Skip to main content
Log in

The emergence of a Kaluza-Klein microgenometry from the invariants of optimally Euclidean Lorentzian spaces

  • Published:
Foundations of Physics Aims and scope Submit manuscript

“The predominantly inductive methods appropriate to the youth of science are giving place to tentative deduction. Such a theoretical structure needs to be very thoroughly elaborated before it can lead to conclusions which can be compared with experience. Here too the observed fact is undoubtedly the supreme arbiter; but it cannot pronounce sentence until the wide chasm separating the axioms from their verifiable consequences has been bridged by some intense, hard thinking. …there is no other way to the goal.” A. Einstein

Abstract

It is shown that relativistic spacetimes can be viewed as Finslerian spaces endowed with a positive definite distance (ω0, mod ωi) rather than as pariah, pseudo-Riemannian spaces. Since the pursuit of better implementations of “Euclidicity in the small” advocates absolute parallelism, teleparallel nonlinear Euclidean (i.e., Finslerian) connections are scrutinized.

The fact that (ωμ, ω0 i) is the set of horizontal fundamental 1-forms in the Finslerian fibration implies that it can be used in principle for obtainingcompatible new structures. If the connection is teleparallel, a Kaluza-Klein space (KKS) indeed emerges from (ωμ, ω0 i), endowed ab initio with intertwined tangent and cotangent Clifford algebras. A deeper level of Kähler calculus, i.e., the language of Dirac equations, thus emerges. This makes the existance of an intimate relationship between classical differential geometry and quantum theory become ever more plausible. The issue of a geometric canonical Dirac equation is also raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. É. Cartan,L’Enseignement Math. 26, 200 (1927). Reprinted inOeuvres Complètes (Éditions du CNRS, Paris, 1984), Vol. I.

    Google Scholar 

  2. É. Cartan,C. R. Congrès Intern. Oslo 1, 92 (1936). Reprinted inOeuvres Complètes, Vol. III, Part 2.

    Google Scholar 

  3. É. Cartan,Bull. Sci. Math. 48, 294 (1924).Oeuvres Complètes, Vol. III, Part 1.

    Google Scholar 

  4. É. Cartan,Ann. É. Norm 40, 325 (1923). Reprinted inOeuvres Complètes, Vol. III, Part 1.

    MathSciNet  Google Scholar 

  5. A. Einstein,Ann. l’Inst. H. Poincaré 1, 1 (1930).

    MathSciNet  Google Scholar 

  6. É. Cartan,Les Espaces de Finsler (Actualités Scientifiques et Industrielles79 (1934), reprinted 1971, Hermann, Paris).

    MATH  Google Scholar 

  7. Fl. J. G. Vargas and D. G. Torr,J. Math. Phys. 34 (10), 4898 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  8. F3. J. G. Vargas and D. G. Torr,Gen. Relativ. Gravit. 28, 451 (1996).

    Article  MathSciNet  Google Scholar 

  9. F2. J. G. Vargas and D. G. Torr,Gen. Relativ. Gravit. 27, 629 (1995).

    Article  MathSciNet  Google Scholar 

  10. R. Miron,J. Math. Kyoto Univ. 23, 219 (1983).

    MathSciNet  Google Scholar 

  11. S.-S. Chern,Sci. Rep. Natl. Tsing Hua Univ. 5, 85 (1948).

    MathSciNet  Google Scholar 

  12. M. Matsumoto,Foundations of Finlser Geometry and Special Finsler Spaces (Kaiseisha, Shigaken, 1986). A Bejancu,Finsler Geometry and Applications (Ellis Horwood, Chichester, England, 1990). R. Miron and M. Anastasiei,The Geometry of Lagrange Spaces: Theory and Applications (Kluwer, Dordrecht, 1994).

    Google Scholar 

  13. F4. J. G. Vargas and D. G. Torr,Cont. Math. 196, 301 (1996).

    MathSciNet  Google Scholar 

  14. O. Varga,Acta Sci. Math. Szeged. Univ. 10, 149 (1943).

    Google Scholar 

  15. R. Debever, editor,Élie Cartan-Albert Einstein, Letters on Absolute Parallelism (Princeton University Press, Princeton, 1979).

    Google Scholar 

  16. J. G. Vargas,Found. Phys. 16, 1231 (1986).

    Article  MathSciNet  Google Scholar 

  17. A. Einstein,Geometry and Experience (Lecture before the Prussian Academy of Sciences, January 27). SeeIdeas and Opinions (Crown Publishers, New York, 1982), pp. 232–246.

  18. F5. J. G. Vargas, and D. G. Torr,The Construction of Teleparallel Finsler Connections and the Emergence of a New Concept of Metric Compatibility, preprint (1996).

  19. S.-S. Chern,C. R. Acad. Sci. Paris 314 (1), 757 (1992).

    MathSciNet  Google Scholar 

  20. E. Kähler,Abh. Dtsch. Akad. Wiss. Berlin, Kl. Math. Phys. Tech. 4, 1 (1960)Rendiconti di Matematica 21 (3–4), 425 (1962).

    Google Scholar 

  21. D. Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966). AlsoNew Foundations for Classical Mechanics (Kluwer, Boston, 1986).

    MATH  Google Scholar 

  22. J. G. Vargas, D. G. Torr, and A. Lecompte,Found. Phys. 22, 379 (1992).

    MathSciNet  Google Scholar 

  23. É. Cartan,J. Math. Pures Appl. 1, 141 (1922). Reprinted inOeuvres Complètes, Vol. III, Part 1.

    Google Scholar 

  24. J. G. Vargas and D. G. Torr,Gen. Relativ. Gravit 23, 713 (1991).

    Article  MathSciNet  Google Scholar 

  25. S. K. Donaldson and P. B. Kronheimer,The Geometry of Four-Manifolds (Clarendon Press, Oxford, 1990).

    MATH  Google Scholar 

  26. A. Einstein,On the Methods of Theoretical Physics (The Herbert Spencer Lecture, delivered at Oxford). Printed inIdeas and Opinions (Crown Publishers, New York, 1982), pp. 270–276.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargas, J.G., Torr, D.G. The emergence of a Kaluza-Klein microgenometry from the invariants of optimally Euclidean Lorentzian spaces. Found Phys 27, 533–558 (1997). https://doi.org/10.1007/BF02550676

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02550676

Keywords

Navigation