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The model constructed. in Corollary 20 is not isomorphic to the
principal model of 4,. If we let a be the smallest model number, we ghall
obtain a f-model for 4, of power 2%, which is not elementarily equivalent
to the principal model of 4,. Namely, our model will not contain any
other model of 4, as an element.

CoROLLARY 21. Without Martin’s Awxiom we can prove the emistence
of uncouniable B-models of A, of height o for every model number a.

An analogous result concerning the Kelley-Morse set theory wag
proved in the same way in the author’s doctoral thesis. ’

Added in proof. A proof of a much stronger theorem was recently given by H. Fried-
man in his unpublished paper Uncountable models of set theory.
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Two notes on abstract model theory

I. Properties invariant on the range of
definable relations between structures

by

Selomon Feferman (%) (Stanford, Cal.)

Abstract. Suppose I is any model-theoretic language satisfying the many-sorted
interpolation property and that R is an L-definable or even IL-projective relation
Dbetween L -structures. It is shown that if (1) an L-sentence p holds in 9% just in case
it holds in M, whenever R (M, ;) and R (M, N,) then (2) there is an L -sentence y such
that p holds in M if and only if v holds in M whenever R(M, N). This has various results
of Beth, Robinson, Gaifman, Barwise and Rosenthal for familiar languages as immediate
corollaries.

Introduction. Abstract (or general) model-theory deals with notions
that are applicable to all model-theoretic languages L. Bach such L is
determined by & relation MM ko, called its satisfaction relation, in which It
ranges over a collection Str, of siructures for I and ¢ ranges over a col-
lection of objects Stey, called the sentences of L. The notions of general
model theory are just those which can be expressed in terms of these
basic ones (using ordinary set-theoretical concepts). Examples of such
ate: elementary class, projective class, Lowenheim-Skolem properties, Hanf
number, interpolation property, compactness properties, categoricity. Typic-
ally, the results apply to all I satistying some simple conditions or charac-
terize some given L, by means of such conditions. -

Lindstrom [L.2] provided the first work clearly of this character.
Tts point of departure (via [L1]) was Mostowski’s characterization of L, ,
among certain languages with generalized quantifiers [Mo]. Since then,
the subject of general model theory bas been especially developed by
Barwige [B2]-[B4]. The present two notes are a sequel to my own contri-
bution in § 3 of [F2], making essential use, as there, of many-sorted
structures.

(*) Guggenheim Tellow 1972-73. The author is indebted to the G}lggenheim
Toundation and to the U.E.R. de Mathématiques, Université Paris VII, for ﬂ]eﬂ‘. generous
agsistance during the period in whieh these notes were prepared for publication.
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The first of these notes deals (for reasonably arbitrary I) with I.
(projectively) definable relations R between structures. That is, the clags
of [, N] for which R(IM, N) holds is assumed to be a projective clagy
for L. A sentence ¢ of L is said to be énvariant on the range of R if for every
0, Ny, N
(1)  R(M, Ny) and R(M, %) implies [N, ko if and only if N, ke].

It‘is shown that if L has the many-sorted interpolﬁ-tion property, then
@ is invariant on the range of R just in case it can be uniformly reduced
to & property v of the domain of R, in the sense that for every M, N:

2) R(M, N) implies [N F o if and only if Mk y].

Using a suitable definition of compactness property, this theorem is also
extended to certain infinite sets of sentences. It then has various results
of Beth, Robinson, Gaifman, Barwise, and Rosenthal as immediate
. corollaries.

More briefly, the succeeding note deals with a model-theoretic
generalization of recursion theory employing a notion: § s semi-in-
variantly implicitly definable in L, in place of: 8 is recursively enumerable
Simple sufficient conditions (which apply to a variety of familiar la,ngu:
ages) are found for the class of L-valid sentences to be s.ii.d. in L.

' § 1. Some basic notions for abstract model theory. The following set-up
in §ees. 1.1-1.4 was presented in [F2] (3). It is repeated here for con-
venience and to make some minor but useful modifications; cf. § 3 (loc
f:xt.) for further details. The material on compactness properties in Sec. 1.5'
is new. ‘

1.1 Types and structures. Each similarity type v may be considered
to be a disjoint union

7 = Sort(z) v Symb (z)
Wher.e J = Sort‘(r) is & non-empty set of sorts and Symb(z) is a set of
relation, ope?a,mon and constant symbols. A structure IR of type v may
t‘hen be congidered to b(? & function with domain = which assigns to each
; le a:ﬁ .nonigmpty c}:omam M; = M(j) and to each symbol R, For¢inr,
relation E, operation F, or individual ¢ of the iate kind a
the A1, We waite y : appropriate kind among
W= (Mpjegsen) -

Str(v) denotes the collection of all structures of type =
’ .
¥, 7'y ... Tange throughout over finite similarity types. ¢, ¢, ... are
used to range over subsets of such types, and need not themse’lves be
(%) A similar setup has been elaborated by Barwise in his notes [B4]. There are

;nsmm‘“ 1(bui: poss”ibly cqnf:mi.ug) terminological differences from [B2], [B4]: where Barwise
es “language”, “logic”, I use “similarity type” and “language”, respectively.
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types. It Me Str(r) and o C 7, then M | o is the function M restricted
to o, which need not be a structure. v = [gq, 0y, ..., 04] is written when
the o; are disjoint and 7= ¢, 0y ... v 0. Then for a structure M of
type 7, We write

M= [Emoy Emlr .y Emn]

where 9% = M } os. These notations are modified slightly when the o;
are singletons, e.g., M= [My, &1, ..., ¢a] When oi= {es} (i=1) and M
= [My, By -, Bu] when o= {Ri}, efc. -

Let v C 7/, M e Str(v), M’ e Str(r'). Then M’ is called a ='-expansion
of M (and M a v-retract of M) if M = M’ } v; this is also written M’ e 7'~

© _Exp(M). Given I C Str ('), the projection of 3 along (v'—7) is defined

to be the class
eh) Hy_ydo = {Ph TM e 7' —Bxp (M) [M' e F]} .
A renaming of types is given by any function y: = -(1;_?10 7' for which
y: Sort(z) 1—_—} Sort(7’) and y sends each symbol s of v into a symbol of
onto ~
corresponding kind in '. We then write 7 =, 7'. This induces a relation
M =, M between I e Str(z) and M’ e Str(r'), which holds whenever .
M(s) = W' (y(s)) for each s e Symb(z).
1.2. Languages. A model-theoretic longuage T is defined to be a system
(1) L = (Typz, Strz, Stez, Fr)
where Typz is a non-empty. set of similarity types, called the admitted
types of L, and Stryz, Ster, Fr are functions with domain Typr such thab
for each admitted z: )
(i) Strz(r) is a sub-collection of Str(r), called the admitted structures
for L(z),
(i) Ster(r) is a collection, called the sentences of L(z), and
(iii) kg, is @ sub-relation of Strz(z) X Stez(r), called the satisfaction
(or truth) relation of L(). ‘

Throughont the following, @,v, ... Tange Over Ster = &j Stez(z).
<eTYPL

Where possible without ambiguity, 7 andjor L are omitted.
L is said to be regular if it satisties the following conditions for all
admitted types =, 7'v
(2) (i) Expansion. v C=1' =8Ste(r) CSte(r); I e Stro(v) = m
— (I } 7) eStry(r) and peSte(r)=[DFo< M kgl
(i) Renaming. Bach 7=, ¢ induces a 1-1 correspondence
7: Ste(r)—Ste(r') such that if M e Strz(7) and M’ St (z') and
M =, M', then M e Stry(z’) and MF e« W' E y(p).
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(iii) Tsomorphism. If M e Stry(r) and N eStrl(r) and M = g
“then D' € Strz(z) and M E pe M F . - ’

In practice, formulas are introduced before sentences in setting up
a language. But it is possible to treat formulas in terms of sentences ip
this general framework. Namely, by a formula ¢ of L(z) we mean a gen-
tence of any L([z, ¢, ..., ¢x]). In this case we indicate ¢ by ¢(a, ..., )
(with “variables” #; of the same sort as ¢;) and take

(3) ' MEg(a, -'-7“11r)§’0£[gﬁ7a’1?-'-:an] Fo.

. 1.3. Examples. The following indicates how familiar languages are
to be construed as model-theoretic languages in the sense of 1.2 (1).

EL L, (for A a transitive eclass) has formulas generated by the oper-
ations ~¢, A a%p and A A pfor each set of formulas aed. (For regular,

pEQ

L, , i8 Ly, where H(x) consists of all sets of hereditary cardinality <z.)
Typr= Typ and Ster(r) = Str(r) for these languages. Sentences and
satisfaction are defined as usual. -

E2. L,(Q,) makes use in addition of the operation (§, ") inter-
preted in the definition of satisfaction as, “there are at least » elements ¢
satisfying ¢.” There is no change in Typyz, Stry.

B3. L, ,(0) or w-logic in L, , takes Typz to consist of all 717,
where 7, is the type of N = (v, 0,") and Strz(r) consists of all SN with
M+ 7o = R Then Ster, k1 are the restrictions to these particular types
and structures of Stez, , and kg, ,, resp. (In the same way we can as-

- sociate an w-logie L (w) with any L,.)

Ee!:. L®, or 2nd-order logic in L, , takes Tyf)L so that in each
admitted v the set of sorts is divided into two ‘equivalent parts

Sort(7) = Ind(7) v Sub(z);

feach. J € Ind(v) is considered a sort for “individuals” and each correspond-
ing j* e Sub(7) the sort for “subsets” of these. Among the relation symbols
of 7 are to be a binary ¢; of type jx j* for cach j e Ind (7). The admitted
structtu’es. (up to =) are those for which My = ¢(M,;) and ¢ is the
membership relation in M;x $(M;). The sentences;and satistaction are
then.the restriction from I, , to these admitted types and struetures.
(Again we can associate a 2nd-order logic LY with any L,.)
5. L, , (2> o) may be treated similarly.

. tEema,rk. Evsan though the present notions prima facie provide only
orl zgo-val'ueol logics, we can also construe many-valued logies, Boolean-
valued logic, ete. ag model-theoretic languages in the above sense. For
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example, a B = (B; ...)-valued structure M= (M;...) is simply taken to
pe a certain kind of two-sorted structure

M(B]= (M, B; ...),

where for each n-ary B of M, E: M"—B (3). Then with each sentence ¢
is associated & fprmula, ¢*(») for which

[[g)] = b MB] k ¢*(b).

Tn this way, further notions of a (prospective) abstract multi-valued model
theory could be reduced to those for two-valued models. But a simple,
smooth-running development of such a theory may require giving the
value structure B an explicit role. A theory of this kind has been started
by Waszkiewicz and Weglorz [W, W] (%).

1.4. Elementary and projective classes; interpolation. Given any L and

veTypr, define

1) () Mod(p)= {I: M e Strz(z) and Mk ¢} for g e Ste(r),
() BO(7) = {Mod,(p): ¢ < Sto(s),
(ifi) PO(r) = {Hp_nH: vC 7" and & ¢ EC(z")}, o
(iv) POY7) = {Hp_nX: 7C 7, Sort(z) = Sort(z") and % < BEC(r")}.

Then the members of
EC= | JEC(r)[r e Typr] and PO = {PO(z)[7r e Typzl

are called, respectively, the I-elementary classes and the L-projea.ti'ue
clusses, while those of PC’= JPC(7) [rsTyp.L] are ca.lleq the strictly
L-projective classes. These lagt are the projective classes In the usual
sense of word, where no domains of new sort are added. )

‘We may express that L is L,,,-closed with these notions as fol]ows:
(i) each atomie sentence determines an L-elementary ‘ela,ss; (11} each
EC(r) is closed under intersection and complementation relative to
Strr(r); and (iil) whenever X ¢ EC(7') where 7 = [t,¢], then H,_,%
e BEC(7). )

The following is the main property to be considered here.

I-TNTERPOLATION. For each veTypL and Ky, Koy e PCr(z), of For
~ oy = 0, then there exisis & BOL(r) with ¥, C8& and &~ ¥, = 0.

In words: any two disjoint L-projective classes can be _sepacrajted
this statement is equiva-

by an L-elementary class. For familiar languages,

(3) Indeed, it seems to me preferable to think of %«vahled‘ gtructures in this way.
(4) Cf. also the review of [W, W] in Mathematical Reviews 41 (1971), 4£8220.
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lent to the many-sorted interpolation theorem for L (°). The statement
restricted to strictly L-projective iy, Ky is equivalent to Craig’s original
form of interpolation theorem extended to L (°). With reference to the
examples El-E5: L-Interpolation holds for all L, with A C H(x)) and
A admissible or a union of admissibles; it is false for BE2-15 _('ef. [F2] for
detailed references).

1.5. Comﬁactness properties. For any set § of sentences of I(r), we
write

(1) (1) Mod,(8) =) Mod,(p)[p < 8],
(i) MEQS if M eMod(S), and
(iil) S FpepeSte(r) and VIR[IM E S= Mk ¢l

By a compactness property 6 for L we mean a pair
6= (F, I)

of collections having the following properties (generalizing the properties:
of the collections of finite and possibly infinite. sets of sentences in I
Tesp.):

2)

w03

(i) FCICT(Ster),

(i) @eSter={p}eF,

(ili) if 8 ¢F ~T(Ste(r)), then Mod(S) ¢ EC,

(iv) it X ¢ F, then X ~ Ste(r) e F,

(v) I is closed under union and under renaming, . .

(vi) if Sel, §C8te(r) and VX[XC S and X ¢ F= Mod, (X) = 0]
then Mod_(S) # 0. - ’ ’

‘We then define
(3) (1) BEC(r) = {Mod, (8): § e I ~ T (Ste,)},
(i) PCr) = {Hp_yX: 7C 7" and % ¢ BO(7')},

] (*) This is called the simple form of many-sorted interpolation in [F2], § 1. A re
gﬁ:l‘;gzoieelﬁd for applications ’n.o preservation theorems used and st[zu!:eﬂl’ Ehove also
tempolan i.maT h(;sn la,boutt the location of .universa,l and existential quantifiers in the
(ck. also [Sl ) hasmf nodneeded here. It is worth mentioning though that Stern [$2]
looation of ua‘nti_ﬁoun a more geperal theorem in which opposite conditions on the
t0 ho sumo qreser ?S n;]iay be arrange_d for certain sorts. This permits applications
relation betvlsieen V%;on eorems hut without requiring as in [I'2] the use of an equality
atetioont, Tut arbifrary sorts..ster.n’s proof is by means of a model-theoretic forcing

gunent, bu t_h-‘S 1s an inessential difference; the result can be established by th e
methods as indicated in [F2], § 1. Y tho Sar

(] . . .
Iation( v)viglgﬁiélgcoligous simple way in general model theory to state forms of interpo-
or the £ . ¢ relmements, such as Liyndon’s for positive and negative occurrences,
orm involving location of quantifiers mentioned in ftn. ®)
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and BO* = | BC(7)[r e Typz]l, PC’* = {JPO7)[r ¢ Typs]. Note by (2).
(iif) that BCC ECe.

The following are examples of compactness properties:

OL. L,,,. Take F=§_,(Stc)=the collection of all finite sets of
sentences and I= F(Ste). (6) (v) is then equivalent to the usual com-
pactness theorem.

02. L, ,(@g,)- By Keisler's compactness theorem [K] we can use
the same F, I as in ().

03. L, for A countable admissible. Barwise’s compactness theorem
[B1] shows that (F,I) is a compactness property where F= §(Ste) n 4
and I consists of all T definable sets of sentences. Again by [K] this
extends to L4(Qy,)-

C4. Any langnage for which EC is closed under ~ has the trivial
compaciness property: F= I=F_,(Ste). BC’ = EC for this.

Question. Are there any non-trivial eompactness properties for L,
with A uncountable or for any of the examples E3-E5% A less precise
but more interesting question is, what simple conditions on L ensure
the existence of a natural compactness property, which ineludes C1-C3
as special cases?

When. 4 is a compactness property we take I?-Interpolation to be
the statement of IL-Interpolation with the hypothesis weakened to
¥y, Ky e PCL(7).

TeMMA. Suppose L is regular and that 8 is a compactness property
for L. Then L-Interpolation implies I? - Interpolation.

Proof. Let 3, ~ J6, = 0 where ;= "y Mod,(8,;) and 8; el By
Tenaming we may asswme 7; » 7, = 7. Then et =1 wr,and 8 =8 v
so 8 e I. Mod,(8') = 0; for otherwise there exists O such that W | i
€ Mod,(8;) and then M= (M by br= (WM P )T e ¥y N Ky It follows
that there exists X ¢ F with X C 8 and Mod, (X) = 0. Let Xi=Xn
~ Ste(r;) and Kf = H,_, Mod,(X;). Then X,eF and X,C8; so %j
¢ PC(7), %,;C XK} and ¥ A5 =0.

Thus results depending on L-Interpolation can be strengthened in
the presence of non-trivial compactness properties. .

§ 2. Definable relations and invariant properties. Throughout the re-
mainder of the paper we assume thab L is any regular, I, ,-closed lan-
guage, and that & 8 any comMPactness property for L. (Actually we shall
only need closure of ECyr under Boolean operations in this note.)

2.1. Elementary and projective relations between structures. We wish to
deal with definable relations R C' Str(z) X Str (7). By fenaming we may

5 — Fundamenta Mathematicae, T. LXXXII
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assumé 7, » 7, = 0. Then R can be identified with the class of all [, 9]
such that R(ME, N). This determines the meaning of

) ReBC, RKePC, RePC
which we read: & is an elementary, Yesp., projective, Tesp., strictly projective

relation between structures (7). In addition this identification determines
the meaning of

2) . - ReBC, RePC.

The following are simple examples of these notions, where the re-
lations to begin with may not be given on disjoint types.

R1. The substructure relation is elementary in L, ,. That is R (I, N)
<P C RN, for which we have a sentence Ext, written as in [F2], § 1, with
R(M, R)<=[M, N] F Ext.

R2. The embedding relation is strictly projective in L, .

R(M, M=TH(H: M= H(IM) and H(M)CN)
< HH (M, N, H] - Emb)

for a §uitable sentence Emb.

. R3. The homomorphism relation is strictly projective in L, ,. This
is the relation: R (M, N)<> there is a homomorphism H of IM onto N.
R4. The relation R(M, N) of N being a vector space over the field
In is strietly projective in I, ,. (The sealar product which connects I, N

must be adjoined.) The subrelation R;(IM, N) for which N is a findte--

dimensional vector space over I is strictly projective in IL,, where 4 is
the least admissible containing w.

The subrelation R, of R for which N is an infinite-dimensional vector
space over M is (strictly) PC’ in L, .

R?. The relation R(IM,N) which holds when M is isomorphic to
a subdirect power of N is projective in L, ,. It is not (prima-facie) strictly

projective, since we must add an index set I as a new sort. (This example

is due to Mal’cev [Ma].)

. 2.2. Elementar).r and projective operations on structures. An algebraic
(i.e. = — preserving) operation F on structures is said to be in
EC(PC, PC°, BC’, P(°) for L if there is a relation R in the same class

such that:
I 1) R, Ry) &R(M, N) = N, = N,

(i) Dom(F) =Dom(R) and R(M, F(M)) for each I e Dom(F).

(*) Projective relations in this sense were first studied by Mal’cev [Ma]; he later

chanefl terminology, using reductive and projective in the way projective and strictly
projective, resp. are fised here.
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Any relation R satisfying (i) can be considered to determine an operation
satisfying (ii).

Operations & with finitely many arguments, Dom (&) C Str(zy) X ...
X Str(r,), can be identified with operations of one argument in
Str([zo, ---5 ]) by renaming types. . .

The notion of projectively definable operation is closely related to
Gaifman’s notion in [G] of single-valued elementary definition. The follow-
ing are some simple examples of definable operation; cf. [G] for further
examples.

T1. The operation & which associates with each integral domain IR its
field of quotients N is elementary in L, ,. (Simply describe 3 as a field
with M C N such that every element ¢ of N can be written as ¢ = afb
for some_a, b in M with b # 0.) The restriction of & to fields of charac-
teristic 0 is in BC. It we regard ¥ as only giving an embedding of 9t in
a suitable field then & i strictly projective.

2. Let p(x) be a polynomial with integer coefficients. The operation
which associates with each 9%, over which p is irreducible, the root field
M(a) is elementary in L, - .

3. The operation which associates with each field M its algebraic
closure is elementary in L, for the least admissible A containing e.

F4. The operations of ordered sum M-I, and ordered product My - My
on pairs [M,, M,] of ordered structures are projective in L, .. The oper-
ation MM of ordered power is projective n Ly, for the least admissible
containing w.

5. The wultrapower operation /U is projective in 2nd order logic
in the following sense. It operates on pairs [y, M;] where iy
= (I,5(I); ¢, U) and U is'an ultrafilter on I.

2.3. The principal notions and theorem. Let 75,7, be disjoint and
R.C Str(r,) x Str (). A sentence ¢ for type 7, structures is said to be
invariant on the ramge of R if for all I, Iy, N,:

w R(M, ) & R (M, ) > [ Foe Tk gl

v e Ste(r,) is said to be an associate for ¢ on the domain of R if for
all M, N:

@) R(M, N) = [N F pes DEy].

When this happens, v provides a uniform reduction of the property g of M
to a property of 9. Obviously (2) implies (1).

UNIFORM REDUCTION THEOREM. Suppose T-Interpolation holds and
that R ¢ PCP. Then each ¢ which is invariant on the range of R vhas an as-
sociate y on its domain.

-


Artur


162 8. Feferman

Proof. R is defined by projection of a set S e, §C Ste(r) for some
7 2 [70, ml:

(a) (M, N e R HQ[M, N, Q1ES .
By regularity of I, since ¢ ¢ Ste(z;) also ¢ « Ste(r) and
(b) R(W, M) = (N F o= [M, N, QT F @) .

Further gince L is L, ,-closed there exists ( ~g) e Ste(r) for which

NE~peNi=g.
Let

(e) (i) S&=8v{p}, Sa=8v{~¢} and
(i) Fo={: AR, Q([M, N, Q] ¢ Mod (84))}-

This puts Ky, & e PO(z;). Also oy ~ 5o, = 0; for if we had M e K, A K,
there would exist 9, Ny, @, @, with [M, N, @:] £ 8; from which would
fOll.OW .[Em,.ﬂtl], [, Ny] e R and I k@ while N, |# ¢. Since I -Interpo-
lation implies I°-Interpolation, there is some § ¢ EC(v,) which separates
Xy, Ky. Take o eSte(r,) with &= Mod(y). Whenever R (I, N) holds
we have

(MEp=>MEy)
by %, C & and we have

(MEp=NE @)
by &~ K, = 0.

24. Corf)lla.ries. _Ihe following have been stated in the literature
for Lc:),w or in certain cases more generally for admissible L,CUZL, ,.
‘We give only the most inclusive reference for previous formulat.fonsl’m
each case. Assume here that I is any language satisfying the general
hypotheses and L-Interpolation. 7, 7,, 7, range over Typr.

, Cor. 1. BrryE’s DEFINABILITY THEOREM ([B1] p. 238). Suppose
7y = 7, {&} where B is n-ary and § ¢ I ~ T (Ste,,) and that R is implicitly
. . ¢ ~

defined by 8. Then we. can find a formula o (z,, .., #4) of L(z,) such that

8 bRy, e, Bn) (0, oy @) "

(To prove this from the uniform reduction theorem take
R(D, N) <> M= [My, 0, ..y 0] & R = [, R] & [My, B] k8,

and take ¢ to be the sentence R(, ..., 0,) of L(zyu {g, ..., 6,}).)

Cor. 2. ROBINSON'S INVARIANCE THEOREM ([F2], §2 “Main Temma”).

Suppose 8, SelnT(Ste(r)) and that the formula ¢ (wy, ..., %)

;i IC}:(TO) i? invariant rel. to §/8,, i.e. whenever My Sy, Ma kS and
0 C N (i=1,2) and ay, ..., a, are in M, then

T B @(ay, vy tn) N kplay, ..., az) .
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Then for some (@, ..., @n) of L(r,) we have
My By ooey Q) NE @81, ..y )

whenever My k Sy, NES, M C N and oy, ..., an are in M,: (This is im-
mediate from the main theorem, using again identification of ¢ with
a sentence of L(ty v {61, .., &n}) and 1.2 (3).) :

Cor. 3. GATFMAN’S THEOREM ON DEFINABLE OPERATIONS. ([G], §1).
Suppose F: Str(z,)—Str () is a projective operation. Then for each
p € Ste(r,) there exists ye Ste(z,) such that for every 9te Dom(F),

F(M) EFgeMEy.

Hence also F preserves =j. (Immediate Corollary.)

Cor. 4. BARWISE'S THEOREM ON INTERPRETATIONS ([B3]). Suppose
S eI~ §(Ste,) and that = is a relative interpretation of Ste(z,) in 8.
1t for every 3, %, such that 9 kS and N ES and (W)= (N)" we
have M, ko< Ny F @ then for some pe Ste (),

St (peyT) .

(All we need to know about the concept of a relative interpretation = is
that it associates with each Rk 8 a structure (M)* of type 7,, In such
a way that the relation

R, M) D= (N and NES
is projective.) v

2.5. Remarks on applications. :

(i) Non-reducibility of properties. As Barwise noted, his theorem of [B3]
generalizes one of Rosenthal [R] (actually, due still earlier to Biichi [Bii])
which was used to get results of the following kind: the structure of the
constructible sets (I, <) is not determined (up to =) by the structure
Q= (0N ,<,ii") of the ordinals together with certain additional oper-
ationg 7 (such as ordinal addition, multiplication and higher eritical
‘functions). This rests on getting explicitly definable models for the
theory Th(®). Rosenthal’s Lemma [R], p- 499 for this may be put more
generally here as follows, for L,

TumorEM. Suppose RC Str (7o) X Str(wy) ds the projection of a set S
of semtences in L, .t ;
R (M, R) <= AQ(M, N, QI+ 5) -

with R(M, N) for which Th(N) 28 not

Suppose further that there are M, N '
). Then there is some @ € Ste (r,) which

recursive in the join of § and Th(IM
has mo associate yp on the domain of R.
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Proof. If for each ¢ there is such an associate v then
[, N, Q1ES=>[NEp < MEy]

so by completeness .
S F(pey)

in the sense of syntactic consequence. Hence there is a function. g recursive
in § which gives such y = g(p). Then whenever R (M, N),

¢ e Th(F)=g(p) e Th(M) ,

contradicting the hypothesis.

It should be noted with reference to Rosenthal’s applications, that
the results of [F1], § 5 give a systematic means of producing extensive 7
for which Th(f) is even hyperarithmetic. .

(ii) Preservation of = by algebraic operations. Gaifman’s theorem in
the form of Cor. 3 applies immediately to the examples F1-F4 of 2.2,
in all cases for certain sublanguages L, of L, ,. (F5 does not enter be-
cause of the failure of interpolation for 2nd order logic). These appli-
cations are in interesting contrast to the general = -preservation theorems
of [F1] which apply to various ¥ in L, and fragments LS, 5 (a limiting
the quantifier-rank). There one had to verify some functoriality conditions
for &, rather than definability conditions as here. Hodges [H] has obtained
improvements of [F1] to some languages L,, for ¥ given by certain
explicit definitions by generators amd relations. (There is no simple com-
parison of these results since each is an implication involving different
languages.) '

This connects with an interesting (imprecise) question raised by
Gaifman [G]. Suppose that R(M, N) is elementary or projective in L
and that it determines an algebraic operation & such that

R(D, Ny)-& R, N) = WIH(H: B =N).
Is then & (M) explicitly definable from 9 in some sense ki
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