. The surfaces of the objects in Figure 1.21 do not have bound-
aries, yet their internal skins do—and that makes all the difference.)

Now, in a boundaryless theory all of this is beyond reach. But in a suf-
ficiently strong boundary-based theory such as KGEMT the notion of
an internal skin is perfectly meaningful and well defined for every object
of positive genus, and its mereotopological classification does not present
any special challenge. This confirms once again the greater expressive
power that comes with an ontological commitment to boundaries. It
also shows, however, that such a commitment is not enough: the exis-
tential quantifier in definition (115) shows that an explicit commitment
to holes is also needed. To the extent that the binary predicate ‘H’ is
to be treated as a primitive, it is clear that this requires a step beyond
KGEMT and its pure mereotopological extensions. (For an axiomatic
treatment of ‘H’ and of its interplay with ‘P’ and ‘C’, see Casati and
Varzi 1994, Appendix, and Varzi 1996b.)
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3. Location Theories
Let us finally turn to the relation of spatial location. Intuitively, this
is the relation that holds between an entity and the spatial region that
it occupies, and we have already seen that this relation can hardly be
reduced to a chapter of mereology and/or topology. Even if it were—as
someone inclined to favor a Leibnizian, relationist conception of space
against its Newtonian, substantivalist foes would urge—methodological
prudence would suggest that we regard the reduction as a theorem, not
as a starting point, hence that the relation of location be treated as an
independent primitive next to parthood and connection. Exactly how
this relation should be characterizeed, and how it should interact with
the principles governing those other primitives, is precisely the sort of
question that a good theory of location should aim to answer.

3.1 Varieties of Location
Before looking at the main options, the usual terminological caveats are
in order. As with ‘part of’ and ‘connected to’, locative predicates have
various meanings in ordinary language and it is important to be explicit.

For one thing, we often speak so as to specify the location of an object
by reference to another object, as opposed to a spatial region. Consider:

(116) The biceps muscle is located in the arm.
(117) The parking area is located next to the stadium.
(118) The elevator is located inside the main building.

Pretty clearly, such cases are of no special interest, as they reflect dif-
ferent ways of asserting mereotopological relations of the familiar sort:
in (116) the locative predicate is just a variant of ‘part of’, in (117)
it expresses the relation of external connection, and in (118) it stands
for a relation of containment that can be cashed out in terms of inte-
rior proper parthood. Of course, establishing mereotopological relations
may be an indirect way of specifying a genuine location: insofar as the
biceps muscle is part of the arm, for instance, the muscle is bound to be
located within the region occupied by the arm, though this is by itself an
intuition that needs to be spelled out carefully (Section 3.3). Moreover,
not every case of relative location can be explained in this fashion (Sec-
tion 3.4). For the moment, let us just emphasize that the main concern
of a theory of spatial location as we understand it here is with those
cases in which an object’s location is specified directly, as in

(119) The peak of Mount Everest is located at 27◦59′ N 86◦56′ E.
(120) The new library will be located at this site.
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It is in this sense that the theory presupposes an ontology that includes
spatial regions as bona fide entities in their own right. Indeed, we shall
assume that the location primitive is a relation whose second argument
can only be a region of space—a “place”. (Never mind the question of
what sort of linguistic expressions can serve the purpose of referring to
places, as opposed to things that have a place. Statements such as

(121) The bookcase is located in the living room.
(122) The United Nations are located in Manhattan.

are somewhat ambiguous in this respect, but we may suppose that the
context will always suffice to determine the intended meaning.)

Secondly, there are various ways in which an object may be said to
be located at a region. In a very loose sense, I am located at any region
that is not completely free of me (this room, or even the adjacent dining
room if I am reaching a foot out of the doorway); in a stricter sense, I
am only located at those regions that host me entirely (this room, if I
am not reaching out of the doorway); and in a stricter sense still, I am
only located at one region, namely the region that corresponds exactly
to the volume of my body. In the following we shall use ‘located at’ as
designating the last, strictest relation; the weaker relations can be intro-
duced by definition. More precisely, suppose we use ‘L’ for the predicate
of exact location. Then three additional predicates can immediately be
defined as follows (from Parsons 200614):

(123) GLxy =df ∃z(Ozy ∧ Lxz) Generic Location
(124) ELxy =df ∃z(Pzy ∧ Lxz) Entire Location
(125) ULxy =df ∃z(Pyz ∧ Lxz) Ubiquitous Location

Thus, I am generically, in fact entirely located in Manhattan, but not
ubiquitously (or exactly) located there; I am generically, in fact ubiqui-
tously located at the region occupied by my left arm, but not entirely (or
exactly) located there; and if I reach an arm in my neighbor’s window,
then I am generically, but neither entirely nor ubiquitously (let alone
exactly) located at the region corresponding to her living room. As we
shall see, under suitable conditions these predicates are interdefinable,
so the choice of ‘L’ as a primitive is ultimately immaterial.

Finally, it goes without saying that the location of an object may
change over time. This would suggest treating ‘located at’, not as a bi-
nary predicate, but as a three-place predicate involving a spatial as well

14Parsons’s term for generic location is ‘weak location’, and his term for ubiquitous location is
‘pervasive location’. Our different terminology is dictated merely by notational convenience,
in view of the predicates ‘whole location’ (WL) and ‘proper location’ (PL) introduced below.
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Figure 1.23. Basic locative relations.

as a temporal argument (or as a temporally indexed binary predicate).
However, we have seen that the same goes for parthood and connection:
unless one accepts a radical form of mereotopological essentialism, an
object may in principle change its parts or its topological relations with-
out ceasing to exist. In the preceding sections we have tried to keep
things simple by treating ‘P’ and ‘C’ as binary predicates, and we shall
do the same with our location primitive ‘L’. In a way, this means that
we are assuming the relevant time to be fixed throughout. But one may
also consider an alternative reading, to the effect that the variables of
the theory range over four-dimensional entities extended in space-time.
(See again the brief discussion following (32), Section 1.3.2.) Not much
of what follows depends on the strategy one favors, but for simplicity
we shall continue to speak of the location of an object as a 3D region of
space rather than—possibly—a 4D region of space-time.

3.2 Basic Principles
With these conventions in place, let us officially expand our formal lan-
guage by adding the new binary predicate ‘L’, intuitively understood as
the relation of exact location holding between an object and a region of
space. To make this interpretation explicit, we may begin by assuming
the following axiom:

(L.1) Lxy ∧ Lxz → y = z Functionality

This guarantees that nothing can have more than one exact location,
which is all that is needed to justify the definitions in (123)–(125) (Fig-
ure 1.23.). Indeed, it is easy to see that in the presence of an extensional
mereology, (L.1) has the following corollaries:

(126) Lxy ↔ (ELxy ∧ ULxy)
(127) ULxy ↔ (GLxy ∧ ∀z(Ozy → GLxz))
(128) ELxy ↔ (GLxy ∧ ∀z(GLxz → Ozy))
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Thus, although we have settled on the strictest possible primitive, the
predicate ‘L’, one could equally well settle on the weakest predicate, ‘GL’,
and define the rest via (126)–(128). More precisely, if the mereological
theory in the background is at least as strong as EM , it turns out that
the L-based system defined by (L.1) plus (123)–(125) is equivalent to the
GL-based system defined by (126)–(128) plus the following:

(L.2) GLxy → ∃zLxz Exactness

(See Parsons 2006; for a different choice of primitives, compare also
Perzanowski 1993.) Note that the conjunct ‘GLxy’ is redundant in (127)
as long as O is reflexive. However, this extra conjunct is needed in (128)
unless one assumes that everything is located somewhere:

(L.3) ∃yLxy Spatiality

This is clearly an assumption that reflects a substantive thesis (a central
tenet of most nominalistic ontologies), so it is fair to keep it separate.

To be sure, there is a sense in which (L.1) may also be read as a
substantive thesis: functionality is reasonable only to the extent that we
are thinking of so-called “particular” entities, entities such as material
bodies or events, as opposed to “universal” entities such as properties.
That a material body cannot be in two places at once was already a cen-
tral thesis of Aristotle’s theory of location (Morison 2002). But Aristotle
also held the view that universals, too, exist in space and time: they ex-
ist wherever and whenever they are exemplified. Wisdom, for example,
exists whenever and whevever there are wise people—and whenever a
wise person exists, wisdom exists in its entirety wherever that person is
located. Wisdom can therefore be multi-located, and the same goes for
all universals. Since this view is still very popular (Armstrong 1989), the
functionality principle (L.1) would be objectionable. However, we can
bypass this issue by taking ‘L’ to represent the location relation that is
characteristic of particulars. In that sense, (L.1) is, if not a conceptual
truth, a perfectly reasonable starting point.

What else is needed in order to fix the intended meaning of ‘L’ in
this sense? Since the idea is that every object must be located at a
region, some restriction must be imposed on the second argument of
the relation. This would be a trivial task if the language contained
an explicit predicate for regions. However, we can make do without
such a predicate and try to characterize regionhood directly in terms of
suitable axioms on L. There are two options here, depending on whether
we think that spatial regions are themselves entities located somewhere.
If we think so, then the obvious thing to say is that such entities can
only be located at themselves (Casati and Varzi 1999: 121):
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(L.4) Lxy → Lyy Conditional Reflexivity

This would immediately imply that no distinct regions can be exactly
co-located, i.e., effectively, located at each other:

(129) Lxy ∧ Lzw ∧ Lyw → y = w

Moreover, given (L.1), conditional reflexivity would ensure that L is both
antisymmetric and transitive:

(130) Lxy ∧ Lyx→ x = y
(131) Lxy ∧ Lyz → Lxz

It follows that relative to the sub-domain of regions L would behave as
a partial ordering. By contrast, if we think that regions do not have a
location—they are locations—then the obvious option is given by:

(L.5) Lxy → ¬Lyz Conditional Emptiness

In this case, the restriction of L to the class of regions would again
qualify as a partial ordering—a strict ordering—but only in a trivial
sense: effectively, it would just collapse to the empty relation.

There is, arguably, no deep metaphysical issue behind these two op-
tions: both (L.4) and (L.5) are equally good stipulations, and the dif-
ference would disappear as soon as we focus on cases of proper location:

(132) PLxy =df Lxy ∧ ¬Lyx Proper Location

However, there are some differences that are worth mentioning. For one
thing, given (L.1), the first option makes it possible to define regionhood
in a perfectly straightforward way:

(133) Ry =df ∃xLxy Region

(We are speaking of regions in a broad sense, including boundaries as
limit cases.) By contrast, (L.5) would support this definition—and vari-
ants thereof—only on the assumption that there are no unoccupied re-
gions, i.e., regions that fail to correspond to the location of some object
or event. To put it differently, if all location is proper location, it is not
possible to define regionhood unless the following principle is accepted:

(L.6) Ry → ∃xPLxy Fullness

And philosophically this principle is just as controversial as the spatial-
ity principle (L.3). (Among other reasons, one might want to allow for
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boundary-like regions while rejecting the existence of boundary-like ob-
jects, as seen in Section 2.4.3.) Secondly, it is also apparent that the two
options differ with regard to (L.3) itself: (L.4) is compatible with this
principle, (L.5) isn’t. Thus, the second option makes it impossible to
assert the thesis that everything is located somewhere—a thesis which,
albeit controversial, is certainly not inconsistent. Again, this is a limi-
tation that would dissolve if ‘R’ were available in the language, in which
case the thesis in question could be reformulated as follows:

(L.3′) ¬Rx→ ∃yLxy

But precisely because ‘R’ cannot be defined absent (L.6), the limitation
is not immaterial.

For these reasons, in the following we shall favor the first option and
assume the conditional reflexivity axiom (L.4). Together with the func-
tionality postulate (L.1), this yields a minimal theory of (exact) spatial
location, which we shall label S: this theory is incompatible with (L.5),
but it includes the exactness principle (L.2) as a theorem and can be
strengthened by adding the spatiality principle (L.3), the fullness prin-
ciple (L.6), or both.

At this point, we could consider various ways of strengthening S (or
its extensions) by imposing suitable axioms on the predicate ‘R’ defined
in (133). For example, it seems reasonable to assume that regionhood is
both dissective and cumulative, i.e., that any part of a region is itself a
region, and that the sum of any regions (if it exists) is a region, too:

(L.7) Ry ∧ Pxy → Rx Dissectiveness
(L.8) z = Σxφx ∧ ∀x(φx→ Rx) → Rz Cumulativity

It may also be reasonable to consider additional postulates concerning
whether the class of all regions forms a dense domain, or whether it
forms an atomless, possibly a boundaryless domain as opposed to an
atomistic domain every element of which consists (intuitively) of points:

(L.9) Rx ∧ Ry ∧ PPxy → ∃z(Rz ∧ PPxz ∧ PPzy) R-Density
(L.10) Rx→ ∃y(Ry ∧ PPyx) R-Atomlessness
(L.11) Rx→ ∃y(Ry ∧ IPPyx) R-Boundarylessness
(L.12) Rx→ ∃y(Ry ∧ Ay ∧ Pyx) R-Atomicity

More generally, it may be reasonable at this point to consider whether
the domain of regions should be closed under various mereotopologi-
cal principles, regardless of whether such principles hold of the entities
that may occupy those regions. For example, even an anti-extensionalist
about material objects will presumably deny that different regions may
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consist of the same proper parts, and even those who have misgivings
about strong composition principles for arbitrary obects might be happy
to endorse unrestricted composition of spatial regions. All such exten-
sions of S are obviously worth examining, and they are crucial if we
want to fix the intended range of the relational predicate ‘L’, but there
is no need here to review all the options: suffice it to say that the avail-
ability of ‘R’ makes it possible to examine them in a systematic fash-
ion. (An interesting question, for instance, is whether one can provide
a purely mereotopological characterization of Euclidean space; see Tsai
2005: §7.4, for a negative answer). Rather than focusing on the structure
of space per se, let us see how S can be further extended by consider-
ing more closely the relationship between the two terms of the location
relation—the structure of regions and the structure of their tenants.

3.3 Mirroring Principles
To this end, let us begin by noting that the four relations L, GL, UL, and
EL do not exhaust all the options. Additional locative relations can be
specified by replacing the plain mereological predicates in (123)–(125)
with finer-grained mereotopological predicates—for example:

(134) TELxy =df ∃z(TPPzy ∧ Lxz) Tangential EL
(135) IELxy =df ∃z(IPPzy ∧ Lxz) Interior EL
(136) TULxy =df ∃z(TPPyz ∧ Lxz) Tangential UL
(137) IULxy =df ∃z(IPPyz ∧ Lxz) Interior UL

More generally, given any mereotopological relation ψ, there is a corre-
sponding locative relation Lψ defined by:

(138) Lψxy =df ∃z(ψzy ∧ Lxz) ψ-Location

(Thus, GL = LO, EL = LP, UL = LP̆, etc.) Such generalizations are
straightforward, but they bear out that the language of location can be
as rich as the underlying mereotopological vocabulary. Indeed, this is
only half of the story. According to (138), to be ψ-located at a region y
is to be exactly located at some region, z, that is ψ-related to y. Thus,
the resulting variety of locative relations is defined with reference to the
mereotopological structure of the range of L—the structure of space.
But one could also consider the obvious alternative, and characterize
locative relations by reference to the mereotopological structure of the
domain of L—the structure of space’s tenants. In this alternative sense,
to be ψ-located at a region y is to be ψ-related to some object, z, that
is exactly located at y:

(139) Lψxy =df ∃z(ψxz ∧ Lzy) ψ-Location (2)
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Now, the interesting question is whether these two ways of characterizing
locative relations should coincide—whether ‘Lψ’ and ‘Lψ’ should always
stand and fall together. This is trivially true when the relata are of the
same kind, i.e., regions, for in that case locative relations collapse to
mereotopological relations in view of the following S-theorems:

(140) Rx→ (Lψxy ↔ ψxy)
(141) Rx→ (Lψxy ↔ ψxy)

But what about the general case? This is not just an interesting question
to ask if we want to get the map straight; it is also a question that calls
for interesting philosophical decisions.

To address the matter properly, let us consider the two directions of
the equivalence separately, corresponding to the following theses:

(L.13) Lψxy → Lψxy Bottom Mirroring

(L.14) Lψxy → Lψxy Top Mirroring

3.3.1 Bottom mirroring and co-location. Informally, the
first of these theses says that the structure of space should be at least
as rich as the structure of its tenants For example, suppose I am exactly
located at region r. Then my right foot, which is part of me, is LP-located
at r. But if my foot is part of me, then it is reasonable to suppose that
its exact location is part of my exact location, which is precisely what
(L.13) would imply: my foot is LP-located (i.e., entirely located) at r.
For another example, since my foot is connected to the rest of my body,
which is located at a certain region r′, then it is reasonable to suppose
that the location of my foot is connected to r′, too: my foot being LC-
located at r′ implies its being LC-located at r′. In general, adding (L.13)
to S would secure that if two objects are ψ-related (where ψ is P, C, or
any other mereotopological relation), then so are their locations:

(142) Lxy ∧ Lzw ∧ ψxz → ψyw.

Plausible as all this might sound, it is however easy to see that (L.13)
does not generally hold. A simple counterexample is depicted in Fig-
ure 1.24, left. In this model there is just one (atomic) region, r, and a
complex object, a, consisting of two (atomic) parts, b and c. Object a
is located at r, hence its parts b and c are LP-located at r. Yet they
are not LP-located at r because there is no part of r at which they are
exactly located. Note that the mereotopological relations in this model
can easily be extended so as to satisfy all the axioms of KGEMT , so
the counterexample does not depend on the strength of the underlying
mereotopological theory. It depends esclusively on the behavior of L.
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Figure 1.24. Three violations of Bottom Mirroring. (Location relationships are rep-
resented by gray arrows; reflexivities omitted.)

Now, it might be observed that this model (or its KGEMT closure)
would be ruled out if we assumed that every part of a spatially located
entity had a spatial location—a restricted form of the spatiality principle
(L.3). More generally, it might be thought that in order to justify (L.13)
one must assume the following:

(L.15) ψxz ∧ Lzy → ∃wLxw Conditional Spatiality

Bottom mirroring should not hold holus bolus, but only when x and its
ψ-relata are genuine spatial entities (in which case (L.13) turns out to be
eqivalent to (142)). However, it is easy to see that even S + (L.15) would
fail to warrant this claim. A counterexample is depicted in Figure 1.24,
center. Here b and c are LPP-located at r, since each is a proper part of
a, which is located at r. Yet there is no proper part of r at which a or
b is located, which is to say that neither is LPP-located at r.

We begin here to see the hidden force of (L.13). By requiring that
the structure of space mirror the structure of its tenants, this principle
rules out the possibility that mereotopologically distinct entities be co-
located, i.e., located at the same region. Of course, it may be difficult
to imagine a concrete scenario corresponding to the model in question,
and certainly very difficult to provide a less abstract representation of it.
But it is not difficult to provide a good example if, for instance, we give
up mereological extensionality. Consider again Tibbles, the cat, and the
“mere” mereological sum of his tail with the rest of his body, Tib + Tail
(Section 1.3.2). Obviously, even if one treated these entities as distinct,
one would still like to say that they share one and the same location.
Yet, if ‘ψ’ expresses the relevant mereotopological relationship of dis-
tinctness cum sameness of proper parts, it is obvious that the region to
which Tibbles (or Tib + Tail) bears the relation Lψ is not the region to
which it bears the relation Lψ (Figure 1.24, right). Moreover, even in
the presence of mereological extensionality one may conceive of situa-
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tions where spatial co-location seems possible. We have already seen, for
instance, that according to Chisholm’s (1984) Brentanian theory, topo-
logical connection is explained precisely in terms of spatial coincidence
of boundaries: boundaries are located in space but do not occupy space,
hence they can coincide while being distinct (Section 2.4.2). For a sce-
nario compatible with the full strength of KGEMT , consider Davidson’s
(1969) example concerning event identity: arguably the rotation and the
getting warm of a metal ball that is spinning fast are two events, yet
they occur exactly in the same region and they share that location with
the ball itself. Finally, if our ontology is rich enough to include imma-
terial or otherwise ethereal creatures for which genuine interpenetration
is possible, then again co-location seems conceivable. Already Leibniz
mentioned shadows as a case in point (New Essays, II-xxvii-1); other
candidates include clouds (Shorter 1977), holes (Casati and Varzi 1994),
ghosts (van Inwagen 1990: 81), and even angels (Lewis 1991: 75).

These are just some examples. But they are indicative of the many
philosophical motives that may lie behind a rejection of the principle
according to which proper spatial co-location is impossible—a principle
that can be put thus:

(L.16) PLxy ∧ PLzy → x = z Exclusiveness

Giving up this principle involves giving up (L.13), at least in its general
form. And the question of what special instances one should posit, i.e.,
what values of ‘ψ’ and ‘x’ satisfy bottom mirroring, calls for a detailed
case-by-case investigation—and for explicit ontological decisions.

3.3.2 Top Mirroring. Consider now the converse of (L.13),
namely the principle of top mirroring, (L.14). Informally, this says that
the structure of space should be mirrored in the structure of those en-
tities that inhabit it. For example, if the location of my body properly
includes a region r, then it is reasonable to suppose that my body prop-
erly includes something located at r: LPE-location, hence LPE-location.
Pretty clearly, however, there are numerous relations ψ for which this
sort of implication appears problematic. The location of my body is a
proper part of any region that includes this room, but there is no obvi-
ous reason to think that every such region is the location of some exist-
ing object—no reason to think that LPP-location implies LPP-location.
(Compare Figure 1.25, left.) Similarly, my body is LEC-located at many
regions, viz. regions externally connected to my body’s current location;
yet there is no obvious reason to think that my body is LEC-located at
those regions, since many of them may be (partly) empty (Figure 1.25,
center.) Just as bottom mirroring appears to presuppose the spatiality
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Figure 1.25. Three violations of Top Mirroring.

principle, or at least its restricted variant (L.15), top mirroring appears
to presuppose fullness, or at least the following restricted version:

(L.17) Ry ∧ ψzy ∧ Lxz → ∃wPLwy Conditional Fullness

And this is a substantive presupposition that few might grant, regardless
of their views concerning purely mereotopological matters.

Indeed, even when ψ is the seemingly innocent relation of proper
extension, as in our first example, (L.17) appears problematic. Misgiv-
ings about this principle—hence about the corresponding instance of
top mirroring—come in various forms. First of all, there are arguments
that purport to show that the principle is empirically false (Parsons
2000). Second, the principle rules out a priori the possibility of spatially
extended mereological atoms, as in Figure 1.25, right. To the extent
that one can conceive of such things, it is argued, it should not be a
conceptual truth that every region ubiquitously occupied by an object is
exactly occupied by a part of that object. (See Markosian 1998a; other
contemporary philosophers who endorse the possibility of extended sim-
ples include Parsons 2004 and Simons 2004, but the view goes back to
Democritus’s claim that atoms come in an infinite variety of shapes and
sizes.) Third, there are arguments to the effect that (L.17) sits ill with
the thought that ordinary material bodies can gain or lose some parts
(van Inwagen 1981). To illustrate, consider again Tibbles, the cat whose
tail gets annihilated at t, and suppose we agree that it survives the ac-
cident. Prior to t, (L.17) would suggest that in addition to the whole
cat there exist also two externally connected proper parts: Tail and Tib
(the remainder). Now consider the following statements:

(143) Tib (before t) = Tib (after t)
(144) Tib (after t) = Tibbles without Tail (after t)
(145) Tibbles without Tail (after t) = Tibbles with Tail (before t)
(146) Tibbles with Tail (before t) 6= Tib (before t)

These four statements are jointly inconsistent, unless one is willing to
give up the transitivity of identity, so something must give. (146), how-
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ever, is trivially true: there is no way one could identify a whole cat
with its tailless portion. And (145) is true by assumption: to give it
up is to deny that Tibbles survives the accident, unless one is willing to
construe cats as four-dimensional entities whose temporal parts are nu-
merically distinct (Heller 1984). As for (144), its denial would obviously
incur in a commitment to properly co-located entities, let alone a viola-
tion to mereological extensionality (Wiggins 1968). Thus—the argument
goes—unless one is ready to accept such unpalatable consequences, the
only option is to give up (143): that identity is false for the simple rea-
son that prior to the accident Tib does not even exists; it only exists
after the accident, and it exists as tailless Tibbles.15 (One might also
say that before the accident Tib does not actually exist. The view that
undetached parts are mere “potential entities” has been the focus of an
intense debate in early modern philosophy; see Holden 2004. Brentano
1933 endorsed a similar view, too, and some authors have applied it
explicitly to the puzzle in question—e.g., Smith 1994, §3.5.)

Whether any such arguments are found compelling is, of course, an
open issue. Nonetheless, the obvious moral is that (L.14) can hardly
be regarded as a conceptual truth about location. Even if we confine
ourselves to its single, prima facie plausible instance in which ψ is the
relation of (proper) extension, i.e., the converse of (proper) parthood,
top mirroring is a substantive metaphysical thesis whose addition to S
must be independently motivated.

3.3.3 Further locative relations. In discussing such matters,
it is useful to keep in mind that the lack of a full correspondence between
the mereotopology of space and the mereotopology of its tenants may
find expression in the failure of other principles or equivalences that
might otherwise suggest themselves. Consider, for instance, the following
relation (from Parsons 2006, §4):

(147) WLxy =df ∀z(Pzx→ GLzy) Whole Location

Intuitively, this says that an object is located in this room (for instance)
if every part of the object is generically located in this room, i.e., if none
of it is missing from the room. This might sound like a different way
of saying that the object is entirely located in this room, in the original
sense of (124) (corresponding to LP-location) or in the alternative sense
of (139) (LP-location). In fact, however, all these notions are distinct.

15The puzzle raised by (143)–(146) has been introduced to contemporary discussion by Wig-
gins (1968), but it goes back at least to the Stoics; see e.g. Sorabji (1988: §1.6). For a detailed
overview, see Simons (1987, §3.3) and the introduction to Rea (1997).
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Not only do LP-location and LP-location come apart, as seen above. They
also differ from whole location: the diagram in Figure 1.24, left, corre-
sponds to a model in which an object, a, is both LP- and LP-located at a
region, r, in spite of not being wholly located there; the diagram in Fig-
ure 1.25, right, depicts a model in which a (an extended atom) is wolly
located at region r1 in spite of being neither LP- nor LP-located there.16

(Note that both of these models are extensional, and would continue to
exhibit these features even if closed under every KGEMT -axiom.)

The notion of whole location is just one example. In general, for any
mereotopological relation ψ, one can define two additional locative rela-
tions besides Lψ and Lψ, obtained by switching to a universal quantifier
and replacing ‘L’ by ‘GL’:

(148) L∀ψxy =df ∀z(ψzy → GLxz)
(149) L∀ψxy =df ∀z(ψxz → GLzy)

Here WL = L∀P̆, and it should be obvious from our single example that
the equivalence between the new predicates in (148)–(149) and the old
predicates in (138)–(139) is generally an open question. Indeed, at this
point we get the full picture by further generalizing these four basic
patterns in the obvious (recursive) way: if λ is any locative relation,
then so are the following:

(150) L∃ψλxy =df ∃z(ψzy ∧ λxz)
(151) L∃ψλxy =df ∃z(ψxz ∧ λzy)
(152) L∀ψλxy =df ∀z(ψzy → λxz)
(153) L∀ψλxy =df ∀z(ψxz → λzy)

There are lots of redundancies and empty relations in this picture, whose
complexity depends significantly on the mereotopological axioms govern-
ing ψ. Nonetheless, it is only through a careful study of such intricacies—
and of the corresponding mirroring principles, at the moment vastly
unexplored—that a reasonably complete theory of location can emerge.

3.4 Relative locations
The axiomatization of the region predicate ‘R’ and the positing of suit-
able mirroring principles constitute the two main directions in which
theory S can be extended. Let us briefly mention a third direction,
whose ramifications span philosophical and methodological issues alike.
We have said that in ordinary language location is often understood as

16In Casati and Varzi (1999, §7.2), entire location is called ‘whole location’ and labelled ‘WL’.
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a relation between two objects, as opposed to an object and a spatial
region, and we have said that such understandings need not be taken to
express any fundamental relationships: often, such “relative” locations
are mereotopological relations in disguise, as in examples (118)–(120).
There are, however, cases that resist this sort of explanation. Consider:

(154) The brain is located inside the cranial cavity.
(155) The swimming pool is located behind the house.
(156) The bus stop is located right across the old oak tree.

Surely the truth conditions of these statements can hardly be explained
in terms of mereotopological relations, so one can hardly leave it at that.
Can S be strengthened so as to account for such cases as well?

In a way, the answer is straightforward. Consider (154). Although
there is no direct mereotopological relationship between the brain and
the cranial cavity (unless one thinks the latter literally surrounds the
former), one can still explain the relevant truth conditions by reference
to the mereotopology of the corresponding spatial locations: statement
(154) is true if, and only if, the location of the brain is an interior proper
part of the location of the cranial cavity. Equivalently, (154) is true if
and only if the brain is located entirely in the interior of the spatial
region occupied by the cranial cavity. This suggests that cases such as
this can easily be accommodated within the present framework. When
we say that a “target” object, x, bears a certain locative relation to a
“reference” object, y, we mean to say that x bears that relation to y’s
place. To make this clear, let us introduce an explicit location functor,
whose uniqueness follows directly from the functionality axiom (L.1):

(157) px =df ıyLxy place

(See Donnelly 2004 for a location theory with p treated as a primitive.)
Then, for any locative relation λ and any spatial objects x and y, we
can define a corresponding predicate of relative location ‘Rλ’ as follows:

(158) Rλxy =df λx(py) Relative Location

In the brain-cavity case, λ is the relation IEL defined in (135), i.e., LIPP,
but the same pattern would apply to a large variety of other cases,
provided the reference object has a location somewhere. In fact, the
same pattern can be applied to account for the initial examples in (116)–
(118), too: the biceps muscle is RLP-located at the arm; the parking area
is RLEC-located at the stadium; the elevator is RLIPP-located at the main
building. In the presence of suitable bottom mirroring conditions, these
three claims are equivalent to the pure mereotopological claims obtained
by replacing the relation RLψ with ψ itself.
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Figure 1.26. Object-centered (left) and observer-centered (right) frames of reference.

Cases such as (155) and (156) are different. Here the difficulty does
not just lie in the fact that the target object and the reference object
do not stand in any mereotopological relation to each other. The dif-
ficulty is that the spatial relationships reported by such statements—
corresponding to such prepositions as ‘behind’ and ‘across’, but also
‘above’, ‘underneath’, ‘left of’, etc.—have little or nothing to do with
mereotopology. There is in fact a large literature devoted to the seman-
tics of spatial prepositions (beginning with the classic work of Herskovitz
1986) and it is fair to say that their treatment requires a degree of so-
phistication that goes far beyond the conceptual apparatus developed
above. Among other things, there are well-known complications owing
to the fact that their treatment calls for a systematic distinction between
object-centered frames of reference, as in (155), and observer-centered
frames, as in (156) (see Figure 1.26), whereas mereotopological relations
are completely independent of subjective or perspectival considerations.
Still, this is not a limitation that speaks against the employment of a
primitive such as ‘L’. It is, rather, an indication that the ensuing the-
ory, S, may have to be matched with a more sophisticated background
than a mereotopological theory can afford. Thus, suppose we allow the
relational predicate ‘ψ’ in the definitions of Section 3.3 to stand for re-
lations that are not purely mereotopological: relations such as ‘behind’,
‘across’, etc. (in each of their multiple uses). Then the idea illustrated
with reference to the brain-cavity example can in principle be applied
also to (155), (156), and the like. To say that the swimming pool is lo-
cated behind the house is to say that it is RLbehind-located at the house.
To say that the bus stop is located across the tree is to say that it
is RLacross-located at the tree. And so on. Exactly how these relations
should be formalized, i.e., what principles should be posited to fix the
logical behavior of the relevant ψ, is where things get difficult and may
require a lot of detailed work. (We have, after all, seen how difficult it
is to do this when ψ is a mereotopological relation.) But that is not to
say that relative locations require a sui generis treatment that a suitable
extension of S could not accommodate.
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On the other hand, here is where the main metaphysical assumption
underlying S may be questioned. The accommodation comes with defi-
nition (158), which allows one to handle relative locations in terms of a
primitive relation, L, whose range consists exclusively of spatial regions.
In other words, it allows one to express a spatial relation between a
target and a reference object as a relation between the target and the
reference’s place. But one might object that this has things the wrong
way round. Relative locations are ontologically neutral with respect to
the status of space, whereas the proposed treatment depends crucially
on the assumption that places, and spatial regions generally, are entities
of a kind. A relationist about space might therefore reject the account
and take the opportunity to reverse the order of the explanation: to be
RLψ-related to a place is to be ψ-related to the place’s tenant, and talk
about places is shorthand for talk about spatial objects. Also a substan-
tivalist about space might think that when it comes to spatial reasoning,
objects are conceptually prior to their locations, since we cannot iden-
tify the latter independently of the former (Strawson 1959, ch. 1.) Even
a forerunning substantivalist such as Newton emphasized that absolute
places, defined as in (157), are scarcely useful for locating things in the
world: we do not locate an object on a moving ship with reference to
an immobile environment but, rather, with reference to the ship itself
(Principia, Definitions, Sch. 4). In short, there may be philosophical
as well as methodological reasons for resisting the treatment of locative
relations indicated above, and if these reasons are taken seriously, then
cases such as (154)–(156) run afoul of the basic framework outlined here
and call for independent treatment. An articulated proposal in this spirit
may be found in Donnelly (2005), but much recent literature devoted
to the formal representation of direction and other qualitative spatial
relations (from the works of Mukerjee and Joe 1990, Frank 1992, and
Hernández 1994 to more interdisciplinary works such as those collected
in van der Zee and Slack 2003) may be viewed in this perspective.

3.5 Location, connection, and parthood
Let us conclude with a few remarks about the whole conceptual package
that we have been putting together. We have at this point three main
primitive notions: location, connection, and parthood. Some structural
relationships among these notions have been examined, but the general
question of their ontological intertwining is still open. Generally speak-
ing, parthood and connection are independent from each other, unless
one accepts the converse monotonicity principle (C.4) (Section 2.3.2).
But what about location? Let us keep with the assumption that location
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is a relation between a thing and its place. Is that relation completely
autonomous or does it entail a mereotopological linkage of some sort?

A purely mereological linkage seems out of the question. There is no
reason to think that I share any parts with the space I occupy, just as
there is no reason to think that movement—change of location —is a
form of mereological change. This is not to say that location implies
disjointness, since the first argument of L may itself be a region, or a
hybrid fusion including regions among other things. In general, however,
it seems perfectly reasonable to assume that the implication holds for
ordinary cases of location—a thesis that can be put as follows:

(L.18) PLxy → ∃z(Pzx ∧ Lzy ∧ Dzy) Spatial Disjointness

What about a topological linkage? In this case the picture seems
different. If an object is located at some place, then it might be plausible
to suppose that the object and its place are connected in some way:

(L.19) Lxy → Cxy Spatial Connection

In what way would I be connected to my place? Since overlap is ex-
cluded, the relevant linkage would have to be one of external connection.
However, this means that the plausibility of (L.19) depends crucially on
the interpretation of ‘C’.

If we go along with the standard interpretation, corresponding to a
boundary-based theory such as KGEMT , the prospects are slim. On
that interpretation, two things can be externally connected only if one
is open and the other closed, at least in the relevant contact area: two
closed entities, or two open entities, can only connect through mereo-
logical overlap (Section 2.4.1). Now, suppose I am a closed body. Then
(L.19), together with (L.18), imply that the region at which I am located—
my place—must be open. That region, however, has a closure, and one
should think that the closure of a spatial region is itself a region: its
boundary is pure space, too. But my boundary is not pure space: what-
ever it is, it is part of me, and none of me is made of space. Thus, the
closure of my place and I are disjoint—which is to say that we are not
connected after all. A different way of putting this involves the thought
that my place and I must have the same topology: if I am closed (for in-
stance), then my place must be closed too, hence we cannot be externally
connected. Strictly speaking, this involves an appeal to the principle of
bottom mirroring, specifically the following instance of corollary (142):

(159) Lxy ∧ Lzw ∧ IPPxz → IPPyw

My interior (x) is a proper interior part of me (z), hence its place (y)
must be an interior proper part of my place (w). We have seen that bot-
tom mirroring may not generally hold, but this specific instance seems
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fair. Yet (L.19) would require the opposite: it would require my place
to be an interior proper part of the place of my interior—absurd.

By contrast, suppose we go along with a different interpretation. For
instance, consider those interpretations that explain connection explic-
itly in terms of spatial location. We have seen three such interpretations,
corresponding to the following necessary and sufficient conditions for two
entities x and y to be connected: (i) the place of x is connected to the
place of y (Section 2.3.2, thesis (74)); (ii) the place of x overlaps the
place of y (Section 2.4.2, thesis (89)); or (iii) the closure of the place of
x overlaps the closure of the place of y (Section 2.4.3, thesis (90)). With
the help of ‘L’, and assuming the spatiality axiom (L.3), these three
interpretations can now be formally stated as follows:

(160) Cxy ↔ C(px)(py)
(161) Cxy ↔ O(px)(py)
(162) Cxy ↔ O(cpx)(cpy)

And, plainly, each of these statements is perfectly compatible with the
spatial connection principle (L.19). In fact, since C and O are both re-
flexive, each statement entails (L.19) in view of the following S-theorem:

(163) Lxy → px = y = py

This is not surprising. After all, these theories establish an intimate
relationship between topology and spatiality, and the claim that location
implies connection is but one way of making that explicit. One might
even go as far as to say that on these theories location is connection of
a kind: it is the relation of connection that always holds in the special
case where one of the relata equals the place of the other. On the other
hand, it is fair to note that all of this depends on the assumption that L is
conditionally reflexive (L.4). Should one decide to go for the alternative
option (L.5), treating L as a relation whose domain does not contain any
spatial regions, (163) would not hold and (L.19) would not follow from
(160)–(162). Indeed, on that way of interpreting ‘L’, the picture would
be perfectly reversed: nothing would be connected to its place because
places would lack a place of their own, hence (L.19) would be just as
unacceptable in these theories as it is in KGEMT .

These are just some examples, but they suffice to show that the onto-
logical intertwining between locative and mereotopological concepts can-
not be assessed without a clear stand on some very basic semantic issues
concerning those concepts. Of course, this is also true of the interplay
between mereological and topological concepts, but in the present case
the stakes are higher. Some of the options leave room for no intertwin-
ing whatsoever; other options trivialize the intertwining by explaining
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one sort of concept directly in terms of the other. There is, to be sure,
some room for compromise. After all, KGEMT is a pretty strong the-
ory and its weaker children are compatible with (L.19). Similarly, there
is strictly speaking no constraint to supplement its main alternatives
with the explicit equivalences in (160)–(162), so the status of (L.19) is
in principle open for those theories, too. One final remark, however, is
in order. For suppose we do accept (L.19) together with (L.8), that is,
suppose we do establish an overt mereotopological linkage of external
connection between a spatial object and its spatial location. Then it
follows that no spatial entity will ever qualify as a interior proper part
of anything, except for empty regions of space:

(164) PLxy → ¬IPPxz ∧ ¬IPPyz

This is an immediate consequence of the definition of ‘IPP’ (Section 2.3.1):
my “interior” proper parts, for example, would immediately turn into
tangential proper parts by virtue of being connected to something with
which I have no parts in common—their places; and the “interior” proper
parts of my place, at least those proper parts that are not empty, would
immediately turn into tangential proper parts by virtue of being con-
nected to something with which they have nothing in common—their
material guests. This is bad news, for it means that our mereotopology
would collapse altogether. Or rather, it means that it would have to be
largely re-written by replacing throughout our topological primitive ‘C’
with the following impure connection predicate:

(165) RCxy =df Cxy ∧ (Rx↔ Ry) Restricted Connection

It is, of course, this notion of connection that we had in mind in setting
up KGEMT and its variants. RC never cuts across levels: in order for
two entities to be RC-related, both of them or neither of them must
be regions of space. But then we have come around the circle, for the
RC-variant of (L.19) is clearly false.

We face, here, the fundamental limit of topology—and mereotopology—
as a general theory of space. One way or the other, the analysis situs
cannot do proper justice to the fact that objects are situated, which
is why the theory of location is independently needed. One way or the
other, spatial reasoning must come to terms with the fundamental meta-
physical mystery on which it depends—embedding in space.
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