Skip to main content
Log in

Brouwer’s Fan Theorem as an axiom and as a contrast to Kleene’s alternative

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Der Beweis hat eben nicht nur den Zweck, die Wahrheit eines Satzes über jeden Zweifel zu erheben, sondern auch den, eine Einsicht in die Abhängigkeit der Wahrheiten von einander zu gewähren. The aim of the proof is not only to establish the truth of a proposition beyond any doubt but also to make us see how the truths depend on each other. G. Frege, Die Grundlagen der Arithmetik, § 2.

Abstract

The paper is a contribution to intuitionistic reverse mathematics. We introduce a formal system called Basic Intuitionistic Mathematics BIM, and then search for statements that are, over BIM, equivalent to Brouwer’s Fan Theorem or to its positive denial, Kleene’s Alternative to the Fan Theorem. The Fan Theorem is true under the intended intuitionistic interpretation and Kleene’s Alternative is true in the model of BIM consisting of the Turing-computable functions. The task of finding equivalents of Kleene’s Alternative is, intuitionistically, a nontrivial extension of the task of finding equivalents of the Fan Theorem, although there is a certain symmetry in the arguments that we shall try to make transparent. We introduce closed-and-separable subsets of Baire space \({\mathcal{N}}\) and of the set \({\mathcal{R}}\) of the real numbers. Such sets may be compact and also positively noncompact. The Fan Theorem is the statement that Cantor space \({\mathcal{C}}\), or, equivalently, the unit interval [0, 1], is compact and Kleene’s Alternative is the statement that \({\mathcal{C}}\), or, equivalently, [0, 1], is positively noncompact. The class of the compact closed-and-separable sets and also the class of the closed-and-separable sets that are positively noncompact are characterized in many different ways and a host of equivalents of both the Fan Theorem and Kleene’s Alternative is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beeson M.J.: Foundations of Constructive Mathematics. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  2. Bayens, E.: (Zwakke) convergentie, een oefening in intuïtionistische analyse. Master Thesis, Department of Mathematics, Katholieke Universiteit Nijmegen (2003)

  3. Berger J., Bridges D.: The Fan Theorem and positive-valued niformly continuous functions on compact intervals. N. Z. J. Math. 38, 129–135 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Berger J., Schuster P.: Classifying Dini’s Theorem. Notre Dame J. Formal Logic 47, 253–262 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berger, J., Schuster, P.: Dini’s Theorem in the light of constructive reverse mathematics. In: Lindström, S., Palmgren, E., Segerberg, K., Stoltenberg-Hansen, V. (eds.) Logicism, Intuitionism, and Formalism—What has become of them? pp. 153–165. Springer, Berlin (2009)

  6. Bishop E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  7. Bishop E., Bridges D.: Constructive Analysis. Grundlehren der mathematischen Wissenschaften, no. 279. Springer, Berlin (1985)

    Google Scholar 

  8. Bridges D., Richman F.: Varieties of Constructive Mathematics, London Mathematical Society Lecture Note Series, no. 97. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  9. Brouwer, L.E.J.: Intuïtionistische Einführung des Dimensionsbegriffes, Kon. Ned. Akademie van Wetenschappen. In: Proceedings 29, 855–863 also in [16], pp. 341–349 (1926)

  10. Brouwer, L.E.J.: Über Definitionsbereiche von Funktionen. Math. Annalen 97, 60–75, also in: [16], pp. 390–405 (1927)

  11. Brouwer, L.E.J.: An intuitionistic correction of the fixed-point theorem on the sphere. Proc. R. Soc. Lond. Ser. A 213, 1–2, also in [16], pp. 506–507 (1952)

  12. Brouwer, L.E.J.: Door klassieke theorema’s gesignaleerde pinkernen die onvindbaar zijn. Indag. Math. 14, 443–445. translation: Fixed cores which cannot be found, though they are claimed to exist by classical theorems, also in [16], pp. 519–521 (1952)

  13. Brouwer, L.E.J.: Points and spaces, Canad. J. Math. 6, 1–17, also in [16], pp. 522–538 (1954)

  14. Brouwer, L.E.J.: Collected works. In: Heyting, A. (ed.) Philosophy and Foundations of Mathematics, Vol. I. North Holland, Amsterdam (1975)

  15. Dummett M.: Elements of Intuitionism, 1st edn. Oxford University Press, Oxford (1977)

    Google Scholar 

  16. Dummett M.: Elements of Intuitionism, 2nd edn. Oxford University Press, Oxford (2000)

    Google Scholar 

  17. Freudenthal H.: Zum intuitionistischen Raumbegriff. Comput. Math. 4, 82–111 (1936)

    MATH  MathSciNet  Google Scholar 

  18. Heyting, A.: Intuitionism: An Introduction. North-Holland, Amsterdam 11956,2 1966

  19. Howard W.A., Kreisel G.: Transfinite induction and bar induction of types zero and one, and the rôle of continuity in intuitionistic analysis. J. Symb. Logic 31, 325–358 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ishihara H.: Constructive reverse mathematics: compactness properties. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics, pp. 245–267. Oxford University Press, Oxford (2005)

    Chapter  Google Scholar 

  21. Julian W., Richman F.: A uniformly continuous function on [0,1] that is everywhere different from its infimum. Pac. J. Math. 11, 333–340 (1984)

    Article  MathSciNet  Google Scholar 

  22. Kleene S.C., Vesley R.E.: The Foundations of Intuitionistic Mathematics, Especially in Relation to the Theory of Recursive Functions. North-Holland, Amsterdam (1965)

    Google Scholar 

  23. König, D.: Theorie der endlichen und unendlichen Graphen. Akademische Verlagsgesellschaft, Leipzig, 1936, reprinted by Chelsea, New York (1950)

  24. König D.: Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Litterarum ac Scientiarum Ser. Sci. Math. Szeged 3, 121–130 (1927)

    MATH  Google Scholar 

  25. Loeb, I.: Equivalenten van de Waaierstelling. Master Thesis, Department of Mathematics. Katholieke Universiteit Nijmegen, Nijmegen (2003)

  26. Loeb I.: Equivalents of the (weak) fan theorem. Ann. Pure Appl. Logic 132, 151–166 (2005)

    Article  MathSciNet  Google Scholar 

  27. Martino, E., Giaretta, P.: Brouwer, Dummett and the bar theorem, Atti del Congresso Nazionale in Logica, Montecatini Terme, 1–5 Ottobre 1979, Napoli (1981)

  28. Moschovakis J.R., Vafeiadou G.: Some axioms for constructive analysis. Arch. Math. Logic 51, 443–459 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nemoto, T.: Weak weak König’s Lemma in constructive reverse mathematics. In: Proceedings of the 10th Asian Logic Conference, Kobe, Japan, 2008, World Scientific, Singapore, pp. 263–270 (2011)

  30. Orevkov V.P.: A constructive mapping from the square onto itself displacing every constructive point. Sov. Math. Doklady 4, 1253–1256 (1963)

    MATH  Google Scholar 

  31. Shioji N., Tanaka K.: Fixed point theory in weak second-order arithmetic. Ann. Pure Appl. Logic 47, 167–188 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  32. Simpson S.G.: Subsystems of Second Order Arithmetic, Perspectives in Mathematical Logic. Springer, Berlin (1999)

    Book  Google Scholar 

  33. Specker, E.: Der Satz vom Maximum in der Rekursiven analysis, constructivity in mathematics. In: Proceedings of Colloq. Amsterdam 1957, North-Holland, Amsterdam, pp. 254–265 (1959)

  34. Troelstra A.S., van Dalen D.: Constructivism in Mathematics: An Introduction, Vol 1, 2. North-Holland, Amsterdam (1988)

    Google Scholar 

  35. Veldman, W.: Investigations in Intuitionistic Hierarchy Theory. Ph.D. Thesis, Katholieke Universiteit Nijmegen, Nijmegen (1981)

  36. Veldman W.: On the constructive contrapositions of two axioms of countable choice. In: Troelstra, A.S., van Dalen, D. (eds.) The L.E.J. Brouwer Centenary Symposium, pp. 513–523. North-Holland, Amsterdam (1982)

    Chapter  Google Scholar 

  37. Veldman W.: Some intuitionistic variations on the notion of a finite set of natural numbers. In: de Swart, H.C.M., Bergmans, L.J.M. (eds.) Perspectives on Negation, Essays in Honour of Johan J. de Iongh on the Occasion of his 80th Birthday, pp. 177–202. Tilburg University Press, Tilburg (1995)

    Google Scholar 

  38. Veldman, W.: On sets enclosed between a set and its double complement. In: Cantini, A., e.a. (ed.) Logic and Foundations of Mathematics, Proceedings Xth International Congress on Logic, Methodology and Philosophy of Science, Florence 1995, Vol. 3. Kluwer Academic Publishers, Dordrecht, pp. 143–154 (1999)

  39. Veldman W.: Understanding and using Brouwer’s continuity principle. In: Berger, U., Osswald, H., Schuster, P. (eds.) Reuniting the Antipodes, Constructive and Nonstandard Views of the Continuum, Proceedings of a Symposium Held in San Servolo/Venice, 1999, pp. 285–302. Kluwer, Dordrecht (2001)

    Google Scholar 

  40. Veldman W.: Bijna de waaierstelling. Nieuw Archief voor Wiskunde, vijfde serie, deel 2, 330–339 (2001)

    MATH  MathSciNet  Google Scholar 

  41. Veldman, W.: Almost the Fan Theorem, Report no. 0113. Department of Mathematics, University of Nijmegen (2001)

  42. Veldman W.: An intuitionistic proof of Kruskal’s Theorem. Arch. Math. Logic 43, 215–264 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  43. Veldman, W.: The Borel hierarchy and the projective hierarchy from Brouwer’s intuitionistic perspective, Report no. 0604. Department of Mathematics, Faculty of Science, Radboud University Nijmegen (2006)

  44. Veldman W.: Two simple sets that are not positively Borel. Ann. Pure Appl. Logic 135, 151–209 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Veldman, W.: Brouwer’s Fan Theorem as an axiom and as a contrast to Kleene’s alternative, report no. 0509. Department of Mathematics, Faculty of Science, Radboud University Nijmegen

  46. Veldman W.: Brouwer’s real thesis on bars. Philos. Sci. Cahier Spécial 6, 21–39 (2006)

    Google Scholar 

  47. Veldman W.: The Borel hierarchy theorem from Brouwer’s intuitionistic perspective. J. Symb. Logic 73, 1–64 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. Veldman W.: The problem of determinacy of infinite games from an intuitionistic point of view. In: Majer, O., Pietarinen, P.-V., Tulenheimo, T. (eds.) Logic, Games and Philosophy: Foundational Perspectives, pp. 351–370. Springer, Berlin (2009)

    Google Scholar 

  49. Veldman, W.: Brouwer’s approximate fixed-point-theorem is equivalent to Brouwer’s Fan Theorem. In: Lindström, S., Palmgren, E., Segerberg, K., Stoltenberg-Hansen, V. (eds.) Logicism, Intuitionism, and Formalism—What has Become of Them? pp. 277–299. Springer, Berlin (2009)

  50. Veldman, W.: Some further equivalents of Brouwer’s Fan Theorem and of Kleene’s Alternative, submitted for publication. J. Pure Appl. Logic. arXiv:1311.6988

  51. Veldman, W.: The principle of open induction on Cantor space and the Approximate-Fan Theorem, in preparation

  52. Waaldijk F.: On the foundations of constructive mathematics—especially in relation to the theory of continuous functions. Found. Sci. 10, 249–324 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Veldman.

Additional information

figure a

It is a common property of axioms and postulates that they do not need any proof or mathematical assurances, but are taken as well-known and become the principles of the things that follow. Procli Diadochi in primum Euclidis Elementorum librum commentarii, B 101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veldman, W. Brouwer’s Fan Theorem as an axiom and as a contrast to Kleene’s alternative. Arch. Math. Logic 53, 621–693 (2014). https://doi.org/10.1007/s00153-014-0384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-014-0384-9

Keywords

Mathematics Subject Classification

Navigation