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Abstract

According to a widespread but implicit thesis in Bayesian confirmation

theory, two confirmation measures are considered equivalent if they are ordi-

nally equivalent — call this the “ordinal equivalence thesis” (OET). I argue

that adopting OET has significant costs. First, adopting OET renders one

incapable of determining whether a piece of evidence substantially favors one

hypothesis over another. Second, OET must be rejected if merely ordinal

conclusions are to be drawn from the expected value of a confirmation mea-

sure. Furthermore, several arguments and applications of confirmation mea-

sures given in the literature already rely on a rejection of OET. I also contrast

OET with stronger equivalence theses and show that they do not have the

same costs as OET. On the other hand, adopting a thesis stronger than OET

has costs of its own, since a rejection of OET ostensibly implies that people’s

epistemic states have a very fine-grained quantitative structure. However, I

suggest that the normative upshot of the paper in fact has a conditional form,

and that other Bayesian norms can also fruitfully be construed as having a

similar conditional form.
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1 Introduction

According to Bayesian confirmation theory, evidence E confirms hypothesis H rela-

tive to background theory K if and only if PrK(H|E) > PrK(H).1,2,3 This criterion

suffices to answer the qualitative question of whether or not E confirms H, but it

does not answer the quantitative question of how much E confirms H, nor does it

answer the comparative question of which of two confirmed hypotheses is confirmed

more by E. To answer the quantitative and comparative questions, one must adopt

a confirmation measure that quantifies the degree to which E confirms H. The fol-

lowing are just a few of the confirmation measures that have been suggested in the

literature:

The plain ratio measure, r(H,E) = Pr(H|E)
Pr(H)

The log-ratio measure, lr(H,E) = log r(H,E)4

The difference measure, d(H,E) = Pr(H|E)− Pr(H)

The log-likelihood measure, l(H,E) = log Pr(E|H)
Pr(E|¬H)

The alternative difference measure, s(H,E) = Pr(H|E)− Pr(H|¬E)5

The Kemeny-Oppenheim measure, k(H,E) = Pr(E|H)−Pr(E|¬H)
Pr(E|H)+Pr(E|¬H)

Note that the domain of a confirmation measure strictly speaking consists of

triples, (H,E, Pr); however, for simplicity I will for the most part suppress mention

of Pr. It is well known that confirmation measures do not always order hypothesis-

evidence pairs in the same way: the measures are sometimes ordinally non-equivalent.

1From now on I will suppress mention of the background theory.
2Equivalently, if and only if Pr(H|E) > Pr(H|¬E) or if and only if Pr(E|H) > Pr(E|¬H).

Disconfirmation and absence of confirmation (neutrality) can be defined analogously.
3Of course, PrK is assumed to be a probability distribution defined on a Boolean algebra of

propositions that includes both H and E.
4It is not customary to specify the base of the logarithm.
5This measure is also sometimes called the ”Joyce-Christensen measure,” after Joyce (1999) and

Christensen (1999)
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For instance, confirmation measures r and d are ordinally non-equivalent since they

differ in how they rank certain hypothesis-evidence pairs.6,7 It is obvious that two

confirmation measures that are ordinally non-equivalent ought not be considered the

same confirmation measure. In other words, the following is uncontroversial:

The Ordinal Non-Equivalence Thesis : If two confirmation measures are

ordinally non-equivalent, then the two confirmation measures are not the

same confirmation measure.

I have called the ordinal non-equivalence thesis a “thesis,” but perhaps it is more

appropriate to call it a truism. The task of this paper will be to investigate the

converse of the non-equivalence thesis. Namely,

The Ordinal Equivalence Thesis : If two confirmation measures are ordi-

nally equivalent, then they are the same confirmation measure.

According to the ordinal equivalence thesis (OET), r and lr are the same confir-

mation measure since, even though they have differing functional forms, they rank

all hypothesis-evidence pairs in the same order. The ordinal equivalence thesis has

arguably become a widespread tacit – and sometimes explicit – commitment among

philosophers who work on Bayesian confirmation theory. For example, Branden Fi-

telson writes:

“If two relevance measures are ordinally equivalent, then, as far as we are

concerned, they are identical. So, when we say ‘according to c’, we really

mean ‘according to any measure ordinally equivalent to c”’ (Fitelson,

2007, p. 7n7).

Other philosophers reveal their commitment to OET by treating ordinally equiva-

lent measures as interchangeable, which is only legitimate given OET.8 For example,

David Glass and Mark McCartney write:

6Example: Pr(H) = 0.1, Pr(H|E) = 0.9, Pr(H ′) = 0.01, Pr(H ′|E) = 0.5. Here H is better
confirmed than H ′ according to d, but H ′ is better confirmed than H according to r.

7Interestingly, the standard measures do correlate fairly well (Tentori et al., 2007).
8Numerous conversations I have had with philosophers who work on Bayesian confirmation

theory have convinced me that it is standard for philosophers to regard ordinally equivalent measures
as interchangeable in general.
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“l satisfies (C4) provided division by zero is equated with infinity. To

avoid this, the ordinally equivalent measure proposed by Kemeny and

Oppenheim (1952) can be used instead.” (Glass and McCartney 2015,

p62n4.)

Still other philosophers do not unconditionally commit to the ordinal equivalence

thesis, but hold that ordinally equivalent measures often are interchangeable. For

example, Tomoji Shogenji writes that, “For many purposes, ordinally equivalent

measures are essentially the same measure” (Shogenji, 2012, p. 5n4). Shogenji may

be right that ordinal equivalence suffices for many purposes, but a major goal of this

paper is to show that there are also several purposes for which the ordinal equivalence

thesis is too weak.

Here is the plan of the paper. In Section 2, I describe various competing theses

that we may choose to adopt; each of these theses corresponds to an alternative level

of analysis that we may choose to prioritize. In Section 3, I show the shortcomings

of the ordinal equivalence thesis by contrasting it with alternative theses, and in

particular I show that adopting the ordinal equivalence thesis renders one unable to

set various thresholds that can be used to interpret a set of confirmation scores, and

that a thesis stronger than OET must be adopted if merely ordinal conclusions are to

be drawn from the expected values of a confirmation measure. In Section 4, I show

that several arguments given by philosophers already rely on a rejection of OET. In

Section 5, I discuss possible reasons why OET has been accepted. A major reason

why philosophers have focused on the ordinal level is probably because a rejection

of OET seems to imply that human beings have epistemic states that have a very

fine-grained quantitative structure. However, I suggest that the normative upshot of

the paper has a conditional form, so that it is only applicable when the antecedent

of the conditional applies. I furthermore suggest that other Bayesian norms can

fruitfully be understood as having a similar conditional form.
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2 Formal characterizations of various equivalence

conventions

As is well known in the literature, ordinal equivalence can be formally characterized.

More precisely, two confirmation measures are ordinally equivalent if and only if

there is a strictly increasing function from each measure to the other. We can state

the preceding characterization of ordinal equivalence more formally as follows:

Ordinal equivalence characterization: Confirmation measures c and c′ are

ordinally equivalent if and only if there is a strictly increasing function,

f , such that, for all H and E and all probability distributions over H

and E, c(H,E) = f(c′(H,E)).

To better understand the ordinal equivalence thesis, it is useful to contrast it

with alternative theses that we may instead choose to adopt. Inspired by the above

characterization of ordinal equivalence, we can use the following abstract schema to

derive alternative equivalence theses:

Confirmation Equivalence Schema: Confirmation measures c and c′ are

equivalent if and only if there is an invertible function, f , such that

c = f(c′).

Different confirmation equivalence theses can then be characterized by what re-

quirements they put on f . In theory, we could produce infinitely many theses from

the above schema since there are potentially infinitely many requirements we could

choose to put on f . Certain theses are of more theoretical interest than others, how-

ever. Following Stevens (1946), I will call the theses I consider “ordinal,” “interval,”

“ratio,” and “absolute,” where these theses are distinguished by the increasingly

strong demands they place on f .

Ordinal Equivalence Thesis (OET): The requirement on f is that it be

strictly increasing.
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Interval Equivalence Thesis (IET): The requirement on f is that it be

strictly increasing and linear.

Ratio Equivalence Thesis (RET): The requirement on f is that it be

strictly increasing and linear with constant term 0.

Absolute Equivalence Thesis (AET): The requirement on f is that it be

the identity function.

Adopting OET amounts to carving the set of all possible confirmation measures

into classes of ordinally equivalent measures and treating the measures in each class as

interchangeable. Similarly, IET and RET carve the space of confirmation measures

into classes of measures that are what we might respectively call “interval” and

“ratio” equivalent. The fourth thesis, AET, is the strongest possible thesis: its

equivalence classes contain only a single confirmation measure each.

My choice of singling out the above four theses is not arbitrary. The first three

theses correspond to three of the four “levels of measurement” outlined by Stevens

(1946) in the context of scientific measurement. As Stevens points out, the strength

of the conclusions one is licensed to draw from data depends on the strength of the

measurement scale used. What is true in the case of measurement scales is also true

in the case of confirmation measures, as I show in the next section when I discuss the

consequences of adopting OET by contrasting it with the consequences of instead

adopting IET.

3 Consequences of adopting the ordinal equiva-

lence thesis

In the following two subsections, I discuss general consequences associated with

adopting OET and treating confirmation measures as mere ordinal measures. In

Section 4, I show why these consequences matter for several of the arguments and

applications of confirmation measures that have been discussed in the literature.
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3.1 Interpreting a set of confirmation scores

Suppose I give you the results of a 100m race with three runners by listing the order

in which the runners finished. Then you are not entitled to say that the difference

in performance between the winner and the runner-up is roughly the same as the

difference in performance between the runner-up and the third-place finisher; nor

may you conclude that the winner performed substantially better than the other

two runners. The ordinal data with which you have been provided simply does not

contain this information. Suppose you learn, however, that the winner is Usain Bolt

and that the other two runners are recreational runners. Then you have reason to

believe that the winner’s performance was in fact much better than the performance

of the other two runners. If, on the other hand, you learn that all three runners

are recreational runners, you no longer have any reason to think that the winner’s

performance was substantially better than the performance of the other two runners.

Thus, if all you learn about the three competitors are their ordinal ranks, you cannot

draw conclusions about their performance relative to each other. You can only infer

such conclusions on the basis of further information.

But now suppose that you instead learn the times of the three runners. Suppose,

for instance, that you learn that the winner’s time was 10 seconds while the other two

runners finished in 14 and 14.5 seconds. Then you really can say that the winner was

substantially better than the other two runners, and moreover you can say that the

two losers performed about equally well. To be sure, your conclusions still depend

on background knowledge about running and about the time scale used, but the

conclusions you are entitled to draw are much more robust than in the case where

you are just given ordinal ranks in the sense that the conclusions do not depend

sensitively on knowledge about the particular runners.

The above example illustrates the differences between ordinal and interval/ratio

scales. If we adopt OET, then the proper way to interpret the numerical outputs

of confirmation measures is as ranks. Although the outputs of e.g. the log-ratio

measure lr can be any real number, only the ordinal properties of the real numbers

are being used. Suppose, for instance, that our favored confirmation measure — call
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it “m” — outputs the three numbers 0.91, 0.9, and 0.1 for evidence-hypothesis pairs

(H,E), (H ′, E), and (H ′′, E), respectively. In that case we are entitled to say that

E confirms H more than H ′, and that E confirms H ′ more than H ′′, but we cannot

say that H ′ and H ′′ are confirmed to approximately the same degree by E, or that

each is much more highly confirmed than H ′′. To make any of these claims is to go

beyond the merely ordinal properties of 0.91, 0.9, and 0.1.

Indeed, if we adopt OET, then any conclusion we draw from m’s output is valid

only if it still holds when we choose to use a different ordinally equivalent measure.

This is because by adopting OET we agree to treat ordinally equivalent measures

as interchangeable. But it is easy to transform our m into an ordinally equivalent

measure that instead outputs, say, the numbers 3, 2, and 1 for the above three

evidence-hypothesis pairs. All one needs to do is device a suitable strictly increasing

function. For example, g(x) = 1.25x + 0.875 for x ≤ 0.9, and g(x) = 100x − 88

for x > 0.9. Of course, g is not a very “natural” function, but that is beside the

point. The point is that g is a strictly increasing (even continuous) function that

transforms m into m′; therefore, by OET, m and m′ are equivalent confirmation

measures. Performing the preceding transformation makes it clear that the only

conclusion we are justified in drawing from the data is the ordinal ranking itself,

m(H,E) > m(H ′, E) > m(H ′′, E).

The situation is different if we adopt one of the other equivalence theses. Suppose

we adopt IET instead. Then any other confirmation measure in the same equivalence

class as m must be of the form m′ = am + b, with positive a. Thus, it must be the

case that:

m(H,E)−m(H ′, E)

m(H ′, E)−m(H ′′, E)
=

m′(H,E)−m′(H ′, E)

m′(H ′, E)−m′(H ′′, E)
(1)

In other words, any functional transformation of m allowed by IET preserves

relative interval sizes. The consequence of this is that while a measure outputting

0.91, 0.90, and 0.1 can be transformed into an interval equivalent measure that

instead outputs the values 91, 90, and 10, respectively, it is not possible to transform

it into a measure that outputs 3, 2, and 1. Thus, if we have narrowed down the range
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of confirmation measures to a class of interval equivalent measures and we adopt

IET, then we are entitled to draw robust conclusions from the distances between the

numbers outputted by our measure. If we adopt IET, then we are no longer merely

using the ordinal properties of the real numbers — the difference between 0.91 and

0.9 really is smaller than the difference between 0.9 and 0.1.

3.1.1 Setting thresholds with IET

But the fact that interval equivalent confirmation measures preserve relative interval

sizes does not yet mean that we are able to conclude that, e.g., H and H ′ are

confirmed to roughly the same degree by E. In order to draw a conclusion of this kind,

we need specific knowledge about m’s behavior that allows us to determine that H

and H ′ are confirmed to roughly the same degree (by E and E ′ respectively; of course

E and E ′ may be identical) if and only if |m(H,E)−m(H ′, E ′)| < δ, for some (small)

δ. In the same way, we can establish a threshold that says that H is substantially

better confirmed by E than is H ′ by E ′ if and only if m(H,E) −m(H ′, E ′) > ε for

some suitably chosen ε.

Royall (1997, p. 11) does the preceding for the likelihood ratio, Pr(E|H1)/Pr(E|H2).
9

He considers the following “canonical experiment”: suppose an urn contains either

all white balls or else an equal number of white and black balls. Suppose you then

draw three balls with replacement and all the balls turn out to be white. Intuitively,

this seems to be “pretty strong” evidence that all the balls are white rather than

that half of them are black. The likelihood ratio favoring all white balls is in this

case 8. Thus, Royall concludes, 8 is the threshold that signifies “pretty strong” evi-

dence (in an everyday context, let us add) favoring one hypothesis over another. Of

course, the choice of this particular canonical experiment is somewhat arbitrary, but

note that the particular choice of canonical experiment does not matter much if we

9Note: the likelihood ratio is not a Bayesian measure of confirmation. Rather, it is a direct
measure of the evidential support that one hypothesis enjoys vis-a-vis another one. As Fitelson
(2007) points out, the standard Bayesian confirmation measure that agrees with using the likelihood
ratio to compare the relative support of two hypotheses is the ratio measure. Thus, implicitly, Royall

is setting thresholds for interpreting quantities of the form r(H,E)
r(H′,E) .
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accept IET. A different canonical experiment may have instead yielded 7 or 9, say,

as the threshold that signifies “pretty strong” or maybe just “strong” evidence. But

fortunately the real numbers 7 and 9 are relatively close to each other, and when we

adopt IET we make use of these facts about the real numbers. Therefore, nothing

significant hinges on choosing either 7 or 8 or 9 as the threshold.

The precise values of the thresholds are therefore not important — in fact, the

thresholds ought not be treated too precisely; what a set of thresholds allows us

to do is to better interpret a set of confirmation scores. Importantly, IET allows

us to use the same threshold throughout the whole confirmation scale. That is

because IET implies that the difference m(H,E)−m(H ′, E ′) has the same meaning

(i.e. describes the same difference in confirmation) regardless of where on the scale

m(H,E) and m(H ′, E ′) happen to be. This is exactly what (1) guarantees will be

the case. And the fact that m(H,E)−m(H ′, E ′) = a describes the same difference

in confirmation regardless of the values of m(H,E) and m(H ′, E ′) allows us to say,

given the confirmation scores of two hypotheses, whether the two hypotheses are

confirmed to essentially the same degree, or whether one of the hypotheses is better

confirmed, or much better confirmed, than the other one.

It is important to appreciate the importance of being able to make these kinds

of comparisons between m(H,E) and m(H ′, E). Indeed, the question of whether a

piece of evidence confirms one hypothesis more than it confirms another hypothesis

is essentially uninformative unless we can also at the very least determine whether

the difference in confirmation is substantial or trivial. Indeed, even if we are ulti-

mately mostly interested in the ordinal ranking provided by the confirmation mea-

sure, having confirmation scores that are at least on an interval scale prevents us

from over-interpreting a difference in confirmation score between two hypotheses.

If m(H,E) > m(H ′, E), then E confirms H more than it confirms H ′, but if the

difference between the confirmation scores is small, the inequality may be practically

insignificant, especially when measurement error is taken into account: that is, the

inherent accuracy of our measurement procedure may be such that, had we repeated

our measurement, the new E ′ could easily be such that m(H,E ′) < m(H ′, E).
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3.1.2 Setting thresholds without IET?

IET allows us to set thresholds that determine, e.g. whether H and H ′ are confirmed

to roughly the same degree by some piece of evidence. Are there equivalence theses

weaker than IET that allow us to do the same thing?

In general, in order to make an assessment of the “distance” between two con-

firmation scores, we need a function that takes as its input two confirmation scores

and outputs a (non-negative) number that represents the distance between the two

scores. Suppose we have available some such function, D. In order for us to be able

to set up a threshold δ according to which x and y are “approximately equal” if and

only if D(x, y) < δ, it needs to be the case that D(x, y) = a means the same thing

regardless of what x and y happen to be. Thus, in particular, if D(x, y) = a and

D(z, w) = a, then it should be the case that the distance D(x, y) means the same

thing as the distance D(z, w), so that we can say that D(x, y) = D(z, w). In order

for this to be the case, the class of admissible transformations must obey something

very analogous to (1). More precisely, in order for it to be legitimate to conclude

that D(x, y) = D(z, w) from the fact that D(x, y) = a and D(z, w) = a, it needs to

be the case that D(f(x), f(y)) = D(f(z), f(w)) whenever x, y, z, and w are trans-

formed using any admissible transformation f . Hence, the class of all admissible

transformations must satisfy the following equation:

D(x, y)

D(z, w)
=
D(f(x), f(y))

D(f(z), f(w))
(2)

Thus, given a distance measure D, we can say that two confirmation scores are

approximately equal, or that one confirmation score is substantially greater than

another confirmation score only if we adopt an equivalence thesis according to which

only transformations that obey (2) are admissible. Now, given very weak conditions

on D, the class of transformations that obey (2) will be a proper subset of the class

of all strictly increasing functions.10 It follows that OET will in general will be too

weak to set thresholds. In order for us to be able say anything more specific about

10There are several conditions we could put on D. For example, one reasonable requirement is
that confirmation measures scores can be arbitrarily close to each other according to D.
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how strong of an equivalence thesis is required, more specific assumptions must be

made about the distance measure, D.

The most natural and simplest distance measure on the real numbers is arguably

the absolute distance metric, D(x, y) = |x−y|. If we plug the absolute distance metric

into (2) we recover (1). Furthermore, the linear functions are the only functions that

obey (1); therefore, all admissible transformations must be linear.11 It follows that

IET is the weakest thesis that allows us to set thresholds of the sort discussed above,

provided the distance measure is the absolute value metric. If some other distance

measure is used, then some other thesis than IET may instead (indeed, probably

must) be adopted. But in any case, OET is too weak, because any comparison

of confirmation scores requires a distance measure, and the distance measure will

impose the requirement that the admissible transformations obey (2).

3.2 Taking expectations of confirmation measures

As we shall see later, several applications of Bayesian confirmation theory involve

calculating the mathematical expectation of some confirmation measure. In general,

the expected value of some quantity (random variable), x, that can take values x1,

x2, . . . , xn, relative to a probability distribution p, is defined as follows: E[x] =∑
i xip(xi).

Taking the expectation of a confirmation measure presupposes that the confir-

mation measure is not interpreted as a mere ordinal measure, even if we only care

about the ordinal properties of the expectation. This is because the fact that two

confirmation measures are ordinally equivalent does not entail that their expectations

will be ordinally equivalent.

To see why this is the case, suppose more generally that we are interested in

the expected value of quantities, x, y, z, etc. What kind of scale must x, y, z, etc.

be on in order for us to be able to draw the ordinal conclusion that, for example,

E[x] ≥ E[y]? Clearly, in order for us to be able to draw the conclusion that the

expected value of x really is greater than or equal to the expected value of y, it must

11The proof that only linear functions obey (1) is trivial and omitted.
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be the case that, for every admissible transformation, f , of x and y, it is also the case

that E[f(x)] ≥ E[f(y)]. Hence, in order for us to draw merely ordinal conclusions

from the expected values of x and y, the class of admissible transformations must

satisfy the following requirement:

E[x] ≥ E[y] =⇒ E[f(x)] ≥ E[f(y)] (3)

But the class of all strictly increasing functions does not satisfy the above re-

quirement.12 In general, if f is a strictly increasing function, then the following will

of course be true:

E[x] ≥ E[y] =⇒ f(E[x]) ≥ f(E[y]) (4)

However, (4) does not entail (3) unless the following condition also holds:

f(E[x]) ≥ f(E[y]) =⇒ E[f(x)] ≥ E[f(y)] (5)

But there are many strictly increasing functions that violate (5). Hence x, y, z

cannot be on a mere ordinal scale even if we want to draw merely ordinal conclusions

from their expected values. In general, we can guarantee that (5) (and therefore also

(3)) holds if the class of admissible transformations satisfies the following require-

ment:

f(E[x]) = E[f(x)] (6)

As it happens, the class of linear functions satisfies (6). Hence, if x, y, and z

are on an interval scale, then that is sufficient for us to be able to draw ordinal

conclusions from their expected values.13

12Here is a simple counter-example. Suppose we have the following probabilities: p(H1) = 0.5,
p(H1|E) = 0.6, p(H1|¬E) = 0.2, p(E) = 0.625, p(H2) = 0.4, p(H2|E) = 0.2, p(H2|¬E) = 0.7333.
As can be verified, we have: E[d(H1, E)] = 0 = E[d(H2, E)]. However, E[d(H1, E)3] < E[d(H2, E)3].
Note that this example assumes that H1 and H2 are not exhaustive hypotheses; i.e., there must be
at least one other hypothesis, H3, etc. in the partition of hypotheses.

13Indeed, under several reasonable conditions, the class of linear functions is the only class that
satisfies (6).
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4 Applications of Bayesian confirmation measures

that rely on a rejection of OET

As I pointed out in Section 1, many philosophers have adopted OET, either explicitly

or implicitly. However, there are also many examples in the literature of applications

of Bayesian confirmation theory that implicitly rely on a rejection of OET. To the

extent that one wants to make arguments of the sort discussed in this section, one

must therefore reject OET.

4.1 Case 1: Schlesinger’s argument against the difference

measure

In Section 3.1, I explained that adopting OET prevents one from being able to set

thresholds that can be used to determine whether a given degree of confirmation is

strong, moderate or insignificant. As it happens, there are examples of arguments

in the literature that implicitly rely on the assumption that such thresholds can be

set. In particular, (Schlesinger, 1995, p. 211) presents an argument (repeated and

endorsed in Zalabardo (2009)) against the difference measure and in favor of the ratio

measure of confirmation. The argument asks us to compare a change in probability

from 1/109 to 1/100 with a change from 0.26 to 0.27. According to Schlesinger and

Zalabardo, the first probability shift is intuitively “much greater” than the second

one. The ratio measure gets the “right” verdict here, but the difference measure does

not. As the argument in Section 3.1 shows, Schlesinger and Zalabardo cannot say

that the ratio measure judges the shift from 1/109 to 1/100 to be “much greater”

than the shift from 0.26 to 0.27 unless the ratio measure is interpreted as something

more than just an ordinal measure. Schlesinger and Zalabardo are consequently

tacitly rejecting OET.
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4.2 Case 2: Myrvold’s Bayesian account of the virtue of

unification

In Section 3.1, I also explained that OET prevents one from being able to say that

two confirmation scores are “approximately the same”; only confirmation theses at

least as strong as IET enable one to say this (if the absolute distance metric is used

to measure distance). However, there are arguments in the literature that rely on

the assumption that it is legitimate to talk about two confirmation scores being ap-

proximately the same. In particular, Myrvold (2003) (or, more recently, Myrvold

(2016)) gives a Bayesian account that purports to show how a unifying hypothe-

sis can sometimes be confirmed more by evidence than a non-unifying hypothesis,

and he applies his account to several examples. Myrvold’s explanation of the exam-

ples relies on the use of both a confirmation measure, c, and a measure of unifica-

tion U , and he requires that the measures jointly exhibit the following property: If

c(H1, E1) ≈ c(H2, E1), c(H1, E2) ≈ c(H2, E2), and U(E1, E2;H1) > U(E1, E2;H2),

then c(H1, E1&E2) > c(H2, E1&E2). As argued earlier, the use of approximation

signs requires that the confirmation measures not be interpreted as mere ordinal

measures. Myrvold’s account can be salvaged even with OET if the approximation

signs are replaced by equality signs. But in that case the unrealistic assumption must

be made that H1 and H2 are independently confirmed to exactly the same degree by

the evidence.

The next case I will consider comes from Fitelson (1999). Fitelson shows how

several arguments given in the literature are sensitive to the choice of confirmation

measure because the arguments depend crucially on properties that some measures

have but others lack. According to Fitelson, the problem is that these arguments rely

on properties that vary between ordinally non-equivalent measures. In the following,

I will show that one of the arguments also implicitly relies on a rejection of OET.

4.3 Case 3: The Gillies-Popper-Miller argument

Gillies’s (1986) reconstruction of an argument due to Popper and Miller (1983) de-

pends on the confirmation measure used having the following decomposition prop-
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erty: c(H,E) = c(H ∨ E,E) + c(H ∨ ¬E,E).14 According to Gillies, this decompo-

sition allows us to neatly separate H’s confirmation score into a deductive part and

an inductive part. Redhead (1985) points out that not all measures have the preced-

ing decomposition property, and Fitelson (1999) notes that the Gillies-Popper-Miller

argument is consequently sensitive to the choice of confirmation measure. More

precisely, Redhead points out that the confirmation measure r does not have the

decomposition property. Gillies responds to Redhead’s criticism by claiming that r

is a flawed confirmation measure, and that d, which does have the decomposition

property, is better. In response, Fitelson points out that l also lacks the decomposi-

tion property. Presumably, Gillies could respond to Fitelson by claiming that l, too,

is a flawed measure of confirmation. However, we can make the further observation

that there are measures ordinally equivalent to d that do not have the preceding

decomposition property. For example, the measure d3, which of course is ordinally

equivalent to d, does not have the decomposition property. Thus, Gillies’s argument

does not merely rely on d’s being better than r and l; it implicitly relies on d3’s

not being a good measure of confirmation. Since d and d3 are ordinally equivalent,

Gillies’s argument is implicitly rejecting OET. More generally, the preceding discus-

sion shows that the decomposition property is not necessarily shared by confirmation

measures that are ordinally equivalent. Hence, anyone who proposes an argument

that relies on the decomposition property will quite likely have to reject OET.

The next case I will consider concerns how the Paradox of the Ravens has been

handled in the literature.

4.4 Case 4: Solutions to the Paradox of the Ravens

The Paradox of the Ravens is a paradoxical conclusion that arises from the combina-

tion of two very reasonable premises: Nicod’s Criterion and the Equivalence Condi-

tion. Nicod’s Criterion says that universal generalizations of the form ∀x(Ax→ Bx)

are confirmed by instances of the form Ac&Bc. The Equivalence Condition says

that if e confirms S, then e confirms every sentence logically equivalent to S. To-

14I thank a referee for helpful comments on this paragraph.
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gether, the Equivalence Condition and Nicod’s Criterion entail a conclusion that

seems counter-intuitive, namely that a non-black non-raven confirms the proposition

that every raven is black. Since Nicod’s Criterion and the Equivalence Condition

are widely accepted, the standard solution15 is to embrace the paradoxical conclu-

sion while explaining it away by conceding that a non-black non-raven confirms the

proposition that every raven is black, but only to a “minute degree” (Vranas, 2004)

in ordinary circumstances.

Standard solutions that have been given to the Paradox of the Ravens clearly

violate OET. For example, Fitelson and Hawthorne (2004, pp. 31-7) give a quanti-

tative solution that depends crucially on the non-ordinal properties of the likelihood

ratio, l. In particular, their Theorem 4 (p. 34) gives a bound on the ratio of two like-

lihood ratios that can be violated if we transform the two likelihoods into ordinally

equivalent measures by the method I used earlier on p. 8.

In general, quantitative solutions to the Paradox of the Ravens inevitably re-

ject OET. However, there are also non-quantitative solutions to the Paradox of the

Ravens. These solutions have the more modest goal of showing that a non-black

non-raven confirms the proposition that all ravens are black less than a black raven

does, without making the quantitative claim that the confirmation is much less.

Since these solutions only make ordinal claims, they do not rely on a violation of

OET. However, a proper solution to the Paradox of the Ravens arguably should be

quantitative. As an analogy, suppose I ask you why the sun looks the size of a tennis

ball even though it is so far away, while a tennis ball looks tiny from just 100 yards

away. If you answer that it is because the sun is bigger than a tennis ball, you have

given me relevant information, but you have not really provided an adequate expla-

nation. Similarly, our intuition in the Paradox of the Ravens is that a non-black

non-raven should (in most circumstances) barely, if at all, confirm the proposition

that all ravens are black, or at least that it should confirm this proposition much

less than a black raven does. A proper solution to the Paradox of the ravens should

entail this conclusion, and therefore cannot be just ordinal.

15Which, of course, is not the only solution. See Rinard (2014) for instance.
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4.5 Case 5: The use of mathematical expectations

Several uses to which confirmation measures have been put rely on taking expected

values of confirmation measures. Here I will discuss just two such applications.16

First, a confirmation score tells you how much a piece of evidence confirms a

single hypothesis. However, it’s also often interesting to know how much the evi-

dence influences the whole partition of hypotheses; or, in other words, how big the

divergence is between the posterior distribution and the prior distribution, given the

evidence. The natural way to generalize a confirmation measure to a divergence

measure is by taking an expectation. For example, Crupi and Tentori (2014) suggest

the following definition:

InfDis(p(H|E), p(H)) =
∑
j

c(Hj, E) ∗ p(Hj|E) (7)

Plugging different confirmation measures into (7) then gives rise to different di-

vergence measures. For example, plugging in the log-ratio measure gives rise to the

well known KL divergence (Kullback and Leibler, 1951). Conversely, any divergence

measure may be regarded as an implicit generalization of a confirmation measure.

Divergence measures such as the KL divergence have been applied in many ways in

the Bayesian literature. For example, they form the foundations of one of the most

prominent versions of objective Bayesianism (Bernardo, 1979).

Crucially, confirmation measures that are ordinally equivalent will in general not

give rise to divergence measures that are ordinally equivalent, for the reasons given

in Section 3.2. Indeed, ordinally equivalent confirmation measures can give rise to

very different divergence measures. Consider, for example, the log-likelihood measure

and the Kemeny-Oppenheim measure. These are ordinally equivalent, but the log-

likelihood measure judges distances between probabilities that are close to 0 or 1 to be

much larger than does the Kemeny-Oppenheim measure, because the log-likelihood

measure is unbounded while the Kemeny-Oppenheim measure is bounded between

0 and 1. Thus, the log-likelihood measure and the Kemeny-Oppenheim measure

16For examples of other applications, see Good (1985).
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give rise to divergence measures that will often ordinally disagree if the probabilities

involved are extreme (close to 0 or close to 1).17 Hence, if we want to be able to draw

merely ordinal conclusions from Bayesian divergence measures, we cannot treat the

confirmation measures on which they are based as mere ordinal measures.

Second, as has recently been pointed out by Brössel and Huber (2014), confirma-

tion measures also have an application in experimental design. More precisely, from

a Bayesian point of view, the best experiment to conduct is the one that can be ex-

pected to have the greatest onfirmational impact, where the expectation is calculated

over the prior probabilities of the possible evidence, given the candidate experimen-

tal design. The confirmation measure that is standardly used (implicitly) for this

purpose in the literature on Bayesian experimental design is the log-ratio measure.

Brössel and Huber instead use as their illustration the Kemeny-Oppenheim measure

of confirmation. I. J. Good, on the other hand, advocated using the log-likelihood

measure for the same purpose (Good, 1985). Interestingly, as was just pointed out,

the Kemeny-Oppenheim measure and the log-likelihood measure are ordinally equiv-

alent, and are for that reason generally regarded as equivalent in the philosophical

literature. However, as we have seen, the fact that the Kemeny-Oppenheim measure

and the log-likelihood measure are ordinally equivalent does not imply that their

expectations will be ordinally equivalent; hence, the experiment that maximizes ex-

pected confirmation with respect to the log-likelihood measure will in general not

be equivalent to the experiment that maximizes expected confirmation with respect

to the Kemeny-Oppenheim measure—let me hasten to add that neither Brössel and

Huber nor Good claim that the expectations of these measures are equivalent.

5 Methodological and Concluding Remarks

Carnap (1962) first drew the distinction between the “comparative” and “quantita-

tive” questions of confirmation. As the previous sections make clear, we can draw

finer distinctions than that. In particular, the interval level occupies an intermediate

17Numerical examples are easy to come up with, but tedious. Note also that if there are many
hypotheses, then at least some of the probabilities must be small.
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position between the merely comparative (ordinal level) and the fully quantitative

(ratio level). For whatever reason, the comparative question analyzed on the ordinal

level has become the question that occupies philosophers’ attention. Why is that?

One possibility is that some philosophers simply believe the ordinal level to be the

most interesting level of analysis. I do not think this belief is warranted, but even

if it is granted, the arguments in the previous sections show that the quantitative

levels of analysis are by no means uninteresting. Several well known arguments that

make use of confirmation measures implicitly rely on a rejection of OET. Moreover,

many conclusions that we want to draw from the output of a confirmation measure

may only be legitimately drawn if the measure is assumed to be more than a mere

ordinal measure.

A different reason why philosophers may have focused on the ordinal level of

analysis is that they think the question of which confirmation is ordinally correct

must be settled before the more fine-grained question of which confirmation measure

has the right quantitative structure can be approached. Although this idea seems

intuitive, it is mistaken. Indeed, if we instead start with the desideratum that we

want a confirmation measure that we can interpret as, say, an interval measure and

not just an ordinal measure, then that puts significant restrictions on the functional

form that the confirmation measure can take, as argued in Vassend (2015).

Indeed, focusing on the interval level leads to a very different perspective on

confirmation measures. By definition, each class of interval equivalent confirmation

measures is a proper subset of a class of ordinally equivalent measures; but even

so, it is possible for two ordinally non-equivalent confirmation measures to exhibit

quantitative behavior that is more similar than the quantitative behavior exhibited by

two measures that are ordinally equivalent. For example, from a quantitative point

of view, the log-likelihood measure and the log-ratio measure are arguably “more

similar” to each other than the log-likelihood measure is to the Kemeny-Oppenheim

measure, even though the latter two measures are ordinally equivalent and the first

two are not, because the log-likelihood measure and the log-ratio measure will often

have numerically similar outputs.18 One consequence of this is that the log-ratio

18In particular, if the hypothesis space is large, it will generally be the case that p(E|¬H) ≈ p(E),
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and log-likelihood measures arguably give rise to divergence measures that are more

similar to each other than are the divergence measures derived from the log-likelihood

measure and Kemeny-Oppenheim measure. Focusing only on the ordinal level of

analysis therefore leads us to neglect quantitative similarities and dissimilarities that

cut across ordinally equivalent classes.

A final probable reason why philosophers have focused their attention on the or-

dinal level of analysis and have implicitly accepted OET is that many philosophical

Bayesians are subjective Bayesians who hold that an agent’s probability function is

supposed to represent the degrees of belief of the agent. It is already controversial

whether agents’ degrees of belief have the kind of quantitative structure that prob-

ability functions have. Several philosophers have endorsed an “anti-realism” about

probabilistic representations of belief states (e.g. Easwaran (2016)).

To reject OET for confirmation measures is apparently to contend that agents’

epistemic states have an even more fine-grained structure than is attributed to agents

according to probabilism. If, for example, IET is accepted, then not only do rational

agents have degrees of belief that are representable by probabilities; all differences

between differences (according to some confirmation measure) of an agent’s prob-

ability function also represent actual features of the epistemic state of the agent.

For Bayesians who already worry about the psychological realism of probabilistic

degrees of belief, the complex structure seemingly attributed to agents’ epistemic

states according to IET may be a bridge too far.

On the other hand, it is undoubtedly the case that we sometimes do have quan-

titative intuitions about confirmation, so there is a basis in human epistemological

for most H’s, and hence the log-likelihood measure and log-ratio measure will have numerically
similar outputs. Indeed, if the hypothesis space is parameterized by a continuous parameter, Θ,

then, for every θ ∈ Θ, we have l(θ, E) = log Pr(E|θ)
Pr(E|¬θ) = log Pr(E|θ)∫

Θ∗ Pr(E|θ)Pr(θ)dθ
, where Θ∗ is Θ

with θ taken out. But removing a single point from the parameter space will not have any effect
on the integral, so

∫
Θ∗ Pr(E|θ)Pr(θ)dθ =

∫
Θ
Pr(E|θ)Pr(θ)dθ = Pr(E). Therefore, l(θ,E) =

log Pr(E|θ)
Pr(E|¬θ) = log Pr(E|θ)

Pr(E) = lr(θ,E), and so l(θ,E) is actually identical to lr(θ,E) when the

hypothesis space is continuous. As far as I know, this fact has not been noted before. On the other
hand, the fact that the Kemeny-Oppenheim measure and the log-likelihood measure are ordinally
equivalent means that they will always agree on whether c(H,E) > c(H ′, E), but they will often
strongly disagree on whether the difference between c(H,E) and c(H ′, E) is small, large, or trivial;
their interval judgments are in other words quite different.
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experience for looking at the quantitative structure of confirmation measures. For

example, in the case of the paradox of the ravens, our intuition is that – in ordinary

circumstances – a non-black non-raven confirms the the proposition that all ravens

are black much less than a black raven does. And we often feel that a piece of

evidence fails to really discriminate between two hypotheses, so that the hypotheses

are intuitively confirmed to roughly the same extent.

Of course, the fact that we sometimes have strong quantitative intuitions about

confirmation does not mean we always do. But nor, should it be added, do we always

have strong ordinal intuitions. The Bayesian framework idealizes away these human

limitations, but the norms of Bayesianism presumably still hold for more limited

agents whenever the norms are applicable. Indeed, Bayesian norms, more generally,

can fruitfully be construed as conditional norms. For example, even though human

beings lack a completely ordered set of degrees of beliefs, Bayesian Dutch book

arguments tell you that, provided you do have degrees of belief and you intend to

use them in order to choose which bets to accept or reject, and you want to avoid

sure losses, then your degrees of belief need to be probabilistic. Accepting this norm

does not entail believing that your degrees of belief are always probabilistic or even

that it is always rationally required of you to have credences that are probabilistic.19

However, if you make it your goal to use a set of credences to choose how to act, then

accepting the norm implies you have to accept that the credences that are relevant

to your actions, at least, ought to be probabilistic.

Accuracy-based arguments for probabilism may reasonably be construed as es-

tablishing a similar conditional norm: if your goal is to have accurate credences in a

set of propositions, then your credences in those propositions need to be probabilis-

tic.20 But if you do not care about the truth value of some proposition, or you are

not attending to the proposition, then the conditional norm does not apply to you

with respect to that proposition.

In the same way, the arguments in this paper establish the following conditional

19Of course, many Bayesians want to argue for this stronger unconditional norm as well.
20Of course, philosophers often want to go further; they want to say, for example, that you ought

to have the goal of avoiding sure losses or having accurate credences.
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norm: if you have a set of confirmation scores and you intend to interpret the scores

in a certain way (e.g. to say that some of them are approximately the same) or use

them in a certain way (e.g. take their expectations), then your confirmation scores

cannot be on just an ordinal scale. This conditional norm only “kicks in” if you use

your confirmation measure in certain ways, and accepting the norm does not entail

believing that your confirmation judgments always will be or always ought to be

on an interval scale. The norm therefore does not make unrealistic presuppositions

about human psychology, nor does it make unreasonable demands.21
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