Skip to main content
Log in

The Cartan-Einstein Unification with Teleparallelism and the Discrepant Measurements of Newton's Constant G

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We show that in 1929 Cartan and Einstein almost produced a theory in which the electromagnetic (EM) field constitutes the time-like 2-form part of the torsion of Finslerian teleparallel connections on pseudo-Riemannian metrics. The primitive state of the theory of these connections would not, and did not, permit Cartan and Einstein to realize how their torsion field equations contained the Maxwell system and how the Finslerian torsion contains the EM field. Cartan and Einstein discussed curvature field equations, though failing to focus on the fact that teleparallelism automatically implies gravitational field equations with torsion terms as source, both in first and second order. We further show that the first-order contribution of the EM field to the source of the gravitational field may play havoc with the remeasurement of Newton's gravitational constant, even if the experiment is electrically grounded. These results are also used as support for the thesis that there is an alternative to the present way of dealing with the great theoretical questions of physics. On the practical side, the inconveniences faced in measuring G may be greatly compensated by the possibility of manipulating spacetime with electric fields at the first-order level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. Gutzwiller in Letter to Physics Today 47, 9 (1994).

    Google Scholar 

  2. Y. T. Chen and A. Cook, Gravitational Experiments in the Laboratory (Cambridge, University Press, Cambridge, 1993).

    Google Scholar 

  3. W. Michaelis, H. Haars, and R. Augustin, Metrologia 32, 267 (1995/96).

    Google Scholar 

  4. C. H. Bagley and G. G. Luther, Phys. Rev. Lett. 78, 3047 (1997).

    Google Scholar 

  5. H. Walesh, H. Meyer, H. Piel, and J. Schurr, IEEE Trans. Instrum. Meas. 44, 491 (1995).

  6. M. P. Fitzgerald and T. R Armstrong, IEEE Trans. Instrum. Meas. 44, 491 (1995).

    Google Scholar 

  7. M. Ferraris and M. Francaviglia, Class. Quantum Grav. 9, S79 (1992).

    Google Scholar 

  8. R. Debever, Editor, Elie Cartan- Albert Einstein, Letters on Absolute Parallelism (Princeton University Press, Princeton, 1979).

    Google Scholar 

  9. A. Einstein, Sitzungsberichte. Preuss. Akad. Wiss. 217 (June 7, 1928); 224 (June 14, 1928); 2 ( Jan. 10, 1929); 156 (March 21, 1929).

  10. A. Einstein, Ann. Inst. Henri Poincaré 1, 1 (1930).

    Google Scholar 

  11. A. Einstein, Math. Annalen 102, 685 (1930).

    Google Scholar 

  12. J. G. Vargas and D. G. Torr, Found. Phys. 28, 931 (1998).

    Google Scholar 

  13. J. G. Vargas, Found. Phys. 21, 379 (1991).

    Google Scholar 

  14. J. G. Vargas, Found. Phys. 22, 507 (1992).

    Google Scholar 

  15. A. Einstein, Ann. Phys. (Leipzig ) 49, 769(1916); English translation in The Principle of Relativity (Dover, New York, 1952).

    Google Scholar 

  16. J. Scherk and J. H. Schwartz, Phys. Let. B 52, 347 (1974).

    Google Scholar 

  17. R T. Hammond, Phys. Rev. D. 52, 6918 (1995) and Classical and Quant Grav. 13, L73 (1996).

    Google Scholar 

  18. J. F. Pommaret, Lie Pseudo-groups and Mechanics (Gordon and Breach, N.Y, 1988), p. 10.

    Google Scholar 

  19. E. Kaehler, Rendiconti di Matematica 21 (3- 4), 425 (1962).

    Google Scholar 

  20. F6. J. G. Vargas and D. G. Torr, Found. Phys. 27, 533 (1997).

    Google Scholar 

  21. A. Einstein, The Problem of Space, Ether and the Field in Physics, p. 276 of Ideas and Opinions (Bonanza Books, New York, 1954). Citation from page 282.

    Google Scholar 

  22. F1. J. G. Vargas and D. G. Torr, J. Math. Phys. 34, 4898 (1993).

    Google Scholar 

  23. É. Cartan, C. R. Acad. Sc. (Paris) 174, 437, 593, 734, 857, 1104 (1922). Reprinted in Oeuvres Complétes, Paris, 1984. Vol. III, Part 1.

    Google Scholar 

  24. É. Cartan, Bull. Sc. Math. France 48, 294 (1924). Oeuvres Complétes (1984), Vol. III, Part 1.

    Google Scholar 

  25. F5. J. G. Vargas and D. G. Torr, Found. Phys. 27, 825 (1997).

    Google Scholar 

  26. F3. J. G. Vargas and D. G. Torr, Gen. Relativ. Gravit. 28, 451 (1996).

    Google Scholar 

  27. É. Cartan, Ann. Ec. Normale 41, 1 (1924). Oeuvres Complé tes, Vol. III, Part 2.

    Google Scholar 

  28. D. van Dantzig, Proc. Cambridge Philos. Soc. 30, 421 (1934).

    Google Scholar 

  29. F2. J. G. Vargas and D. G. Torr, Gen. Relativ. Gravit. 27, 629 (1995).

    Google Scholar 

  30. J. G. Vargas and D. G. Torr, Cont. Math. 196, 301 (1996).

    Google Scholar 

  31. É. Cartan, Actual Scient. et Ind 44, 3 (1932). Oeuvres Complétes, Vol. III, Part 2.

    Google Scholar 

  32. É. Cartan, J. Math. pures et appl. 1, 141 (1922). Oeuvres Complétes, Vol. III, Part 1.

    Google Scholar 

  33. É. Cartan, “Les Spaces de Finsler” (Actualites Scientifiques et Industrielles 79, Paris, 1934). Reprinted (Hermann, Paris, 1971).

  34. H. I. Ringermacher, Class. Quantum Grav. 11, 2383 (1994).

    Google Scholar 

  35. H. E. Salzer, Archives History Exact Sciences 12, 88 (1973).

    Google Scholar 

  36. H. I. Ringermacher, “Compatibility of Gravitation and Electrodynamics,” preprint. Ringermacher, B. N. Cassenti and D. J. Leopold, “Search for effects of an electrostatic potential on clocks in the frame of reference of a charged particle,” NASA Workshop on “Breakthrough Propulsion Physics,” Cleveland, Ohio, 1997. See also Ringermacher and Cassenti, “An Experiment to verify a relativistic field theory based on an electrodynamic connection,” paper [ 97-3136 at the 34th AIAA/ASME Joint Propulsion Conference, Cleveland, Ohio, July 13, 1998.

  37. J. G. Vargas and D. G. Torr, Gen. Relativ. Gravit. 23, 713 (1991).

    Google Scholar 

  38. J. G. Vargas and D. G. Torr, Lurking Breakthrough Physics. Paper presented at the NASA Workshop on “Breakthrough Propulsion Physics,” Cleveland, 1997.

  39. J. Glanz, Science 279, 651 (1998).

    Google Scholar 

  40. R. Adler, M. Bazin, and M. Schiffer, Introduction to GR (McGraw Hill, New York, 1965).

    Google Scholar 

  41. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Ellmsford, 1975).

    Google Scholar 

  42. R. P. Feynman, The Feynman Lectures on Physics Vol. II (Addison-Wesley, Reading, 1964).

    Google Scholar 

  43. P. R. Heyl and P. Chrzanowski, J. Res. Nat. Bur. Stds. 29, 1 (1942).

    Google Scholar 

  44. M. U. Sagitov et al., Sov. Phys.-Doklady (Earth Sci.) 245, 20 (1981).

    Google Scholar 

  45. G. G. Luther and W. R Towler, Phys. Rev. Lett. 48, 121 (1982).

    Google Scholar 

  46. C. Pontikis, Comptes Rendus Acad. Sci. Ser. B 274, 437 (1972).

    Google Scholar 

  47. M. P. Fitzgerald, T. R Armstrong, R. B. Hurst, and A. C. Horney, Metrologia 31, 301 (1994).

    Google Scholar 

  48. B. Riemann, Commentatio Mathematica, 1861. Paper XXII in Collected Works of Bernhard Riemann. Edited by Heinrich Weber (Dover, New York, 1953).

    Google Scholar 

  49. T. Levi- T. Civita, Rend. Del Cir. Mat. Di Palermo 42, 173 (1917).

    Google Scholar 

  50. D. Barraco, E. Dominguez, R. Guibert, and V. Hamity, Gen. Rel. Grav. 30, 629 (1998).

    Google Scholar 

  51. S.-S. Chern, Proc. Nat. Acad. Sci., USA 29, 33 (1943).

    Google Scholar 

  52. S.-S. Chern, Sci. Rep. Nat. Tsing Hua Univ. 5, Ser. A 5, 95 (1948).

  53. S.-S. Chern, C. R. Acad. Sci. Paris 314, Serie I 757 (1992).

  54. E. Kaehler, Abh. Dtsch. Akad. Wiss. Berlin, Kl. für Math., Phys. Tech., No. 4 (1960).

  55. E. H. Cohen and B. N. Taylor, CODATA Bull. 63 (New York, Pergamon, 1986).

    Google Scholar 

  56. P. P. Heyl, J. Res. Nat. Bur. Stds. 5, 1243 (1930).

    Google Scholar 

  57. K. Kuroda, Phys. Rev. Lett. 75, 2796 (1995).

    Google Scholar 

  58. G. T. Gillies, Rep. Prog. Phys. 60, 151 (1997).

    Google Scholar 

  59. O. V. Karagioz, V. P. Izmaylov, A, A. Silin, and E. A. Liakovskoy, Universal Gravitation and the Theory of Space-Time (Publishing House of the Peoples's Friendship University, Moscow, 1987), pp. 102–110.

    Google Scholar 

  60. D. Kestenbaum, Science 282, 2180 (1998).

    Google Scholar 

  61. J. P. Schwarz, D. S. Robertson, T. M. Niebauer, and J. E. Faller, Science 282, 2230 (1998).

    Google Scholar 

  62. O. V. Karagioz and V. P. Izmailov, Measurement Techniques 39, 979 (1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargas, J.G., Torr, D.G. The Cartan-Einstein Unification with Teleparallelism and the Discrepant Measurements of Newton's Constant G. Foundations of Physics 29, 145–200 (1999). https://doi.org/10.1023/A:1018840720961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018840720961

Keywords

Navigation