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1 Introduction

I am afraid this paper will appeal to only a select group of readers. One has to
be well acquainted with Fitch style natural deduction for static predicate logic,
one has to be well acquainted with dynamic predicate logic, and then, most
importantly, one should be curious to know if and how a Fitch style natural
deduction system for static predicate logic can be made dynamic. 1

Of course, the most important step in going from a static to a dynamic proof
system is to replace the elimination rule for the static existential quantifier
pictured below2 by an elimination rule that fits the dynamic quantifier.

Static elimination rule for ∃

...
...

l ∃xϕ
...

...
m [a/x]ϕ→ ψ
...

...
n ψ E∃, l,m

Dynamic elimination rule for ∃

...
...

m ∃xϕ
...

...
n ϕ E∃,m

1. I would not be surprised if this leaves only Jeroen, Martin, and Roel de Vrijer as interested
readers. The four of us tried to answer these questions around 1990, when DPL was being
developed. But at some point we gave up because (i) things turned out to be more complicated
than we thought, and (ii) we had more urgent things to do. I tried again in 1997, during a
sabbatical spent in Edinburgh. I never published the result.
2. Throughout I will take the system of natural deduction presented in L.T.F. Gamut, Logic,
Language, and Meaning, volume 1, Introduction to Logic as the starting point
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With an appeal to this rule, one can easily show, for example, that in dynamic
predicate logic

∀x(Sx→ Px) |= ∃ySy → Py.

Here is the derivation:

1 ∀x(Sx→ Px) premise
2 ∃ySy assumption
3 Sy E∃ 2
4 Sy → Py E∀ 1
5 Py E→ 3,4
6 ∃ySy → Py I→

It is important to realize that the sequence of formulas constituting this deriva-
tion is a text in the language of DPL. The variable y occurring in the formula
on line 3 is bound by the quantifier ∃y occurring in the formula on line 4, and
so are all occurrences of y in line 4 and 5.

2 Some obstacles

Unfortunately, changing the elimination rule for the existential quantifier is not
the only thing one has to do to get a system that covers the dynamic notion of
validity. Here are some problems that one has to deal with.

(1) How would you go about proving that

Ac.Bc |= ∃xAx ∧Bx

If you start like this :

1 Ac premise
2 Bc premise
3 Ac ∧Bc I∧ 1, 2
4 . . .

and next, at line 4, apply the classic introduction rule for ∃, you end up with
∃x(Ax∧Bx), which is not what you want. And if you first apply the introduction
rule for ∃, like this:

1 Ac premise
2 Bc premise
3 ∃xAx I∃ 1
4 . . .

then there seems to be no way to get Bx at line 4.
What is needed here is a generalization of of I∃. It will be a rule that can

be applied not only formulas but also to texts, as follows:

1 Ac premise
2 Bc premise
3 ∃xAx
4 Bx I∃ 1-2
5 ∃xAx ∧Bx I∧ 3, 4
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So, lines 3 and 4 are added in one go, by an application of I∃ to the text
formed by the formulas on line 1 and line 2.

(2) Here is another problem. How would you go about showing that:

∃x(Ax ∧ ∃x¬Ax) |= ¬Ax

We cannot apply the new E∃ as described above here, because that would give:

1 ∃x(Ax ∧ ∃x¬Ax) premise
2 Ax ∧ ∃x¬Ax E∃
3 . . .

This way, the variable x occurring in the first conjunct of the formula on line
2 gets bound by the second existential quantifier on line 1 —- with disastrous
consequences. (We should impose conditions on E∃ that forbid this.)

The way out here is to introduce a new rule, variable switch, which enables
us — under certain conditions — to replace a formula of the form ∃xϕ by a
variant ∃y[y/x]ϕ. This is how things work out for the example at hand:

1 ∃x(Ax ∧ ∃x¬Ax) premise
2 ∃y(Ay ∧ ∃x¬Ax) variable switch, 1
3 Ay ∧ ∃x¬Ax E∃, 2
4 ∃x¬Ax E∧, 3
5 ¬Ax E∃, 4

(3) As an example of a third obstacle, note that:

∃yAy ∧ ∃xBx,Cy |= ∃yAy ∧ Cy

Whereas,
∃yAy ∧ ∃xBx,Cy, ∃yAy 6|= Cy

So, somehow the step 4 in the next derivation is invalid

1 ∃yAy ∧ ∃xBx premise
2 Cy premise
3 ∃yAy premise
4 Cy repetition 2

whereas step 4 in the following derivation is fine.

1 ∃yAy ∧ ∃xBx premise
2 Cy premise
3 ∃yAy E∧ 1
4 Cy repetition 2
5 ∃yAy ∧ Cy I∧, 3, 4

Intuitively, the difference is this. The formula ∃yAy on the third line in the
first of these derivations adds a further premise to the premises already given.
It introduces a new discourse referent, and all that is said about it is that the
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predicate A applies to it. So, to conclude that the predicate B applies to it, as
is done in line 4 is invalid. The formula ∃yAy on the third line in the second
derivation, on the other hand, is a conclusion drawn from the premises, and
just recapitulates what was already said: There is an object with property A.
And, yes, we already know about this object that it has property B as well.

It is not easy to characterize the difference formally. In the derivation
we will have to keep track for each existential quantifier where it was first
introduced, so that when it is just ‘repeated’ we can safely repeat things said
about the referents introduced by it.

3 Preliminaries

Goal
To find a sound and complete Fitch style Natural Deduction System N for
DPL.

Strategy
Develop complete Semantic Tableau system S.
Use S to find complete Deductive Tableau system D
Use D to find N .

What the reader will find is a motivated description of S, D and N plus proofs
which show that

π |= σ ⇒ π `S σ ⇒ π `D σ ⇒ π `N σ ⇒ π |= σ

Definition 1 (The languages of DPL)
(a) The languages of dynamic predicate logic share the following logical vocab-

ulary: ⊥ (falsum), ¬ (negation), ∧ (conjunction); the pair of brackets (, );
a denumerable set of syntactic variables V = {x0, x1, x2, . . .}; existential
quantifiers ∃x, for x ∈ V .

(b) A specific language L is identified with its non-logical vocabulary: a set of
individual constants, and a for each n a set of n-place predicates.

The union of the set of variables and the set of individual constants of L is
called the set of terms of L. The set of formulas of L is defined in the usual
way.

The core language can be extended by defining additional logical con-
stants. E.g., we can add ‘→’ (implication), ‘∨’ (disjunction), and ‘∀x’ (universal
quantifiers). The choice of logical primitives is not as optional in DPL as it is
in standard predicate logic.

Definition 2 (Extension of core syntax)
(a) (φ→ ψ) = ¬(φ ∧ ¬ψ).
(b) (φ ∨ ψ) = ¬(¬φ ∧ ¬ψ).
(c) ∀xφ = ¬∃x¬φ.
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Below, the letters π, σ (with or without subscripts) vary over finite, possibly
empty sequences of formulas, which are also called texts. We will often write
ϕ1. . . . .ϕn instead of 〈ϕ1, . . . , ϕn〉. If π = ϕ1. . . . .ϕn and σ = ψ1. . . . .ψm, then
π.σ is short for 〈ϕ1, . . . , ϕn, ψ1 . . . , ψm〉.

Definition 3 (States) LetM = 〈D, I〉 be some model for a language of first
order predicate logic.

(a) 1M, the set of assignments pertaining to M, is the set of functions from
V into D. Whenever it is clear about which model M we are talking, we
will write 1 rather than 1M.

(b) Let v be an assignment, x ∈ V , d ∈ D. v[x/d] is the assignment u such
that u(x) = d, while for every y ∈ V : if y 6= x then u(y) = v(y).

(c) A state based on M is a set s of assignments. Here 1 can be thought of
as the mininimal state, and ∅ as the maximal, or absurd state. In this
connection we will often write ‘0’ rather than ‘∅’.

(d) Let s be a state, x ∈ V , d ∈ D.
s[x/d] = {u ∈ 1 | u = v[x/d] for some v ∈ s}.

Definition 4 (Dynamic interpretation) Let s be a state based onM. For
every formula ϕ the update s[ϕ] of s with ϕ is recursively defined as follows:

(i) s[Rt1 . . . tn] = {v ∈ s | 〈v(t1), . . . , v(tn)〉 ∈ I(R)}.
(ii) s[¬ϕ] = {v ∈ s | {v}[ϕ] = 0}

(iii) s[ϕ ∧ ψ] = s[φ][ψ].
(iv) s[∃xϕ] = ∪d∈D(s[x/d][ϕ]).

For a text π = ϕ1. . . . .ϕn we write s[π] to abbreviate s[ϕ1] . . . [ϕn].

Examples
• John has a new girlfriend. She is blond
∃xGjx.Bx
(Consider 1[∃xGjx][Bx]).
• John has no new girlfriend. She is blond (??)
¬∃xGjx.Bx
(Consider 1[¬∃xGjx][Bx])
• If John has a new girlfriend, she is blond
∃xGjx→ Bx
∀x(Gjx→ Bx)

In the sequel we need a slightly more general notion of entailment than the one
you may be prepared for.

Definition 5 (Support) s |= π iff for every v ∈ s, {v}[π] 6= 0.

Definition 6 (Entailment) π |= σ iff for any model M, and any s based on
M, s[π] |= σ.
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3.1 Examples

• ∃xPx |= Px
• ∃xPx.∃x¬Px |= ¬Px
• ∃xPx.¬¬∃x¬Px |= Px
• ∃x(Px ∧Qx) |= ∃xPx.Qx
• ∃xPx→ Qx |= ∀x(Px→ Qx)

Loss of structural properties:
• No Repetition: ∃xPx.Px ∧ ∃x¬Px 6|= Px.
• No Monotony: ∃xPx |= Px, but ∃xPx.∃x¬Px 6|= Px.
• No Permutation: ∃x¬Px.∃xPx |= Px, but ∃xPx.∃x¬Px 6|= Px.
• No Cut: ∃xPx.∃x¬Px |= ∃xPx, and ∃xPx.∃x¬Px.∃xPx |= Px, but
∃xPx.∃x¬Px 6|= Px

DPL is not an extension of standard predicate logic.
∃x((Ax ∧ ∃xBx) ∧ Cx) |=cl ∃x(Cx ∧ (Ax ∧ ∃xBx)), but
∃x((Ax ∧ ∃xBx) ∧ Cx) 6|= ∃x(Cx ∧ (Ax ∧ ∃xBx)).

3.2 Scope and Binding

Definition 7 (Scope island) A formula ϕ is a scope island iff ϕ is of the
form ¬ψ.

Definition 8 (Free and bound variables)
(a) A specific occurrence of x in π is bound by a specific occurrence of ∃x in

π iff
(i) The occurrence of x is to the right of the occurrence of ∃x;
(ii) There is no occurrence of a scope island ϕ in π such that the occur-

rence of ∃x is inside the occurrence of ϕ and the occurrence of x is
not;

(iii) The occurrence of ∃x is not to the left of another occurrence of ∃x
in π for which (i) and (ii) hold.

(b) A given occurrence of a quantifier ∃x in a text π is active after π iff
(i) There is no occurrence of a scope island ϕ in π such that the occur-

rence of ∃x is inside the occurrence of ϕ;
(ii) The occurrence of ∃x is not to the left of another occurrence of ∃x

in π for which (i) holds.
(c) An occurrence of x is free in π iff the occurrence of x is not bound by an

occurrence of ∃x in π.
(d) An occurrence of x in σ is free in σ after π iff the occurrence of x in σ is

free in π.σ.
(e) σ depends on π iff there is a free occurrence of a variable in σ which is

not free in σ after π.

Definition 9 (Substitution)
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(a) [t/x, π](σ) is the result of substituting t for every occurrence of x in σ
which is free in σ after π.

(b) y is free for x in σ after π iff y occurs free in [y/x, π](σ) at all places
where x occurs free in σ after π.

We will write ‘[c/x](σ)’ rather than ‘[c/x, ∅](σ)’

Lemma 1
Let u and v be two assignments such that u(x) = v(x) for all variables x
occurring free in π. Then {u}[π] 6= ∅ iff {v}[π] 6= ∅

Moreover . . .

Lemma 2
(a) Let x be free for y in π. Let s and s′ be two states such that s′ = [y/s(x)]s.

Then v ∈ s[[x/y]π] iff v[y/s(x)] ∈ s′[π]]
(b) Let x be free for y in π, and suppose that x does not occur free in π.

Let s and s′ be two states such that s′ = [x/s(y)]s. Then v ∈ s[π] iff
v[x/s(y)] ∈ s′[[x/y]π]]

Definition 10 (Strong entailment)
(a) i ≈π j iff i(x) = j(x) for all x such that ∃x is active after π.
(b) s |=π σ iff s |= σ, and for all i ∈ s and j ∈ {i}[σ] it holds that i ≈π j.
(c) π |≈ σ iff for any s s[π] |=π σ.

Notice:
(a) If π |= σ.σ′, then π |= σ.
(b) It is not generally so that if π |= σ.σ′, then π |= σ′

(c) If π |= σ.σ′, and π |≈ σ, then π |= σ′

4 Deductive Tableaus

A sequent is a pair 〈π, σ〉. We will write π ⇒ σ rather than 〈π, σ〉
Call a text π atomic iff it consists of just one atomic sentence, and simple

iff every formula that occurs in it is an atomic sentence. A sequent π ⇒ σ is
simple if π is simple and σ is atomic.

Definition 11 Let σ = ϕ1. . . . .ϕn.∧
σ =df (ϕ1 ∧ (ϕ2 ∧ (. . . ∧ (ϕn−1 ∧ ϕn) . . .)).

Definition 12 (Deductive Tableau)
A deductive tableau for π ⇒ σ is a tree consisting of sequents. This tree T is
constructed as follows.
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(i) The root of T is the sequent π ⇒ σ.
(ii) If a node π′ ⇒ σ′ is simple or an axiom, then this node will have no

successors.
(iii) If a node π′ ⇒ σ′ is neither simple nor an axiom, then this node will have

one or two immediate successors. For π′′ ⇒ σ′′ to be the one immediate
successor of π′ ⇒ σ′, it is neccessary that

π′′ ⇒ σ′′

π′ ⇒ σ′

is a deductive tableau rule, while for π′′ ⇒ σ′′ and π′′′ ⇒ σ′′′ to be the
two immediate successors of π′ ⇒ σ′ it is necessary that

π′′ ⇒ σ′′ π′′′ ⇒ σ′′′

π′ ⇒ σ′

is a tableau rule.

The deductive tableau rules are given in the table below.

π.Rt1 . . . tn.π′ ⇒ Rt1 . . . tn (axiom) Provided Rt1 . . . tn does not depend on π′

π.ϕ.ψ.π′ ⇒ σ

π.ϕ ∧ ψ.π′ ⇒ σ
E∧ Provided —

π ⇒ σ.ϕ.ψ.σ′
π ⇒ σ.ϕ ∧ ψ.σ′ I∧ Provided —

π. [c/x](ϕ.π′)⇒ [c/x, ϕ.π′](σ)

π.∃xϕ.π′ ⇒ σ
E∃ Provided c does not occur in π, ϕ, π′, or σ

π ⇒ σ. [t/x](ϕ.σ′)
π ⇒ σ.∃xϕ.σ′ I∃ Provided t is free for x in ϕ.σ′

π.π′ ⇒ ϕ

π.¬ϕ.π′ ⇒ ⊥ E¬ Provided ϕ does not depend on π′

π.ϕ⇒ ⊥
π ⇒ ¬ϕ I¬ Provided —

π ⇒ ¬¬ϕ
π ⇒ ϕ ¬¬ Provided —

π ⇒ σ.ϕ ∧ ψ.σ′
π ⇒ σ.ϕ.ψ.σ′ sen Provided —

π ⇒ σ π.σ ⇒ σ′

π ⇒ σ.σ′
seq Provided —

Definition 13 π `D σ iff there exists some finite deductive tableau with root
π ⇒ σ such that all sequents at the top are axioms.

Examples
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(a) The example below shows why we cannot restrict our attention to sequents
π ⇒ ϕ.

Ac.Bc⇒ Ac Ac.Bc.Ac⇒ Bc
Ac.Bc⇒ Ac.Bc seq

Ac.Bc⇒ ∃xAx.Bx I∃

Ac.Bc⇒ ∃xAx ∧Bx I∧

Ac ∧Bc⇒ ∃xAx ∧Bx E∧

∃x(Ax ∧Bx)⇒ ∃xAx ∧Bx E∃

(b) The rules ¬¬ and sen, which differ from the other rules in that successor
sequent is more complex than the predecessor, could be replaced by one
rule that would allow for a strong form of reductio ad absurdum.

π.¬∧σ ⇒ ⊥
π ⇒ σ reductio

Ac.Bc⇒ Ac Ac.Bc.Ac⇒ Bc
Ac.Bc⇒ Ac.Bc seq

Ac.Bc⇒ ∃xAx.Bx I∃

Ac ∧Bc⇒ ∃xAx.Bx E∧

∃x(Ax ∧Bx)⇒ ∃xAx.Bx E∃

∃x(Ax ∧Bx)⇒ ∃xAx ∧Bx I∧

∃x(Ax ∧Bx).¬(∃xAx ∧Bx)⇒ ⊥ E¬

¬(∃xAx ∧Bx)⇒ ¬∃x(Ax ∧Bx)
I¬

¬¬∃x(Ax ∧Bx).¬(∃xAx ∧Bx)⇒ ⊥ E¬

¬¬∃x(Ax ∧Bx)⇒ ¬¬(∃xAx ∧Bx)
I¬

¬¬∃x(Ax ∧Bx)⇒ ∃xAx ∧Bx
¬¬

¬¬∃x(Ax ∧Bx)⇒ ∃xAx.Bx sen

For practical purposes, it’s pleasant to add the following rule:

π ⇒ ⊥
π ⇒ σ ex falso Provided —

However, this rule is in fact not needed.

Proposition 1
(a) If π `D σ, then π.π′ `D σ, provided that σ does not depend on π′.
(b) π.ϕ `D ϕ, provided that ϕ does not depend on ϕ.

Proof:
(a) . . .
(b) . . .

Corollaries
(a) If π `D ⊥, then π `D σ
(b) π.¬ϕ `D ¬ϕ

9



4.1 Intermediate Tableaus

With one exception the rules for intermediate tableaus are the same as the rules
for deductive tableaus. The elimation rule for the existential quantifier

π. [c/x](ϕ.π′)⇒ [c/x, ϕ.π′](σ)

π.∃xϕ.π′ ⇒ σ
E∃ Provided c does not occur in π, ϕ, π′, or σ

is replaced by the following two rules:

π.∃y[y/x](ϕ.π′)⇒ [y/x, ϕ.π′](σ)

π.∃xϕ.π′ ⇒ σ
alf Provided y is free for x in ϕ.π′.σ

π.ϕ.π′ ⇒ σ

π.∃xϕ.π′ ⇒ σ
pron Provided x is free in ϕ.π′.σ after π

Let’s call the resulting system D′. We will show now that if π `D σ, then π `N σ
by proving the following two lemmata.

Lemma 3
If π `D σ, then π `D′ σ

Lemma 4
If π `D′ σ, then π `N σ

5 Semantic Tableaus

A generalised sequent (g-sequent) is a pair 〈π,∆〉, where π is a text and ∆ a
set of texts. We will write and π ⇒ ∆ rather than and 〈π,∆〉. A generalised
sequent π ⇒ ∆ is simple iff π is simple and each σ in ∆ is atomic.

Definition 14 (Generalised Entailment) Let ∆ be a set of texts. π |= ∆
iff the following holds for any state s: for every i ∈ s[π], there exists some σ ∈ ∆
such that {i}[σ] 6= ∅.

The definition says that π |= {σ} iff for any s, s[π] supports σ. So, when ∆ is
a singleton, we are back in the old case. We will always write ‘π |= σ’ rather
than π |= {σ}.

Semantic tableaus are constructed by applying the following rules.
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π.Rt1 . . . tn.π′ ⇒ ∆, Rt1 . . . tn (axiom) Provided Rt1 . . . tn does not depend on π′

π.ϕ.ψ.π′ ⇒ ∆

π.ϕ ∧ ψ.π′ ⇒ ∆
E∧ Provided —

π ⇒ ∆, σ.ϕ.ψ.σ′
π ⇒ ∆, σ.ϕ ∧ ψ.σ′ I∧ Provided —

π. [c/x](ϕ.π′)⇒ [c/x, ϕ.π′](∆)

π.∃xϕ.π′ ⇒ ∆
E∃ Provided c does not occur in π, ϕ, π′, or ∆

π ⇒ ∆, σ. [t/x](ϕ.σ′)
π ⇒ ∆, σ.∃xϕ.σ′ I∃ Provided t is free for x

π.π′ ⇒ ∆, ϕ

π.¬ϕ.π′ ⇒ ∆
E¬ Provided ϕ does not depend on π′

π.ϕ⇒ ∆

π. ⇒ ∆,¬ϕ I¬ Provided no σ in ∆ depends on ϕ

π ⇒ ∆, σ′ π.σ′ ⇒ ∆, σ′′

π ⇒ ∆, σ′.σ′′
seq Provided no σ in ∆ depends on σ′

Ac.Bc⇒ Ac Ac.Bc.Ac⇒ Bc
Ac.Bc⇒ Ac.Bc seq

Ac.Bc⇒ ∃xAx.Bx I∃

Ac ∧Bc⇒ ∃xAx.Bx E∧

∃x(Ax ∧Bx)⇒ ∃xAx.Bx E∃

⇒ ∃xAx.Bx,¬∃x(Ax ∧Bx)
I¬

¬¬∃x(Ax ∧Bx)⇒ ∃xAx.Bx E¬

Proposition 2
If π `S σ, then π `D σ
Proof: The proposition follows from the following claim:

If π `S σ1, . . . , σn, then π.¬∧σ1. . . . .¬∧σn `D ⊥
The claim is proved with induction on the number of rules employed in in the
closed semantic tableau for π ⇒ σ1, . . . , σn.

6 Rigid Semantic Tableaus

A rigid sequent (r-sequent) is a pair 〈π,Σ〉, where π is a text and Σ a sequence
of texts. We will write π ⇒ Σ rather than 〈π,Σ〉.

Rules for r-sequents are given in the table below.
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π.Rc1 . . . cn.π′ ⇒ Σ;Rc1 . . . cn; Σ′ (axiom)

π.ϕ.ψ.π′ ⇒ Σ

π.ϕ ∧ ψ.π′ ⇒ Σ
E∧ Provided π is simple

π ⇒ Σ;ϕ.ψ.σ; Σ′

π ⇒ Σ;ϕ ∧ ψ.σ; Σ′
I∧ Provided π ⇒ Σ is simple

π. [c/x](ϕ.π′)⇒ [c/x, ϕ.π′](Σ)

π.∃xϕ.π′ ⇒ Σ
E∃

Provided π is simple, and
c does not occur in π, ϕ, π′, or Σ

π ⇒ Σ; [c/x](ϕ.σ); Σ′; ∃xϕ.σ
π ⇒ Σ;∃xϕ.σ; Σ′

I∃ Provided π ⇒ Σ is simple

π.π′ ⇒ Σ;ϕ

π.¬ϕ.π′ ⇒ Σ
E¬ Provided π is simple

π.ϕ⇒ Σ; Σ′

π ⇒ Σ;¬ϕ; Σ′
I¬ Provided π ⇒ Σ is simple

π ⇒ Σ;ϕ; Σ′ π.ϕ⇒ Σ;σ; Σ′

π ⇒ Σ;ϕ.σ; Σ′
seq Provided π ⇒ Σ is simple,

and ϕ is a negation or atomic

Note that these rules are special cases of the semantic tableau rules.

Definition 15 (Rigid Tableau)
Let c1, c2, . . . be an enumeration of a countable set of individual constants.
Given this enumeration, a rigid tableau for π ⇒ Σ is a tableau constructed
according to the rules given above provided that:

(i) Whenever the rigid rule E∃ is applied, i.e. whenever a node

π.∃xϕ.π′ ⇒ Σ

is succeeded by a node

π. [c/x](ϕ.π′)⇒ [c/x, ϕ.π′](Σ)

then the individual constant c is the first of c1, c2, . . . that does not occur
in π, ϕ, π′, or Σ.

(ii) Whenever the rigid rule I∃ is applied, i.e., whenever a node

π ⇒ Σ;∃xϕ.σ; Σ′

is succeeded by a node

π ⇒ Σ; [c/x](ϕ.σ); Σ′; ∃xϕ.σ

then the individual c is the first of c1, c2, . . . such that [c/x](ϕσ) has not
already been introduced by an application of I∃ as a text in the right-hand
side of any of the predecessors of the sequent π ⇒ Σ;∃xϕ.σ; Σ′.
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Proposition 3
If π `R Σ, then π `S {σ | σ occurs in the sequence Σ}

Lemma 5
(i) Suppose there is some c not occurring in ϕ.ψ′.σ such that i ∈ s[π. [c/x](ϕ.π′)]

and {i}[[c/x, ϕ.π′](σ)] = ∅. Then i ∈ s[π.∃xϕ.π′] and {i}[σ] = ∅.
(ii) Suppose there is some i ∈ s[π.π′], such that {i}[ϕ] = ∅. Then i ∈

s[π.¬ϕ.π′].

Proposition 4
Fix an enumeration c1, c2, . . . of a countable set of individual constants. Let
π ⇒ Σ be any sequent. Given the enumeration, there exists exactly one rigid
tableau for π ⇒ Σ.

Proposition 5
Suppose the rigid tableau T for π ⇒ Σ contains an open branch B.

Consider the model M = 〈D, I〉 given by
(a) D = {c | c occurs in any of the sequents constituting B}
(b) I(ci) = ci
(c) If R is an n-place predicate, then 〈ci1 , . . . , cin〉 ∈ I(R) iff there is some

node π ⇒ Σ on B such that π = π′.Rci1 , . . . , cin .π′′.
Now consider any sequent π ⇒ σ such that π ⇒ σ1; . . . ;σ; . . . ;σn occurs on the
branch B.

Claim: There is some i ∈ 1[π] such that {i}[σ] = 0.

Proof of the claim:
The proof is by induction on the complexity of π ⇒ σ, where the complexity
of π ⇒ σ is given by the number m = 2j + l where j and l are determined as
follows.
• j is the number of logical constants (¬, ∧, ∃) occurring in the sequence
π.σ.
• l is the number of formulas in σ.

(i) m = 1. Notice that in this case π ⇒ σ is simple. Given the defintion of
M, it holds that 1[π] = 1, and 1[π.σ] = 0.

(ii) Now assume that the claim holds for any sequent the complexity of which
is not larger than k. Consider a sequent π ⇒ σ with complexity k + 1.
There are three major subcases:
Case (a): π is not simple. Then π ⇒ σ1; . . . ;σ; . . . ;σnis derived from

its immediate predecessor by an application of either of the following
rules:
– E∧: This case is easy. π ⇒ σ1; . . . ;σ; . . . ;σn is of the form

π′.(ϕ ∧ ψ).π′′ ⇒ σ1; . . . ;σ; . . . ;σn
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while its immediate predecessor is

π′.ϕ.ψ.π′′ ⇒ σ1; . . . ;σ; . . . ;σn

Given the semantic rule for ∧-formulas it holds that if i ∈
s[ϕ.ψ], then i ∈ s[ϕ ∧ ψ]. Given the induction hypothesis we
may assume that there is some i ∈ 1[π.ϕ.ψ.π′] such that
{i}[σ] = 0. Hence, there is some i ∈ 1[π.(ϕ ∧ ψ).π′] such that
{i}[σ] = 0.

– E∃: In this case π ⇒ σ1; . . . ;σ; . . . ;σn is of the form

π′.∃xϕ.π′′ ⇒ σ1; . . . ;σ; . . . ;σn

while its immediate predecessor is

π′. [c/x](ϕ.π′′)⇒ [c/x, ϕ.π′](σ1); . . . ; [c/x;ϕ.π′](σ); . . . ; [c/x, ϕ.π′](σn)

– E¬: In this case we have that π ⇒ σ1; . . . ;σ; . . . ;σn is of the form

π′.¬ϕ.π′′ ⇒ σ1; . . . ;σ; . . . ;σn

whereas its immediate predecesoor is π ⇒ σ1; . . . ;σ; . . . ;σn is
of the form

π′.π′′ ⇒ σ1; . . . ;σ; . . . ;σn;ϕ

Case (b): π is simple, and σ is not active. In this case there must
be a predecessor of the form π′ ⇒ σ on the branch B where π′ is
simple and σ is active.

Case (c): π is simple, and σ is active. Then π ⇒ σ1; . . . ;σ; . . . ;σnis
derived from its immediate predecessor by an application of either
of the following rules:
– I∧: In this case π ⇒ σ1; . . . ;σ; . . . ;σn is of the form

π ⇒ σ1; . . . ; (ϕ ∧ ψ).σ′; . . . ;σn
while its immediate predecessor is

π ⇒ σ1; . . . ;ϕ.ψ.σ′; . . . ;σn
– I∃: In this case π ⇒ σ1; . . . ;σ; . . . ;σn is of the form

π ⇒ σ1; . . . ;∃xϕ.σ; . . . ;σn

while its immediate predecessor is

π ⇒ σ1; . . . ; [c/x](ϕ.σ′); . . . ;σn; ∃xϕ.σ′

– I¬: In this case π ⇒ σ1; . . . ;σ; . . . ;σn is of the form

π ⇒ σ1; . . . ;¬ϕ; . . . ;σn

while its immediate predecessor is

π.ϕ⇒ σ1; . . . . . . ;σn

14



– seq: This case has two subsubcases:
(a) π ⇒ σ1; . . . ;σ; . . . ;σn is either of the form

π ⇒ σ1; . . . ;¬ϕ.σ′; . . . ;σn

while its two immediate predecessors are

π ⇒ σ1; . . . ;¬ϕ; . . . ;σn

and
π.¬ϕ⇒ σ1; . . . ;σ

′; . . . ;σn

(b) π ⇒ σ1; . . . ;σ; . . . ;σn is of the form

π ⇒ σ1; . . . ;Ra1 . . . an.σ′; . . . ;σn

while its two immediate predecessors are

π ⇒ σ1; . . . ;Ra1 . . . an; . . . ;σn

and
π.Ra1 . . . an ⇒ σ1; . . . ;σ

′; . . . ;σn

Theorem 1 (Completeness)
If π |= Σ, then π `R Σ
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7 Natural Deduction

Examples.
(a) Note that Rxy.∃xAx.∃yBy |= ∃x∃yRxy.

But how to derive

1 Rxy premise
2 ∃xAx premise
3 ∃yBy premise
4 ∃yRxy ???

(b) Note that ∃xAx.Bx.∃xAx 6|= Bx
However, ∃xAx.Bx |= ∃xAx.Bx
and ∃xAx.Bx |= Bx

(c) How to derive
1 Ac premise
2 Bc premise
3 ∃xAx
4 Bx

Let ϕ1. . . . .ϕk be a text. A natural deduction from ϕ1. . . . .ϕk is a sequence
S1, S2, . . . of steps Sn = 〈Fn, An, Qn〉 such that

(i) Fn is a formula;
(ii) An ⊆ {k | k ≤ n}; if k ∈ An then the formula Fk is one of the assumptions

at n;
(iii) Qn is a partial function assigning a natural number, called the (quantifier)

index Qn(∃x, i), to the i-th occurrence of the quantifier ∃x in the formula
Fn.

In a making a natural deduction we have to keep track at each step Sn+1 of the
index of the quantifier by which a free occurrence of the variable x in Fn+1 is
going to be bound. Cn(x) is supposed to tell this. More precisely:

Cn is a partial function assigning a natural number to some of the vari-
ables as follows.

(a) If no occurrence of ∃x in Fn is active after Fn, then Cn(x) = Cm(x),
where m is the largest number smaller than n such that Cm(x) is defined
and Am ⊆ An;

(b) If the i-th occurrence of ∃x in Fn is active after Fn,
then Cn(x) = Qn(∃x, i).

Usually, the largest number smaller than n such that Cm(x) is defined and
Am ⊆ An happens to be n − 1. The only exception is the case where in Sn an
assumption is withdrawn.

Another useful abbreviation is given by Mn(∃x), where Mn(∃x) denotes the
maximal number in {l | l = Qm(∃x, i) for some i and some m < n}

To qualify as a natural deduction the following conditions should be fulfilled:
Adding a premise For 1 ≤ n ≤ k the following must hold:

• Fn = ϕn.
• An = ∅.
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• For every x and i such that ∃x occurs at least i times in Fn,Qn(∃x, i) =
Mn−1(∃x) + i.

Each Fn is called a premise.

For n > k either of the following must hold:
Making an assumption

• An = An−1 ∪ {n}.
• For every x and i such that ∃x occurs at least i times in Fn,Qn(∃x, i) =

Mn−1(∃x) + i.

In this case we say that Fn is an assumption made at step n.

Repetition There is some m < n such that
• Fm = Fn
• Am ⊆ An−1 = An.
• For every x such that x occurs free in Fn, Cn−1(x) = Cm−1(x);
• For every x and i such that ∃x occurs at least i times in Fn,Qn(∃x, i) =

Qm(∃x, i).
In this case we say that Fn. . . . .Fn+l is obtained by repetition.

Examples
∃xAx.Bx |= Bx;
∃xAx.Bx |= ∃xAx ∧Bx;
∃xAx.Bx.∃xAx 6|= Bx;
∃xAx.Bx.∃xAx |= ∃xAx ∧Bx.

1 ∃1xAx premise
2 Bx premise
3 Bx repetition, 2

1 ∃1xAx premise
2 Bx premise
3 ∃1xAx ∧Bx I∧, 1,2

1 ∃1xAx premise
2 Bx premise
3 ∃2xAx premise
4 Bx ???

1 ∃1xAx premise
2 Bx premise
3 ∃2xAx premise
4 ∃1xAx ∧Bx I∧, 1,2
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Elimination of ∃x There is some m < n such that
• Fm = ∃xFn.
• Am ⊆ An−1 = An.
• Cn−1(x) = Qm(∃x, 1);

for every y such that y 6= x, and y occurs free in Fn, Cn−1(y) =
Cm−1(y).

• If ∃x occurs at least i times in Fn, Qn(∃x, i) = Qm(∃x, i+ 1).
For every y 6= x and i such that ∃y occurs at least i times in Fn,
Qn(∃y, i) = Qm(∃y, i).

In this case we say that Fn is obtained from Fm by E∃.

Introduction of ∃x There exist t, χ0, χ1 . . . χl, and m < n− l such that
• Fm.Fm+1. . . . .Fm+l = [t/x](χ0.χ1. . . . .χl)

Fn.Fn+1. . . . .Fn+l = ∃xχ0.χ1. . . . .χl
• Am ⊆ Am+1 ⊆ . . . ⊆ Am+l ⊆ An−1 = An = . . . = An+l.
• For every y such that y occurs free in ∃xχ0. . . . .χl, Cn−1(y) =

Cm−1(y).
• Qn(∃x, 1) = Mn−1(∃x) + 1;

for i > 1, Qn(∃x, i) = Qm(∃x, i− 1);
for every y such that y 6= x, Qn(∃y, i) = Qm(∃y, i).
For every 1 ≤ j ≤ l, and every y, Qn+j(∃y, i) = Qm+j(∃y, i).

In this case we say that Fn. . . . .Fn+l is obtained from Fm. . . . .Fm+l by
I∃

Example
∃xRxx |= ∃x∃yRxy ∧Ryx

1 ∃1xRxx premise
2 Rxx E∃, 1
3 Rxx repetition, 2
4 ∃1yRxy
5 Ryx I∃, 2–3
6 ∃2x∃1yRxy
7 Ryx I∃, 4–5
8 ∃2x∃1yRxy ∧Ryx I∧, 6,7

Variable switch There exist y, x, χ, and m, l with m < n− l such that
• Fm = ∃xχ

Fn = ∃y[y/x](χ)
Fn+1. . . . .Fn+l = [y/x, χ](Fm+1. . . . .Fm+l)

• Am ⊆ Am+1 ⊆ . . . ⊆ Am+l ⊆ An−1 = An = . . . = An+l.
• For every z such that z occurs free in Fn. . . . .Fn+l, Cn−1(z) =

Cm−1(z).
• Qn(∃y, 1) = Mn−1(∃y) + 1; for i > 1, Qn(∃y, i) = Qm(∃y, i− 1);

Qn(∃x, i) = Qm(∃x, i+ 1);
for every z such that z 6= x and z 6= y , Qn(∃z, i) = Qm(∃y, i).
For every 1 ≤ j ≤ l, and every z, Qn+j(∃z, i) = Qm+j(∃z, i).
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In this case we say that Fn. . . . .Fn+l is obtained from Fm. . . . .Fm+l by
variable switch.

Example
∃x(Ax ∧ ∃x¬Ax) |= ¬Ax

1 ∃1x(Ax ∧ ∃2x¬Ax) premise
2 ∃1y(Ay ∧ ∃2x¬Ax) variable switch, 1
3 Ay ∧ ∃2x¬Ax E∃, 2
4 ∃2x¬Ax E∧, 3
5 ¬Ax E∃, 4

Elimination of ∧ There exist and m < n such that
• Fm = Fn ∧ Fn+1.
• Am ⊆ An−1 = An = An+1.
• For every x such that x occurs free in Fm, Cn−1(x) = Cm−1(x);
• For every x and i such that ∃x occurs at least i times in Fn,Qn(∃x, i) =

Qm(∃x, i).
For every x and i such that ∃x occurs at least i times in Fn+1,
Qn+1(∃x, i) = Qm(∃x, i + j), where j is the number of times ∃x
occurs in Fn.

In this case we say that Fn is obtained from Fm by E∧.

Introduction of ∧ There is some m with m < n− 1 such that
• Fn = Fm ∧ Fm+1.
• Am ⊆ Am+1 ⊆ An−1 = An.
• For every x such that x occurs free in Fn, Cn−1(x) = Cm−1(x).
• Qn is determined as follows:

Suppose ∃x occurs j times in Fm. Then for every i ≤ j, Qn(∃x, i) =
Qm(∃x, i), and for every i > j, if ∃x occurs at least i times in Fn,
Qn(∃x, i) = Qm+1(∃x, i− j).

In this case we say that Fn is obtained from Fm by I∧.

Elimination of ⊥ There is some m ≤ n
• Fm = ⊥.
• Am ⊆ An−1 = An.
• For every x and i such that ∃x occurs at least i times in Fn,Qn(∃x, i) ≤

Mn−1(∃x) + i.

In this case we say that Fn is obtained from Fm by E⊥.

Elimination of ¬ There exist χ and l,m with l ≤ m ≤ n such that
• Fl = ¬χ, Fm = χ, and Fn = ⊥.
• Al ⊆ Am ⊆ An−1 = An.
• For every x such that x occurs free in χ, Cl−1(x) = Cm−1(x)

In this case we say that Fn is obtained from Fm by I⊥.

Introduction of ¬ There is some m < n such that
• Fm is an assumption made at step m, Fn−1 = ⊥, and Fn = ¬Fm.
• Am = An−1, and An = An−1\{m}
• For every x and i such that ∃x occurs at least i times in Fn,Qn(∃x, i) =

Qm(∃x, i);
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In this case we say that Fn is obtained from Fm by I¬.
The assumption χ made at step m is withdrawn at step n.

Elimination of ¬¬ There is some m < n such that
• Fm = ¬¬Fn.
• Am ⊆ An−1 = An.
• For every x such that x occurs free in Fn, Cn−1(x) = Cm−1(x);
• For every x and i such that ∃x occurs at least i times in Fn,Qn(∃x, i) =

Qm(∃x, i).
In this case we say that Fn is obtained from Fm by E¬¬.

Example
¬(∃xAx ∧ ¬Bx).∃xAx |= Bx

1 ¬(∃1xAx ∧ ¬Bx) premise
2 ∃2xAx premise
3 ¬Bx assumption
4 ∃2xAx ∧ ¬Bx I∧
5 ⊥ E¬, 1, 4
6 ¬¬Bx I¬
7 Bx ¬¬, 6

Definition 16
Consider a natural deduction. We define Tn, also called the text at the n-th
step, to be the sequence of formulas χ1.χ2. . . . determined as follows:

(i) χ1 = Fi for the smallest i ≤ n such that Ai ⊆ An;
(ii) If χk = Fj , then χk+1 = Fi for the smallest i such that j ≤ i ≤ n and

Ai ⊆ An.

Definition 17
ϕ1. . . . .ϕk `N ψ1. . . . .ψl iff there exists a natural deduction from ϕ1. . . . .ϕk
such that for some n the following holds:

(i) Fn. . . . .Fn+l = ψ1. . . . .ψl;
(ii) for each i such that n ≤ i ≤ n+ l, Ai = ∅;

(iii) for each x occurring free in Fn. . . . .Fn+l, Cn(x) = Ck(x).

Definition 18
Consider a natural deduction from ϕ1. . . .ϕk.
Consider Tn = ϕ1. . . .ϕk.χ1. . . . .χm for some n such that k ≤ n.
Let M = 〈D, I〉 be some model and suppose there are assignments v0, . . . , vm
pertaining to M such that

(i) vi+1 ∈ {vi}[χi+1] for every 0 ≤ i < m;
(ii) for all x and all 0 ≤ i, j ≤ m such that Ci(x) = Cj(x) it holds that

vi(x) = vj(x).
In this case we say that the sequence v0, . . . , vm follows the deduction up to n.
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Lemma 6
Consider a natural deduction from ϕ1. . . .ϕk.
Consider Tk = ϕ1. . . .ϕk.
Let M be any model 〈D, I〉.
Any sequence of assignments v0, . . . , vk pertaining toM which has the property
mentioned under (i) above follows the deduction up to k.

Lemma 7
Consider a natural deduction from ϕ1. . . .ϕk.
Consider Tn = ϕ1. . . .ϕm for some n such that k ≤ n, and assume Fn+1 is not
an assumption.
Let M be any model.
Then any sequence v0, . . . , vm pertaining toM which follows the deduction up
to n can be extended to a sequence v0, . . . , vm, vm+1 which follows the deduction
op to n+ 1.

Theorem 2 (Soundness)
If π `N σ, then π |= σ
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8 Sequent system ‘Utrecht’

π; [c/x]ϕ; [c/x]π′ ⇒ [c/x]σ

π; ∃x;ϕ;π′ ⇒ σ
E∃ Provided c does not occur in π, ϕ, π′, or σ

π ⇒ σ; [t/x]ϕ; [t/x]σ′

π ⇒ σ;∃x;ϕ;σ′
I∃ Provided t is free for x

¬ϕ;ϕ;ψ ⇒
¬ϕ;ϕ ∧ ψ ⇒

seq

¬ϕ⇒ ¬(ϕ ∧ ψ)
I¬

¬¬(ϕ ∧ ψ);¬ϕ⇒ E¬

¬¬(ϕ ∧ ψ)⇒ ¬¬ϕ I¬ ¬¬(ϕ ∧ ψ);¬¬ϕ⇒ ϕ

¬¬(ϕ ∧ ψ)⇒ ϕ
c-cut

However,
¬ψ;ϕ;ψ ⇒ (??)

¬ψ;ϕ ∧ ψ ⇒
seq

¬ψ ⇒ ¬(ϕ ∧ ψ)
I¬

¬¬(ϕ ∧ ψ);¬ψ ⇒ E¬

¬¬(ϕ ∧ ψ)⇒ ¬¬ψ I¬ ¬¬(ϕ ∧ ψ);¬¬ψ ⇒ ψ

¬¬(ϕ ∧ ψ)⇒ ψ
c-cut

Meaning To know the meaning of a sentence is to know the change it brings
about in the information state of anyone who accepts the news conveyed
by it. In other words, the meaning of a sentence is a function from infor-
mation states into information states.

Notation Let s be an information state and ϕ a sentence with meaning [ϕ].
We write s[ϕ] for the information state that results when s is updated
with ϕ.

Acceptance Sometimes the information conveyed by ϕ will already be sub-
sumed by s. In such a case, we say that ϕ is accepted in s, or that s
supports ϕ, and we write this as:

s |= ϕ

Logical validity Updating any state s with the premises [ϕ1], . . . , [ϕn] in that
order, yields a state in which the conclusion ψ is to be accepted.

ϕ1, . . . , ϕn |= ψ iff for any s, s[ϕ1], . . . , [ϕn] |= ψ

More examples
• ∃xPx. might ¬Px is inconsistent.
• ∃xPx. might ∀y¬Py is inconsistent.
• ∃xPx.∀y might ¬Py is consistent.
• ∃xPx.∀y might (y 6= x) is consistent.
• ∃x(Px ∧ ∀y might (y 6= x)) is inconsistent.

Definition 19 (Support) A state s supports a text π iff {i}[π] 6= ∅ for every
i ∈ s.
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Proposition 6 (Soundness Deductive Tableaus) If π `D σ, then π |= σ
Proof: Check the following:

(i) If Rt1 . . . t1 does not depend on π′, then π.Rt1 . . . tn.π′ |= Rt1 . . . tn.
(ii) If π.ϕ.ψ.π′ |= σ, then π.ϕ ∧ ψ.π′ |= σ.

(iii) If π |= σ.ϕ.ψ.σ′, then π |= σ.ϕ ∧ ψ.σ′.
(iv) If π. [c/x](ϕ.π′) |= [c/x, ϕ.π′](σ), and c does not occur in π, ϕ, π′, or σ,

then π.∃xϕ.π′ |= σ.
(v) If π |= σ. [t/x](ϕ.σ′), and t is free for x in ϕ.σ′, then π |= σ.∃xϕ.σ′.

(vi) If π.π′ |= ϕ, and ϕ does not depend on π′, then π.¬ϕ.π′ |= σ.
(vii) If π.ϕ |= ∅, then π |= ¬ϕ.
(viii) If π.¬ϕ |= ∅, then π |= ϕ.
(ix) If π |= σ and π.σ |= σ′, then π |= σ.σ′.

Elimination rule for ∧

... π′

m ϕ ∧ ψ
... π
n ϕ E∧,m
n+ 1 ψ E∧,m

Conditions:
1. ϕ does not depend on ϕ ∧ ψ.τ(π);
2. ψ does not depend on ψ.τ(π).

Introduction rule for ∧

... π′

m ϕ
m+ 1 ψ
... π
n ϕ ∧ ψ I∧,m,m+ 1

Conditions:
1. ϕ does not depend on ψ.τ(π);
2. ψ does not depend on τ(π).

Elimination rule for ¬

... π′′

k ϕ
... π′

m ¬ϕ
... π
n ⊥ E¬, k,m

Conditions:
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1. ¬ϕ does not depend on ϕ.τ(π′)

Introduction rule for ¬
... π
m ϕ assumption
... π′

n− 1 ⊥
n ¬ϕ I¬

Conditions:
1. —

Introduction rule for ∃
... π′

m [t/x]ϕ
... π
n ∃xϕ I∃,m

Conditions:
1. t is free for x in ϕ;
2. ∃xϕ does not depend on [t/x]ϕ.τ(ψ).

Elimination rule for ∃
... π′

m ∃xϕ
... π
n ϕ E∃,m

Conditions:
1. ϕ does not depend on ϕ.τ(π).

¬¬-rule

... π′

m ¬¬ϕ
... π
n ϕ ¬¬,m

Conditions:
1. ϕ does not depend on τ(π).

Recapitulation rule

... π′

m ∃xϕ
... π
n ∃y[y/x]ϕ R∃,m

Conditions:
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1. y is free for x in ϕ;
2. ∃y[y/x]ϕ does not depend on ϕ.τ(π).

Proof:
(a) and (b) are left to the reader.
(c)

π.¬ϕ⇒ χ

π.¬ϕ.¬χ⇒ ⊥ E¬

π.¬χ⇒ ¬¬ϕ I¬ π.¬χ.¬¬ϕ⇒ ϕ
π.¬χ⇒ ϕ

π.ϕ.¬ψ ⇒ χ

π.ϕ.¬ψ.¬χ⇒ ⊥ E¬

π.ϕ.¬χ⇒ ¬¬ψ I¬ π.ϕ.¬χ.¬¬ψ ⇒ ψ

π.ϕ.¬χ⇒ ψ

π.¬χ⇒ ϕ.ψ seq

π.¬χ⇒ ϕ ∧ ψ I∧

π.¬χ.¬(ϕ ∧ ψ)⇒ ⊥ E¬

π.¬(ϕ ∧ ψ)⇒ ¬¬χ I¬
π.¬(ϕ ∧ ψ).¬¬χ⇒ χ

π.¬(ϕ ∧ ψ)⇒ χ
(d)

π.¬[c/x]ϕ⇒ ψ

π.¬ψ.¬[c/x]ϕ⇒ ⊥ E¬

π.¬ψ ⇒ ¬¬[c/x]ϕ
I¬

π.¬ψ.¬¬[c/x]ϕ⇒ [c/x]ϕ

π.¬ψ ⇒ [c/x]ϕ

π.¬ψ ⇒ ∃xϕ I∃

π.¬ψ.¬∃xϕ⇒ ⊥ E¬

π.¬∃xϕ⇒ ¬¬ψ I¬ π.¬∃xϕ.¬¬ψ ⇒ ψ

π.¬∃xϕ⇒ ψ

Example
1 ¬¬∃x(Ax ∧Bx) premise
2 ¬(∃xAx ∧Bx) assumption
3 ∃x(Ax ∧Bx) assumption
4 Ax ∧Bx E∃, 3
5 Ax E∧, 4
6 Bx E∧, 4
7 ∃xAx I∃, 5
8 Bx I∃, 6,7
9 ∃xAx ∧Bx I∧, 7, 8
10 ⊥ E¬, 2,9
11 ¬∃x(Ax ∧Bx) I¬
12 ⊥ E¬, 1,11
13 ¬¬(∃xAx ∧Bx) I¬
14 ∃xAx ∧Bx ¬¬, 13
15 ∃xAx E∧, 14
16 Bx E∧, 14,15
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