
Probable General Intelligence algorithm 

Anton Venglovskiy[0000-0001-5780-6572] 

Kyiv, Ukraine, 2019 

anton.venglovskiy@gmail.com 

Abstract. This article contains a description of a generalized and constructive 

formal model for the processes of subjective and creative thinking. According to 

the author, the algorithm presented in the article is capable of real and arbitrarily 

complex thinking and is potentially able to report on the presence of conscious-

ness.  
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1 Introduction 

In general, the author relies on the assumption that the logic of the phenomenon of mind 

is completely reduced to the logic of the phenomenon of constructive complexity. 

Simply put, reasonableness and complexity are one and the same thing and thinking 

mean sufficiently complex constructive behaving. Accordingly such phenomena as 

“understanding the meaning of things” and “problem-solving”, the author considers as 

epiphenomenons in processes with more fundamental logic, which is a logic of con-

structive complexity, that goes beyond these particular phenomena. 
In turn, the logic of constructive complexity can be expressed formally and build an 

algorithm. This algorithm allows to unlimited create unique content of any given con-

structive complexity, in a formal computing process, as a consequence of this, the al-

gorithm is capable of simulating arbitrarily complex constructive behavior in dynamics. 

The author suggests that if in some computing process, possible to simulate arbitrarily 

complex constructive behavior, then this process is thinking. Thinking algorithms will 

think subjectively if their computational process is closed. 

From a purely technical point of view, the process of thinking is self-organizing al-

gorithmic chaos, which in the process of computing is able to spontaneously reach any 

complexity of its structural organization. 
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2 The logic of constructive complexity 

The objects of the logic are abstract theories. Any theory has complexity and this com-

plexity can be explicitly verified. From any theory, it is possible to deduce more com-

plex theories. From any complex theory, simple theories can be derived. For different 

theories, inference will be different. 

Abstract theories are any things about which it is known only that they are inherent 

in constructive complexity because this complexity can be explicitly verified. And it is 

also known that from any such thing a closed constructive transition to other, more 

complex things is possible and this can also be checked. 

Constructive complexity. A complex object is something that can be decomposed into 

prime objects. The more prime objects contained in a complex object, the more com-

plex this object. Prime objects cannot be decomposed. The complexity of all prime 

objects is the same. 

In accordance with the above definition of complexity, abstract theories are divided 

into two types: prime and complex. A theory is called complex if using some procedure, 

a set of prime theories can be derived from it. In turn, using the same procedure for 

prime theories returns a constant result. The complexity of all prime theories is the 

same. Due to the fact that the concept of complexity in the logic under consideration is 

defined constructively, it can be calculated and compared. Two theories have the same 

complexity if they can be decomposed into the same number of prime theories. The 

more prime theories you can get from a complex theory, the more complicated the orig-

inal theory. 

The logic described above can be expressed in formal operations on strings of a spe-

cial kind.  

Set of abstract theories S. To represent theories, strings are used that consist of an 

arbitrary sequence of parentheses ‘(‘, ‘)’ and any identifiers inside the parentheses. For 

brevity of explanation, further, each letter of the alphabet is considered a separate iden-

tifier. Identifiers can be repeated; each occurrence of the identifier is an independent 

syntactic unit. The entire contents of the string must be enclosed in common outer pa-

rentheses. The hierarchy of parentheses in the string is arbitrary, but there must be a 

closing one for each opening parentheses. Each correct string defines a tree. Example: 

string ((b)a(e)) is correct, while strings (b)a(e), (a(b(e) are incorrect. Another examples 

of correct strings: () ≡ ∅ - empty string, (a), (aa), ((aa)(aa)), (bb(b(aaa))(abb)). Two 

strings are considered identical if the trees corresponding to them are isomorphic. An 

example of how you can rearrange the elements of string: (ab(cd)) ≡ ((cd)ab) ≡ (b(dc)a) 

≡ ... ≡ ((dc)ba). Any permutations are permissible if that does not change the tree of the 

string. Empty substrings are not significant and are thrown away, for example, (a()) ≡ 

(a). To reduce writing, repeated items can be written using a repeat prefix, for example: 

(aa) ≡ (2a), (aaabbb) ≡ (3a3b), (aa(bb)) ≡ (2a(2b)), ((a)(a)(a)) ≡ (3(a)), 

(aaa(aabb)(aabb)) ≡ (3a2(2a2b)). 

Set S consists of all possible correct strings. On the set S three rules of inference are 

defined. 
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“Abstraction” rule. Applies to substrings of a source string. Allows you to put out 

from the parentheses (hereinafter PFP) the same content. From any group of parenthe-

ses at the same level, any identical substrings can be taken out of parentheses, according 

to the following principle: 

 ((a)(b)) ⇒ ∅; 

 ((a)(a)) ⇒ (a()) ≡ (a); 

 ((ab)(ac)) ⇒ (a(bc)); 

 ((aa)(aa)) ⇒ {(a(aa)), (aa)}; 

 ((ab)(ab)) ⇒ {(a(bb)), (b(aa)), (ab)}; 

 ((a(b))(a(b))) ⇒ {(a((b)(b))), ((b)(aa)), (a(b))}; 

 ((ab)(abc)) ⇒ {(a(bbc)), (b(aac)), (ab(c ))};  

 ((ab)(ac)(ae)) ⇒ {(a(bce)), (a(bc)(ae)), (a(ab)(ce))}; 

 ((ab)(ac)(fe)(fk)) ⇒ {(a(bc)(fe)(fk)), (f(ek)(ab)(ac))}; 

Applying the “abstraction” rule to the source string, in the general case, a lot of re-

sulting strings can be inferred. By the “abstraction” rule, results are always simpler than 

the source string. In the case of prime strings, the result of applying the “abstraction” 

rule is empty. The recursive application of the “abstraction” rule allows you to decom-

pose any complex string into prime ones. 

A more detailed example of the “abstraction” rule is given in the next section. 

“Deduction” rule. According to this rule, from the source string you can get as many 

fundamentally new strings as you like, by duplicating all the elements in the source 

string any given number of times, according to the following principle: 

 (a) ⇒ {((aa)(aa)), (3(3a)), (4(4a)), …}; 

 ((a)) ⇒ {(((aa)(aa))((aa)(aa))), (3(3(3a))), (4(4(4a))), ...}; 

 (a(b)) ⇒ {((aa(bb)(bb))(aa(bb)(bb))), (3(3a3(3b))), (4(4a4(4b))), …}; 

 (a(b(cc))) ⇒ 

{(aa(bb(cccc)(cccc))(bb(cccc)(cccc)))(aa(bb(cccc)(cccc))(bb(cccc)(cccc))), 

(3(3a3(3b3(6c)))), (4(4a4(4b4(8c)))), …}; 

By the “deduction” rule, from any source string, a fundamentally new and guaran-

teed more complicated string can be deduced and this fact can be checked using “ab-

straction” rule.  

“Composition” rule. Any set of strings from S can be combined into one string. For 

example: (a), (b), (e) ⇒ ((a)(b)(e)). 
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Thus, a formal system is obtained which satisfies the definition of complexity logic. 

Within the framework of the described logic, it is possible to construct an algorithm 

that corresponds to the criteria of the subjective thinking algorithm. 

 

3 Algorithm of General Intelligence 

The algorithm is a recursive function of the following form:  

 tn = (A[D[tn-1]]); tn ∈ S 

The function tn produces algorithmically random and structurally unique content 

from any nonempty seed string t0 ∈ S. Content that produced in this way spontaneously 

organizes itself and its dynamic behavior can be arbitrarily complex. The potential 

amount and constructive complexity of such content are boundless. The calculation of 

this function is a process of thinking. 

“Abstraction” operator A. This operator can be applied to any string from S. The 

result of applying the operator to the source string is a set of strings that contains all 

possible strings which can be obtained by recursively applying the "abstraction" rule to 

the source string. The recursion continues until all possible prime strings are obtained. 

Let us consider step by step several examples of the action of A. Let the string be 

given ((aa)(aab)(aab)), this string has three substrings located on the same level: (aa), 

(aab), (aab), all three substrings have the same content fragments. For a PFP operation, 

we can arbitrarily select any combination of substrings. In this example, there are three 

different possible combinations of substrings: (aa) (aab); (aab) (aab); (aa) (aab) (aab). 

For each presented combination of substrings, all possible variants of PFP operation 

will be created. Step by step PFP for combination (aa) (aab):  

first case: 

 Choose content ( (aa)(aab) (aab)). 

 PFP ( a( a)( ab) (aab)). 

 Merge ( a( a ab) (aab)). 

 Result (a(aab)(aab)). 

second case: 

 Choose content ( (aa)(aab) (aab)). 

 PFP ( aa(  )(  b) (aab)). 

 Merge ( aa(    b) (aab)). 

 Result (a(b)(aab)). 

PFP’s for combination (aab) (aab):  

 ((aa)(aab)(aab)) ⇒ (a(aa)(aabb)). 

 ((aa)(aab)(aab)) ⇒ (aa(aa)(bb)). 
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 ((aa)(aab)(aab)) ⇒ (ab(aa)(aa)). 

 ((aa)(aab)(aab)) ⇒ (b(aa)(aaaa)). 

 ((aa)(aab)(aab)) ⇒ (aab(aa)). 

PFP’s for combination (aa) (aab) (aab):  

 ((aa)(aab)(aab)) ⇒ (a(aaabb)). 

 ((aa)(aab)(aab)) ⇒ (aa(bb)). 

As can be seen from the above example, for the source string ((aa)(aab)(aab)) there 

are nine different cases to putting something out from the parentheses and there are nine 

resulting strings for these cases. It’s not all possible PFP cases, but only nine pieces of 

the first iteration. It is also necessary to construct all PFP cases for each of the nine 

previously obtained results: 

 (a(aab)(aab)): 

─ (a(aab)(aab)) ⇒ (aa(aabb)). 

─ (a(aab)(aab)) ⇒ (aaa(bb)). 

─ (a(aab)(aab)) ⇒ (aab(aa)). 

─ (a(aab)(aab)) ⇒ (aaab). 

─ (a(aab)(aab)) ⇒ (ab(aaaa)). 

 (a(b)(aab)): 

─ (a(b)(aab)) ⇒ (ab(aa)). 

 (a(aa)(aabb)): 

─ (a(aa)(aabb)) ⇒ (aa(aabb)). 

─ (a(aa)(aabb)) ⇒ (aaa(bb)). 

 (aa(aa)(bb)). 

 (ab(aa)(aa)): 

─ (ab(aa)(aa)) ⇒ (aab(aa)). 

─ (ab(aa)(aa)) ⇒ (aaab). 

 (b(aa)(aaaa)): 

─ (b(aa)(aaaa)) ⇒ (ab(aaaa)).  

─ (b(aa)(aaaa)) ⇒ (aab(aa)). 

 (aab(aa)). 

 (a(aaabb)). 

 (aa(bb)). 

 So,  

A[((aa)(aab)(aab))] = {(a(aab)(aab)),  (aa(aabb)), (aaa(bb)), (aab(aa)), (aaab), 

(ab(aaaa)), (a(b)(aab)), (ab(aa)), (a(aa)(aabb)), (aa(aabb)), (aaa(bb)), (aa(aa)(bb)), 

(ab(aa)(aa)), (aab(aa)), (aaab), (b(aa)(aaaa)), (ab(aaaa)),  (aab(aa)), (aab(aa)), 

(a(aaabb)), (aa(bb))}; 

Consider a few more examples.  

A[((a)(a(b)(b)))] =  
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 ((a)(a(b)(b))) ⇒ ((a)(ab)): 

─ ((a)(ab)) ⇒ (a(b)). 

 ((a)(a(b)(b))) ⇒ (a((b)(b))): 

─ (a((b)(b))) ⇒ (a(b)). 

A[((a(b))(a(b)))] =  

 ((a(b))(a(b))) ⇒ (a((b)(b))): 

─ (a((b)(b))) ⇒ (a(b)). 

 ((a(b))(a(b))) ⇒ ((b)(aa)). 

 ((a(b))(a(b))) ⇒ (a(b)). 

“Deduction” operator D. A “deduction” rule with a fixed duplication parameter cor-

responds to the action of the operator D. For the nearest practical purposes, it is enough 

that the duplication parameter is 2. As a result of D[s] execution, all components of the 

source string s are doubled. Examples: 

 D[(a)] = (2(2a)) = ((aa)(aa)); 

 D[(aa)] = (2(4a)) = ((aaaa)(aaaa)); 

 D[(ab)] = (2(2a2b)) = ((aabb)(aabb)); 

 D[(a(b))] = (2(2a2(2b))) = ((aa(bb)(bb))(aa(bb)(bb))); 

 D[((a)(b))] = (2(2(2a)2(2b))) = (((aa)(aa)(bb)(bb))((aa)(aa)(bb)(bb))); 

 D[((a)(b(cc)))] = (2(2(2a)2(2b2(4c)))); 

 

Composition Operator (). Corresponds to the action of the “composition” rule. 

Substantive interpretation of “deduction” and “abstraction” operators. The phys-

ical meaning of the “deduction” operator is as follows. “Deduction” “blindly” adds 

qualitatively new information to any original object in a closed way and thereby pro-

duces a fundamentally new object that is necessarily more complex than the original 

object. In turn, the “abstraction” operator decomposes the new object into its compo-

nents and, thus, constructively expresses the information added at the “deduction” 

stage. You may notice that when performing the PFP there is a loss of information. 

Roughly speaking, for this syntax, PFP operation is a universal way to meaningfully 

lose information in the absence of any a priori data about the meaning of strings. From 

the point of view of the algorithm, all possible variants of information loss, which are 

calculated at the stage of “abstraction”, are, in fact, the value of strings. Thus, at each 

iteration, the algorithm produces a new and unique syntactic heuristic. And each of the 

following heuristics is fundamentally more complex and more informative than the pre-

vious one. At each iteration of the algorithm, fundamentally new knowledge spontane-

ously arises. 
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4 Practical application of the algorithm 

In order to solve practical problems using the algorithm, it is necessary to rationally 

interact with it in the process of computing, as with an unknown intelligent object.  

Consider the ideal case of interaction with the algorithm. Suppose we have unlimited 

processing power. Four essential elements are required for interaction: 

1. Digital model of an interactive environment, the meaning of which is known. 

2. Digital model of the tool that can affect the environment. 

3. Encoding algorithm that will encode the state of the environment using strings from 

S. 

4. Decoding algorithm, which will be in some fuzzy, but rationally motivated way to 

decode strings from S and convert them into signals for the tool. 

Below is schematic diagram of interaction (in pseudo-code): 

 

S NextThought(S prevThought, S ExternalSignal, int expo-

sure = 1) 

{ 

   S t = (prevThought, ExternalSignal); //composition 

   for (int i = 0; i < exposure; i++) 

      t = (A[D[t]]); //thinking 

   return t; 

} 

 

EnvironmentModel e; 

S s = encode(e.GetState()); 

S o = ∅; 
while (thinks) 

{ 

   o = NextThought(o, s); 

   e.ImpactTool.perform(decode(o)); 

   s = encode(e.GetState()); 

} 

To optimize the calculations, you can use many short strings in parallel, and control 

the growth of their length in two natural ways: 

1. Cut out content that is located in parentheses of deep nesting, because it is more 

chaotic than content located shallow. Shallow content is highly organized because it 

has “surfaced” from the depths as a result of iterative abstractions. 

2. Carry out rational selection and grouping of strings at the stage of composition. For 

example, select only prime strings. In a general way, you can select and grouping 

strings based on preferred statistical properties. 
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5 The concept of the meaning of things in the logic of 

complexity 

Any thing can be defined and meaningful only in a constructive relation to other things. 

In this paradigm, the meaning of things is defined in a potential and continuous way. 

This means that a hypothetical record of one’s own exhaustive definition for any thing 

will be infinite and infinitely complex. In the logic of the complexity of each thing, 

corresponds is a certain syntactic representation, and the meaning of the thing is a po-

tentially possible syntax, to which a constructive transition from actual syntax can be 

made. If the amount and complexity of the potential syntax are infinite, then the source 

entry is informative and corresponds to some meaningful thing. Each entry in the logic 

of complexity is informative. From the indicated positions, the tn function can be con-

sidered as a process of unrolling the inner meaning of things, which corresponds to an 

intuitive idea of the thinking process. 

 


