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Abstract. In the following we will apply the manipulability theory of causation of Woodward 

2003 to physical systems, and show that, in the latter context, the theory can be simplified. 

Elaborating on an argument by Cartwright, we will argue that the notions of „modularity‟ and 

„intervention‟ of the cited work should be adapted for typical physical systems, in order to 

take coupling of system equations into account. We will show that this allows to reduce all 

cause types discussed in Woodward 2003 to only one, namely that of „total cause‟.  
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1. Introduction. 

 

 In the present article we will examine an influential theory of causation, namely the 

„manipulability‟ account advanced by James Woodward. We will focus our attention on 

Woodward‟s well-known textbook (Woodward 2003). Woodward has authored or co-

authored other texts on the topic, such as Hausman and Woodward 2004 (the latter as a 

reaction to Cartwright 2002); but these articles can be seen as corroborating the full-blown 

theory of Woodward 2003. As is well known, the manipulability account was developed to 

apply to a wide spectrum of systems, from sociology, economy, physics etc. to everyday life. 

In the present article we will focus on systems studied in physics, and argue that the theory 

should be adapted in that case, in order to be fully compatible with the particular mathematics 

of these systems. The singularity of the systems studied in physics is that they are describable 

by complete sets of equations involving all system variables - which is rarely possible in other 

contexts. More precisely, we will argue that the notions of „modularity‟ and „intervention‟, as 

they are defined in Woodward 2003, are incompatible with a feature of system equations 

termed „coupling‟. Coupling, a property of most if not all realistic physical systems, will be 

explained in Section 2. Its incompatibility with modularity and intervention, in Section 3. We 

will in particular be led to conclude that typical system equations from physics are not 

modular, but coupled. 

Allowing for coupling has an unexpected effect for the manipulability theory of 

Woodward 2003: it allows to greatly simplify it. Indeed, we will show (Section 4) that, for 

physical systems, of all the causal notions that are defined in Woodward 2003, only that of 

„total cause‟ remains. „Total cause‟ would therefore be, for such systems, nothing else than 

cause simpliciter.  

Nancy Cartwright has extensively criticized the manipulability account of causation, 

and in particular modularity, using a series of arguments (see her 2006 and references 

therein). In one of the articles, namely in Cartwright 2004, she has identified the point we will 

investigate here in detail. She discusses a model of a carburetor, and mentions (Cartwright 

2004, 810): “By design the different causal laws are harnessed together and cannot be 

changed simply. So modularity fails.” As will be detailed in the following, this „harnessing of 

laws‟ corresponds to what will be termed here „coupling of system equations‟. Our aim is to 

study in detail all the consequences of the latter central concept, not only for modularity, but 

also for the definitions of cause proposed in Woodward 2003. Such a task is made possible 
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thanks to the formal detail and logical coherence of the cited book by Woodward, just two of 

the merits of this text. 

Above we said that we will restrict our analysis to physical systems. We could be 

more precise in stating that we will focus on systems described by coupled system equations. 

Physics doubtlessly provides the paradigmatic case, but there exist countless examples of 

coupled systems in other fields that can be mathematized. 

    

2. Physical Systems. Coupling of System Equations. 

 

In the following we will use the term „physical systems‟ to denote systems of „things‟ 

(entities and their interactions) that are studied in physics. Let us start by making a few 

introductory observations linked to the notions of „variables‟, „constants‟ and „equations‟.  

Physical systems are described in the practice of physics by sets of mathematical 

equations that quantify the relations that exist between the different parameters or variables of 

the system. In other words, for our present purposes „systems‟ can roughly be equated with 

„sets of (system) equations‟; obviously, the latter equations are typical for the physical 

subfield or domain in question (e.g. relativistic mechanics, thermodynamics, quantum 

mechanics, etc.).  

We will focus our attention in the following on physical systems that are realistic and 

therefore somewhat complex, namely systems that are described by several variables (not just 

one) that intervene in general in several equations (not just one) describing the system. The 

latter property, to be defined more precisely in the following, is called „coupling‟ of the 

system equations. Let us note from the start that a majority, if not all, of physical systems are 

„coupled‟. Indeed, if a system is characterized by N (dependent) variables, it is described by N 

equations; these equations are coupled, else mathematical solution of the system would be 

much easier than it is: every equation could then be handled „on its own‟ to be solved for one 

variable (see e.g. Boyce and DiPrima 1997, Ch. 7). That seems hardly ever the case in 

physics
1
. 

To illustrate the notion of coupling, let us have a quick look at a particularly beautiful 

example, namely Maxwell‟s equations of classical electromagnetism – particularly beautiful 

                                                 
1
 The only exception to the ubiquitous coupling of equations we are aware of are (artificial) systems of 

independent subsystems each described by only one dependent variable (say x), for instance a collection of N 

linear springs (evolving according to Hooke‟s law). One could describe this system by N equations {mi.d
2
xi/dt

2
 = 

-kixi, i = 1,…,N}. This set of equations is „decoupled‟: each dependent variable x1, x2, … xN only intervenes in 

one equation. However, such a „system‟ is not studied in physics: all the relevant information is already 

contained in the first equation involving x1. 
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since describing a potentially infinite class of systems, belonging to such diverse subfields as 

electrostatics, magnetostatics, and electrodynamics. Maxwell‟s equations (Jackson 1999, Ch. 

1) are a set of four „coupled partial differential equations‟, expressing a relationship between 

the electric field (E), the electric displacement field (D), the magnetic field (B), the magnetic 

field intensity (H), and their so-called sources, namely the electric charge () and current 

density (J):   

∇ x H = (4/c) J + (1/c) D/t   

∇ x E = - (1/c) B/t     

∇ . B  = 0      

∇ . D = 4     

(The operator „∇‟ effectuates derivation in the space coordinates, but that is a detail of no 

importance in the following.) In above equations, „c‟ is the speed of light. We explicitly 

exhibit the equations, because it allows us to illustrate an essential point for the rest of the 

article. One notices that the set contains variables (D and B) that belong to different equations; 

more precisely, all equations contain variables that also belong to at least one other equation 

– i.e., the equations are coupled (this is the more precise definition). The coupling makes 

mathematical solution difficult: none of the equations can be mathematically manipulated „on 

its own‟ to derive a solution for a variable; they have to be treated in parallel
2
.  

 Another example refers to figure 1, which represents an electric circuit, involving 

currents I, I1, I2, I3, an electric potential source V, and three constant resistors Ri (constants of 

the system). This system is fully described by following four relations: I1 = V/R1, I2 = V/R2, I3 

= V/R3 and I = I1 + I2 + I3. Here to, the representative equations are coupled: the system 

variables appear in general in more than one equation (this is the case for V, I1, I2, and I3, not 

for I); more precisely, all equations contain at least one variable that also appears in at least 

one other equation. 

                                                 
2
 Let us note that the coupling is even more intricate than the Maxwell equations suggest, since in order to solve 

the set one needs additional equations, the so-called „constitutive relations‟, depending on the properties of the 

environment, the media and materials involved in the particular system under study. One example of such an 

equation is D = E, with  the electric permittivity, a constant of the system. These auxiliary relations introduce 

additional coupling between the equations. But that only enhances our argument. 
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Figure 1. 

 

 Let us repeat that only the simplest systems, those that involve just one independent 

variable and that therefore can be described by one equation, do evidently not exhibit 

coupling. But such systems are a small minority of all physical systems studied (and indeed 

they are not treated by Woodward 2003). As already stated, the modification of Woodward‟s 

theory we undertake in the following concerns only coupled systems - but all of them, 

whether from physics or other fields. Indeed, many real world systems that can be 

mathematized via equations are coupled. Physical systems are the most telling case, but see 

Giordano and Weir 1988, Ch. 7 for a series of systems from economy, biology, population 

dynamics, etc., all described by coupled equations. 

For the purpose of the article it is important to remember that the role of the 

„variables‟ and „constants‟ in the system equations is clearly distinct. For any given physical 

system, the constants are fixed, i.e. they keep the same numerical value independent of the 

values of the variables. In above examples, „c‟ and the „Ri‟ are such system constants: their 

value is assumed to be given. „Variables‟ obviously play a very different role: within one 

system with fixed constants, the variables may assume different values; the system equations 

numerically describe how a variation in one variable is linked (coupled) to the variations of 

the other variables. For examples, let us go back to the two systems we presented. If in 

electrodynamical systems, described by the Maxwell equations we exhibited, the source (or 

independent) variables J and  change (for instance due to human intervention, or due to 

changes in the natural environment), the other (dependent) variables will also change (always 

for fixed constants). Similarly, if in Figure 1 the potential source doubles its output voltage V, 

all currents will double their value (while the Ri remain constant), as immediately follows 

from the mathematics of the equations.  

 Let us now study in some detail the relevant parts of Woodward‟s theory of 

manipulability.  
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3. Coupling versus Modularity. 

 

Woodward 2003 heavily relies on the notions of „modularity‟ and „intervention‟ in 

constructing his theory of causation and explanation
3
. Our aim is to show that, in the case of 

physical systems, the definition of „intervention‟ should be modified, and that „modularity‟ 

does not hold for coupled systems. In Woodward 2003 modularity is defined as follows 

(quote 1):  

“More generally, a system of equations will be modular if it is possible to disrupt or 

replace (the relationships represented by) any one of the equations in the system by 

means of an intervention on (the magnitude corresponding to) the dependent variable in 

that equation, without disrupting any of the other equations.”  (Woodward 2003, 48)  

A similar definition is offered in Woodward 2003, 329. Observe that, a priori, the expression 

„to disrupt an equation‟, intervening twice in above definition, could have different meanings. 

It could be interpreted as I1) „to change the form of an equation‟, or as I2) „to determine the 

numerical values of the variables of an equation‟ - or there may be other meanings. Under 

interpretation I1) modularity seems not a property of equations describing physical systems, 

because interventions, in the sense defined below (and in the sense in which the word is used 

in physics, for that matter) do not change the form of an equation, they set a variable in the 

equations to a given value (more on this below). Under interpretation I2) to, modularity is not 

a property of sets of equations, as soon as they are coupled, as will be explicitly shown below. 

But maybe we overlook valuable interpretations; let us see how the concept is used. To that 

end we need the definition of „intervention‟
4
, involving the variables X and Y (quote 2): 

“More generally and slightly more precisely, we may think of an intervention on X with 

respect to Y as an exogenous causal process that changes X in such a way and under 

conditions such that if any change occurs in Y, it occurs in virtue of Y‟s relationship to X 

and not in any other way.” (Woodward 2003, 47) 

The many examples offered in the text allow to draw a clear picture of the precise meanings 

of above concepts. Let us study the most revealing one in detail. In Woodward (2003, 330) 

following system of equations is discussed (we keep the original equation indices): 

(7.4.3)  Y = aX + U 

(7.4.4)  Z = bX + cY + V.  

                                                 
3
 These notions have been discussed (and defined differently) by other philosophers, e.g. Spirtes et al. 2000 (see 

Woodward 2003, 46-48 for a complete list of references).   
4
 The more detailed definition on p. 98 leads to exactly the same analysis as is presented here. 
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The equations – which are manifestly coupled - are rewritten as follows by algebraic 

rearrangement: 

(7.4.3)  Y = aX + U 

(7.4.5)  Z = dX + W, where d = b+ac and W = cU + V. 

The author states (quote 3):  

“Despite their observational equivalence, if (7.4.3) – (7.4.4) is modular, then (7.4.3) – 

(7.4.5) cannot be (and vice versa). To see this, consider an intervention on the variable Y 

in (7.4.3) that replaces (7.4.3) with the new equation (7.4.3*) Y = y. In effect, what this 

intervention does is to set the coefficient a in (7.4.3) equal to 0.” (Woodward 2003, 330) 

(The argument is that, if a = 0, d becomes equal to b, and thus (7.4.5) „changes‟ (or is 

„disrupted‟), so that (7.4.3) – (7.4.5) is not „modular‟, according to the definition of quote 1 

we displayed above. It would seem here that Woodward avows himself to the questionable 

interpretation I1) above.) Our point is that the phrases in quote 3 do not correspond to a 

legitimate interpretation of the mathematical apparatus used to model coupled physical 

systems. First, as highlighted in Section 2, a coefficient as „a‟ is, in such contexts, a constant 

of the system: its value cannot change, and can in particular not become 0. What is possible, 

is that one indeed sets by intervention Y to a certain value, y, so that y = aX + U according to 

(7.4.3). The point to observe is that this intervention on Y will influence X and Z, whichever 

set of equivalent equations one starts from, due to the fact that the equations are coupled. 

Indeed, if the equations were not coupled (if they had no common variables), they could be 

mathematically handled in a fully separate manner, as if, so to speak, the other equation did 

not exist. This „parallel‟ influence of Y on X and Z may be obvious if one considers (7.4.3) – 

(7.4.4) since Y intervenes in both equations; but it also follows from (7.4.3) – (7.4.5). Let us 

prove it. Whatever value Y takes, whether these values are set by intervention or not, 

according to (7.4.3) X can be rewritten as (Y – U) / a, so that (7.4.4) becomes, by substitution 

of X: Z = (c + b/a) Y + V – b U/a (7.4.4#). By inspection of equations (7.4.3) and the 

simultaneously valid (7.4.4#), one directly sees that by intervening on Y (by causing it to 

assume the value y), one necessarily changes or influences the value of X and of Z. Again, 

the reason lies in the coupling of the equations. This result holds independently of the 

representation one chooses for the system. Indeed, one can easily verify that (7.4.3) – (7.4.5) 

lead (of course) to the same equation (7.4.4#) (one could say, based on (7.4.3) – (7.4.5), that 

Y influences Z through its link with X; X ‘couples’ Y and Z). This is a mathematically 

necessary property of sets of equations that only differ by algebraic rearrangements, such as 

sets (7.4.3) – (7.4.4) and (7.4.3) – (7.4.5). There is no mathematical nor physical information 
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that can differ in both representations. We arrive here at a conclusion that differs from 

Woodward‟s, since he claims (quote 4):  

“By contrast, according to (7.4.3) – (7.4.5), Y does not cause Z and hence there are no 

interventions on Y that will change Z. (Recall that an intervention on Y should be 

uncorrelated with other causes of Y such as X.)” (Woodward 2003, 331)  

The phrase between brackets points out what is the central issue. The author stipulates that 

under „interventions‟ one variable (Y) can be set in such a manner that another variable (Z) is 

determined in a fully unrelated, ‘decoupled’ manner. That may be an appropriate 

characterization for systems from economy, sociology etc., but such interventions do not exist 

in systems as soon as coupling between the equations occurs. We have explicitly proven this 

fact via our derivation of equation (7.4.4#) from (7.4.3) – (7.4.5): Y does cause Z, and this 

fact holds irrespectively of the equation set one starts from. For the system discussed, all 

variables are linked to each other via coupled system equations. Clearly, this property can be 

generalized to all coupled systems (for those who prefer an explicit argument, see footnote 7).  

 Thus it appears that in coupled systems „modularity‟ does not apply, and that the 

unwarranted use of the concept traces back to an „unphysical‟ use of „intervention‟ – more 

precisely a usage that does not apply to coupled systems, and in particular not the example 

just discussed. Note that this particular interpretation of the mathematical representation of 

intervention is not yet obvious in the definition of the concept as reproduced in quote 2. There 

is however a shift in the meaning of „intervention‟ throughout the text, as was already noticed 

by Cartwright (2002, 414-15)
5
. Careful inspection of the text shows that the same use of 

„intervention‟, violating coupling, appears in other passages
6
, and, most importantly, in the 

definitions of cause, as we will show in the next Section. Therefore, and for reasons that will 

become clear in the following, we will arrive at the conclusion it is this element of the 

manipulability account of causation that should be modified to make it generally applicable to 

physical systems. 

 An important corollary of above findings is the following. Our analysis points to the 

idea that systems represented by coupled equations should not be conceived of as being made 

up of variables that are directly linked to only a subset of the other variables, but to all of the 

other variables. Indeed, from the definition of coupling of system equations, it follows that no 

variable can be solved for by using just one equation: one needs all equations. But that means 

that a change (e.g. under an intervention) in one variable „propagates‟ itself to all other 

                                                 
5
 In the detailed definition of intervention (Woodward 2003, 98), the incompatibility with coupling is manifestly 

built-in.  
6
 See e.g. Woodward 2003 p. 52, p. 100. 



9 

 

variables
7
. In other words, all variables are linked to all other variables; their values cannot 

change without influencing the values of all other variables. This would seem to have 

essential implications for the „graph‟ representation that is extensively used in Woodward 

2003 to depict and characterize causal networks – i.e. networks representing „which variable 

influences which other variable‟. Indeed, it would seem that, for physical (in general coupled) 

systems, the correct representation is one in which each vertex is connected to each other 

vertex. Note that the graph representation of Woodward 2003 is only based on the equations 

connecting the variables X, Y, Z,…, not on any time-relation between those variables (at least 

in examples such as Woodward 2003 p. 49, p. 51, p. 328 and others). But as we have argued, 

due to the coupling of the equations there is no privileged connection nor direction in the 

graph, at least not when only taking the equations into account: all variables are 

symmetrically (and therefore maximally) connected. (As briefly argued below, we believe a 

causal directionality can be recovered by taking time into account.) We will not elaborate here 

on this idea, but this conclusion of a maximally interconnected network of system variables 

seems inescapable in the case of coupled equations. Since we have not presented a detailed 

proof of the latter thesis (it is not essential for our argumentation), let us introduce it as a 

conjecture, in the following termed the „dense grid conjecture‟. 

 Notice that the graphs of Woodward 2003 are defined in a different manner than in 

e.g., Spirtes, Glymour, and Scheines 2000, or in Pearl 2009. In the latter works graphs are 

attached to probabilistic systems, and are not directly derived from deterministic and coupled 

system equations. There seems to be no reason why such graphs could not be „directed‟. (But 

we believe that even such graphs for probabilistic systems will be dense as soon as they 

represent coupled system equations, for the reasons indicated above.)    

 In conclusion, following Cartwright 2002, 2006, we believe modularity as defined in 

Woodward 2003 is not a property of (most) physical systems. We have argued in some detail 

that the concept of „intervention‟ as employed in the notion of modularity is incompatible 

with the coupling that exists between the equations of the systems studied in physics. This 

conclusion may be seen as an elaboration of a claim of Cartwright (2004, 810, where the 

„harnessing of laws‟ is discussed). We believe it is therefore safe to stick to the meaning of 

„intervention‟ as understood in many passages in Woodward 2003, and in physics, as based 

                                                 
7
 Suppose one changes variable x1 in equation e1; in a coupled system e1 will also contain, by definition, at least 

one other variable, say x2 (if not, x1 will intervene in a second equation containing a second variable x2); 

therefore a change in x1 will change x2. If there are three variables, x3 necessarily intervenes in an equation that 

contains, due to coupling, at least one other variable, i.e. x1 or x2; so a change in x1 causes a change in x2 and x3; 

and so on if there are more variables. This can easily be seen in the system equations we exhibited as examples 

in the former Section. 
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on the idea that an intervention sets the value of a variable to a given value. We cannot ask 

more of an intervention, if we do not want to violate the property of coupling. Also, with this 

interpretation of intervention, the only case in which equations can be called „modular‟ is that 

of „decoupled‟ equations in the usual mathematical sense. Only if two equations are 

decoupled, if they share no common variables, an intervention can set the value of a variable 

in one equation without changing the value of a different variable appearing in the other 

equation.  

 

4. Implications for the Manipulationist Concept of Cause. 

  

 In the present Section we will investigate in detail the consequences of abandoning 

modularity for the theory of causation that is proposed in Woodward 2003. As is well known, 

the theory strongly links modularity to the different notions of „cause‟ it defines. One reads: 

“(…) I will assume that when causal relationships are correctly and fully represented by 

systems of equations, each equation will correspond to a distinct causal mechanism and 

that the equation system will be modular. As we will see, the notion of direct causation 

and the related notion of causal route is closely bound up with these ideas.” (Woodward 

2003, 49) 

Closer inspection of the text reveals that, according to the author, a set of equations that 

allows to identify „direct‟ causes is a „modular‟ set, representing „distinct causal mechanisms‟. 

But we have just argued that „modularity‟ is not an appropriate description of most or all 

physical systems. As we will develop in the following, it is then intuitively compelling that 

abandoning the concept of modularity, leads to abandoning of the distinction between the 

different types of causes that are introduced in Woodward 2003, namely ‘direct’, 

‘contributing’, and ‘total’ causes. If that would be the case, our investigation would lead, for 

physical and coupled systems in general, to a substantial simplification of the theory. Indeed, 

especially in Chapter 2 of the book each of above cause types is given a separate definition, 

which strikes by its logical detail (see especially Woodward 2003, 51 – 61). In view of the 

importance of above conclusion, let us proceed carefully to prove it, by two different (and 

independent) routes. 

The concept of „direct cause‟ (DC) is defined as follows (our italics): 

“(DC) A necessary and sufficient condition for X to be a direct cause of Y with respect to 

some variable set V is that there be a possible intervention on X that will change Y (or the 
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probability distribution of Y) when all other variables in V besides X and Y are held fixed 

at some value by interventions.” (Woodward 2003, 55) 

The italicized part shows that the definition of direct cause directly relies on the concept of 

intervention in its „decoupled‟ form, i.e. conflicting with the mathematics of coupled 

equations. Such a definition may be logically consistent „on its own‟; it is however not 

synthetically applicable to real world systems – it does not describe such systems. As we have 

studied in detail in the preceding Section, a real intervention on a coupled system will 

influence all variables, so that „all other variables besides X and Y‟ cannot „be held fixed at 

some value‟. Therefore „direct cause‟ cannot be a legitimate concept for coupled systems. 

Since „contributing cause‟ is introduced as the complement of „direct cause‟ (any cause is 

either a direct or a contributing cause)
8
, the former is likely to be not a good concept either, in 

the considered context. And indeed, the definition of „contributing cause‟ in Woodward 2003, 

57
9
 explicitly uses the concept of „direct cause‟ (and therefore intervention), of which we just 

showed it is problematic. Therefore, for coupled systems „contributing causes‟ do not exist 

either (as defined).  

This argument suffices as proof, but in view of the importance of the conclusion, let us 

give a second, independent argument for the idea that the distinction between direct and 

contributing causes is inadequate for coupled systems
10

. Since this argument is based on the 

„dense grid conjecture‟ of former Section, it may be found less compelling by some than our 

first argument. The definition of contributing cause (Woodward 2003, 57) explicitly relies, 

besides on the concept of direct cause, on the notions of „causal path‟ and of „causal chain‟. A 

rough restatement of the definition could be as follows: either a cause is „direct‟, either 

„contributing‟ if it is part of a causal chain (see the last phrase of the definition). However 

intuitive this may be
11

, we have succinctly argued in Section 3 that the image of causal chain, 

                                                 
8
 See the last sentence in the definition (NC*) in Woodward 2003, 57. 

9
 Here is the first part of the definition of contributing cause (Woodward 2003, 57, our italics): “(NC*) If X is a 

contributing type-level cause of Y with respect to the variable set V, then there is a directed path from X to Y 

such that each link in this path is a direct causal relationship; that is, there are intermediate variables along this 

path, Z1…Zn, such that X is a direct cause of Z1, which is…” (This is the necessary condition reappearing in the 

full definition on p. 59.) 
10

 A third argument is the following: we believe that the original intuition of the author (see p. 50) to introduce 

the notion of „contributing cause‟ is questionable in the case of physical systems. On p. 50 an example of a 

system is discussed, for which the constants (a, b, and c) assume values such that a = -bc, implying that one of 

the variables (Y) becomes 0, so that X would not have a direct influence on Y. We cannot elaborate our 

arguments, but we believe one cannot infer causal relations by giving ad-hoc values to the constants (see also the 

discussion following quote 3). In contrast to variables, system constants have fixed numerical values. Even if for 

a very peculiar system (a real situation is not provided) they would be such that a = -bc, then the original 

equations still hold, and allow to infer the causes without accounting for the information a = -bc. (Also observe 

that in real systems a will never be exactly equal to –bc.) 
11

 The idea of causal chain is indeed intuitive – think of the paradigmatic example of colliding billiard balls. Here 

it seems one could easily introduce the notion of „direct‟ and „indirect‟ cause (some balls directly cause a given 
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as represented in the author’s graphs, is not appropriate for coupled systems. Indeed, we 

have argued that the adequate graphs, as derived from the system equations only, are 

maximally dense grids – maximally interconnected networks, connecting all vertices to all 

vertices. In this sense, before considering time, i.e. only considering the equations, there are 

no chains: all variables play geometrically a perfectly symmetric role. If that is true, our point 

follows immediately; the distinction between types of causes, as defined, vanishes. Since we 

have not elaborated the latter ideas in detail, we submit them here as a conjecture; but it seems 

an inescapable one – due to coupling. Let us also emphasize that a concept as „direct cause‟, 

as it is defined for probabilistic systems in works like Suppes 1970, Spirtes et al. 2000, and 

Pearl 2009, may very well be legitimate, as soon as the considered systems are decoupled. 

That implies that these systems should not be the systems studied in physics; they could 

however be the much more complex systems from economy, sociology, or everyday life. As 

is well known, such systems are almost never described by full sets of coupled equations; they 

may however be governed by probabilistic interdependencies.  

 If the notions of direct and contributing cause do not apply, as defined, to coupled 

systems, the only remaining cause type for such systems in the manipulability theory of James 

Woodward is that of „total cause‟. It is defined as follows: 

“(TC) X is a total cause of Y if and only if there is a possible intervention on X that will 

change Y or the probability distribution of Y.” (Woodward 2003, 51) 

It is essential to observe that the definition of total cause is the only one that accepts the 

(classical) meaning of „intervention on X‟, as an operation that sets the numerical value of X. 

As we have shown, the other definitions of cause types are based on a conception of 

intervention that is illegitimate for most physical systems, and at any rate for all coupled 

systems. We are thus lead to the conclusion that the above definition of „total cause‟ is the 

only remaining, valid definition of cause for physical systems. We believe it therefore 

captures the essence of the notion of causation in Woodward 2003 for such systems.  

 

5. Conclusion. 

     

 We started this paper with a study of Woodward‟s notions of modularity and 

intervention (in his 2003), playing an essential role in the manipulability theory of causation 

and explanation. We corroborated an earlier argument of Cartwright (2004, 810), and showed 

                                                                                                                                                         
ball to move, others indirectly). That could indeed be done, if one introduces time into the picture. But not, we 

believe, by means of the definition of „contributing cause‟ provided in Woodward 2003, essentially because it 

relies on the definition of „direct cause‟, and thus on a problematic use of the concept of intervention. 
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that these concepts are conflicting with a ubiquitous property of physical systems, namely the 

coupling between system equations, and thus between system variables. Next, we showed that 

modifying the manipulability account of causation in order to take coupling into account has 

drastic consequences: it substantially simplifies the theory, leaving one generally applicable 

notion of cause, namely that of „total cause‟. Throughout the text we emphasized that our 

conclusions hold for physical systems, more generally for systems characterized by coupled 

equations. 

In conclusion, we believe the manipulability account of causation, which has a broader 

scope than only physics, remains a rich and interesting theory of causation, applicable to a 

wide range of systems. It appears however that in the case of coupled systems, such as 

physical systems, the theory can be simplified.  
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