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The dynamic complexity of time series of natural phenomena allowed to improve the performance of the genetic algorithm to
optimize the test mathematical functions. The initial populations of stochastic origin of the genetic algorithm were replaced
using the series of time of winds and earthquakes. The determinism of the time series brings in more information in the search
of the global optimum of the functions, achieving reductions of time and an improvement of the results. The information of
the initial populations was measured using the entropy of Shannon and allowed to establish the importance of the entropy in
the initial populations and its relation with getting better results. This research establishes a new methodology for using
determinism time series to search the best performance of the models of optimization of genetic algorithms (GA).

1. Introduction

GA have allowed to obtain optimal solutions to engineer
problems related with the processing of images, prediction
of time series, processing of voice, language, audio, and
location model [1–9]. GA have mutation characteristics,
crossing, and selection taken from nature, allowing to maxi-
mize the search of information in n-dimensional spaces.
These algorithms use stochastic functions to recreate the
evolutionist models [10–13].

The authors [14] developed a toolbox to optimize
benchmark mathematical functions using evolutionary com-
putation. This tool allows to compare the performance of
optimization done in multiple continuous convex functions
through bioinspired optimization methods. In [15, 16],

the optimization methods are improved using dynamic
parameter adaptation using fuzzy logic. The ability of
dynamic adaptation of the algorithms allows to establish
improvements in the performances, in particular, of the algo-
rithms; delay premature convergences; and establish new
search spaces. The best configuration of parameters with
fuzzy logic in the algorithm allows to obtain better results
than that with the original method.

Recent studies have established the need of incorporating
the chaotic determinism in the genetic algorithm. Every time
is more clear that evolution in nature is chaotic, because
the populations are dynamic in size; mutation characteris-
tics, crossing, and selection are defined by the chaotic
determinism of each species and its environment. This struc-
tural modification established the chaotic genetic algorithms
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(CGA), which have allowed to address new applications in
the search of global optimum in the spaces of search using
chaotic maps for the generation of the populations of indi-
viduals of the algorithm [17–21].

Natural phenomena as earthquakes and winds [22–27]
represented by time series have concentrated important
efforts for its prediction. The production of electric power
for the wind farms and the capacity to predict telluric move-
ments [28–30] to protect the population are the main edges
of the investigations. These time series have (1) nonlinear
dynamic characteristics associated to chaotic systems; (2)
the phase space rebuilt and its fractal dimension of great
dimension indicate a capacity of prediction very limited for
the earthquakes, improving in the case of wind series; and
(3) the behavior of the time series corresponds to the chaotic
determinism [31, 32].

The motivation of this work is to use the time series of
winds and earthquakes to establish new methods with GA
for the optimization of engineering problems, using the
chaotic determinism characteristics of the series. The main
objective of the research is the study of the relation between
the entropy of initial computational solutions compared with
the performance of the modified GA. The characteristics of
those time series studied allow to generate better quality
initial computational solutions, which improve the perfor-
mance in the results of the GA.

The research (1) establishes the chaotic characterization
of the time series for later, (2) generates the initial popula-
tions of the genetic algorithm through the use of the time
series of chaotic characterization, and (3) establishes the rela-
tion between the entropy of the initial populations generated
by different chaotic series and the performance of the optimi-
zation method.

2. Literature Review

The restrictions in the efficiency of the GA are a premature
convergence favoring low-quality solutions and excessive
times in the search of global optimum. Recent studies related
to the entropy of Lyapunov with the capacity of better per-
formance of metaheuristics [33]. This capacity of measur-
ing the information during the process of calculation of
the algorithm allows to select populations with more prob-
ability of getting better quality solutions. The entropy of
Shannon is the expected value of information content in a
message [34, 35]. In the measurement of the probability
of an event, the information of the entropy is calculated
in the following way:

H x = 〠
k

i=1
p xi log p xi , 1

where H(x) is the entropy of information and p xi is the
probability of each event. For a physical system, it can
decompose in two independent statistical systems A and B;
the entropy of Shannon has the property of additivity.

H A + B =H A +H B 2

Finally, for physical systems with iterations of long rank,
long memory time, and fractal structures, it is necessary to
evaluate the entropy through the generalization of the statis-
tic of Boltzmann-Gibbs-Shannon (BGS). Tsallis proposes the
mathematic form S q , where q expresses the degree of non-
extensibility of the entropy. The expression achieves the form
of the entropy of Shannon in the limit when q→ 1

S q = 1 −〠q
i=1p

q
i

q − 1 3

The focus of analysis of the entropy of the populations
of feasible solutions allows to calculate the level of informa-
tion given by the set of solutions, which is directly related
to the level of variety of the solutions [36, 37]. The entropy
can be used to get important information of the parameters
of the algorithm; the biggest complexity in GA is the line
of the parameters; these must be correctly tuned in to get
a good performance of the algorithm in the space of
search. Some parameters have more influence in the good
results of the algorithm with respect to other parameters,
and the efficiency of the algorithm must concentrate the
efforts in the parameters more critical to reduce the times
or to increase the capacity of processing of the problem
to optimize.

3. Proposed Method

The proposed method combines GA with deterministic time
series and controls the performance of the new populations
of solutions with the information of the entropy in each gen-
eration. The investigation uses nine continuous multimodal
functions (Figure 1) for the analysis of the performance of
the algorithm modified with respect to the traditional genetic
algorithm. The multimodal function contains several local
optimums and a global optimum; these functions allow to
evaluate the capacity of evading the convergence of solutions
in a local optimum. All the functions tested have a minimum
global optimum equal to zero. The checking of the genetic
algorithm proposed (GAP) was done through the compari-
son with the GA [38].

The GA use random processes in the generation of initial
populations, of the crossing processes, and of mutation. The
proposed algorithm for the study replaces the stochastic pro-
cesses by the time series of winds and earthquakes. The mod-
ification of the algorithm allows to study the effect of the
dynamic characteristics of these series with respect to their
ergodicity, irreversibility, and nonlinearity and of great sensi-
tiveness to the initial conditions.

3.1. Proposed Algorithm. Figure 2 shows the flowchart of the
proposed algorithm, with the objective of indicating the
modified parts and the standard parts of the GA; the standard
GA parts are blue in color and the modified parts green
in color.

The GAP replaces the random generation of the initial
population with a transformation of the time series for the
construction of the chromosomes of the population. Later,
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each new population is controlled through the calculation of
the entropy (1) and the adjustment.

Fitness F = 〠
100

i=1
F−1 i 4

Each algorithm is executed 50 times. When the criteria of
end of the simulation are deployed and achieve a maximum
of generations or a low entropy of the population, the aver-
ages, the standard deviation of the results [39] and the rate
of success or performance are obtained [40, 41] (5).

P = 100 optimal result
total of simulations 5

To guarantee the analysis of the results and be able to
compare the results of the experiments, obtained with the
three GA metaheuristics, GAP winds and GAP earthquake
are necessary to use a nonparametric statistical test for per-
forming a rigorous comparison among algorithms [42–46].
The Wilcoxon nonparametric test compares the differences
of the results between the two algorithms and allows to estab-
lish the equality of the medium as null hypothesis.

The procedures established to compare two paired quan-
titative variables are to (1) calculate the differences between
results, (2) order the absolute value of the differences from
lowest to highest, (3) ignore the null differences and rank
the differences. Then, it is calculated R + as the sum of
the rankings where the first algorithm had more fitness
with respect to the second algorithm and R − the opposite
situation. The parameter T is the lower of the two sums,
T =min R + , R − . Finally, the parameter p value is calcu-
lated; it must have values greater than 0.05 to ensure the
null hypothesis.

The main advantage of the Wilcoxon test about a t-test
corresponds to the smallest effect about the statistical effect
of the performances exceptionally good or bad of some
experiments during the comparison of the algorithms.

Finally, the analysis of the evolution of the entropy of
the populations of solutions and the entropy of initial
populations allowed to study the effect of the entropy of
Shannon in the performance of the modified algorithms.
In particular, the study of the initial entropy in the initial
populations and its performance is analyzed through a
graphic of density. The graphic of density deploys the
adjustment solutions of all the test functions for both time
series. The experiment demanded 45.000 simulations by
time series.

3.2. Pseudocode for the Proposed Algorithm. The GAP looks
for the global optimal for the multimodal functions in the
following way, GAP A, B, C , where A is the transformation
of the time series in the chromosomes of the individuals of
the initial generation, B manipulates the initial population
provided by the A function through the GA, and C delivers
the results when the criteria of end is satisfied. The results
delivered are entropy of the populations and fitness of the
solutions (Pseudocode 1).

The parameters used in the investigation are presented
in Table 1. Empirical studies elaborated by [47] have
established, in relation to the selection of the parameters
of the algorithm, that they depend on the problem to be
solved and the particular structure of the GA. This author
considers adequate a population size in a range of 100 to
200 individuals for studies with GA; the increase of popu-
lations decreases the speed of convergence and increases
the resolution times. For very small populations, the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: The function benchmarks are (a) Ackley, (b) Beale, (c) Bukin6, (d) Leon, (e) Levi13, (f) Matyas, (g) Modschaffer2, (h) Rastrigin, and
(i) Treehupamel.
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increase of performance will be low between cycles. For
[38], finding an appropriate population size is very impor-
tant; oversized or undersized population generates low-
quality final solutions.

In relation to the mutation rate, low rates could not eval-
uate all the search space, and very high mutation rates will
discard candidates with good performance and will be
replaced by lower-quality solutions. The configuration of
the population size and mutation rate parameters must cali-
brate with the increase of performance between cycles of
the fitness function. [48].

The algorithm implemented uses a crossover of the single-
point crossover type; this technique uses the cross of parents

in only one point for the creation of children solutions, and
its effect in the performance of the algorithm is related
directly with the space of the solutions [49].

Finally, the generation parameter is related to the asymp-
totic convergence to the ideal solution. Such convergence can

End

Yes

Yes

No

Start 

Standard GA part
Modified GA part

Roulette selection
of parents

Crossover to
produce children

Mutation of
children

Calculate fitness
of children

New generation
by “Elitism”

Assignment of
chaotic time series

Generate initial
population with
chaotic time series

Calculation of shannon
entropy of the initial

Individual fitness
calculation

Satisfy entropy minium
value criterion

Satisfy stop criterion

Figure 2: Flowchart of the proposed GA algorithm.

Table 1: Parameters used in GAP.

Maximum
generation

Population
size

Crossing
rate

Mutation
rate

100 50 0.8 0.2

Start the first population with the transformation function.
Calculate the entropy of the population.
While the criteria of end is not satisfied.
For each individual.
Use the selection criteria of new population.
Calculate new entropy of the population and adjust of all the new population.
End For.
End While.
Save in C, the processed data.

Pseudocode 1: Algorithm GAP.
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Figure 3: Evolution of the results in each generation with test functions F1, F2, and F3 using GA, GAP winds, and GAP earthquake.
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Figure 4: Evolution of the results in each generation with test functions F4, F5, and F6 using GA, GAP winds, and GAP earthquake.
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be visualized through the generation graphic and fitness
(Figure 3, Figures 4 and 5). In general, the detention of the
cycles of the algorithm can be established by processing time
and/or number of generations.

3.3. Hypothesis of the Proposed Algorithm. From a theoret-
ical point of view, GAP is capable of approaching to the
global optimum of the problems of optimization for the
following reasons:
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Figure 5: Evolution of the results in each generation with test functions F7, F8, and F9 using GA, GAP winds, and GAP earthquake.

Wind time series

8

7

6

5

4

3

2

1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Samples
6500 7000 7500 8000 8500 9000 9500
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(i) The exploration of the space of search is guaranteed
by the cross of the initial populations of determinis-
tic characteristics.

(ii) The sensitivity to the initial conditions of the tem-
porary series allows to modify the exploration in
each experiment.

(iii) The monitoring of the entropy of Shannon ensures
the diversity of the population, establishing an end
condition for very small entropies.

(iv) The deterministic characteristics of the species are
better represented by deterministic time series
of natural phenomena in respect to the stochastic
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functions. The species are reproduced chaotically,
then the new population is chaotic [38, 47].

(v) The parameters of algorithm have different impacts
in the results of the optimization; the algorithm has
few parameters to adjust.

3.4. Analysis of Time Series. The chaotic systems are abun-
dant in nature and can be represented by time series. The
analytic tools allow to study them without describing their
nonlinear dynamic equation. The chaos has characteristics
of unpredictability and is sensitive to the initial conditions,
and its orbits form a compact region around a strange attrac-
tor [48, 49].

The maximum exponent of Lyapunov (6) allows to cor-
roborate a chaotic series. A positive Lyapunov exponent is a
strong chaos signal [50, 51] and is expressed as follows:

λmax = lim
N→α

1
tN − t0

〠
N

k=1

di tk
d0 tk−1

6

The Fourier spectrum allows to review the periodicity of
the time series through the transformation of the series in a
frequency spectrum. The frequency spectrums of both series
studied establish nonperiodic characteristics associated to the
chaotic determinism. The spectral lines are sharp and the
scanning is continuous. The wind time series, the power Fou-
rier spectrum and spectrogram are shown in (Figures 6–8).
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Figure 9: Graphic recurrence of the wind series.

Table 2: Wilcoxon signed-rank test results. GAP earthquake shows an improvement over GAP winds with a level of significance alpha = 0.05
and over GA with alpha = 0.01. GAP winds show an improvement over GA with a level of significance alpha = 0.05.

GAP earthquake GAP winds GAP earthquake GA GAP winds GA
Test function R + R − p value R + R − p value R + R − p value

F1 734 196 0.010498 803 127 0.000293 726 204 0.013591

F2 674 256 0.049143 735 195 0.009149 678 252 0.045363

F3 719 211 0.016766 799 131 0.000402 720 210 0.016285

F4 721 209 0.015813 801 129 0.000343 715 215 0.018787

F5 722 208 0.015352 789 141 0.000804 731 199 0.011594

F6 715 215 0.018787 738 192 0.009152 708 222 0.022703

F7 698 232 0.029169 741 189 0.008226 703 227 0.025805

F8 701 229 0.027119 765 165 0.003046 688 242 0.036709

F9 704 226 0.025164 737 193 0.009476 698 232 0.029169
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The reconstruction of the phase space allows to describe
the chaotic attractor. The coordinated delay method of
Takens constructs a vector u t of m components (7).

u t = s t , s t + τ ,… , s t + m − 1 τ , 7

where t = t0 + kΔt, in which t is the delay of the time and is a
multiple integer of Δt and m is the dimension embedded.
Both variables are essentials for the reconstruction of the
vector u t to represent the true trajectory of the attractor.
The studied temporary series were able to be reconstructed.
With the graphic methodology called graphic recurrence plot
(Figure 9), it is possible to confirm the chaotic determinism
of the wind series and the earthquakes through the patterns
not homogeneously distributed [52–54].

Finally, the analysis of the time series using the analytical
techniques (1) power Fourier spectrum, (2) spectrogram, (3)
graphic recurrence plot, and (4) a positive Lyapunov expo-
nent characterizes a deterministic time series associated with
a system dynamic.

4. Experimental Results

The experimental results of the two GAP were compared
with the GA. The experimental results allow to observe the
good performance of the modified algorithms with the
chaotic series with respect to the traditional algorithms

(Table 2). The Wilcoxon nonparametric test is used to test
the good performance of the modified algorithm with respect
to the traditional algorithms. GAP earthquake shows a signif-
icant improvement over GA with a level of significance
alpha= 0.01 and over GAP winds with alpha=0.05. GAP
winds show a significant improvement over GA with a level
of significance alpha= 0.05 with the nine test functions in
each case.
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The evolution of the results of each algorithm by optimi-
zation the nine benchmark functions are presented in
Figures 3–5. In the graphics are shown the average perfor-
mances of each group of experiments. The experiments using
the GPA earthquake algorithm have big separated lines, the
experiments using GPA winds have continuous lines, and
the experiments using the GA are represented with small
separate lines.

The degree of clustering or disorder of simulation results
may be shown using the concept of entropy and plotting with
a scatter density plot. Figure 10 represents the relation
between entropy and fitness using GAP with earthquake time
series for the optimization of the benchmark Ackley’s contin-
uous multimodal function.

For the two modified algorithms, 9.000 optimizations for
each test function were simulated. Each optimization calcu-
lated the entropy of information of Shannon of the initial
population. The vector (function, entropy, and adjustment)
allows to graphically show the function of density. Figure 11
shows the results of simulations about the GAD modified
with the wind time series. The graphic confirms the positive
correlation between the entropy of initial populations and
the increase of performance of the solutions of the optimiza-
tion. An increase of the entropy of the initial population
improves the probability of obtaining a good performance
of the adjustment of the solution.

Chaotic maps have been used to improve the perfor-
mances of the GA. The dynamic chaotic systems and their
characteristics can be represented by these chaotic maps.
The infinitesimal modification of the parameters of those
maps generates time series with exponential divergences.
The main chaotic maps used in the optimization researches
through CGA are the maps of Lorentz, Rossler, IKEA,
Henon, and logistic.

Authors as [55] employ logistic map to generate chaotic
values instead of the random values in GA processes. For
our case of study, the modification of the GA with the logistic
map CGA presents a similar behavior to the modified GAP
with the time series of the earthquakes and the series of
winds. CGA exhibits a concentration of good optimization
results related to the increase of the entropy of the initial pop-
ulations. Figure 12 presents the improvement of the CGA in
respect to the GA. To ensure the replicability of the experi-
ment, 45.000 simulations for each algorithm were made.

5. Conclusions

The proposal of the modification of CGA through determin-
istic time series allows to get a simple method of optimization
with good performance. The time series are studied to guar-
antee their nonlinear dynamic characteristics associated to
chaotic systems. The study of the series is performed with
analytic tools without the need to describe its dynamic non-
linear equation. The tools are the maximum exponent of Lya-
punov, the spectrum of Fourier, and the reconstruction of the
phase space to describe the chaotic attractor.

The chaotic characteristics of the time series of wind
and earthquakes are established; the series are used to
build the initial populations of the chaotic genetic algorithm.
The information contained by the initial populations are
calculated by the entropy of Shannon. The initial popu-
lation contains greater entropy of information that GA
random function.

The analysis of the entropy of Shannon allows to study
the effect of the entropy in the performance of the CGA.
The research establishes a positive correlation between the
entropy of initial populations and the performance of the
solution. The results obtained with time series of the earth-
quake are better in relation to time series of the velocities of
the wind; these results are correlated with the greater entro-
pies of the initial populations generated by the earthquake
series. Likewise, the dynamic adjustment establishes the min-
imum levels of entropy of the initial population and discards
the populations with very low entropy generating a reduction
in the processing times of the experiments.

The results establish an improvement of the algorithms
built by these series in relation to a genetic algorithm built
with random functions. Through the graphics of density,
showed in Figure 11, the fitness of each benchmark functions
with the entropy variable. Likewise, the Wilcoxon nonpara-
metric statistical method was used to compare the perfor-
mances of the GA modified with the traditional GA. The
improvement of the results is explained by the reduction of
the early convergence of the solutions and the greater search
information contained in the initial populations. Figures 3–5
show superior asymptotes in all the results with respect to the
GA, established by the reduction of the convergence and the
increase of the fitness of the initial populations of the modi-
fied GA. The experimental results testing nine benchmark
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mathematical functions demonstrate that the proposed
algorithm CGA beats the performance of the optimization
method GA.

When measuring entropies with different complexity
metrics, there exists concordance between the results
found in this research with the study of Liu and Abraham.
These authors use the complexity metrics of Lyapunov to
establish a relation between entropy and the optimization
results through the metaheuristic swarm intelligence. In both
researches were found the existence of a direct relation
between entropy and performance. The proposed method
allows, in future investigations, to study the performance
of the modified genetic algorithm with other deterministic
time series. Likewise, the chaotic deterministic characteris-
tics of the series studied would allow to modify the bioin-
spired optimization methods to obtain better performance
in the experiments with benchmark mathematical functions.
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