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1 – Introduction

In the present article we will examine an influential theory 
of causation, namely the ‘manipulability’ account advanced 
by James Woodward. We will focus our attention on Wood-
ward’s well-known textbook (Woodward 2003). Woodward 
has authored or co-authored other texts on the topic, such 
as Hausman and Woodward 2004 (this was a reaction to 
Cartwright 2002); but these articles were written (at least in 
part) to support the full-blown theory of Woodward 2003. As 
is well known, the manipulability account was developed to 
apply to a wide spectrum of systems, from sociology, econo-
my, physics etc. to everyday life. In the present article we will 
focus on systems studied in physics, and argue that the theory 
should be adapted in that case, in order to be fully compatible 
with the particular mathematics of typical physical systems. 
The singularity of the systems studied in physics is that they 
are describable by complete sets of equations involving all 
system variables - which is rarely possible in other contexts. 
More precisely, we will argue that the notions of ‘modularity’ 
and ‘intervention’, as they are defined in Woodward 2003, 
are incompatible with a feature of system equations termed 
‘coupling’. Coupling, a property of most if not all realistic 
physical systems, will be explained in Section 2. Its incompa-
tibility with modularity and intervention will be explained in 
Section 3. In particular, we will be led to conclude that typical 

system equations from physics are not modular, but coupled.

Allowing for coupling has an unexpected effect for the mani-
pulability theory of Woodward 2003: it allows us to simplify 
it greatly. Indeed, we will show (Section 4) that, for typical 
physical systems, of all the causal notions that are defined 
in Woodward 2003, only that of ‘total cause’ remains. ‘Total 
cause’ would therefore be, for such systems, nothing other 
than cause simpliciter. 

Nancy Cartwright has extensively criticized the manipulabili-
ty account of causation, and in particular modularity, using a 
series of arguments (see her 2006 and references therein). In 
one of the articles, namely in Cartwright 2004, she has identi-
fied the point we will investigate here in detail. She discusses 
a model of a carburetor, and comments (Cartwright 2004, 
810): “By design the different causal laws are harnessed toge-
ther and cannot be changed simply. So modularity fails.” As 
will be detailed in the following, this ‘harnessing of laws’ cor-
responds to what will be termed here (following a physics and 
mathematics tradition) ‘coupling of system equations’. Our 
aim is to study in detail all the consequences of this central 
concept, not only for modularity, but also for the definitions 
of cause proposed in Woodward 2003. Such a task is made 
possible thanks to the formal detail and logical coherence of 
the cited book by Woodward, which are just two of the merits 

In the following we will apply the manipulability theory of causation of 
Woodward (2003) to physical systems, and show that, in the context of 
physical systems, the theory can be simplified. Elaborating on an argu-
ment by Cartwright, we will argue that the notions of ‘modularity’ and 
‘intervention’ of the cited work should be adapted for typical physical 
systems, in order to take into account the coupling of system equations. 
We will show that this allows the reduction of all cause types discussed 
in Woodward (2003) to only one, namely that of ‘total cause’. We there-
fore claim that the manipulability account can be drastically simplified 
when applied to coupled physical systems
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of this text.

We said above that we will restrict our analysis to physical 
systems. But we would be more precise in stating that we will 
focus on systems described by coupled system equations. 
Physics doubtlessly provides the paradigmatic case, but there 
exists countless examples of coupled systems in other fields 
that can be mathematized (see Giordano and Weir 1988, Ch. 
7 for a wide variety of examples from other fields). Let us also 
emphasize that the fact that the theory of Woodward 2003 
should be adapted for coupled systems, does not necessarily 
imply that it must be modified for systems from econome-
trics, biology, everyday life etc.: in these cases system equa-
tions are most of the time decoupled.

2 – Physical Systems. Coupling 
of System Equations
In the following we will use the term ‘physical systems’ to de-
note systems of ‘things’ (entities and their interactions) that 
are studied in physics. Note that therefore not every ‘physical 
system’ in a broader sense will be in our focus.  We suspect 
that Woodward’s theory remains valid as it stands for such 
‘physical systems’ in a broader sense, e.g. for systems stu-
died in biology,  economics, etc.. Let us start by making a few 
introductory observations linked to the notions of ‘variables’, 
‘constants’ and ‘equations’. Many of these remarks will be 
known to a majority of readers, especially those with a hands-
on knowledge of physics, but they will allow us to define with 
clarity the concepts we need.

Physical systems are described in the practice of physics by 
sets of mathematical equations that quantify the relations 
that exist between the different parameters or variables of 
the system. In other words, for our present purposes ‘sys-
tems’ can roughly be equated with ‘sets of (system) equa-
tions’; obviously, such equations are typical for the physical 
subfield or domain in question (e.g. relativistic mechanics, 
thermodynamics, quantum mechanics, etc.).
 
We will focus our attention in the following on physical sys-
tems that are realistic and therefore somewhat complex, na-
mely systems that are described by several variables (not just 
one) that intervene in general in several equations (not just 
one) describing the system. This property, to be defined more 
precisely in the following, is called ‘coupling’ of the system 

equations. Let us note from the start that a majority, if not 
all, of the systems studied in physics are ‘coupled’. Indeed, as 
a rule of thumb, if a system is characterized by N (dependent) 
variables, it must be described by N equations in order that 
the system has a unique solution to have a unique solution. 
These equations are coupled, else mathematical solution of 
the system would be much easier than it is: every equation 
could then be handled ‘on its own’ to be solved for one va-
riable (see e.g. Boyce and DiPrima 1997, Ch. 7). That is hardly 
ever the case in physics.1

To illustrate the notion of coupling, let us briefly examine a 
pertinent example, namely Maxwell’s equations of classical 
electromagnetism – pertinent, since describing a potentially 
infinite class of systems, belonging to such diverse subfields 
as electrostatics, magnetostatics, and electrodynamics. 
Maxwell’s equations (Jackson 1999, Ch. 1) are a set of four 
‘coupled partial differential equations’, expressing a relation-
ship between the electric field (E), the electric displacement 
field (D), the magnetic field (B), the magnetic field intensity 
(H), and their so-called sources, namely the electric charge 
(ρ) and current density (J): 
	
∇ x H = (4π/c) J + (1/c) ∂D/∂t		
∇ x E = - (1/c) ∂B/∂t				  
∇ . B  = 0					  
∇. D = 4π ρ	
			 
(The operator ‘∇’ effectuates derivation in the space coordi-
nates, but that is a detail of no importance in the following.) 
In the above equations, ‘c’ is the speed of light. We explicitly 
display the equations, because they allow us to illustrate an 
essential point for the rest of the article. One notices that the 
set contains variables (D and B) that belong to different equa-
tions; more precisely, all equations contain variables that 
also belong to at least one other equation – i.e., the equations 
are coupled (this is the more precise definition). The coupling 
makes mathematical solution difficult: none of the equations 
can be mathematically manipulated ‘on its own’ to derive a 
solution for a variable; they have to be treated in parallel.2 

Another example refers to figure 1, which represents an elec-
tric circuit, involving currents I, I

1
, I

2
, I

3
, an electric potential 

source V, and three constant resistors Ri (constants of the 
system). This system is fully described by following four rela-
tions: I

1
 = V/R

1
, I

2
 = V/R

2
, I

3
 = V/R

3
 and I = I

1
 + I

2
 + I

3
. Here, 

too, the representative equations are coupled: the system 
variables appear in general in more than one equation (this is 

The Manipulability Ac-
count of Causation Applied 
to Typical Physical Systems

1 - The only exception to the ubiquitous coupling of equations we are aware of are (artificial) systems of non-interacting subsystems each described by only 

one dependent variable (say x), for instance a collection of N linear springs (evolving according to Hooke’s law). One could describe this system by N equations 

{m
i
.d2x

i 
/dt2 = -k

i
x

i 
, i = 1,…,N}. (The k

i
 and m

i
 are constants of the system, not variables, and the time t is the independent variable.) This set of equations is 

decoupled: each dependent variable x
1
, x

2
, … x

N
 only intervenes in one equation. However, such a ‘system’ is highly untypical and in practice not studied in physics: 

all the relevant information is already contained in the first equation involving x
1
. Solving the other equations is trivially redundant: they are the same.

2 - Let us note that the coupling is even more intricate than the Maxwell equations suggest, since in order to solve the set one needs additional equations, the so-

called ‘constitutive relations’, depending on the properties of the environment, the media and materials involved in the particular system studied. One example of 

such an equation is D = ε.E, with ε the electric permittivity, a constant of the system. These auxiliary relations introduce additional coupling between the equations. 

But that only reinforces our argument.
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the case for V, I
1
, I

2
, and I

3
, but not for I); more precisely, all 

equations contain at least one variable that also appears in at 
least one other equation.

Let us repeat that only the simplest systems, those that in-
volve just one dependent variable and that therefore can be 
described by one equation, evidently do not exhibit coupling. 
But such systems are a small minority of all physical sys-
tems studied; and indeed they are not treated by Woodward 
2003 (the equations of the text always exhibit more than one 
dependent variable). As already stated, the modification of 
Woodward’s theory we undertake in the following concerns 
only coupled systems - but all of them, whether from physics 
or other fields. Indeed, many real world systems that can be 
mathematized via equations are coupled. Physical systems 
are the most telling case, but see Giordano and Weir 1988, 
Ch. 7 for a series of systems from economy, biology, popula-
tion dynamics, etc., all described by coupled equations. 

For the purpose of the article it is important to remember 
that the role of the ‘variables’ and ‘constants’ in the system 
equations is clearly distinct – as will be obvious to many 
readers. For any given physical system, the constants are 
fixed, i.e. they keep the same numerical value independently 
of the values of the variables. In above examples, ‘c’ and the 
‘Ri’ are such system constants: their value is assumed to be 
given. ‘Variables’ of course play a very different role: within 
one system with fixed constants, the variables may assume 
different values; the system equations numerically describe 
how a variation in one variable is linked (‘coupled’, one could 
say) to the variations of the other variables. For our purposes 
we cannot allow any doubt or imprecision to remain; there-
fore it is useful to return for a moment to the examples we 
gave above. If in electrodynamical systems, described by 
the Maxwell equations wecited, the source (or independent) 
variables J and ρ change (for instance due to human inter-
vention, or due to changes in the natural environment), then 
the other (dependent) variables will also change (always for 
fixed constants). Similarly, if in Figure 1 the potential source 
doubles its output voltage V, then all currents will double 
their value (while the R

i
 remain constant), as immediately 

follows from the mathematics of the equations. 

Let us now study in some detail the relevant parts of James 
Woodward’s theory of manipulability. 

3 – Coupling versus Modularity

Woodward 2003 heavily relies on the notions of ‘modularity’ 
and ‘intervention’ in constructing his theory of causation and 
explanation.3 Our aim is to show that, in the case of physical 
systems, the definition of ‘intervention’ should be modified, 
and that ‘modularity’ does not hold for coupled systems. In 
Woodward 2003 modularity is defined as follows (quote 1): 

More generally, a system of equations will be modular if it is pos-

sible to disrupt or replace (the relationships represented by) any 

one of the equations in the system by means of an intervention 

on (the magnitude corresponding to) the dependent variable in 

that equation, without disrupting any of the other equations.  

(Woodward 2003, 48) 

A similar definition is offered in Woodward 2003, 329. Ob-
serve that, a priori, the expression ‘to disrupt an equation’, 
intervening twice in above definition, could have different 
meanings. It could be interpreted as I1) ‘to change the form 
of an equation’, or as I2) ‘to determine the numerical values 
of the variables of an equation’ - or there may be other mea-
nings. Under interpretation I1) modularity seems not to be a 
property of equations describing physical systems, because 
interventions, in the sense defined by Woodward below (and 
in the sense in which the word is used in physics, for that 
matter) do not change the form of an equation; rather, they 
set a variable in the equations to a given value (more on this 
below). More surprisingly, also under interpretation I2) of 
the term ‘disrupt’, modularity appears not to be a property 
of sets of equations, as soon as they are coupled, as will be 
explicitly shown below. But maybe we overlook valuable in-
terpretations; let us therefore see how the concept is used. To 
that end we need the definition of ‘intervention’4 appearing in 
quote 1, involving the variables X and Y (quote 2):

More generally and slightly more precisely, we may think of an 

intervention on X with respect to Y as an exogenous causal pro-

cess that changes X in such a way and under conditions such that 

if any change occurs in Y, it occurs in virtue of Y’s relationship to 

X and not in any other way. (Woodward 2003, 47)

The many examples offered in the text allow us to draw a 
clear picture of the precise meanings of above concepts. 
Let us study the most revealing one in detail. In Woodward 
(2003, 330) the following system of equations is discussed 
(we keep the original equation indices):

(7.4.3)  Y = aX + U

3 - These notions have been discussed (and defined differently) by other philosophers, e.g. Spirtes et al. 2000 (see Woodward 2003, 46-48 for a complete list of 
references). 
4 - The more detailed definition on p. 98 leads to exactly the same analysis as is presented here.

Figure 1
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(7.4.4)  Z = bX + cY + V. 

The equations – which are manifestly coupled - are rewritten 
as follows by algebraic rearrangement:

(7.4.3)  Y = aX + U
(7.4.5)  Z = dX + W, where d = b+ac and W = cU + V.

The author states (quote 3): 

Despite their observational equivalence, if (7.4.3) – (7.4.4) is 

modular, then (7.4.3) – (7.4.5) cannot be (and vice versa). To see 

this, consider an intervention on the variable Y in (7.4.3) that 

replaces (7.4.3) with the new equation (7.4.3*) Y = y. In effect, 

what this intervention does is to set the coefficient a in (7.4.3) 

equal to 0. (Woodward 2003, 330)

(The argument is that, if a = 0, d becomes equal to b, and 
thus (7.4.5) ‘changes’ (or is ‘disrupted’), so that (7.4.3) – 
(7.4.5) is not ‘modular’, according to the definition of quote 1 
we displayed above. It would seem here that the author uses 
interpretation I1) above.) Our point is that the phrases in 
quote 3 do not correspond to a legitimate interpretation of 
the mathematical apparatus used to model coupled physical 
systems. First, as highlighted in Section 2, a coefficient such 
as ‘a’ is, in such contexts, a constant of the system: its value 
cannot change, and in particular cannot become 0. What is 
possible, is that by intervention one does indeed set Y to a 
certain value, y. But then y = aX + U according to (7.4.3), 
implying a = (y-U)/X (instead of a = 0). The point to observe 
is that this intervention on Y will influence X and Z, whiche-
ver set of equivalent equations one starts from, due to the fact 
that the equations are coupled. Indeed, if the equations were 
not coupled (if they had no common variables), they could 
be mathematically handled in a fully separate manner, as if, 
so to speak, the other equation did not exist. This ‘parallel’ 
influence of Y on X and Z may be obvious if one considers 
(7.4.3) – (7.4.4) since Y intervenes in both equations; but it 
also follows from (7.4.3) – (7.4.5). If this is not obvious alrea-
dy, one could easily prove it explicitly (in a trivial manner). 
Whatever value Y takes, whether these values are set by inter-
vention or not, according to (7.4.3) X can be rewritten as (Y 
– U) / a, so that (7.4.4) becomes, by substitution of X: Z = (c + 
b/a) Y + V – b U/a (7.4.4#). By inspection of equations (7.4.3) 
and the simultaneously valid (7.4.4#), one immediately sees 
that by intervening on Y (by causing it to assume the value 
y), one necessarily changes or influences the value of X and 
of Z. Again, the reason lies in the coupling of the equations. 
This result holds independently of the representation one 
chooses for the system. Indeed, equations (7.4.3) – (7.4.5) 
lead (of course) to the same equation (7.4.4#) (one could 
say, based on (7.4.3) – (7.4.5), that Y influences Z through 
its link with X; X ‘couples’ Y and Z). This is a mathematically 
necessary property of sets of equations that only differ by 

algebraic rearrangements, such as sets (7.4.3) – (7.4.4) and 
(7.4.3) – (7.4.5). There is no mathematical or physical infor-
mation that can differ in both representations. We arrive here 
at a conclusion that differs from Woodward’s, since he claims 
(quote 4): 

By contrast, according to (7.4.3) – (7.4.5), Y does not cause Z 

and hence there are no interventions on Y that will change Z. 

(Recall that an intervention on Y should be uncorrelated with 

other causes of Y such as X.) (Woodward 2003, 331) 

The phrase between brackets points out what is the central 
issue. The author stipulates that under ‘interventions’ one 
variable (Y) can be set in such a manner that another variable 
(Z) is determined in a fully unrelated, ‘decoupled’ manner. 
That may be an appropriate characterization for systems 
from economy, sociology etc., but such interventions do not 
exist in systems as soon as coupling between the equations 
occurs. We have explicitly proven this fact via our derivation 
of equation (7.4.4#) from (7.4.3) – (7.4.5): Y does cause Z, 
and this fact holds irrespectively of the equation set one starts 
from. For the system discussed, all variables are linked to 
each other via coupled system equations (coupling between 
equations induces coupling between variables). Clearly, this 
property can be generalized to all coupled systems (for those 
who prefer an explicit argument, see footnote 7). 

Thus it appears that in coupled systems ‘modularity’ does not 
apply, and that the unwarranted use of the concept can be 
traced back to an ‘unphysical’ use of ‘intervention’ – more 
precisely a usage that does not apply to coupled systems, and 
in particular not the example just discussed. Note that this 
particular interpretation of the mathematical representa-
tion of intervention is not yet obvious in the definition of the 
concept as reproduced in quote 2. There is however a shift 
in the meaning of ‘intervention’ throughout the text, as was 
already noticed by Cartwright (2002, 414-15).5 Careful ins-
pection of the text shows that the same use of ‘intervention’, 
violating coupling, appears in other passages,6 and, most 
importantly, in the definitions of cause, as we will show in 
the next Section. Therefore, and for reasons that will become 
clear in the following, we will arrive at the conclusion it is 
this element of the manipulability account of causation that 
should be modified to make it generally applicable to physical 
systems.

An important corollary of above findings is the following. 
Our analysis points to the idea that systems represented by 
coupled equations should not be conceived of as being made 
up of variables that are directly linked to only a subset of the 
other variables, but to all of the other variables. Indeed, from 
the definition of coupling, it follows that no variable can be 
solved for by using just one equation: one needs all equa-
tions. But that means that a change (e.g. under an interven-

5 -  In the detailed definition of intervention (Woodward 2003, 98), the incompatibility with coupling is manifestly built-in.

6 -  See e.g. Woodward 2003 p. 52, p. 100.
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tion) in one variable ‘propagates’ itself to all other variables.7 
In other words, all variables are linked to all other variables. 
Now, this has essential implications for the ‘graph’ represen-
tation that is extensively used in Woodward 2003 to depict 
and characterize causal networks – i.e. networks represen-
ting ‘which variable influences which other variable’. Indeed, 
it would seem that, for physical (in general coupled) systems, 
the correct representation is one in which each vertex is 
connected to each other vertex. Note that the graph repre-
sentation of Woodward 2003 is only based on the equations 
connecting the variables X, Y, Z,…, not on any time-relation 
between those variables: see how the notion of graph is intro-
duced on p. 38ff., and examples such as Woodward 2003 p. 
49, p. 51, p. 328 and others. But as we have argued, due to the 
coupling of the equations there is no privileged connection or 
direction in the graph (when one takes the equations alone 
into account): all variables are symmetrically (and therefore 
maximally) connected. (As briefly argued below, we believe a 
causal directionality can be recovered by taking the time pa-
rameter into account, but time directionality is certainly not 
implicit in physical system equations, which are well known 
to be invariant under time reversal. In real systems, the direc-
tion of time is imposed by the boundary conditions (of the 
time coordinate), depending on the real-world contingency 
of the system under study. For instance, in the current circuit 
of Fig. 1, in one experiment the potential V might first be tur-
ned on – by a button - and therefore subsequently induce the 
currents; in another experiment the time sequence might be 
reversed, when the currents are first generated, for instance 
by a moving magnet, generating a potential V (the equations 
linking the potential and the currents remain of course iden-
tical). Therefore a graph can only be given a directionality by 
placing, ‘a posteriori’ so to say, time arrows on it, indicating 
which parameter (node) of each branch takes on its value 
first. In sum, in the case of a typical physical system the direc-
tionality does not automatically follow from the equations – 
an idea that seems not always well represented in Woodward 
2003, if the theory wants to include coupled systems. ). We 
will not elaborate here on this idea, but this conclusion of a 
maximally interconnected network of system variables seems 
inescapable in the case of coupled equations. Since we have 
not presented a detailed proof of this thesis (it is not essential 
for our argument), let us introduce it as a conjecture, which 
we will call in the following the ‘dense grid conjecture’.

Notice that the graphs of Woodward 2003 are defined in a 
different manner than in e.g., Spirtes, Glymour, and Scheines 
2000, or in Pearl 2009. In these works, graphs are attached 
to probabilistic systems and are not directly derived from 
deterministic and coupled system equations. Such graphs 
can be ‘directed’, again if one knows causes and effects, i.e. 
what comes first. (But we conjecture that even such graphs 

for probabilistic systems will be maximally dense as soon 
as they represent coupled system equations, for the reasons 
indicated above.)   

In conclusion, following Cartwright 2002, 2006, we believe 
modularity as defined in Woodward 2003 is not a property of 
(most) physical systems, in any case not of coupled systems. 
We have argued in detail that the concept of ‘intervention’ 
as employed in the definition of modularity is incompatible 
with the coupling that exists between the equations of the 
systems studied in physics. This conclusion may be seen as 
an elaboration of a claim of Cartwright (2004, 810, where the 
‘harnessing of laws’ is discussed). We believe it is therefore 
safe to stick to the meaning of ‘intervention’ as understood in 
many passages in Woodward 2003, and in physics, as based 
on the idea that an intervention sets the value of a variable 
to a given value. One cannot ask more of an intervention, if 
one does not want to violate the property of coupling. (So 
in other words, even if a broader definition of ‘intervention’ 
may seem logically possible at first sight, it is not mathema-
tically sound when applied to physical system equations.) 
Also, with this interpretation of intervention, the only case 
in which equations can be called ‘modular’ is that of ‘decou-
pled’ equations in the usual mathematical sense. Only if two 
equations are decoupled, if they share no common variables, 
can an intervention set the value of a variable in one equation 
without changing the value of a different variable appearing 
in the other equation. This may be the case in, for instance, 
econometrics.

4 – Implications for the Mani-
pulationist Concept of Cause

In the present Section we will investigate in detail the 
consequences of abandoning modularity for the theory of 
causation that is proposed in Woodward 2003. As is well 
known, the theory strongly links modularity to the different 
notions of ‘cause’ it defines. One reads:

(…) I will assume that when causal relationships are correctly 

and fully represented by systems of equations, each equation will 

correspond to a distinct causal mechanism and that the equation 

system will be modular. As we will see, the notion of direct cau-

sation and the related notion of causal route is closely bound up 

with these ideas. (Woodward 2003, 49)

Closer inspection of the text reveals that, according to the 
author, a set of equations that allows us to identify ‘direct’ 
causes is a ‘modular’ set, representing ‘distinct causal mecha-

7 -  Suppose one changes variable x
1
 in equation e

1 
; in a coupled system e1 will also contain, by definition, at least one other variable, say x

2
 (if not, x

1
 will intervene in a second 

equation containing a second variable x
2
); therefore a change in x

1
 will change x

2
. If there are three variables, x

3
 necessarily intervenes in an equation that contains, due to cou-

pling, at least one other variable, i.e. x
1
 or x

2
; so a change in x1 causes a change in x

2
 and x

3 
; and so on if there are more variables. This can easily be seen in the system equations 

we exhibited as examples in the previous Section. 



68

N° 1   2014

Vol. 1

The Manipulability Ac-
count of Causation Applied 
to Typical Physical Systems

nisms’. But we have just argued that ‘modularity’ is not an 
appropriate description of most or all physical systems. As we 
will explain in the following, it is then intuitively compelling 
that abandoning the concept of modularity leads to aban-
doning the distinction between the different types of causes 
that are introduced in Woodward 2003, namely ‘direct’, 
‘contributing’, and ‘total’ causes. If that were to be the case, 
our investigation would lead, for physical and coupled sys-
tems in general, to a substantial simplification of the theory. 
Indeed, especially in Chapter 2 of the book, each of above 
cause types is given a separate definition, which is striking in 
its logical detail (see especially Woodward 2003, 51 – 61). In 
view of the importance of above conclusion, let us proceed ca-
refully to prove it, by two different (and independent) routes.

The concept of ‘direct cause’ (DC) is defined as follows (our 
italics):

(DC) A necessary and sufficient condition for X to be a direct 

cause of Y with respect to some variable set V is that there be a 

possible intervention on X that will change Y (or the probability 

distribution of Y) when all other variables in V besides X and Y 

are held fixed at some value by interventions. (Woodward 2003, 

55)

The italicized part shows that the definition of direct cause 
directly relies on the concept of intervention in its ‘decou-
pled’ form, i.e. conflicting with the mathematics of coupled 
equations. Such a definition may be logically consistent ‘on 
its own’; it is however not synthetically applicable to real cou-
pled systems – it does not describe such systems. As we have 
studied in detail in the preceding Section, a real intervention 
on a coupled system will influence all variables, so that ‘all 
other variables besides X and Y’ cannot ‘be held fixed at some 
value’. Therefore ‘direct cause’ cannot be a legitimate concept 
for coupled systems. Since ‘contributing cause’ is introduced 
as the complement of ‘direct cause’ (any cause is either a di-
rect or a contributing cause),8 the former is likely to be not a 
good concept either, in the context considered. Indeed, the 
definition of ‘contributing cause’ in (Woodward 2003, 57)9 
explicitly uses the concept of ‘direct cause’ (and therefore 
intervention), which we have shown to be problematic. The-
refore, for coupled systems ‘contributing causes’ do not exist 
either - as defined. 

This argument suffices as a proof, but in view of the impor-

tance of the conclusion, it is instructive to give a second, inde-
pendent argument for the idea that the proposed distinction 
between direct and contributing causes is inadequate for cou-
pled systems.10 Since this argument is based on the ‘dense 
grid conjecture’ of the previous Section, it may be found less 
compelling by some than our first argument. But let us em-
phasize that this second proof is fully redundant, in view of 
the first one. As well as on the concept of direct cause, the 
definition, then, of contributing cause (Woodward 2003, 57) 
explicitly relies on the notions of ‘causal path’ and of ‘causal 
chain’ (see e.g. the definition in our footnote 9). Causal paths 
and chains are parts of graphs. It is essential for our second 
proof to recall that Woodward 2003 considers graphs as ful-
ly derivable from the system equations alone, not from any 
other information related to boundary conditions in the time 
domain (remember how graphs are introduced on p. 38ff. 
and used in examples such as Woodward 2003 p. 49, p. 51, p. 
328 etc.). The strategy of Woodward 2003 is to derive graphs 
from systems equations, and causes from graphs (or equa-
tions), without using any other information. Now, a rough 
restatement of the definitions of cause could be as follows: 
either a cause is ‘direct’ either ‘contributing’ if it is part of a 
causal chain in a graph (see the last phrase of the definition). 
However intuitive this may be, we have argued in Section 3 
that the image of a causal chain is not appropriate for coupled 
systems (at least not if these chains are to be derived from the 
equations alone, as is Woodward’s premise). Indeed, we have 
argued that the adequate graphs as derived from the system 
equations alone are maximally dense grids – maximally in-
terconnected networks, connecting all vertices to all vertices. 
In this sense, before considering time, there are no chains: 
geometrically all variables play a perfectly symmetric role. 
If that is true, our point follows immediately; the distinction 
between types of causes, as defined, vanishes trivially. Since 
we have not elaborated these ideas in detail, we submit our 
second proof as a conjecture; but it corroborates our first 
proof, which seems compelling.

Let us stress that the truly problematic notions for coupled 
systems are ‘modularity’ and ‘intervention’, not graph. With 
sufficient care, there seems little doubt that the notion of 
‘directed graph’ can be consistently defined also for coupled 
systems (as is clear by now, we believe this should be done by 
simply superimposing time arrows on the dense grid; these 
time arrows follow from the contingent boundary conditions 
in the time domain, see the examples given above). Therefore 

8 - See the last sentence in the definition (NC*) in Woodward 2003, 57. 

9 - Here is the first part of the definition of contributing cause (Woodward 2003, 57, our italics): “(NC*) If X is a contributing type-level cause of Y with respect to the variable set 

V, then there is a directed path from X to Y such that each link in this path is a direct causal relationship; that is, there are intermediate variables along this path, Z1…Zn, such that 

X is a direct cause of Z1, which is…” (This is the necessary condition reappearing in the full definition on p. 59.) 

10 - A third argument is the following: we believe that the original intuition of the author (see p. 50) to introduce the notion of ‘contributing cause’ is questionable in the case 

of physical systems. On p. 50 an example of a system is discussed, for which the constants (a, b, and c) assume values such that a = -bc, implying that one of the variables (Y) 

becomes 0, so that X would not have a direct influence on Y. We cannot elaborate our arguments, but we believe one cannot infer causal relations by giving ad hoc values to the 

constants (see also the discussion following quote 3). In contrast to variables, system constants have fixed numerical values. Even if for a very peculiar system (a real situation is 

not provided) they were such that a = -bc, then the original equations still hold, and allow us to infer the causes without accounting for the information a = -bc. (Also, observe that 

in real systems a will never be exactly equal to –bc.)
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one could presumably recover good definitions of e.g. direct 
cause, but without using the notion of intervention.11 

 Also, a concept as ‘direct cause’ as defined in works as Suppes 
1970, Spirtes et al. 2000, and Pearl 2009, may very well be 
legitimate: the systems considered in these works are proba-
bilistic and decoupled. Let us note, in passing, that it is highly 
relevant that Woodward explicitly states (Woodward 2003, 
39) that the works of Pearl especially were his direct source 
of inspiration, and that these works use models inspired by 
econometrics (p. 39). We hope it is obvious by now that the 
mathematics of equations from econometrics (as from biolo-
gy, sociology etc.) differ in at least one essential respect from 
typical physics equations. 

If the notions of direct and contributing cause do not apply, 
as defined, to coupled systems, the only remaining cause type 
for such systems in the manipulability theory of Woodward 
2003 is that of ‘total cause’. It is defined as follows:

(TC) X is a total cause of Y if and only if there is a possible inter-

vention on X that will change Y or the probability distribution of 

Y. (Woodward 2003, 51)

Without surprise, the definition of total cause is the only one 
that accepts the ordinary meaning of ‘intervention on X’, 
as an operation that sets the numerical value of X. As we 
have shown, the other definitions of cause types are based 
on a conception of intervention that is illegitimate for cou-
pled systems. We are thus led to the conclusion that the above 
definition of ‘total cause’ is the only remaining valid defini-
tion of cause in Woodward 2003 for most physical systems. 
We believe it therefore captures the essence of the notion of 
causation in Woodward 2003 for such systems. As we will 
show elsewhere, such a simplified notion of cause is indeed in 
perfect agreement with the use the physics community makes 
of the concept of cause.

5 – Conclusion

We began this paper with a study of Woodward’s notions of 
modularity and intervention (in his 2003), which play an 
essential role in the manipulability theory of causation and 
explanation. We corroborated an earlier argument of Car-
twright (2004, 810), and showed that these concepts are in 
conflict with a ubiquitous property of physical systems, na-
mely the coupling between system equations (and therefore 
between system variables). Next, we showed that modifying 
the manipulability account of causation in order to take cou-
pling into account has drastic consequences: it substantially 

simplifies the theory, leaving - for coupled systems - one 
generally applicable notion of cause, namely that of ‘total 
cause’. For such coupled systems direct and indirect causes 
should be defined in a different manner than in Woodward 
2003, presumably by referring to time sequences. 

Throughout the text we emphasized that our conclusions 
hold for typical systems studied in physics, more precisely for 
systems characterized by coupled equations. But let us bear 
in mind that Woodward’s rich and interesting theory may 
remain valid as it stands for other systems, such as ‘physical 
systems’ in a broader sense, systems  studied in biology, eco-
nomics, and other fields.
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11  - The idea of causal chain is indeed intuitive – think of the paradigmatic example of colliding billiard balls. Here it seems one could easily introduce the notion of ‘direct’ and 

‘indirect’ cause (some balls directly cause a given ball to move, others indirectly). As stated, we believe this could be done if one introduces time into the picture, but not by means 

of the definition of ‘contributing cause’ provided in Woodward 2003, essentially because it relies on the definition of ‘direct cause’, and thus on a problematic use of the concept of 

intervention. 
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