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Abstract.

We discuss a ‘negative’ way of defining frame classes in (multi-)modal logic, and address the

question whether these classes can be axiomatized by derivation rules, the ‘non-ξ rules’, styled

after Gabbay’s Irreflexivity Rule. The main result of this paper is a meta-theorem on completeness,

of the following kind: If Λ is a derivation system having a set of axioms that are special Sahlqvist

formulas, and Λ+ is the extension of Λ with a set of non-ξ rules, then Λ+ is strongly sound and

complete with respect to the class of frames determined by the axioms and the rules.
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1 Introduction

1.1 Rules as anti-axioms

When we are saying that a modal formula φ characterizes a class K of frames, we usually mean that
any modal frame F = (W,R) is in K if and only if φ is valid in F (i.e. in every model (F, V ) based on
F, φ is true in every world of F). The standard examples are p → 3p and 33p → 3p characterizing
the reflexive respectively the transitive frames. Correspondence theory (cf. van Benthem [2, 3]) is the
branch of modal logic studying the relation of the modal formalism to the first order frame language
(the one having one predicate, referring to the accessibility relation) as ways of talking about frames.
It is also a well-known correspondence-theoretic result that not all first order definable properties have
modal correspondents: the standard example here being irreflexivity.

However, there are different ways of characterizing frame classes: consider a world w in a frame
F = (W,R). Clearly w is irreflexive iff {w} ∩ {v|Rwv} = ∅. Thus, a world w is irreflexive iff we can
make the formula p→ 3p false at w. This gives us a way of characterizing the irreflexive frames:

F |= ∀x¬Rxx ⇐⇒ ∀w∃V ( F, V, w |= ¬(p→ 3p) ) .

In the same way, we can show that a frame is intransitive iff we can falsify the formula 2p→ 33p at
every world.

Classes allowing such a characterization will be called negatively definable and form the subject
of this paper. These classes occur abundantly in (multi-)modal logic, especially in contexts with a
more-dimensional flavour: in the next section we will give some more examples. However, the main
topic that we will address in this paper is not so much definability as axiomatizability.

Let us return to the properties of transitivity and reflexivity. It belongs to the basic facts of modal
logic that for these properties, the modal formulas characterizing them are also sufficient to axiomatize
the formulas valid in the corresponding frame classes. For example, adding 33p → 3p as an axiom
to the basic modal logic K, we obtain a complete axiomatization for the class of transitive frames. It
is less clear however, how to axiomatize the irreflexive frames, as there is not an obvious candidate
axiom. The usual procedure consists of starting with some model M for a consistent set of formulas
Σ and then transforming M into an irreflexive model M′ for Σ. In this way one can show that K
itself1is complete for the class of irreflexive frames.

A different road was taken by Gabbay in [8]. Instead of using axioms, he suggested to add (to
a similar logic) a special derivation rule, which he baptized the irreflexivity rule. This rule can be
formulated as follows2

(IR) ` ¬(p→ 3p)→ φ ⇒ ` φ, if p does not occur in φ.

Gabbay’s completeness proof then consists of constructing a transitive irreflexive model right away,
without passing models that may be bad in the sense that they have reflexive points.

Let us now have a closer look at the irreflexivity rule: one intuition behind it is expressed by the
following reading: “if we can prove φ under the condition that we are in an irreflexive world, then
we accept φ as a theorem”. But perhaps it is more perspicuous if we concentrate on the converse
statement:

(IŘ ) If φ is consistent and does not use p, then φ ∧ ¬(p→ 3p) is consistent.
1In this sense, the example of irreflexivity is not representative; this matter is discussed in section 9.
2To be precise, this relatively simple version of the rule only works for tense logics, cf. section 6.
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With this formulation, it will be clear immediately that IR is sound with respect to the logic of the
irreflexive frames: if φ can be made to hold at a world w in an irreflexive model (F, V ), then by taking
a valuation V ′ which is just like V except for sending p to {w}, we can satisfy φ ∧ ¬(p→ 3p) in the
irreflexive model (F, V ′).

The interesting question of course is whether adding the irreflexivity rule to a logic gives us com-
pleteness of the arising derivation system with respect to irreflexivity — as we already mentioned,
Gabbay gives an affirmative answer for the tense logics studied in [8].

The idea of converting the negative definability of a property into a derivation rule can of course
be applied in many other contexts, and in fact several authors have followed Gabbay’s original paper.
Examples include Burgess [6], Zanardo [45] for branching-time temporal logics, Kuhn [22] and Venema
[37, 38, 39, 42, 43] for many-dimensional modal logics (of intervals), and Gabbay & Hodkinson [11],
de Rijke [28], Roorda [30]. There is an originally independent Bulgarian line of papers: Passy-Tinchev
[26], Gargov & Goranko [12], Gargov, Passy & Tinchev [13], Goranko [17] where similar rules are
used in a context of enriched modal formalisms. Finally, in the first order temporal logic of program
verifications there is a related concept called ‘clock rule’ (cf. Sain [34], Andréka, Németi & Sain [1]
and the references therein). Gabbay [10] contains a lot of new material concerning the irreflexivity
and related rules, for example giving a general procedure to find axiomatizations for any first order
definable temporal connective, over the class of linear orders.

So the question naturally arises whether anything general can be said about logics having rules like
the irreflexivity rule — in fact, the abstract, general perspective is already present in Gabbay [8]. In
some way, the situation mirrors the ordinary one in modal logic: if a formula φ characterizes the class
Frφ of frames where φ is valid, but this does not necessarily imply that Kφ ( the basic logic K extended
with φ as an axiom) axiomatizes this class. Likewise, a formula ξ is a negative characterization of the
class Fr−ξ, but does this mean that K(−ξ) (K extended with the non-ξ rule, i.e. the ξ-analogon of
the irreflexivity rule) forms a complete axiomatization for Fr−ξ? And, what happens when we have
an interplay of both axioms and these non-ξ rules? These questions form the topic of this paper.

Outline.
This introduction proceeds with a subsection in which we give some basic terminology and notation.
In section 2 we give a more precise and rigorous formulation of the problem. The following section
discusses the formulas that will be allowed as axioms in our general theorem; for these a so-called
persistence result is proved. Section 4 contains a concise introduction to D, a special modal operator
having the inequality relation as its intended accessibility relation. In the sections 5, 7 and 8 we prove,
ever more general versions of our main result: section 5 contains the basic idea, in a context with only
monadic modal operators and only one special derivation rule; in section 7 we add polyadic operators,
and in section 8 we allow arbitrarily many derivation rules. There is a perhaps surprising difference
in behaviour between sets of operators in which every monadic operator has a converse (like in tense
logic) and sets where this is not the case. These matters are discussed in section 6. We finish off in
section 9 by drawing some conclusions, and mentioning some questions for further research.

Acknowledgements.
The author of this paper is deeply indebted to Johan van Benthem who taught him modal logic, to
Dov Gabbay for many discussions on modal derivation rules, and to Ian Hodkinson and Maarten de
Rijke. Finally, an anonymous referee suggested several improvements, and detected some errors.

1.2 Preliminaries: Similarity types

We follow the conventions in non-classical logics and its semantics as laid down in e.g. Goldblatt [14]
or Gabbay & Guenthner [9]. For future reference however, we want to be quite general in the sense
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that we consider multi-modal languages with arbitrarily many operators, sometimes of arbitrary adity.
We briefly summarize here our generalized terminology; especially, because this paper is concerned
with non-standard derivation rules, we will go into detail in casu the notion of a derivation system.

Definition 1.1 Languages A modal similarity type is a pair S = (O, ρ) with O a set of modal
operators, and ρ : O 7→ ω a map assigning to each operator of O a finite rank or adity. Modal
operators of rank 0 are called constants, monadic operators: diamonds, and dyadic ones: triangles.
We usually assume the rank of operators known and make no distinction between S and O. As
variables ranging over operators we use ∇,∇1, . . .. If the operators are zero-adic or constants, we use
δ, λ, π, σ, . . ., for monadic symbols we use 3,31, F, P,D, . . . and for dyadics we take M,M1, ◦, . . .

A modal language is a pair M = (S,Q), where S is a similarity type and Q is a set of propositional
variables. When no confusion arises we write M(S), M(Q) or M . The set Φ(M) of formulas in M
is inductively defined as usual: the atomic formulas are the constants and the propositional variables,
and a formula is either atomic or of the form ¬φ0, φ1 ∨ φ2 or ∇(φ1, . . . , φn), with every φi a formula.
If the variable p does not occur in φ, we write p 6∈ φ.
For an operator ∇, we abbreviate ∇(φ1, . . . , φn) = ¬∇(¬φ1, . . . ,¬φn) and call ∇ the dual of ∇. Duals
of diamonds are called boxes: 2φ = ¬3¬φ.
To increase readability, we will suppress brackets. We list the operators by decreasing priority: (i)
monadic operators (¬, 3,2), (ii) polyadic modal operators, (iii) {∧,∨}, (iv) {→,↔}.

Let M = (S,Q) be a modal language, with S = {∇i | i < ξ}, Q = {pj | j < ζ}. The correspondence
map ` assigns an accessibility relation symbol `(∇i) of adity ρ(∇i) + 1 to each operator ∇i of S and
a monadic relation symbol Pj to each propositional variable pj in Q. The corresponding (classical)
frame language LS has as its predicate symbols the set {`(∇) | ∇ ∈ O}. The corresponding (classical)
model language LM is LS extended with all monadic symbols Pj , j < ζ.

Unless otherwise stated, all definitions in this subsection are understood with respect to a fixed
modal similarity type S, c.q. a fixed modal language M = (S,Q).

Definition 1.2 Semantics
A frame is a pair F = (W, I), which is a structure for LS in the sense of ordinary first order model
theory, i.e. W is a set called the universe and I is presented as an interpretation function associating
an n + 1-ary accessibility relation with each S-operator of rank n. Elements of W are called possible
worlds. We occasionally present a frame as F = (W,R∇)∇∈S . For an n-ary operator ∇, we define the
n-ary operation m∇ on the powerset P (W ) of W by

m∇(X1, . . . , Xn) = {w | ∃w1 . . .∃wn(
∧

0<i≤n

wi ∈ Xi ∧R∇(w,w1, . . . , wn))}.

A general frame is a pair G = (F, A) where F = (W, I) is an S-frame and A ⊆ P (W ) is closed under
Boolean operations and under the operations m∇ for all ∇ in S.

AnM -model is a structure M = (W, I ′) for LM . We usually present a model M as a pair M = (F, V )
with F = (W, I) an S-frame and V a valuation, i.e. a function mapping proposition letters in Q to
subsets of W . (This presentation can be brought in accordance with the formal definition by setting
I ′ = I ∪ V .) V can be extended to a map assigning sets of possible worlds to all M -formulas, by the
following inductive definition: V (φ ∨ ψ) = V (φ) ∪ V (ψ), V (¬φ) = W − V (φ) and V (∇(φ1, . . . , φn))
= m∇(V (φ1), . . . , V (φn)). We define the notion of truth: a formula φ is true at w in M, notation:
M, w |= φ, if w ∈ V (φ).
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Missing symbols in ‘F, V, w |= φ’ are alway understood to be universally quantified, e.g. F, w |= φ
iff for all valuations V , F, V, w |= φ. For a general frame G = (F, A) we set G |= φ iff for all valuations
V with every V (p) in A, F, V |= φ. φ is valid in a class K of frames if F |= φ for all F in K. For K a
class of models or frames, let ΘS(K) be the set of S-formulas holding in K. For Σ a set of formulas,
let FrΣ be the class of frames in which Σ holds. For a formula φ, we write Frφ instead of Fr{φ}. A
formula φ is a semantic consequence of a set of formulas Σ over a class of frames K, notation: Σ |=K φ
if for every model M based on a frame in K, and every world w in M, M, w |= φ if M, w |= σ for all
σ ∈ Σ. A set of formulas Σ characterizes a class of frames K if K = FrΣ.

Correspondence By induction to the complexity of formulas in M we define, for every modal
formula φ in M its classical local model correspondent φ1(x0) in LM : (pi)1 = Pix0 (where Pi is the
corresponding monadic predicate `(pi) of pi), (¬φ)1 = ¬φ1, (φ ∨ ψ)1 = φ1 ∨ ψ1 and

(∇(φ1, . . . , φn))1 = ∃x1 . . . xn(R∇(x0, x1, . . . , xn) ∧
∧

0<i≤n φ
1
i (xi/x0)).

The (classical) local frame correspondent is defined as the second order formula φ2(x0) ≡ ∀P1 . . .∀Pmφ1(x0),
where the second order quantifications (∀Pi) take place over those predicates Pi = `(pi) with pi oc-
curring in φ. The global correspondents are defined by a universal first order quantification over the
appropriate local correspondents, so the global model correspondent is ∀x0φ

1(x0) and the global frame
correspondent is ∀x0φ

2(x0). Modal formulas and their classical correspondents are equivalent on the
appropriate level, e.g. F |= φ iff F |= ∀x0φ

2.

Definition 1.3 Axiomatics
A derivation system is a pair MD = (MA,MR) with MA a set of formulas called axioms and MR a
set of derivation rules, a notion for which we only give a semi-formal definition. A derivation rule is
usually given in the form ‘R : ∆/φ, provided C’, or, if ∆ is a singleton {ψ}:

(R) ` ψ ⇒ ` φ, provided C.

where φ and ψ are schemas of formulas and ∆ is a set of such schemas, and C a constraint on R. A set
Σ of formulas is said to be closed under R if any instantiation of φ is in Σ whenever the corresponding
instantiation of ∆ is contained in Σ and the constraint C is met. We understand as known the notion
of a substitution. A derivation rule is called orthodox if it is one of the following three, Modus Ponens,
Universal Generalization or Substitution:

(MP ) φ, φ→ ψ / ψ,
(UG) φ / ∇(φ1, . . . , φi−1, φ, φi+1, . . . , φn), for any n-adic operator ∇ in M ,
(SUB) φ / σφ, for any substitution σ.

A (normal) modal logic in a language M is a subset Λ of Φ(M) such that
(i) Λ contains the following axioms, the classical tautologies and distribution:

(CT ) all classical tautologies
(DB) ∇(p1, . . . , pi−1, p→ p′, pi+1, . . . , pn) →

∇(p1, . . . , pi−1, p, pi+1, . . . , pn) → ∇(p1, . . . , pi−1, p
′, pi+1, . . . , pn)

(ii) Λ is closed under the orthodox derivation rules.
A derivation system is called orthodox if it contains no derivation rules besides the orthodox ones.

The minimal or basic logic KS of a similarity type S is defined as having only (CT) and (DB) as its
axioms, only (MP), (UG) and (SUB) as its derivation rules. Let MA be a set of axioms and MR a
set of derivation rules; the logic Λ(MA,MR) is the least set of formulas in M containing MA which
is closed under the derivation rules in MR. This allows us in the sequel to feel free to identify logics
with derivation system, provided that no confusion arises concerning the set of derivation rules. For
a formula σ we let Λσ denote the derivation system Λ extended with σ as an axiom. ΛΣ is defined
likewise.

Derivations. A derivation in Λ is a finite sequence φ0, . . . , φn such that every φi is either an
axiom or obtainable from φ0, . . . , φi−1 by a derivation rule. A theorem of Λ is any formula that can
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appear as the last item of a derivation. Theoremhood of a formula φ in a logic Λ is denoted by `Λ φ.
A formula φ is derivable in a logic Λ from a set of formulas Σ, notation: Σ `Λ φ, if there are σ1, . . . , σn
in Σ with `Λ (σ1∧ . . .∧σn)→ φ. A formula φ is consistent if its negation ¬φ is not a theorem. A set of
formulas is consistent if the conjunction of any finite subset is consistent and maximal consistent if it is
consistent while it has no consistent proper extension (in the same language). We usually abbbreviate
‘maximal consistent set’ by ‘MCS’.

Canonical structures. For Λ a logic in a language M , the Λ-canonical universe W c
Λ is the set of

all maximal Λ-consistent sets in M . For ∇ an n-adic modal operator in M , its canonical accessibility
relation Rc∇ is defined on W c by Rc∇(∆0, . . . ,∆n) iff for all φ1 ∈ ∆1, . . . , φn ∈ ∆n: ∇(φ1, . . . , φn) ∈ ∆0.
The Λ-canonical frame is given as FcΛ = (W c

Λ, I
c), where Ic is the canonical interpretation mapping

every operator to its canonical accessibility relation. The canonical Λ-model is the pair Mc
Λ = (FcΛ, V

c),
where V cΛ is the canonical valuation assigning to every pi ∈ Q the set of MCSs containing pi, i.e.
V cΛ(pi) = {∆ ∈W c

Λ | pi ∈ ∆}.
The Λ−canonical general frame is the pair Gc

Λ = (FcΛ, A
c
Λ) where X ∈ AcΛ iff X = V cΛ(φ) for some

φ ∈ Φ(M). The most important property of the canonical model is the Truth Lemma: Mc,Γ |= φ ⇐⇒
φ ∈ Γ.

Properties of logics Let Λ be a logic, K a class of frames. Λ is called sound with respect to K if
Λ ⊂ Θ(K), and complete if Θ(K) ⊂ Λ. Λ is strongly sound if Σ `Λ φ ⇒ Σ |=K φ, strongly complete if
Σ |=K φ ⇒ Σ `Λ φ for all sets of formulas Σ and formulas φ.
If Λ is (a derivation system (A,D) which is) sound and complete for a class K of frames, we call Λ
an axiomatization for K. A logic Λ is canonical if Λ is valid not only on its canonical model (which
is always the case, by the truth lemma), but on every model based on the canonical frame, i.e. if
FcΛ |= Λ. A formula φ is canonical if the logic KSφ is canonical.

The following are well-known facts: (i) KS is strongly sound and complete with respect to FrS ,
and (ii) any canonical logic Λ is strongly sound and complete with respect to FrΛ.

Definition 1.4 Tense Assume that a subset T of the diamonds of S is given as T = {Fj , Pj | j ∈ J}.
Diamonds in this set are called tense diamonds, their duals tense boxes. We call Fj the converse of
Pj and the other way round. The duals of Fj and Pj are denoted by Gj resp. Hj . If 3 is a tense
diamond, its converse is denoted by 3−1. A diamond that is not in T is called uni-directional. If all
diamonds of a similarity type are in T , we call it a tense similarity type. A frame (W,R∇)∇∈S for S
is called a tense frame if for every 3 ∈ T , the accessibility relations of 3 and 3−1 are each other’s
converse, i.e. R3−1 = (R3)−1 (= {(u, v)|(v, u) ∈ R3}). For a class K of S-frames, we let Kt denote
the class of tense frames in K. The minimal tense logic Kt

S is the minimal S-logic KS extended with
the following axiom for every 3 ∈ T :
(CV ) p→ 23−1p

(With emphasis, we want to note that the above definition should be understood as to include the
case where a modal operator is its own converse.)

The following is a well-known fact: Kt
S is strongly sound and complete with respect to the class of

all tense frames.

2 Negative definability and rules as anti-axioms

In this section we give more formal definitions of the notions introduced in the previous section, and
we state the main problem addressed in the paper.
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Definition 2.1 For a modal formula φ resp. a set Φ of modal formulas we define Frφ (resp. FrΦ) as
the class of frames where φ, resp. Φ is valid. For Fr>, the class of all frames, we write Fr. If we want
to distinguish this kind of characterization from other sorts, we call it a positive characterization.

Now let ξ be a modal formula, K a class of frames. We define K−ξ as the class of non-ξ frames in
K, i.e. those F = (W, I) in K satisfying

for every world w there is a valuation V such that F, V, w |= ¬ξ.

For Ξ a set of formulas, we define K−Ξ as the intersection of all K−ξ, ξ ∈ Ξ. Classes of the form Fr−Ξ

we call negatively definable.

Informally, a frame F is a non-ξ frame iff “everywhere in F, we can get ξ false”, by choosing a
suitable valuation. Note that this is not the same as saying that we can get ξ “false everywhere”: the
valuation needed may depend on the particular world where we want to make ξ false.

In fact, we can distinguish three classes of frames, all defined using the negation of ξ:
(i) Fr¬ξ (i.e. the class of frames with F |= ¬ξ),
(ii) Frξ (i.e. the complement of Frξ),
(iii) Fr−ξ.

These classes need not be identical, for F is in Fr¬ξ iff for all valuations V and all worlds w,
F, V, w |= ¬ξ; F is in the second class iff there are a valuation V and a world w with F, V, w |= ¬ξ, and
F ∈ Fr−ξ means that for every world w there is a valuation V with F, V, w |= ¬ξ.
This means, so to speak, that −ξ ‘corresponds’ to the second order formula

∀x1∃P0 . . . Pn¬ξ1(x0),

where ξ1(x0) is the local model correspondent3 of ξ, every monadic predicate Pi being the first order
counterpart of the propositional variable pi in ξ. Thus we are studying classes of frames that are
definable in a version of second order logic where we have a restricted possibility to use existential
quantification over monadic predicates.

As an example from tense logic, consider the formula ξ = Gp → Pp (for a definition of our
conventions in tense logic, we refer to subsection 1.2), which is locally equivalent on the frame level to
∃y(Rxy ∧ R−1xy). So Frt−ξ is the class of frames F with F |= ∀x∀y(Rxy → ¬R−1xy) i.e. the class of
asymmetric frames, while the tense frames in Frξ are those frames F with F |= ∃x∀y(Rxy → ¬R−1xy).
The negation Gp ∧ H¬p of ξ can be shown to be globally equivalent to the formula ¬∃x∃yRxy, so
Frt¬ξ finally is the class of frames with empty R. As another example, one can show Fr−(Gp→FFp) to
be the class of intransitive frames.

To mention some other examples: let F = (W,R0, R1) be a frame where we want R0 and R1 to be
each others complement. One requirement to R0 and R1 is that their intersection is empty. It is easy
to verify that this disjointness property is negatively characterized by the formula 20p→ 31p.

Negative definability is abundant in (multi-)modal formalisms with a many-dimensional flavour,
cf. the references mentioned in the introduction. The problematic properties needed to be characterized
here usually have to do with the fact that the dimensions of the system should not overlap, and are
thus often related to the ‘disjointness’-property mentioned above.

In all these examples the second order definition of Fr−ξ can be replaced by a first order one, but
this need not always be the case: consider the formula δ ≡ (Fp ∧ FG¬p) → F (HFp ∧ G¬p), which
characterizes the Dedekind-complete frames among the linear orderings. The class Fr−δ cannot be
elementary, since its intersection with the class of linear frames consists of those F = (W,<) having
a ‘gap’ above each point (a gap above t ∈ W is a partition X,Y of W with X downward closed and
t ∈ X, such that X does not have a maximum, nor Y a minimum).

3cf. subsection 1.2, or van Benthem [2, 3].
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On the other hand, Fr−ξ may be first order definable while Frξ is not: consider the Löb formula L
= (2(2p→ p)→ 2p). It is well-known that FrL consists of the frames F = (W,R) with R transitive
and its converse well-founded. However (as Johan van Benthem observed), Fr−L contains precisely the
frames where every world has a successor, i.e. Fr−L = Fr3>.

It is still a matter of research, whether we can give a structural characterization of negative defin-
ability, analogous to the Goldblatt-Thomason result (cf. [16]) for positive definability.

We now turn to axiomatics; we are interested in the logic Θ(Fr−ξ) consisting of all formulas valid
in Fr−ξ. For a generalization of the irreflexivity rule, we follow Gabbay [8], though we use the name
‘non-ξ rule’ instead of his ‘Iξ-rule’:

Definition 2.2 Let ξ(p0, . . . , pn−1) be a modal formula. The ¬ξ-consistency rule, or shorter: the
non-ξ rule is the following derivation rule:

(NξR) ` ¬ξ(p0, . . . , pn−1)→ φ ⇒ ` φ, if ~p 6∈ φ.

If Λ is a derivation system and ξ a formula (Ξ a set of formulas), then Λ(−ξ) (Λ(−Ξ)) denotes the
system Λ extended with the non-ξ rule (all non-ξ rules, ξ ∈ Ξ).

Just like for the irreflexivity rule, the best way to understand the non-ξ rule is by its soundness
over the class of non-ξ frames:

Lemma 2.3 If Fr−ξ |= ¬ξ(p0, . . . , pn−1)→ φ and no pi occurs in φ, then Fr−ξ |= φ.

Proof.
We will prove the lemma by showing that

If φ is Θ(Fr−ξ)-consistent and none of the pi occurs in φ, then the formula φ∧¬ξ(p0, . . . , pn−1)
is Θ(Fr−ξ)-consistent.

Let φ be a Θ(Fr−ξ)-consistent formula, then there is a model M = (F, V ) with F is in Fr−ξ, and a world
w in M where M, w |= φ. Let p0, . . . , pn−1 be new propositional variables, in the sense that they are
not elements of Dom(V ). As F, w 6|= ξ, there is a valuation V ′ such that F, V ′, w |= ¬ξ(p0, . . . , pn−1).
Now let V ′′ be defined by

V ′′(q) = V (q) if q ∈ Dom(V )
V ′′(pi) = V ′(pi) for i = 0, . . . , n− 1.

then clearly we have (F, V ′′), w |= φ ∧ ¬ξ, which proves the lemma. 2

The aim however is of course to try and show completeness for non-ξ rules; this is the main subject
of this paper. As we have already mentioned in the introduction, in general we do not have an isolated
NξR added to a minimal (tense) logic, but a situation in which we add possibly more than one NξR
to a logic having other axioms besides the basics.
So the general situation, described by Gabbay [8, 10] is the following: we have a similarity type S,
an S-logic Λ which is (strongly) sound and complete with respect to a class of frames K, and a set of
formulas Ξ. The question now is the following

Is Λ(−Ξ) strongly complete with respect to K−Ξ ?

Gabbay proves a ‘generalized irreflexivity lemma’ stating that a Λ(−ξ)-consistent set Σ of formulas
has a model M with M |= Θ(FrΛ,−Ξ). Unfortunately, this is not enough to prove completeness, for we
have to find a model M such that the underlying frame is in Fr−Ξ.

In general this seems to be difficult and maybe even impossible to establish. Therefor we concentrate
on logics with a special, nice kind of axioms, viz. so-called Sahlqvist tense formulas, which form the
topic of the next section.
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3 Sahlqvist tense formulas

In this section we discuss the formulas that are allowed as axioms in the derivation systems to which
our main result on completeness will apply.

It is well-known that on the level of frames every formula φ locally and globally has a second
order equivalent φ2. In many important cases however, it turns out that this formula φ2 has a much
simpler first order equivalent (in the corresponding frame language LS). Well-known examples include
reflexivity for p → 3p and the Church-Rosser property for 32p → 23p. A general theorem in this
direction was found by Sahlqvist (cf. [31]). The correspondence part of Sahlqvist’s theorem gives a
decidable set of modal S-formulas having a local equivalent in LS . In [3], van Benthem provides a
quite perspicuous algorithm to find this first order correspondent φs of a Sahlqvist formula φ. (At
the end of this section, we will give our version of his substitution method.) The second, completeness
part of the Sahlqvist theorem states that adding a set Σ of Sahlqvist axioms to the minimal S-logic
KS , we obtain a complete axiomatization for the class of frames FrΣ. An accessible version of the
proof of this part can be found in Sambin & Vaccaro [35], from which we took some terminology. The
correspondence and completeness part of Sahlqvist’s theorem are closely connected; in Kracht [21]
they are studied in a unifying framework.

Definition 3.1 A strongly positive formula is a conjunction of formulas 21 . . .2mpi (m ≥ 0). A
formula is positive (negative) if every propositional variable occurs under an even (odd) number of
negation symbols. A modal formula is untied if it is obtained from strongly positive formulas and
negative ones by applying only ∧ and arbitrary existential modal operators. Formulas of the form
φ→ ψ with φ an untied formula and ψ a positive one, are called Sahlqvist formulas4.

Theorem 3.2 (SAHLQVIST)
Let σ be a Sahlqvist formula. Then
(i) σ is canonical: FcKσ |= σ.
(ii) Kσ is strongly sound and complete with respect to Frσ.
(iii) There is an effectively obtainable first order LS-formula σs(x0) such that for all frames F, all w
in F:

F, w |= σ ⇐⇒ F |= σs[x0 7→ w].

Proof.
For (i) we refer to Sambin & Vaccaro [35]; (ii) is immediate by (i). The last part (iii) will be proved
at the end of this section, after we have given the algorithm to find σs(x0) in 3.15.

A typical example of a formula which is not Sahlqvist, is 23p → 32p. A typical example of a
Sahlqvist formula is 32p→ 23p; its first order correspondent is ∀y0y1((Rxy0 ∧Rxy1)→ ∃z(Ry0z ∧
Ry1z)).

In the above theorem we saw that a Sahlqvist formula is canonical: if it holds in the canonical
model, then it is valid on all models on the underlying canonical frame. In this paper we develop
and use non-standard notions of canonical structures, for which we have to adapt the proof of the
Sahlqvist theorem. In fact we will show that van Benthem’s substitution method (which deals with
Kripke frames) also works for the following class of general frames:

Definition 3.3 A general frame G = (F, A) is discrete if for all worlds w in F, {w} ∈ A.
4In fact, we may even consider the wider set of formulas obtained from (basic) Sahlqvist formulas by applying duals

of existential modal operators.
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For our definitions concerning tense logic, we refer to subsection 1.2.

Definition 3.4 A Sahlqvist tense formula, or shortly: an St-formula is a Sahlqvist formula satisfying
the extra constraint that all boxes occurring in strongly positive formulas are tense boxes.

As an example of a Sahlqvist formula which is not an St-formula, we can take the Church-Rosser
formula 32p → 23p (at least, if 3 is not a tense diamond). The ‘tense axiom’ p → 2−13p itself is
an St-formula. Note that in a tense similarity type, there is no distinction between Sahlqvist formulas
and St-formulas.

The theorem that we need is the following:

Theorem 3.5 Let G = (F, A) be a discrete general tense frame and σ a Sahlqvist tense formula such
that G |= σ. Then F |= σ.

The remainder of this section is devoted to prove Theorem 3.5; as a side result, we can give an
easy formulation of the algorithm producing the first order correspondent of a Sahlqvist formula.

The definition of Sahlqvist formulas is a syntactic one, but in fact the important constraint on the
consequent is a semantic one, viz. monotonicity:

Definition 3.6 Let V and V ′ be two valuations on a frame F. V ′ is wider than V , notation: V ≤ V ′,
if for all atoms p, V (p) ⊆ V ′(p). A modal formula φ is monotone if for all F,V, V ′ and w:

F, V, w |= φ and V ≤ V ′ imply F, V ′, w |= φ

We also need related concepts for the first order model-language.

Definition 3.7 Let Q be the set of propositional variables of the language. Recall that LS,Q denotes the
first order language with S-accessibility predicates and a monadic predicate Pi for every propositional
variable pi ∈ Q. The sign of an occurrence of a predicate T in a formula φ is defined by induction to φ:
T occurs positively in the atomic formula Tx0 . . . xn−1. If T occurs positively (negatively) in φ, then
it occurs negatively (positively) in ¬φ, and positively (negatively) in φ∨ψ and ∃xφ. An LS,Q-formula
is positive (negative) if all occurrences of Q-predicates are positive (negative).
An LS,Q-formula φ(x1, . . . , xn) is monotone if for all valuations V, V ′ and all n-tupels w1, . . . , wn:

F, V |= φ[w1, . . . , wn] and V ≤ V ′ imply F, V ′ |= φ[w1, . . . , wn].

Note that in the above definition it does not matter how the accessibility predicates occur in a
formula. There is a lot to be said about the above concepts, but we confine ourselves to the following
facts, of which the proof is standard:

Lemma 3.8 (i) If φ is positive (negative), then so is its model correspondent φ1.
(ii) Negations of positive (negative) formulas are equivalent to negative (positive) ones.
(iii) Positive formulas are monotone.

To prove Theorem 3.5, from here until definition 3.15 we fix a St-formula σ and a general frame
G = (F, A), F = (W,R∇)∇∈S such that G |= σ. To establish the validity of σ in F, we must prove that
for every valuation V , we have F, V |= σ. So, let us start with defining a set of valuations for which
we already know that F, V |= σ.

Definition 3.9 A valuation V is admissible if V (p) ∈ A for all atoms p.

Lemma 3.10 For all admissible valuations V , F, V |= σ.
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Proof.
Immediate by G |= σ and the definitions. 2

We now proceed to define a second kind of valuations, intuitively those forming the minimal
valuations needed to make the strongly positive formulas, (these being the ‘real’ antecedent of the
Sahlqvist formula σ,) true in a world of W .

Definition 3.11 First we define basic rudimentary formulas, or short, br-formulas: a basic rudimen-
tary formula of length 0 is of the form β(x, y) ≡ x = y. If β(x, xn) is a basic rudimentary formula of
length n and R3 is the accessibility symbol of a tense diamond, then ∃xn(β(x, xn)∧R3xny) is a basic
rudimentary formula of length n+ 1.
A rudimentary formula, or short, an r-formula, is of the form

ρ(x1, . . . , xn, y) ≡
∨

1≤i≤n

βi(xi, y),

where every βi is a disjunction of basic rudimentary formulas in xi and y.
A subset X of W is rudimentary if it is rudimentary in some w1, . . . , wn ∈W , i.e. for some rudimen-
tary formula ρ(x1, . . . , xn, y), X = {v ∈W | F |= ρ(w1, . . . , wn, v)}.
A valuation V is rudimentary if for all atoms p, V (p) is rudimentary.

Note that, intuitively, a basic rudimentary formula β(x, y) of length n describes the existence
and form of an path from x to y following tense accessibility relations. A rudimentary formula
ρ(x1, . . . , xn, y) describes the position of y with respect to x1, . . . , xn in the frame, in terms of ‘tense
paths’ leading from xi to y, for every xi.

Lemma 3.12 Rudimentary valuations on discrete general tense frames are admissible.

Proof.
It is sufficient to prove that for every r-formula ρ(x1, . . . , xn, y), the sets Xρ,~w = {v ∈ W | F |=
ρ(w1, . . . , wn, v)} are in A for all n-tupels ~w = (w1, . . . , wn) of worlds in W . Because A is closed under
finite unions, it suffices to show the above for basic rudimentary formulas. By induction to the length
k of a basic formula β(x, y) we prove the following claim:

For every w ∈W , Xβ,w ∈ A.

For k = 0, we have Xβ,w = {w} in A by the discreteness of G.
For k = m+ 1, let β(x, y) be of the form ∃xn(β′(x, xn) ∧R3xny) where 3 is a tense diamond.
Now Xβ,w = {v ∈W | F |= β(w, v)} is the set of worlds v such that there is a u ∈W with F |= β′(w, u)
and F |= R3uv.
So Xβ,w contains precisely the worlds having an R3-predecessor in Xβ′,w, or

Xβ,w = {v ∈W | v has an R−1
3 -successor in Xβ′,w}.

By the induction hypothesis, Xβ′,w is in A, and by the fact that we are in a tense frame, (R3)−1

is the accessibility relation of 3−1. So Xβ,w = m3−1(Xβ′,w) ∈ A, by definition of a general frame
(cf. subsection 1.2). 2

Note that in the above proof it is essential to have tense operators in tense frames.

Lemma 3.13 Let ψ be an untied formula. Then its first order model-equivalent ψ1(x0) is equivalent
to

∃x1 . . . xn(π ∧
∧
i<k

∀y(ρi(~x, y)→ Piy) ∧
∧
j<m

Nj(uj)).
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where the xi’s are distinct variables different from x0, all the variables ui are among x0, . . . , xn, π
is a conjunction of atomic LS(x0, . . . , xn)-formulas (i.e. atomic accessibility formulas of the form
R∇(xi0 , . . . , xi`(∇)) with ∇ an arbitrary S-operator and every variable in {x0, . . . , xn}), the ρi’s are
suitable rudimentary formulas, and the Nj’s are negative.

Proof.
By a straightforward induction to the complexity of untied formulas, cf. Sambin & Vaccaro [35]. 2

Lemma 3.14 Let σ = ψ1 → ψ2 be a Sahlqvist formula. Then σ1(x0) is equivalent to

∀x1 . . . xn((π ∧
∧
i<k

∀y(ρi(~x, y)→ Piy))→ γ2(x0, . . . , xn)).

where the antecedent is as in the previous lemma and the consequent γ2 is some positive formula.

Proof.
Let N(x0, . . . , xn) be the formula

∧
j<mNj(uj), then N is negative. By the previous lemma, the local

model correspondent σ1(x0) of σ is equivalent to

∀x1 . . . xn((π ∧
∧
i<k

∀y(ρi(~x, y)→ Piy) ∧N)→ ψ1
2(x0)).

So, by moving the negative N from the antecedent to the consequent, we obtain

∀x1 . . . xn((π ∧
∧
i<k

∀y(ρi(~x, y)→ Piy))→ (¬N ∨ ψ1
2(x0))).

where the antecedent is already as desired, and the consequent is positive as it is a disjunction of two
positive formulas (cf. lemma 3.8). 2

Proof of Theorem 3.5
Let σ be of the form ψ1 → ψ2, where ψ1 is untied and ψ2 is positive. We use the notation of the
previous lemmas and set

γ1(x0, . . . , xn) ≡ π ∧
∧
i<k

∀y(ρi(~x, y)→ Piy)

Obviously, σ1(x0) is equivalent to ∀x1 . . . xn(γ1 → γ2), where γ2 is positive and hence monotone.
So by the fact that G = (F, A) |= σ we get

for all admissible valuations V, F, V |= ∀x0 . . . xn(γ1 → γ2). (1)

Our aim is to show that this implies F |= σ, or equivalently

for all valuations V, F, V |= ∀x0 . . . xn(γ1 → γ2). (†)

So let a valuation V be given, together with worlds w0, w1, . . . , wn ∈W for which we have

F, V |= γ1(w0, w1, . . . , wn). (2)

Now let V − be the rudimentary valuation that precisely ‘fits’ in γ1, i.e. V −(pi) = {v ∈ W | F |=
ρi(~w, v)} and V −(q) = ∅ if q is not one of the pi. Then

F, V − |= γ1(w0, w1, . . . , wn). (3)
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V − is admissible by lemma 3.12, so (1) and (3) give

F, V − |= γ2(w0, w1, . . . , wn). (4)

But by (2) and definition of V −, we have V − ≤ V . Together with the fact that γ2 is monotone, this
yields

F, V |= γ2(w0, w1, . . . , wn), (5)

which ensures (†). 2

As a matter of fact, from this proof it is only a minor step to give the algorithm producing the
correspondent σs(x0) of an arbitrary (i.e. not necessarily tense) Sahlqvist formula:

Definition 3.15 For a Sahlqvist formula σ, let σs(x0) be the LS-formula

∀x1 . . . xn(π → (γ2(x0, . . . , xn)[ρi(~x, u)/Piu]))

(i.e. we substitute, everywhere in γ2, ρi(~x, u) for an atomic formula of the form Piu, and ⊥ for any
of the other atomic formulas Qu.)

Proof of Theorem 3.2(iii) (SAHLQVIST CORRESPONDENCE).
We have to prove, for σ an arbitrary Sahlqvist formula, w a world in a frame F:

F, w0 |= σ ⇐⇒ F |= σs[x0 7→ w0].

(⇒) Let w1, . . . , wn be such that F |= π[w0, . . . , wn]. This implies that, with V − the valuation such
that

V −(pi) = {v ∈W | F |= ρi(~w, v)},
we have

F, V − |= π ∧ ∀y(ρi(~x, y)→ Piy)[w0, . . . , wn].

So by the assumption F, w0 |= σ, lemma 3.14 gives F, V − |= γ2(w0, . . . , wn). By definition of V − we
immediately obtain

F |= (γ2(x0, . . . , xn)[ρi(~x, u)/Piu])[w0, . . . , wn],

which is what we desired.

(⇐) Here we can copy the proof of Theorem 3.5, after making the observation that now

F, V −, w0 |= σ

by definition of σs and the assumption F |= σs[w0]. 2

4 The D-operator.

An important rôle in this paper is played by the so-called difference operator D. This operator is
special in having the inequality relation as its intended accessibility relation:

Definition 4.1 Let S be a similarity type containing the monadic operator D. An S-frame F =
(W,R∇)∇∈S is called (D-)standard if

RD = {(s, t) ∈ 2W | s 6= t}.

As abbreviations we use Dφ ≡ ¬D¬φ, Oφ ≡ φ ∧D¬φ, Eφ ≡ φ ∨Dφ.
For K a class of S-frames, we denote the class of standard frames in K by K 6=.
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When referring to standard frames, we will suppress mentioning the inequality relation RD. Thus
we may identify standard frames for S with the frames for the similarity type obtained by dropping D
from S. In the sequel we will frequently omit the adjective ‘standard’ when referring to the intended
semantics, explicitly using the term ‘non-standard’ for the frames with RD 6= {(s, t) ∈ 2W | s 6= t}.
Note that in a standard model we have

M, w |= Dφ iff there is a v 6= w with M, v |= φ,
M, w |= Oφ iff w is the only world with M, w |= φ,
M, w |= Eφ iff there is a world v with M, v |= φ.

In many examples the D-operator is definable in the poorer language; for example, over the class LI
of irreflexive linear orderings we have

LI |= Dφ↔ (Fφ ∨ Pφ).

The D-operator was introduced independently by various authors, including, in (probably) chrono-
logical order: Sain [32, 33], Koymans [20] and Gargov-Passy-Tinchev [13]. A nice feature of this new
operator, and the main reason for its introduction, is the fact that it greatly increases the expressive
power of the language. For example, irreflexivity is easily seen to be characterized by the formula
3p → Dp. Maarten de Rijke proved many results on the expressiveness and completeness of modal
and tense logics having a D-operator, cf. [28]. We only need the following:

Definition 4.2 Let S be a similarity type containing D. For Λ an S-logic, ΛD denotes the logic Λ
extended with the following axioms:
(D1) p→ DDp
(D2) DDp→ (p ∨Dp)
(D3∇) ∇(p1, . . . , pn)→

∧
Epi.

ΛD+ is the logic ΛD extended with the irreflexivity rule for D:

(IRD) ` Op→ φ ⇒ ` φ, if p 6∈ φ.

Instead of K{D} (the minimal D-logic), we write KD, instead of KDD: KD.

Note that the rule IRD is an example of a non-ξ rule.

Theorem 4.3 For any similarity type S, both KSD and KSD
+ are strongly sound and complete with

respect to the class of standard S-frames.

Proof.
Cf. de Rijke [28]. 2

As a corollary of this completeness theorem some nice semantic properties of the operators are also
provable:

Lemma 4.4 Let S be a similarity type containing the D-operator and ∇. Then
(i) KD(+) ` E(Op ∧ φ) ∧ E(Op ∧ ¬φ)→ ⊥.
(ii) KSD

(+) ` (∇(. . . , Op ∧ φ, . . .) ∧∇(. . . , Op ∧ ¬φ, . . .))→ ⊥.
(iii) KSD

(+) `
∧
i∇(. . . , Op ∧ φi, . . .)→ ∇(. . . , Op ∧

∧
i φi, . . .).

Proof.
By showing that the above schemes of formulas are semantically valid in standard S-frames, and then
using the completeness theorem for KD(+). 2
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Combining the notions of Sahlqvist (tense) formulas and the D-operator, we seem to have two
options. Because of the general result on Sahlqvist correspondence, we know that every Sahlqvist
formula σ has a local correspondent σs

′
(x0) in the language LS where RD is the symbol for the

accessibility relation of D. However, we are almost exclusively interested in the way this equivalence
works out for the standard S-frames; this means that we will only consider interpretations where RD
is the inequality relation. It is then very natural to let this preference be reflected in the syntax, by a
slight abuse of notation:

Definition 4.5 Let S be a similarity type and σ a Sahlqvist formula. If S does not contain the D-
operator, σs(x0) denotes the ordinary first order Sahlqvist equivalent of σ given in Definition 3.15. If
S does contain D, σs

′
(x0) denotes this ordinary first order equivalent, σs(x0) is σs

′
(x0) with every

occurrence of RD replaced by 6=.

As an example, the Sahlqvist correspondent of 3p → Dp is not ∀x1(Rx0x1 → RDx0x1), but
∀x1(Rx0x1 → x0 6= x1), (or even better: ¬Rx0x0.) With this notation we have equivalence of σ and
σs for the standard frames:

Theorem 4.6 Let σ be a Sahlqvist formula, w a world in a standard frame F. Then

F, w |= σ ⇐⇒ F |= σs(w0).

Proof.
Straightforward by Theorem 3.2 and the definitions of σs and standard frames. 2

However, by restricting our attention to standard frames we lose the automatic completeness of
Sahlqvist’s theorem: where we do have, for a set of Sahlqvist axioms Σ,

KSDΣ is strongly sound and complete w.r.t. FrΣ,

we are not (yet) sure whether

KSD
+Σ is strongly sound and complete w.r.t. Fr 6=Σ .

In the next section we will prove the above statement, for Sahlqvist tense axioms.

5 The main proof.

This subsection contains the main idea on the proof of the Sahlqvist theorem in a context with non-ξ
rules. To keep notation as simple as possible, we consider a tense similarity type S having besides the
difference operator D only one pair {F, P} of tense operators. We let 3 range over the monadic modal
operators, 2 is the dual of 3, and 3−1 is the converse of 3, i.e. F−1 = P , P−1 = F and D−1 = D.
Note that for this similarity type there is no distinction between ordinary Sahlqvist formulas and
Sahlqvist tense formulas. We intend to prove the following theorem, keeping some generalizations and
corollaries for later subsections.

Theorem 5.1 (SD-THEOREM — monadic operators)
Let S be a tense similarity type with three diamonds F, P and D, and let σ be a Sahlqvist formula.
Then KtD+σ is strongly sound and complete with respect to Frt,6=σ .
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Recall that KtD+σ has the following axioms:
(CT ) all classical tautologies
(DB) 2(p→ q)→ (2p→ 2q)
(CV ) p→ HFp
(D1) p→ DDp
(D2) DDp→ (p ∨Dp)
(D3) 3p→ p ∨Dp
(σ) σ

Its derivation rules are
(MP ) Modus Ponens
(UG) Universal Generalization
(SUB) Substitution

and the irreflexivity rule for D:

(IRD) ` Op→ φ ⇒ ` φ, if p 6∈ φ.

Note that the above theorem is not an automatic corollary of the ordinary Sahlqvist theorem,
because of the special interpretation for the accessibility relation of D that we have in mind, namely
the inequality relation. A proof of Theorem 5.1 via the ordinary canonical model- method seems to
be impossible, as the KtD+σ-canonical frame need not be standard.

As an example, let σ express S5-behaviour of F , and consider a D-standard model M = (W,RF , V )
with total RF and two worlds w,w′ verifying the same atoms. We easily show that M, w |= φ→ Dφ
for all formulas φ. So the set ∆ = {ψ|M, w |= ψ}, being a maximal consistent set and thus a world of
the KtD+σ-canonical frame, must be RD-reflexive.

So it turns out that the canonical frame is bad because it may contain RD-reflexive worlds. A
naive approach to this problem is to simply throw them out of the canonical universe. This is not
sufficient however: consider the set

{p0 ∧D¬p0} ∪ {F>} ∪ {G(φ→ Dφ) | φ a formula}.

Without too many problems, we can again find a σ for which this set is KtD+σ-consistent, so it has
a maximal consistent extension ∆ ∈W c. ∆ itself is not RD-reflexive, but all of its RF -successors are.
So ∆, having at least one RF -successor, is an unwelcome inhabitant of the canonical frame too.

Now instead of successively throwing bad MCSs out of the canonical frame, we feel it is better to
follow a more constructive path, defining a canonical-like model consisting only of good MCSs. To
give this notion of a ‘good’ MCS, we need some auxiliary definitions, the intuition behind which is the
following: suppose we have a MCS Γ with a formula φ of the form

φ0 ∧31(φ1 ∧ . . .3n−1(φn−1 ∧3nφn)),

in Γ. In the canonical model, we have the existence of the path Γ = Γ0R31Γ1 . . . R3nΓn such that
every φi ∈ Γi. In our version of the canonical model, we want an additional condition to be satisfied,
viz. each Γi should be RD-irreflexive. The idea is now to envisage this already in Γ, by demanding
that in φ, we can put ‘next to’ each φi, a formula Opi witnessing this RD-irreflexivity.

Definition 5.2 We denote the relation ‘ψ is a subformula of φ’ by ψ � φ. Assume that we do not
identify different occurrences of ψ in φ (for instance, φ has two distinct occurrences in φ ∧ φ.) For
notational elegance, instead of ∨ we take ∧ as our basic boolean connective.
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Now let φ, ψ, χ be formulas such that ψ� φ. We define W (χ, ψ, φ) (‘φ with χ witnessing at ψ’) by
induction on the structure of φ above ψ — i.e., ψ is treated as atomic in φ.

W (χ, ψ, q) = q (provided ψ 6= q)
W (χ, ψ, ψ) = χ ∧ ψ
W (χ, ψ,¬φ) = ¬φ

W (χ, ψ, φ ∧ φ′) = W (χ, ψ, φ) ∧W (χ, ψ, φ′)
W (χ, ψ,3φ) = 3W (χ, ψ, φ)

A maximal consistent set Σ is distinguishing, or a d-theory if for every φ in Σ and every ψ�φ, there
is a propositional variable p with W (Op, ψ, φ) in Σ.

Note that as d-theories are MCSs, the canonical accessibility relations RcF , R
c
P and RcD for F, P

and D have the ordinary meaning:

Rc3Σ∆ iff for all φ ∈ ∆, 3φ ∈ Σ

We want to take the d-theories as the possible worlds in our version of the canonical model, the
definition ensuring that any d-theory is RD-irreflexive. A minimal constraint which a canonical-ish
model must meet is that every consistent set of formulas is somehow to be found as (part of) a possible
world. In our setting this means that every consistent set must have a distinguishing extension.
First we need a lemma of a rather technical nature:

Lemma 5.3 If p does not occur in φ or η, then for any ψ�φ we have `W (Op, ψ, φ)→ η ⇒ ` φ→ η.

Proof.
By induction to the structure of φ above ψ.

In the case where φ = ψ, we findW (Op, ψ, φ) = Op∧φ, so we get ` (Op∧φ)→ η⇒` Op→ (φ→ η)
⇒ ` φ→ η, where the last step is by one application of IRD.

The induction steps for the Boolean cases we leave to the reader, concentrating on the case where
φ is of the form 3φ′. Note that W (Op, ψ, φ) = 3W (Op, ψ, φ′). The claim is proved by

⇒ ` 3W (Op, ψ, φ′))→ η (assumption)
⇒ `W (Op, ψ, φ′)→ 2−1η (tense logic)
⇒ ` φ′ → 2−1η (induction hypothesis)
⇒ ` 3φ′ → η (tense logic)

and we are finished. 2

The following propositions form our version of Gabbay’s generalized Irreflexivity Lemma (cf. [10]):

Lemma 5.4 (Extension Lemma)
Let Σ be a consistent set in which the variable p does not occur, and φ ∈ Σ. Then Σ ∪ {W (Op, ψ, φ)}
is consistent for all ψ � φ.

Proof.
Suppose otherwise, then ` W (Op, ψ, φ) → ¬χ for some ψ � φ and χ = χ0 ∧ . . . ∧ χn, all χi ∈ Σ. By
lemma 5.3 this would imply ` φ→ ¬χ, contradicting the consistency of Σ. 2

Lemma 5.5 If Σ is a consistent set, then there is a distinguishing Σ′ containing Σ.
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Proof.
Let Q be the set of propositional variables in Σ, assume that Q is countable5 and let p0, p1, . . . be
mutually distinct propositional variables not in Q; set, for 0 ≤ ξ ≤ ω, Qξ = Q ∪ {pi | i < ξ}.
For a set ∆ of formulas in Qω, let PV (∆) be the set of propositional variables appearing in (formulas
of) ∆. A theory ∆ is called an approximation if ∆ is consistent, Σ ⊆ ∆ and PV (∆) = Qn for some
n < ω. In this case pn is called the new variable for ∆ and denoted by p∆.
Now let ∆ be an approximation and (φ, ψ) a potential shortcoming, i.e. φ is a formula in Qω and
ψ � φ. The pair (φ, ψ) is called a shortcoming of ∆ if φ ∈ ∆ while no witness W (Op, ψ, φ) is in ∆.
Assume that we have an enumeration W of the set of potential shortcomings. If ∆ has shortcomings,
let (φ∆, ψ∆) be the first (in W) of ∆’s shortcomings. Now set

∆+ =
{

∆ if ∆ has no shortcomings
∆ ∪ {W (Op∆, ψ

∆, φ∆)} otherwise

We claim that if ∆ is an approximation, then so is ∆+:
∆+ is consistent by lemma 5.4; the other conditions are straightforward.
We now define the following sequence of theories Σ0,Σ1, . . .; let φ0, φ1, . . . be an enumeration of all
Qω-formulas.

Σ0 = Σ

Σ2n+1 =
{

Σ2n ∪ {φn} if Σ2n+1 ∪ {φn} is consistent
Σ2n ∪ {¬φn} otherwise

Σ2n+2 =
{

(Σ2n+1)+ if Σ2n+1 has shortcomings
Σ2n+1 otherwise

and set Σ′ =
⋃
n<ω Σn.

It is then straightforward to prove that (1) (Σn)n<ω is an increasing sequence, (2) every Σn is an
approximation, (3) for every Qω-formula φ, either φ or ¬φ is in Σ′, and (4) for every Qω-formula φ
and φ� φ, there is a witness W (Op, ψ, φ) in Σ′.

This gives all the desired properties of Σ′. 2

The fact that any consistent set is contained in a d-theory, means that in a certain sense there are
enough distinguishing sets. Note however, that we needed to extend the language to prove lemma 5.5.
This could mean that problems might arise if we want to show that every d-theory Γ containing a
formula 3φ has a distinguishing 3-successor ∆ with φ ∈ ∆. For, in context of ordinary maximal
consistent sets, this proposition is proved by showing that the set

{φ} ∪ {ψ | 2ψ ∈ Γ}

has a maximal consistent extension. We might do the same here, but then we have to show that
this set has a distinguishing extension in the same proposition letters. We choose a different proof,
using the fact that because the language has the O-operator, the distinguishing Γ contains a complete
description of ∆:

Lemma 5.6 If Γ is a d-theory and 3φ ∈ Γ, then there is a d-theory ∆ with φ ∈ ∆ and Rc3Γ∆.

Proof.
As 3φ is in Γ, so is 3(φ∧Op) for some atom p. Let ∆ be the set {ψ | 3(Op∧ψ) ∈ Γ}. ∆ is consistent,
for assume otherwise, then there are ψ1, . . . , ψn in ∆ with every 3(Op ∧ ψi) in Γ and

` (
∧
i

ψi)→ ⊥

5This restriction can easily be lifted.
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By lemma 4.4 we have
`
∧
i

(3(Op ∧ ψi))→ 3(Op ∧
∧
i

ψi)

So 3(Op ∧
∧
i ψi) and hence 3⊥ is in Γ, contradicting its consistency.

As 3Op ∈ Γ, for every ψ either 3(Op ∧ ψ) or 3(Op ∧ ¬ψ) is in Γ, so clearly ∆ is maximal. The fact
that Rc3Γ∆ is immediate by definition of ∆.
To prove that ∆ is distinguishing, let ψ ∈ ∆, and χ�ψ. We have to show that for some q, W (Oq, χ, ψ)
is in ∆:

By definition of ∆, 3(Op ∧ ψ) ∈ Γ. As Γ is distinguishing, by definition there is a q with
W (Oq, χ,3(Op ∧ ψ)) = 3(Op ∧W (Oq, χ, ψ)) in Γ, whence W (Oq, ψ, ψ) ∈ ∆. 2

These two lemmas are sufficient to establish that there are enough d-theories. There is still one
difference with the ordinary case which we need to discuss: suppose we would take the set of all
distinguishing sets to form the universe of our canonical model. Then there would be too many
worlds, for consider two D-theories ∆,∆′ with p ∧D¬p ∈ ∆, p ∧Dp ∈ ∆′. If both were to be in our
‘canonical’ model, the underlying frame would be non-standard, for ∆′ is not an RD-successor of ∆,
while clearly ∆ 6= ∆′. This inspires the following definition:

Definition 5.7 Two distinguishing theories Γ and ∆ are connected, notation: Γ ∼D ∆, if either
Γ = ∆ or RcDΓ∆. A set of d-theories is called connected if all pairs of its members are.

Lemma 5.8 ∼D is an equivalence relation.

Proof.
Reflexivity of ∼D is immediate.
For symmetry, let Γ ∼D ∆. If Γ = ∆, we are finished. If not, we have RcDΓ∆. Now RcD is a symmetric
relation (this is an immediate consequence of having the Sahlqvist axiom D1 in the logic). So we have
RcD∆Γ, implying ∆ ∼D Γ.
For transitivity of ∼D, it suffices to show that RcD is pseudo-transitive:

∀x∀y∀z((xRy ∧ yRz)→ (x = z ∨ xRz))

But this is immediate by the fact that pseudo-transitivity is the Sahlqvist correspondent of axiom D2,
and the completeness part of Sahlqvist’s theorem. 2

Definition 5.9 A d(istinguishing)-canonical frame is of the form Fd = (W d, RdF , R
d
P , R

d
D) where W d

is a connected set of distinguishing theories, and the Rd’s are the Rc’s restricted to W d.
Define also d-canonical models Md = (Fd, V d) and d-canonical general frames Gd = (Fd, Ad), where
V d is V c restricted to W d and A is given by X ∈ Ad iff X = V d(φ) for some φ.

In the sequel we will have a particular d-canonical model, frame, etc. in mind, viz. the one
consisting of all worlds connected to a fixed d-theory Σ. Therefor, we will frequently speak about the
d-canonical model, frame, etc.
We need several nice properties of the d-canonical model. The easiest to establish is the truth lemma,
via the fact that the d-canonical frame is a tense frame and standard:

Lemma 5.10 Let Fd be a d-canonical frame, then
(i) RdF and RdP are each others converse.
(ii) RdD is the inequality relation.
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Proof.
(i) is immediate by the fact that Fd is a substructure of the canonical frame.
For (ii), the connectedness of Fd implies that Γ 6= ∆⇒ RdDΓ∆. The fact that every d-theory contains
a witness p∧D¬p ensures that no element of W d is RdD-reflexive, so RdD is contained in the inequality
relation. 2

Lemma 5.11 (TRUTH LEMMA) For all d-canonical models Md and all w ∈Md:

Md, w |= φ iff φ ∈ w.

Proof.
By a formula induction, of which we only give the induction step for the modal operators.

First, let φ be of the form Fψ. By the truth definition, Md, w |= Fψ implies the existence of a
v with RdFwv and Fd, v |= ψ. By the induction hypothesis, this gives ψ ∈ v, so by definition of RdF ,
Fψ is in w. Conversely, by lemma 5.6 Fψ ∈ w implies the existence of a distinguishing v with RdFwv

and ψ ∈ v. By axiom D3, RdFwv gives RDwv or w = v, so v is a world of Md. (Note that this is the
only place in the proof where we need axiom D3.) The induction hypothesis yields that Md, v |= ψ,
so indeed we obtain Md, w |= Fψ.

The proof for φ of the form Pψ is exactly the same; for φ of the form Dψ the above procedure
gives Dψ ∈ w iff there is a v with RdDwv and Md, v |= ψ. This is sufficient, as RD is identical to the
inequality relation by the previous lemma. 2

So it is left to prove that the underlying d-canonical frame is in Frσ, or, equivalently, to show that
Fd, V |= σ for all valuations V . This is immediate by the following lemma and Theorem 3.5.

Lemma 5.12 Any d-canonical general frame is discrete.

Proof.
Let w be a d-theory or world in a d-canonical general frame Gd = (Fd, Ad). Let p be a propositional
variable such that Op ∈ w, then by the truth lemma w is the only d-theory of Gd with Op ∈ w. So
{w} = V d(Op) ∈ Ad. 2

Proof of theorem 5.1
Soundness is immediate.
For completeness, suppose Σ 6` φ, then Σ ∪ {¬φ} is consistent, so by lemma 5.5 there is a d-theory Σ′

with Σ∪ {¬φ} ⊆ Σ′. Let Md = (Fd, V d) be the d-canonical model with Σ′ ∈W d. By lemma 5.12 and
Theorem 3.5, Fd |= σ and by the truth lemma, Md,Σ |= ψ for all ψ ∈ Σ ∪ {¬φ}.
So we obtained Σ 6|=Frt, 6=σ

φ. 2

6 Uni-directional Complications.

In this section, which is not needed for understanding the sequel, we will see where our proof fails for
a similarity type S which contains uni-directional diamonds. It suffices to take the case where we have
only one diamond F besides D. We would like to extend the results of the previous section to this
case, but there seem to be two problems:

The first of these was already noted by Gabbay [8] and is also discussed in Gargov & Goranko [12].
The point is the following: in the previous section we saw that it is not sufficient to prove completeness
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by purging the canonical frame of RD-reflexive points: their predecessors also need to be thrown out,
and the predecessors of those, ad infinitum. In our ‘constructive’ approach this problem arises in the
following way: it is not sufficient to show that Op ∧ φ is consistent if φ is so, we must also prove that
φ0 ∧ 31(Op ∧ φ1) is all right if φ0 ∧ 31φ1 is, etc. In the tense-logical situation, we can do this by
changing our ‘perspective’ on the formula, namely by moving the φ1-position to the top level: we look
at φ1∧3−1

1 φ0 (which is consistent iff φ0∧31φ1 is so), then we insert Op, obtaining (Op∧φ1)∧3−1
1 φ0.

Returning to the old ‘perspective’ we see that indeed φ0 ∧ 31(φ1 ∧ Op) is consistent if φ0 ∧ 31φ1 is
consistent. It will be clear that tense operators are indispensable instruments for this surgery.

We will now prove that it really goes wrong in the uni-directional case:

Definition 6.1 Assume that we have a uni-directional similarity type with two operators: F and D.
Let ρ be the formula G(p→ Dp), ρ′ the formula ρ ∧ F>. 2

Note that ρ is a Sahlqvist formula (cf. the footnote to definition 3.1), its equivalent ρs
′
is ∀x∀y(Rxy →

RDyy). So ρ says: all R-successors are RD-reflexive.
Now, recall that KFD

+ρ′ is the axiom system with as axioms: CT , DB, the D-axioms and ρ′. Its
derivation rules are MP , UG, SUB and IRD. If we had an analogon of theorem 5.1 for this logic,
KFD

+ρ′ should be inconsistent, for we have

Lemma 6.2 K 6=ρ′ = ∅.

Proof.
It suffices to show that ρ′ cannot be valid in a standard frame. Assume F |= ρ′, where F = (W,R,RD)
and w is a world of F. By F, w |= F>, w has a successor v, by F |= ρs

′
(w), v is RD-reflexive. But then

F is not standard. 2

But, KFD
+ρ′ is not inconsistent, as we can easily show by considering non-standard frames again:

Lemma 6.3 KFD
+(ρ′) 6` ⊥.

Proof.
Consider the following non-standard frame F = (W,R,RD):

W = {wn|n ∈ ω} ∪ {v}
R = W × {v}
RD = {(s, t)|s 6= t} ∪ {(v, v)},

and set ∆ = {φ | F, w0 |= φ}. Clearly then ⊥ 6∈ ∆. We show that ∆ contains the axioms of
KFD

+ρ′ and is closed under its rules. For the axioms, this is fairly trivial: for instance, ρ′ is in ∆ as
F, w0 |= ∀y(Rxy → RDyy). Concerning the rules: ∆ is closed under IRD, as w0 is RD-irreflexive.

To show that ∆ is closed under Universal Generalization, it suffices to prove that F, w0 |= φ implies
(1) F, v |= φ and (2) F, wn |= φ, for all n. The second claim is trivial by symmetry; for (1) we define
a p-morphism f : F → F such that f(w0) = v, and then we use the well-known p-morphism lemma
giving F, x |= ψ ⇒ F, fx |= ψ. The map f is given by

f(w0) = v, f(wn+1) = wn and f(v) = v.

It is left to the reader to check that f is indeed a p-morphism. 2

This problem is not difficult to mend: a close inspection of the completeness proof in the previous
section reveals that the essential property that we need to prove the extension lemma 5.4 and which
tense logics automatically give us, is the following:
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Definition 6.4 A derivation system Λ has the deep insertion property iff

(DIP )
`W (Op, ψ, φ)→ η ⇒ ` φ→ η
for all ψ � φ and p not occurring in φ or η.

The idea is now to extend the definition of the irreflexivity rule so as to obtain a logic in which the
extension lemma holds again:

Definition 6.5 Define the following set of derivation rules:

(IR∗D)
` ¬W (Op, ψ, φ) ⇒ ` ¬φ
provided ψ � φ and p 6∈ φ.

Lemma 6.6 Let Λ be a logic having IR∗D. Then Λ has DIP.

Proof.
By the following chain of consequences (where we assume that p does not occur in φ or in η):

`W (Op, ψ, φ)→ η (assumption)
⇒ ` ¬(¬η ∧W (Op, ψ, φ)) (proplog)
⇒ ` ¬W (Op, ψ,¬η ∧ φ) (evaluation of W )
⇒ ` ¬(¬η ∧ φ) (IR∗D)
⇒ ` φ→ η (proplog) 2

So for a similarity type where not all diamonds have converses, it is necessary to have the rule IR∗D
instead of IRD. This was already noted by Gabbay [8] and by Gargov & Goranko [12], from which
we derived the above example. It is not yet clear whether this extension is also sufficient to prove the
analogon of the SD-theorem, at least if we want to consider axiom systems with arbitrary Sahlqvist
axioms. For, there is another difference between the tense logical case and the unidirectional one.

This second problem seems to be more serious; assume that, analogous again to the previous
section, we have constructed a d-canonical model Md for a MCS Σ. We want to prove Fd |= σ,
where σ is the Sahlqvist axiom added to the logic KSD

+. In the tense logical case, we could do
this, by using a special kind of valuations which we called rudimentary. We showed that for such a
valuation Fd, V |= σ. This path however can only be taken if we have the converse diamond of F in
the language (cf. the proof of Lemma 3.12); in the uni-directional case, rudimentary valuations need
not be admissible. It even turns out that the ‘discrete persistency result’ (Theorem 3.5) does not hold
for arbitrary Sahlqvist formulas in a uni-directional similarity type:

Lemma 6.7 There is a Sahlqvist formula γ and a discrete general frame G = (F, A) such that G |= γ,
F 6|= γ.

Proof.
Let γ be the formula σ = FGp→ GFp.

We have already met γ in section 3; its first order equivalent is the Church-Rosser formula

γs(x) = ∀y∀z(Rxy ∧Rxz → ∃t(Ryt ∧Rzt)).

Consider the following (standard) frame F = (W,R):
The set of possible worlds is given as W = {u, v, w, x} ∪ {vn, wn | n ∈ ω}. The accessibility relation R
holds as follows: Ruv, Ruw,Rvvn and Rwwn, all n, Rvnx and Rwnx, all n, and Rxx, viz. the picture
below.
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Finally, we base a general frame G = (F, A) on F, by defining A as the set of finite and cofinite
subsets of the universe W .

To check that G is indeed a general frame, the key observation is that for any X ⊆ W , mF (X) is
finite if x 6∈ X, cofinite if x ∈ X. In order to prove that G |= γ, it suffices to look at w. Suppose that
for some admissible V , FGp holds at w. Without loss of generality we may assume that F, V, v |= Gp,
so p holds at all vi. Then V (p) is not finite and hence co-finite. So there are (co-finitely many) wi
with F, V, wi |= p. But then Fp holds at w and thus GFp at u.

It is easy to show that F 6|= γ, by considering the valuation V (p) = {vn | n ∈ ω}. Here F, V, u |=
FGp as F, V, v |= Gp, but F, V, u 6|= GFp, as F, V, w 6|= Fp. 2

Sahlqvist tense formulas however are still persistent for discrete general frames. Note that for a
uni-directional similarity type, atoms are the only strongly positive formulas, so the set of St-formulas
is rather small. Still, for this restricted set we do have a completeness theorem:

Definition 6.8 Let S be an arbitrary similarity type of constants and diamonds. KSD
∗ is the basic

S-logic extended with the set of rules IR∗D.

Theorem 6.9 Let S be an arbitrary similarity type of constants and diamonds, and Σ a set of Sahlqvist
tense formulas. Then

KSD
∗Σ is strongly sound and complete for K 6=Σ .

Proof.
An copy of the proof in section 5, using lemma 6.6 instead of lemma 5.4.

We conjecture that for any individual set of Sahlqvist axioms, the completeness like in Theorem 6.9
can be shown to hold, but we are doubtful whether there is a uniform proof (analogous to that of
Theorem 5.1) taking care of all Sahlqvist axiomatizations at once. On the other hand, Goranko [17]
announces a general weak completeness proof, for arbitrary canonical formulas.

7 The SD-theorem.

There are some problems involved, mainly of a technical nature, in extending the completeness proof
of the SD-theorem to languages having dyadic operators. Note that recently, dyadic modal operators
have received some attention in e.g. van Benthem [4], Roorda [30] and Venema [38, 39].

First of all we have to make clear what we mean by a Sahlqvist (tense) formula in a dyadic language.
In fact, the definitions and results of section 3 already apply to arbitrary similarity types. The following
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point is worth some discussion, however: in a similarity type with only diamonds and constants, we
allow boxed atoms in the strongly positive formulas. A naive approach to define Sahlqvist triangle
formulas would then be to allow duals of dyadic operators too. But de Rijke showed that the formula

(pMp)Mp→ (p M p) M p

is not acceptable as a Sahlqvist formula, as it does not have a first order equivalent on the frame level. So
for triangle similarity types, the atoms and negative formulas are the only admissible building blocks of
Sahlqvist antecedents. This implies that for arbitrary similarity types, the difference between Sahlqvist
tense formulas and ordinary Sahlqvist formulas is caused by the nature of the diamonds alone.

However, we saw in the previous section that there were two reasons to prefer tense similarity types
above uni-directional ones: besides a larger set of axioms for which our procedure works, there is also
the advantage of a simple, transparent formulation of the non-ξ derivation rules. This second aspect
is the same for similarity types having polyadic modal operators, so we have to generalize the concept
of ‘tense’ to an arbitrary similarity type. Hereto we introduce the following notion:

Definition 7.1 A versatile similarity type is a modal similarity type S = (O, ρ) where the set O of
operators is given as a (disjoint) union of sets, O =

⋃
j∈J Oj, such that Oj = {∇j0, . . . ,∇j,nj} and all

operators in Oj have the same rank nj − 1.
A versatile frame for such an S is an S-frame (W, I) where for all j ∈ J , i ≤ nj one has

I(∇ji) = {(w0, w1, . . . , wnj ) | (w1, . . . , wnj , w0) ∈ I(∇j,i+1)}

For a class K of S-frames, we let Kv denote the class of versatile frames in K.

We do not exclude the possibility that Oj = {∇, . . . ,∇}, i.e. all operators are identical. Note that
the notion ‘tense’ only applies to diamonds: in a tense similarity type S there is no constraint on the
operators of rank > 2. Only if all operators of S are constants or diamonds, do the concepts of ‘tense’
and ‘versatility’ coincide, and do we have Kt = Kv.

The analogy with the monadic case is the following: if we consider a language and semantics
which are not versatile, one irreflexivity rule is not sufficient, but we have to add infinitely many rules,
allowing the building in of witnesses at all depths in a formula. To avoid these technical complications,
we have to get familiar with the versatile logic of polyadic operators.

Let us for the moment consider a similarity type consisting of three dyadic operators M0, M1 and M2.
Frames for this similarity type have the form F = (W,R0, R1, R2), where Ri is the ternary accessibility
relation of Mi. Recall that the truth definition of a dyadic operator gives

u |= φ Mi ψ ⇐⇒ there are v, w with Riuvw, v |= φ and w |= ψ.

In the intended versatile semantics, the three Ri’s are ‘directions’ of one ternary relation R; as a
standard we take R = R0. A frame F = (W,R0, R1, R2) is a versatile frame if it satisfies the following
conditions, for i = 0, 1, 2 (we write 2 + 1 = 0):

(Qi) ∀u, v, w (Riuvw → Ri+1vwu)

Analogous to the monadic case, the class Frv of versatile frames can be quite easily characterized
and axiomatized:

Definition 7.2 Define the following formulas, for i = 0, 1, 2:

(V i) (p ∧ ¬(r Mi+1 p) Mi r)→ ⊥,

and set V ≡ V 1 ∧ V 2 ∧ V 3.
Let Kv

S be the versatile S-logic, i.e. the minimal S-logic KS extended with the axiom V .
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Note that V i is a Sahlqvist formula: p is strongly positive, ¬(r Mi+1 p) is negative and r is again
strongly positive, so p ∧ ¬(r Mi+1 p) Mi r is untied, and as ⊥ is positive, we are finished.

This means that we immediately have the following:

Lemma 7.3 For i = 0, 1, 2: F |= Qi ⇐⇒ F |= V i.

Proof.
The proposition is immediate by the Sahlqvist theorem, but we give a direct proof (taking i = 0):
(⇒) Suppose that for some model M on F, M, u |= p ∧ ¬(r M1 p) M0 r. By the truth definiton of M0,
there are v, w with R0uvw, v |= ¬(r M1 p), w |= r, while u |= p. F |= Q0 implies R1vwu, so by the
truth definition of M1 we get v |= r M1 p and find the desired contradiction.
(⇐) Let (u, v, w) be in R0. We want to show (v, w, u) ∈ R1. Suppose otherwise and consider a
valuation V with V (p) = {u}, V (r) = {w}. Then v |= ¬(r M1 p), so u |= ¬(r M1 p) M0 r. By F |= V1

we then have u |= ¬p, contradicting V (p) = {u}. 2

Theorem 7.4 Kv
S is strongly sound and complete with respect to the versatile S-frames.

Proof.
Immediate by the fact that the axioms are Sahlqvist formulas and lemma 7.3. 2

Lemma 7.5 The following deduction rule is a derived rule of Kv
S:

` ¬(φ ∧ ψ Mi χ) ⇐⇒ ` ¬(ψ ∧ χ Mi+1 φ).

Proof.
By the observation that the rule is sound in the class of S-versatile frames. 2

Note that intuitively, M |= ¬(p ∧ q Mi r) denotes the impossibility of the existence of a triple
(u, v, w) in R with u |= p, v |= q and w |= r.
We can easily generalize this idea to operators of rank r 6= 2. For example, for the monadic case we
have

` ¬(p ∧3q) ⇐⇒ ` ¬(q ∧3−1p)

as a derived rule of the minimal tense logic.

Now we are ready to add monadic tense operators, including the D-operator, to the language.

Definition 7.6 Let S be a versatile similarity type having constants, monadic tense operators {3i,3
−1
i |

i < α} and dyadic operators {Mj0,M
j
1,M

j
2| j < β}.

The versatile S-logic Kv
S is defined as the extension of the minimal S-logic KS with the tense axiom

CV for every diamond pair, and the versatility axiom V for every triple of triangles.

Theorem 7.7 SD-THEOREM
Let S be a versatile similarity type containing D and Σ a set of Sahlqvist formulas. Then

Kv
SD

+Σ is strongly sound and complete for Kv, 6=Σ .

Proof.
For notational simplicity, we assume that S = {D,F, P,M0,M1,M2} and that Σ is a singleton {σ}.
From now on we abbreviate the logic Kt

SD
+σ by Λ. The proof is essentially the same as in section 5,

so we only give the following details.
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The definition of W (χ, ψ, φ) is extended with a clause for dyadic operators:

W (χ, ψ, φ M φ′) = W (χ, ψ, φ) MW (χ, ψ, φ′)

We show that for all ψ � φ and q not occurring in φ or η, we have ` W (Oq, ψ, φ) → η implies
` φ→ η; consider the case in the induction step where φ = φ0 M0 φ1 and ψ�φ0. Then W (Oq, ψ, φ) =
W (Oq, ψ, φ0) M0 φ1 and we get

`W (Oq, ψ, φ0) M0 φ1 → η (assumption)
⇒ ` ¬(¬η ∧W (Oq, ψ, φ0) M0 φ1) (propositional logic)
⇒ ` ¬(W (Oq, ψ, φ0) ∧ φ1 M1 ¬η) (Lemma 7.5.)
⇒ ` ¬(φ0 ∧ φ1 M1 ¬η) (Induction Hypothesis)
⇒ ` ¬(¬η ∧ φ0 M0 φ1) (Lemma 7.5.)
⇒ ` φ→ η (propositional logic)

This ensures that we can prove the analogon of lemma 5.4.
To show the same for lemma 5.5, we prove the following: if Γ is distinguishing and φ M π ∈ Γ,

then there are d-theories Φ and Π with φ ∈ Φ, π ∈ Π and RcMΓΦΠ. For. as φ M π is in Γ, we have
(φ ∧Of) M (π ∧Op) in Γ for some propositional variables f and p. We set

Φ = {α | (α ∧Of) M Op ∈ Γ}
Π = {ψ | Of M (ψ ∧Op) ∈ Γ},

and the proof that these Φ and Π have the desired properties, runs like in lemma 5.5.
The remainder of the proof is a copy of that in section 5. 2

8 The SNΞ-theorem.

We are now ready to prove our main completeness theorem for a versatile logic having other non-ξ
rules besides IRD.

Definition 8.1 Let S be a versatile similarity type containing the D-operator, Σ a set of Sahlqvist
formulas and Ξ a set of arbitrary formulas. Kv

SD
+(Σ,−Ξ) is the logic Kv

SD
+ extended with the axioms

Σ and the non-ξ rules for all ξ ∈ Ξ.

Recall that the above definition implies that the rules of Kv
SD

+(Σ,−Ξ) are MP , UG, SUB, IRD
and {NξR | ξ ∈ Ξ}. If the similarity type contains only constants and diamonds, then the system has
the following axioms:
(CT ) all classical tautologies
(DB) 2(p→ q)→ (2p→ 2q)
(CV ) p→ 23−1p
(D1) p→ DDp
(D2) DDp→ (p ∨Dp)
(D3) 3p→ p ∨Dp
(Σ) Σ

If there are also triangles around, then the system has the versatility axiom V too (cf. 7.2).
With respect to the semantics, note that the class Frv, 6=(Σ,−Ξ) is defined as the class of D-standard

versatile S-frames with

F |= σ for all σ in Σ
F, w 6|= ξ for all w in F, ξ in Ξ
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If every ξ has a local first order equivalent ξf (x) on the frame level (for example, if all ξ’s are Sahlqvist
formulas too), then Frv, 6=(Σ,−Ξ) is elementary, as we have

F in Fr−ξ ⇐⇒ F |= ∀x¬ξf (x).

So, the theory below takes care of many classes of frames, for example the asymmetric or intransitive
frames (cf. the characterizations given in the introduction).

Theorem 8.2 (SNΞ-THEOREM)
Let S,Σ and Ξ be as in definition 8.1. Then

Kv
SD

+(Σ,−Ξ) is strongly sound and complete for Frv, 6=(Σ,−Ξ).

Proof.
We can use a straightforward adaptation of the proof in the previous section. There we started with
a consistent ∆ and inserted in ∆, for every φ ∈ ∆ and ψ � φ, a formula W (Op, ψ, φ), in order to
witness the RD-irreflexivity of all worlds connected to ∆. Here we will add more formulas (of the form
W (¬ξ(p1, . . . , pn), ψ, φ))), this time in order to ensure that the canonical-like general frame we end
with is not only standard (with respect to RD), but also in Fr−Ξ.

So we call a set ∆ of S-formulas witnessing (against Ξ) if it is distinguishing and for all formulas
φ ∈ ∆, ψ�φ and ξ ∈ Ξ, there are propositional variables p1, . . . , pn with W (¬ξ(p1, . . . , pn), ψ, φ) ∈ ∆.
It is then simple to prove that every consistent set ∆ has a witnessing extension ∆′.

W(itnessing)-canonical frames, models, etc. are defined analogous to distinguishing ones.
Now for completeness, we consider a consistent set ∆, extend it to a witnessing set ∆′, and we

construct the witnessing canonical model M of which ∆′ is a world. By the truth lemma, every formula
in ∆′ is true at ∆′. By an argument like in the previous section, the underlying witnessing canonical
frame F is versatile, D-standard, and it validates the axioms Σ. By the truth lemma and the fact that
every MCS of M contains a formula W (¬ξ(p1, . . . , pn), ψ, φ), we see that F is in Fr−Ξ. This proves the
theorem. 2

Just like in section 6, we can prove a poorer version of Theorem 8.2 for arbitrary (not versatile)
similarity types, but we leave this to the reader.

9 Conclusions, Remarks and Questions.

9.1 General Conclusions.

This paper was a study in the semantics and (mainly) the axiomatics of non-ξ rules, styled after
Gabbay’s Irreflexivity Rule.

On the semantic side, we defined K−Ξ as the class of frames F in K where no ξ ∈ Ξ holds anywhere,
i.e. for no ξ ∈ Ξ there is a w in F with F, w |= ξ. In general, such a class will not be definable by a
modal formula. Natural examples are formed by the irreflexive, asymmetric or transitive frames; the
phenomenon is abundant in many-dimensional modal logic, and thus, in algebraic logic, cf. Venema
[42].

The main result of this paper, the SNΞ-theorem 8.2 states that under certain conditions, classes
of the form K−Ξ are axiomatizable, by a derivation system having a non-ξ rule for every ξ ∈ Ξ. In the
various sections of this paper we have discussed these conditions.
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The most elegant formulation of the SNΞ-theorem is in the case where the similarity type is
versatile and contains the D-operator. For such a similarity type, our result gives a nice derivation
system for every class K−Ξ where K is a class of D-standard, versatile frames which is positively
characterized by a set of Sahlqvist axioms. For poorer similarity types, there are various options, of
which we list a few:

1. If the similarity type is not versatile, we have to add a schema of non-ξ rules (cf. section 6).

2. If not all diamonds are tense, only Sahlqvist tense formulas are allowed as axioms (cf. sections 6
and 7).

3. If the similarity type S does not contain the D-operator, the theorem does not apply directly.

Fortunately, this does not mean that the full power of the SNΞ-theorem is lost for these poorer
similarity types; one only has to work a bit harder for it. To give an example: in many cases, over
the class K−Ξ we can define the D-operator in the poorer formalism, so that we can work with this
defined D′-operator. Examples of this idea can be found in Venema [43, 42].

So, rather than a theorem, the SNΞ-concept is a procedure to find axiomatizations for non-ξ classes:

1. Find the proper characterization of the class (maybe in an extended similarity type).

2. Apply the SNΞ-theorem, immediately obtaining a strongly sound and complete derivation sys-
tem.

3. Try to simplify this system.

It would be unfair not to mention the fact that axiomatizations using non-ξ rules have some
disadvantages too: first of all, such axiomatizations may not have all the nice mathematical properties
that orthodox axiomatizations have. For example (cf. Goldblatt [15]): define, for a logic Λ, the
corresponding algebraic variety VΛ of Boolean Algebras with Operators as the class of algebras where
the set of equations {φ = 1 | Λ ` φ} is valid. Now for a finite orthodox Λ, the complement of VΛ will
be closed under ultraproducts, while this need not be the case for an unorthodox Λ.

Second, by the nature of the derivation rule, it may be necessary to add new propositional variables
to the language in order to derive a formula φ, whence we have less control on derivations in these
unorthodox systems.

These disadvantages take us to the question, in which cases a non-ξ rule can be eliminated from a
system.

9.2 Conservativity

An interesting point which has not been discussed yet concerns the question whether non-ξ rules add
new theorems to a logic. Some scattered results are known:
In the introduction we saw an example where a rule is admissible: the logic Kt4 already axiomatizes
the class of irreflexive transitive tense frames, so adding IR does not produce any new theorem.
On the other hand, adding IR to KtL(Gp → p) makes this logic inconsistent, so here IR is not
conservative. In Zanardo [46], Zanardo replaced the irreflexivity rule used in Burgess [6] to axiomatize
a branching-time temporal logic, by (infinitely many) axioms. An similar case is found in cylindric
modal logic and the modal logic of relation algebras (cf. Venema [42, 43]),where adding a non-ξ rule
to a finite set of axioms creates a finite derivation system for a logic which is known not to be finitely
axiomatizable when only the orthodox derivation rules MP , UG and SUB are allowed. A striking
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difference between a uni-directional similarity type and its tense counterpart concerns the modal logic
of the two-dimensional ‘domino relation’, where an axiomatization of the uni-directional modal logic
needs both infinitely many axioms and a non-ξ rule (cf. Kuhn [22]), while the tense logic allows a finite
and orthodox axiomatization (cf. Venema [41]).

The general question

Are there natural criteria deciding when a non-ξ rule is admissible over a derivation system?

lies (almost) completely open. We have one minor result: recall that a formula is closed if it does not
contain propositional variables (only constants).

Definition 9.1 A logic Λ has the interpolation property (IP ) if Λ ` φ → ψ implies the existence of
an interpolant χ in the common language of φ and ψ, such that Λ ` φ→ χ and Λ ` χ→ ψ.

Lemma 9.2 Let Λ be a logic and ξ a formula, such that (i) Λ has the IP , and (ii) for every closed
formula γ, Λ(−ξ) ` γ implies Λ ` γ.
Then NξR is conservative over Λ.

Proof.
Assume that Λ and ξ satisfy (i) and (ii). Denote derivability in Λ by `. To show that NξR is
conservative over Λ, we must prove

` ¬ξ(~p)→ φ ⇒ ` φ, if no pi occurs in φ

So assume ` ¬ξ(~p) → φ where ~p 6∈ φ. By (i) there is an interpolant γ for ¬ξ(~p) and φ; γ must be
closed, as ¬ξ(~p) and φ do not share any variables.
As ` ¬ξ(~p) → γ, one application of NξR shows that γ is a Λ(−ξ)-theorem, so by (ii), ` γ. Now ` φ
is immediate by ` γ → φ. 2

9.3 Questions and Remarks.

We end this paper with some miscellaneous questions and remarks:

1. The most obvious question is whether the SNΞ-result can be extended to similarity types not
having the D-operator or tense diamonds, and to arbitrary canonical formulas. Independently
from our result, Goranko [17] announces a similar meta-theorem on weak completeness, for
arbitrary canonical formulas. Hodkinson [10] extends our result to a similarity type where
diamonds come in pairs too, here having complementary accessibility relations (R−3 = (R3)c).

2. Call a class negatively definable if it is of the form Fr−Ξ. There seems to be an interesting
connection between this notion and what Kracht calls describable properties, cf. [21]. Is there
a structural characterization for negatively definable classes, like there is for modally definable
classes? It is not difficult to see that negatively definable classes are closed under disjoint
unions and generated subframes; any Fr−Ξ reflects p-morphic images, and if it is elementary,
ultrafilter extensions too. Do these preservation properties give the desired characterization for
(elementary) negatively definable classes?

3. Let Λ be the set of formulas Θ(Fr(Σ,−Ξ)), and FrΛ the class of frames where Λ is valid. What is
the relation between Fr(Σ,−Ξ) and FrΛ? Note that for Σ = ∅ and Ξ only containing a formula
characterizing irreflexivity, we have that FrΛ is the class of p-morphic images of Fr(Σ,−Ξ).
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4. Consider the tense similarity type with diamonds {F, P,D}. To axiomatize the irreflexive frames,
we now have the choice between the F -irreflexivity rule and the axiom Fp → Dp. When and
how can rules be replaced by axioms, and vice versa?

5. An interesting aspect of non-ξ rules is that in some sense they behave like axioms; in the intro-
duction we already saw how they characterize the class K−ξ as the class of frames where NξR
is sound.

Maybe it is better to use the term anti-axioms6, however, according to their behaviour in deriva-
tion systems: in a logic having a rule NξR, we strongly want to avoid ξ as a theorem; it would
go to far to add the negation of ξ as a theorem (for instance, an irreflexive frame can have a
reflexive p-morphic image), but a formula φ that provably implies ξ (under the usual restriction
concerning the variables), is so ‘bad’ that we accept ¬φ as a theorem.

In this ‘rules as anti-axioms perspective’, it might be interesting to investigate non-ξ rules as
operators in the lattice of modal (tense) logics.
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