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A new axiomatic system OST of operational set theory is introduced in which the usual

language of set theory is expanded to allow us to talk about (possibly partial) operations

applicable both to sets and to operations. OST is equivalent in strength to admissible set

theory, and a natural extension of OST is equivalent in strength to ZFC. The language of OST

provides a framework in which to express “small” large cardinal notions—such as those of

being an inaccessible cardinal, a Mahlo cardinal, and a weakly compact cardinal—in terms

of operational closure conditions that specialize to the analogue notions on admissible

sets. This illustrates a wider program whose aim is to provide a common framework for

analogues of large cardinal notions that have appeared in admissible set theory, admissible

recursion theory, constructive set theory, constructive type theory, explicit mathematics,

and systems of recursive ordinal notations that have been used in proof theory.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

“Small” large cardinal notions in the language of ZFC are those large cardinal notions that are consistent with V = L.

Besides their original formulation in classical set theory, we have a variety of analogue notions in systems of admissible set

theory, admissible recursion theory, constructive set theory, constructive type theory, explicit mathematics and recursive

ordinal notations (as used in proof theory). On the face of it, it is surprising that such distinctively set-theoretical notions have

analogues in such disparate and relatively constructive contexts. There must be an underlying reason why that is possible

(and, incidentally, why “large” large cardinal notions have not led to comparable analogues). My long term aim is to develop

a common language in which such notions can be expressed and can be interpreted both in their original classical form

and in their analogue form in each of these special constructive and semi-constructive cases. This is a program in progress.

What is done here, to begin with, is to show how that can be done to a considerable extent in the settings of classical and

admissible set theory (and thence, admissible recursion theory).

The approach taken here is to expand the language of set theory to allow us to talk about (possibly partial) operations

applicableboth to sets and tooperations and to formulate the large cardinal notions inquestion in termsof operational closure

conditions; at the same time onlyminimal existence axioms are posited for sets. The resulting system, called Operational Set

Theory, is a partial adaptation to the set-theoretical framework of the explicit mathematics framework in [5]. The specific

small large cardinal notions treated here are those of being inaccessible, Mahlo and weakly compact. In the concluding

section, it is discussed how these might be extended in a systematic way to stronger notions.

As a general idea, operational set theory may be traced back to von Neumann’s theory of sets and functions [21]. That

allowed a natural formulation of the Replacement Axiom in operational terms (rather than as a metamathematically formu-

lated axiom scheme as is the case in ZF) as follows: if a is a set and f is an operation that is defined for each x ∈ a then the
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range of f restricted to a exists. An early version of the present approach was presented in [8], and in fair detail in [9]. The

historical notes and references at the conclusion give fuller background.

2. The system OST of operational set theory

L◦, the language of OST, extends the language L(=,∈) of ZF by a binary operation symbol ◦ for application, a unary

relation symbol ↓ for definedness and various constants to be specified (for which boldface letters are used). The terms

r, s, t . . . of L◦ are generated from the variables (a, b, c . . . f , g, h . . . x, y, z) and constants (distinguished by Roman boldface

letters or expressions) by closing under application.We write st or s(t) for ◦(s, t) and st1 . . . tn or s(t1, . . . tn) for the result

of associating application to the left, as (. . . (st1) . . . tn). The underlying logic of OST is the (classical) logic of partial terms

LPT due to [3, pp. 97–99]. The atomic formula t ↓ expresses that t is defined; compound terms such as st may or may not

be defined even when s and t are both defined. The distinctive modification of ordinary first-order logic in LPT lies in the

scheme for universal instantiation:

∀xϕ(x) ∧ t ↓→ ϕ(t)

and the dual scheme for existential instantiation. In addition, we assume the strictness property for definedness in the sense

that (st) ↓ implies both s ↓ and t ↓ and (s = t) and (s ∈ t) imply the same.1 Partial equality of terms is defined by:

s 	 t := (s ↓ ∨t ↓→ s = t)

Informally speaking, operations are regarded as intensional objects given by representations (or codes) in the universe V of

all sets of extensional operations whose domain is all or part of V . Thus any set can serve to represent (or code) an operation.

In particular, xx is admitted as a term, though for any given x, wemay not have (xx) ↓. Indeed, given the combinatory axioms

and the axiom for the logical operation of negation that will be introduced below, we can produce a Russellian term obtained

from the term xx that is not defined. It is for this reason that operations are considered to be possibly partial. In any case

it is natural that not all operations are total, just as is the case in arithmetic, analysis and recursion theory. The advantage

of our setup is that operations may be applied to operations, and thus the use of higher types is built in. We shall show in

OST how functions in the set-theoretical sense determine operations and how, conversely, operations regarded extensionally

determine functions.

The axioms of OST divide into five groups:

(1) Applicative axioms;

(2) Basic set-theoretic axioms;

(3) Logical operation axioms;

(4) Operational set-theoretic axioms;

(5) Induction on sets.

2.1. Applicative axioms

In axiom group 1, we have two constants k and s for the (partial) combinators for constant operations and substitution,

respectively.

(i) k �= s

(ii) kxy �= x

(iii) sxy ↓ ∧ sxyz 	 x(z, yz)

As usual from (i)–(iii) we can introduce for each term t a term λx·t whose variables are those of t other than x and is such

that

λx·t ↓ ∧ (λx·t)y 	 t(y/x)

and then a recursor rec (or fixed point operator) with

rec(f ) ↓ ∧ [rec(f ) = g → gx 	 fgx]
For the constructions of λx·t and rec, see [5, pp. 95–96].

2.2. Basic set-theoretic axioms

These consist of the axiom of extensionality, the existence of the empty set, closure under unordered pairs, closure under

unions, and existence of the first infinite ordinal, all as usually formulated in ZF.

1 This corresponds to the E+ logic with equality and strictness of [20, pp. 52–53], where E(t) is written instead of t ↓.
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On the basis of these axioms we make free use of ordinary set-theoretic notions and notations in the following. In

addition, we shall treat classes A, B, C . . . formally as given by abstracts {x | ϕ(x)} where ϕ is an arbitrary formula of L◦; we

write t ∈ {x | ϕ(x)} for ϕ(t). When a class is extensionally equivalent to a set we identify it with that set, in particular, every

set a determines the class a = {x | x ∈ a}. But we do not assume (as in the Bernays–Gödel system) that sets are those classes

that are elements of other classes or that subclasses of sets are sets. The class of all sets is V := {x | x = x}, and the class of

all ordinal numbers is denoted ORD. The truth values 1 (true) and 0 (false) are identified with the sets {0} and 0, respectively,

so the set of Boolean values is simply the set {0, 1}.
2.3. Logical operations

In the axiom groups 3 and 4 we write:

(f : A → B) := (∀x ∈ A)(fx ∈ B)

(f : An → B) := (∀x1 . . . xn ∈ A)(f (x1 . . . xn) ∈ B)

As special cases, for sets a and b, (f : a → V)means that f is total on a, and (f : V → b)means that f maps all sets into b,

while (f : V → V)means that f is a total operation; similarly for Vn in place of V . Note that under our definition, if f : A → B

and A′ ⊆ A and B ⊆ B′ then f : A′ → B′. When f : a → {0, 1}, we may regard f as the characteristic function of a definite

property (or predicate) when restricted to the set a; similarly with V , Vn in place of a.

In axiom group 3, we have constants el, cnj, neg, unib, respectively, for the definite predicate of elementhood, the Boolean

operations of conjunction and negation, and the operation of bounded universal quantification.

(i) (el : V2 → {0, 1}) ∧ ∀x, y[el(x, y) = 1 ↔ x ∈ y]
(ii) (cnj : {0, 1}2 → {0, 1}) ∧ (∀x, y ∈ {0, 1})[cnj(x, y) = 1 ↔ x = 1 ∧ y = 1]
(iii) (neg : {0, 1} → {0, 1}) ∧ (∀x ∈ {0, 1})[neg(x) = 1 ↔ x = 0]
(iv) (f : a → {0, 1}) → unib(f , a) ∈ {0, 1} ∧ [unib(f , a) = 1 ↔ (∀x ∈ a)(fx = 1)]

2.4. Operational set-theoretic axioms

The axiom group 4makes use of three new (functional) operation constants, S for separation, R for replacement (or range)

and C for universal choice.

(i) Separation for definite properties

(f : a → {0, 1}) → S(f , a) ↓ ∧∀x[x ∈ S(f , a) ↔ x ∈ a ∧ fx = 1]
(ii) Replacement

(f : a → V) → R(f , a) ↓ ∧∀y[y ∈ R(f , a) ↔ (∃x ∈ a)(y = fx)]
(iii) Choice

∃x(fx = 1) → Cf ↓ ∧f (Cf ) = 1

2.5. Induction on sets

∀x((∀y ∈ x)ϕ(y) → ϕ(x)) → ∀xϕ(x)
for all formulas ϕ(x . . .) of the language L◦.

This is called the Ind∈ schema. An interesting restriction of this scheme is obtained by taking ϕ(x, f ) to be fx = 1 for

f : V → {0, 1}, i.e., for f a definite property. By the system OSTr is meant OST with Ind∈ replaced by this special case.

Note that OST does not contain the power set operation and that we do not have a logical operation corresponding to

unbounded universal quantification. These may be considered separately by introducing the new constants P and uni with

the following axioms:

(Pow) (P : V → V) ∧ ∀x∀a(x ⊆ a ↔ x ∈ P(a))
and

(Uni) (f : V → {0, 1}) → uni(f ) ∈ {0, 1} ∧ [uni(f ) = 1 ↔ ∀x(fx = 1)]
Below we shall consider the systems OST ± (Pow)± (Uni), with Ind possibly restricted to definite properties.2

3. First consequences of OST

The notions and results in this section assume only OST or inessential extensions of its language L◦ by the adjunction of

constant symbols.

2 Jäger [11–13] has continued the work initiated in this paper. Some of his symbolism differs frommine. In particular, he uses blackboard font for certain

of the constant symbols, including S, R, and C; he also uses P for P. Finally, Jäger uses an unbounded existential operator E in place of my unbounded

universal operator uni; these are interdefinable using the negation operator.
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Definition 1. Write App(x, y, z) for xy 	 z. The ess-�(App+) (essentially existential, positive in App) formulas ϕ,ψ , . . . are
generated as follows:

ψ := (x = y) | ¬(x = y) | (x ∈ y) | ¬(x ∈ y) | App(x, y, z) |
| ψ ∧ χ | ψ ∨ χ | (∀y ∈ x)ψ | (∃y ∈ x)ψ | ∃yψ

The �0 formulas are those generated without App and unrestricted ∃; they are thus (equivalent to) the �0 formulas in

the usual sense of L. The�1 formulas of L are (up to equivalence) those generatedwithout App. A formula is in e-�+ form if it

is provably equivalent to one in ess-�(App+) form allowing substitution of constant symbols for one or more free variables.

Thus for any terms s and t, the formulas s = t and s ∈ t are in e-�+ form while, in general, s �= t and s �∈ t are in that form

only for s and t variables or constants. Ifψ is in e-�+ form and t is a term that does not contain the variable y, (∃y ∈ t)ψ is

in that form while, in general, (∀y ∈ t)ψ is in that form only for t a variable or constant.

In the following,ψ(x) indicatesa formulawith freevariablescontained inx = x1, . . . , xn, and t(x) iswritten for t(x1, . . . , xn).

Lemma 1.

(1)With each�0 formulaψ(x) is associated a closed term tψ such that

tψ ↓ ∧(tψ : Vn → {0, 1}) ∧ ∀x(ψ(x) ↔ tψ(x) = 1)

(2)With each e-�+formulaψ(x) is associated a closed term tψ such that

tψ ↓ ∧∀x(ψ(x) ↔ tψ(x) = 1)

Proof. First define a characteristic function eq of equality using the axioms for logical operations and the equivalence

x = y ↔ (∀z ∈ x)(z ∈ y) ∧ (∀z ∈ y)(z ∈ x). Then the rest of (1) follows by inductionusing those axioms. For (2), first define

ap = λx·λy·xy; then App(x, y, z) ↔ eq(ap(x, y), z) = 1. The only new thing that has to be considered in (2) is unrestricted

∃. Givenψ(x) = ∃yχ(x, y) and tχ for χ(x, y), we can take tψ = λx·tχ (x, C(λy·tχ (x, y))). �

Corollary 2. We have closed terms 0 for the empty set, ω for the first infinite ordinal, p for unordered pair, and
⋃

for union.

Proof. Each is given by an axiom of the form ∃yψ where ψ is in�0 form, and where y is the unique set specified in terms

of the parameters ofψ . Then apply C to choose that y.3 �

Define, as usual in L, 〈x, y〉 = {{x}, {x, y}}, dom(a) = {x | ∃y(〈x, y〉 ∈ a)}, rng(a) = {y | ∃x(〈x, y〉 ∈ a)}, and a × b = {z |
(∃x ∈ a)(∃y ∈ b)(z = 〈x, y〉)}. Each set a determines the binary relation a ∩ {dom(a)× rng(a)}. We write Fun(a) if (∀x ∈
dom(a))∃!y(〈x, y〉 ∈ a), and, if this holds, a(x) for (ιy)〈x, y〉 ∈ a. The following two lemmas provide closed terms corre-

sponding to these operations.

Lemma 3. We have a closed term prod such that for each a, b, prod(a, b) ↓ and prod(a, b) = a × b.

Proof. Let f be such that for each x, y, f (x, y) = 〈x, y〉, and let fx = λy·f (x, y). Then for each a, b and x ∈ a, fx : b → {x} × b

and R(fx , b) = {x} × b. The operation g = λb.λx·R(λy·f (x, y), b) thus has R(g(b), a) = {{x} × b | x ∈ a} and so a × b =⋃
R(g(b), a). �

Lemma 4.

(1) We have closed terms p0 and p1 such that for each x, y, p0〈x, y〉 = x and p1〈x, y〉 = y.
(2) We have closed terms dom and rng such that for each a, doma = dom(a) and rnga = rng(a).
(3) We have a closed term op such that for each a, opa ↓ and if Fun(a) and f = opa then for each x ∈ dom(a), fx = a(x).

Proof. (1) is obtained using Lemma 1, Corollary 2, and the choice operator C. (2) is obtained from the fact that dom(a)
and rng(a) are included in the double union of a, and we then apply the separation operator S. For (3) we can take opa =
λx·C(λy·t(x, y, a))where t(x, y, a) = 1 ↔ 〈x, y〉 ∈ a.4 �

Note that by (3) every function in the set-theoretical sense is represented by an operation (in a uniform way). The following

gives a partial converse, namely that the restriction of an operation to a set is extensionally equivalent to such a function.

3 If it is desired to avoid the choice operator C for such simple conclusions, one could of course assume constants 0,ω, p,
⋃

with their defining properties

as axioms in group 2.
4 Again, use of the choice operator C can be avoided by modification of the group 2 axioms at the outset.
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Lemma 5. There is a closed term fun such that for each f , a if f : a → V then fun(f , a) ↓ and if c = fun(f , a) then Fun(c) and
for each x ∈ dom(c), c(x) = fx.

Proof. Let b = R(f , a), so f : a → b. We want c = {〈x, y〉 | x ∈ a ∧ y ∈ b ∧ fx 	 y}. This is given by c = {z | z ∈ a × b ∧
eq(apfx)y = 1}, which is constructed using prod and separation, S. �

Lemma 6. The Axiom of Choice, AC, holds.

Proof. The operation g = λx·C(λy·el(y, x)) is such that for each x �= 0, gx ∈ x. By the preceding, given a set a such that each

x ∈ a is nonempty, g restricted to a determines a choice function on a in the usual sense. �

4. The consistency strength of OST and some extensions

Recall the system KPω of Kripke–Platek (or admissible) set theory with the axiom of infinity (see [2]). It is formulated in

the language L of ZF and its axioms are those for extensionality, empty set, unordered pair, union, infinity,�0-Separation,�0-

Collection, and the Ind∈ scheme. As usualwewrite AC for the Axiomof Choice and V = L for the Axiomof Constructibility. As

is well known, the systems KPω, KPω + AC, and KPω + (V = L) (which proves AC) are all of the same consistency strength;

moreover, KPω + (V = L) is conservative over KPω for formulas which are absolute (i.e., provably�1) w.r.t. KPω.

Theorem 7. (Strength of OST)

(1) KPω + AC ⊆ OST.
(2) OST is interpretable in KPω + (V = L).

Proof. (1) follows from the results of the preceding section. In particular, we use Lemma 1 and the separation operator, S,

to establish �0-Separation, while the choice operator C is employed, in addition, in the proof of �0-Collection. For (2) we

interpret the applicative structure in the codes for functions that are �1 definable in parameters, obtained by uniformizing

the�1 predicates. This proceeds as in [2, pp. 164–167], which is applicable since under the assumption V = L, the universe is

recursively listed in the sense given there. The treatment in Barwisemust bemodified slightly to account for parameters; this

is done as follows. First one constructs a�1 formulaψ(w, x, y, z) such that for each�1 formula θ(x, y, z) one can effectively

find an e ∈ ω such that θ(x, y, z) is equivalent to ψ(e, x, y, z). Then one uniformizes ψ with respect to y, i.e., produces a �1

formulaψ∗(w, x, y, z) that satisfies:

ψ∗(w, x, y, z) → ψ(w, x, y, z)

and

∃yψ(w, x, y, z) → ∃!yψ∗(w, x, y, z)

Given a set parameter p, one takes 〈e, p〉 to be the code of the partial function

〈e, p〉(x) = y ↔ ψ∗(e, x, y, p)

One can thendefinegeneralized “S-n-m” functions in a straightforwardway, and from those give amodel of the applicative

axioms of OST. The rest of the interpretation proceeds in a straightforward way. �

Conservation of OST over KPω for absolute formulas is a direct consequence. A different proof of Theorem 7(2) is given in [11]

by a method using a special inductive definition to interpret the applicative structure in a way that is adaptable to various

extensions of OST, such as dealt with in the next statement. This provides a system of operational set theory of strength

exactly ZFC, thus confirming a conjecture made by Thomas Strahm.

Theorem 8 [13].

(1) ZFC ⊆ OSTr + (Pow)+ (Uni).
(2) OSTr + (Pow)+ (Uni) is interpretable in ZF + (V = L).

Proof. Extending Lemma1, inOSTr + Uni every formulaψ of L determines a closed tψ satisfying condition (i) of that lemma.

Thus we obtain full separation and full reflection. In addition, well-foundedness of the∈ relation follows from the restricted

Ind∈ axiom. Finally, the power set axiom is a consequence of (Pow). This proves (1). The proof of (2) requires a rather special
inductive definition of the applicative structure that is given in [13]. �
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Again, this implies a conservation result, in this case of OSTr + (Pow)+ (Uni) over ZFC for absolute formulas.

Correction to [9]: Theorem4 there stated that (1) ZFC ⊆ OST + (Pow) and (2)OST + (Pow) is interpretable in ZFC + (V =
L). Of these, (2) is correct, but not (1), as pointed out to me by Michael Rathjen.5

Questions: What is the strength of each of the following?

(1) OST + (Pow)
(2) OST + (Uni)

The system of (1) has been investigated in [13] with the following results in analogy to Theorem 8. Let KPω + (Pow) be
the systemKPω enlarged by the power set axiom in its usual set-theoretical formulation, with an associated constant symbol

for the power set operation. Then we have:

(a) KPω + (Pow)+ AC ⊆ OST + (Pow)
(b) OST + (Pow) is interpretable in KPω + (Pow)+ (V = L).

What is not known is whether the system KPω + (Pow) is of the same strength as the system with V = L; curiously, the

usual argument for interpreting V = L does not apply without the use of stronger principles.

Jäger [12] has gone on to determine an interesting extension of the Bernays–Gödel theory of sets and classes that is of the

same strength as OST + (Pow)+ (Uni).

5. Operational formulation of some large cardinal axioms

In the following, we use lower case Greek letters α,β , γ , . . . , κ , λ, . . . , ξ , η, ζ to range over the ordinals, defined as usual.

� is also written here for the class ORD of all ordinals.

Definition 9.

(1) Reg(κ) := (κ > 0) ∧ ∀α, f [α < κ ∧ (f : α → κ) → ∃β < κ(f : α → β)].
(2) Inacc(κ) := Reg(κ) ∧ (∀α < κ)(∃β < κ)[Reg(β) ∧ α < β].
(3) Reg1(κ) := (κ > 0) ∧ ∀f [(f : κ → κ) → ∃α < κ(0 < α ∧ f : α → α)].
(4) Mahlo(κ) := (κ > 0) ∧ ∀f [(f : κ → κ) → (∀ξ < κ)(∃α < κ)(ξ < α ∧ Reg(α) ∧ f : α → α)].
(5) The statements Reg, Inacc, Reg1, and Mahlo are obtained by replacing κ in the definitions on the r.h.s. by�.

The notions (1)–(4)make sense in the language L of ZFCwhenwe take the ‘f ’ variables to range over functions in the usual

set-theoretical sense. In ZFC, Inacc(κ) holds if κ is weakly inaccessible. Under a hypothesis such as V = Lwhich implies GCH,

that is equivalent to being strongly inaccessible. Turning to the language L◦, the notions (1)–(4) make sense when both the

‘f ’ variables are interpreted in the extensional set-theoretical sense as well as in the intensional operational sense. Moreover,

by Lemmas 4 and 5 the results are equivalent when read in both senses. The notions in (5) onlymake sense in the operational

language L◦.

Lemma 10. OST proves the following:
(1) Reg1(κ) ↔ Reg(κ) ∧ κ > ω.
(2) Reg1 ↔ Reg.

Proof. We begin with (2). Define normal operations as usual (i.e., continuous and strictly increasing), show that every

such operation has arbitrarily large ω-cofinal fixed points, and show that every f is majorized by a normal g. Then to show

Reg → Reg1, given f : � → �, using such g, find α > 0 with gα = α, so that then g : α → α, hence also f : α → α.
Conversely, given α > 0 ∧ (f : α → �), choose normal g majorizing f with g0 = α, and find β > 0 with g : β → β . Then
α < β and so f : α → β .

To prove (1), one relativizes the argument to κ . �

Remark. The statement corresponding to Lemma 10(1) in ZFC, with functions in the set-theoretical sense instead of

operations as here was stated in [1]. This was used by them to motivate a definition of Reg2, again with set-theoretical

functions. Here, we do the same with operations instead of functions.

Definition 11.

(f ≡ g) :↔ ∀x(fx 	 gx)

(f �α ≡ g�α) :↔ ∀ξ < α(f ξ 	 gξ)

5 Personal communication.
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Write f ∈ κκ if f : κ → κ , and F : κκ → κκ if

∀f ∈ κκ(Ff ∈ κκ) ∧ ∀f , g ∈ κκ [f ≡ g → Ff ≡ Fg]
We say F is κ-bounded if

(∀f ∈ κκ)(∀ξ < κ)(∃γ < κ)(∀g ∈ κκ)[f �γ ≡ g�γ → Ff ξ = Fgξ ]
α is a κ-witness for F if

0 < α < κ ∧ ∀f ∈ κκ [f ∈ αα → Ff ∈ αα]
Similarly, define f ∈ ��, F : �� → ��, F is bounded, and α is a witness for F , by replacing κ with� throughout.

NB. ‘F ’ here is an operation variable, like ‘f ’.

Definition 12. Reg2(κ) :↔ ∀F [F κ-bounded → ∃α(α is a κ-witness for F)]
Reg2 :↔ ∀F [F bounded → ∃α (α is a witness for F)].
Aczel and Richter [1] state—and Richter and Aczel [18, pp. 329–331], prove—that if we use set-theoretic functions in place

of operations, then in ZFC, κ is Reg2 iff κ is weakly compact. By Lemmas 4 and 5, the set-theoretical interpretation of Reg2(κ)
is equivalent to its definition above, since κκ can be replaced by the set of all functions from κ to κ in the set-theoretical

sense, and then F can be replaced by a function on that set to itself. On the other hand, it is not clear if the operational

sentence Reg2 has a set-theoretical interpretation.

6. Connections of regularity statementswith reflectionprinciples and analogues of small large cardinals on admissible

sets

The two Aczel and Richter papers cited above also give an analogue formulation of these notions in terms of recursion

theory on admissible sets. If κ is an admissible ordinal andwe interpret fx 	 y as {f }(x) 	 y in the sense of the�1 recursion

theory on κ (or Lκ ) then each statementϕ translates into a statementϕAd which gives the analogue notion. In the case of Reg2
the analogue notion is proved in their paper [18] to be equivalent to�3-reflection (see below). Formalizing the arguments

of Aczel and Richter, one should arrive at the following, though I have not checked the details.

Theorem 13.

(1) OST + (Inacc) is interpretable in KPi + (V = L).
(2) OST + (Mahlo) is interpretable in KPM + (V = L).
(3) OST + (Reg2) is interpretable in KPω + (�3 − Reflection)+ (V = L).

In each case, we interpret the theory on the left in the theory on the right using the translation of ϕ as ϕAd. While it is

not obvious that the theories on the right are contained in those on the left, it is hard to believe that they are any stronger.

In terms of the relation ≡ of consistency equivalence, I thus make the following:

Conjecture 14.

(1) OST + (Inacc) ≡ KPi.

(2) OST + (Mahlo) ≡ KPM.

(3) OST + (Reg2) ≡ KPω + (�3 − Reflection).6

Aczel and Richter [1] indicate a generalization Regn of Reg2, called n-regularity for each n ≥ 2, defined in the language

L of ZFC. This uses a notion of boundedness (a form of continuity) and of witness extended to higher types. They state the

following (op. cit. p. 7):

(1) κ is 1-regular iff κ is�1
0-indescribable.

(2) For n > 0, κ is n + 1-regular iff κ is strongly�1
n-indescribable.

6 The referee has suggested that related conjectures should hold if we replace OST on the l.h.s of (1)–(3) by OSTr + (Pow)+ (Uni). One should also

consider the same with the adjunction of the existence of a κ such that Inacc(κ), or Mahlo(κ), or Reg2(κ), respectively. For example, the resulting system

in this last case should be equivalent to ZFC plus the existence of a weakly compact cardinal. For the notions in ZFC of Mahlo and weakly compact cardinals,

cf. [15, Ch. 1].
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Aczel and Richter go on to formulate an analogue notion on admissible sets as follows:

Roughly speaking, the notion of n-admissible is obtained from that of n-regular by replacing in the definition of the

latter, bounded by recursive [in the sense of admissible recursion theory] and replacing the functions by their Gödel

numbers (op. cit., p. 8).

Thus Aczel and Richter propose that the ordinal |�0
n+1| associated with non-monotone inductive definitions generated

by operators � in the class�0
n+1 are the appropriate recursive analogue of the first�1

n-indescribable cardinal. But there is

no obvious direct connection of this choice of analogue with the classical notion.

The paper [18] proves (2) for the case n = 1, but unfortunately does not give the general definition of n-regularity and

refers to the earlier publication for the definition of n-admissibility. I asked Wayne Richter if he would supply me with the

former, and he did so for 3-regularity, but the details are somewhat more complicated than would be suggested by a reading

of [1], and I have still not seen the general definition. Modulo that, the following is plausible tome: let Regn(κ) express in the

language of OST that κ is n-regular, wherewe use operations satisfying suitable hereditary extensionality conditions in place

of functionals of higher type. Then Regn(κ)
Ad is equivalent to κ being n-admissible. To prove this, I expect one would make

use of a generalization of the Myhill–Shepherdson theorem to finite types in admissible recursion theory; that is applied

in ordinary recursion theory to show the equivalence of hereditarily extensional operations and hereditarily continuous

functionals (cf. [16, p. 117]).

The primary aim here would be to formulate a general abstract reflection principle in the language of OST covering both

classical and admissible set theory, from which the above small large cardinal principles and others follow. This should

further have some intuitive justification and follow from syntactic reflection principles (indescribability properties) in the

theory of small large cardinals, including those that use higher type class variables (cf. [15, pp. 57–67]). Steps in that direction

were taken in the conclusion of [9], where it was sketched how Inacc and Mahlo follow from a certain operational reflection

principle. But already to obtain Reg2, stronger principles, yet to be formulated, will be needed.

7. Historical notes

(1) The axiomatization by [21] of a theory of sets and functions is a precursor in spirit of OST. Von Neumann’s functions

are of type 1 over the universe of sets and are closed under combinatory and logical axioms; it would be of interest to

re-examine that work in the light of OST. For improvements of von Neumann’s formulation see [19].

(2) My use of operational theories of various kinds dates back to [5], “A language and axioms for explicit mathematics”.

Models of extensions of set theory by relatively weak operational axioms were produced there (pp. 109–110), by

adaptation of the notion of prime computability over abstract structures due to [17]. Further uses of such models

were made in various subsequent publications including Feferman [6,7]. The germs of the present program are to be

found in [8], with the first full presentation in the unpublished notes [9].

(3) The paper [4] presents a system of operational set theory that has some overlap with OST + (Pow)+ (Uni); its consis-
tency is proved by amodel construction like that of my paper [5]. The purpose of his system is to provide a computation

system that can make fuller use of the expressive power of set theory.

(4) As mentioned above, Jäger [11] gives full details of a proof of Theorem 7 different from the one sketched here, and

uses that method in [13] to obtain the results about the strength of OST + (Pow) and OSTr + (Pow)+ (Uni) stated in

Section 4.
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