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It is shown that the distance between a moving object and an 
observer obeys longitudinal scaling transformations, which 
amounts to a contraction when the object and the observer 
approach each other and to an elongation when recede from 
each other. The contraction-elongation relation is extended to 
the scaling transformations that determine, for a general type 
of motion, the relation between the distances of an object and 
its location from an observer. It is shown that the scaling 
transformations can be interpreted as transformations between 
quantities pertaining to a moving body and its initial location 
in one inertial frame, or else, between the coordinates of the 
body in two inertial frames. Using the scaling transformations, 
phenomena such as Michelson and Morley experiment, 
lifetime of metastable particles, Doppler’s effect, the drag 
effect, and the Sagnac’s effect, all yield to simple and lucid 
explanations. Contrary to the relativistic prediction, the scaling 
relation implies a complete absence of traverse Doppler effect. 
The Lorentz transformations (LT) are derived, using the 
longitudinal scaling relation; the method of derivation restricts 
the domain of its validity to space-like and null intervals. 
Moreover, a generalized form of Lorentz transformations 
(GLT) will be given and briefly discussed. One consequence 
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of the GLT is that the familiar LT is only one in a class of 
such, and that LT is valid only for motion on an axis. 

Keywords: (scaling transformations, relatively absolute units,  
3-physical space, Sagnac’s effect, generalized Doppler's 
effect, generalized Lorentz transformations) 

1. Introduction 
In the special relativity theory (SRT) it is postulated that the velocity 
of light is a constant c that is independent of the relative motion 
between the source and the observe, or as to say, light’s speed is the 
same in all inertial frames1-4. We start with a weaker postulate: the 
velocity of light within each inertial frame is a constant c. By this we 
mean that if light is emitted at an instant 0t  from the point 0r  and 
received at an instant 1t  at the point ,1r  where 0r and 1r  are stationary 
in an inertial frame s, then .)( 0101 cttrr =−−  The starting point 
we have adopted can hardly be counted a postulate, for it is a 
consequence of the equivalence of inertial frames regarding length 
and time measurements within each inertial frame. We shall use 
tentatively the Galilean law of velocity addition to combine the 
velocity of a light’s signal with the velocity of the emitter. It is clear 
however that a constant velocity of light within each inertial frame 
cannot be reconciled with the Galilean law of velocity addition unless 
length and time measurements in different inertial frames are 
subjected to revision in meaning and magnitude. In this article:  

-We shall derive new transformations of distance and time 
intervals and show that these preserve the speed of light within each 
inertial frame and yield the same relativistic law of velocity addition.  

-Using the resultant transformations the perplexities that arise in 
propagation of light are resolved. Indeed, the Doppler’s effect, drag’s 
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effect, the negative results of Michelson and Morley experiment, the 
Sagnac’s effect5 , as well as the lifetime of meta-stable particles1-4 are 
all explicable in a simple manner. Stellar aberration phenomenon1,6, 
which is also neatly explicable by the current theory, will be the 
subject of a forthcoming article7.  

-Starting from the transformations of time and distance intervals, 
the LT transformations are derived in a transparent manner, with 
space-like intervals are excluded from the domain of its validity. 

-A general form of LT is given and shown to tend to the 
corresponding LT for one dimensional motion; it dictates however 
that LT is applicable only within this subspace. 

2. The Longitudinal Scaling Relation 
Suppose that bxyzs = is an inertial frame in standard configuration 
with the inertial frame BXYZS = , and moving relative to S with a 
constant velocity iuu = , where i is the unit vector of the X-axis of S 
and )0( >u . When at the point )0,0,0(B in S, the body b emits a 
pulse of light in the +X-direction. The pulse of light reaches an S 
observer with coordinate X )0( >X (which we call the observer rX), 
and at the same time it reaches also the observer rx in s that is 
contiguous to rX at the moment of light’s reception by both observers. 
The observers rX and rx that are contiguous when light reaches them 
are called conjugate observers. We take the instant at which light 
reaches rx and rX the mutual zero of timing in both frames, 
i.e. 0== tT , when rX and rx are contiguous. We may conceive light 
as if emanated from the source b when was at the point B in S, or 
from the point B when was occupied by the source b, and 
subsequently received by the conjugate observers rX and rx at 

0== tT . Thus we may conceive light emanating from one and the 
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same point in a 3-physical space, defined by the body b and the point 
that occupies in S, which is B, when light is emitted, and ending up at 
the same point defined by rX and rx at the moment of their contiguity. 
It follows that there is one and the same ray of light, whose path is to 
be described in two inertial frames s and S, or else, by using quantities 
pertaining to the body b and its location B in S.  

When light is considered emanating from the point SB∈ , the 
light’s trip )( xandXB → may be viewed to take place within S, 
and hence its length X relates to its duration T by cTX = . Similarly, 
when light is considered to emerge from the source b, the trip 

)( Xandxb →  may be viewed to take place within s, and hence 
ctx = , where x and t are the length and duration of the trip 

respectively. Note that in each frame, B and b are coincident at the 
instant of light’s emission whereas X and x are not, and that at the 
instant of light’s reception, X and x are coincident whereas B and b 
are not. The equations  
 ctxiicTXi == )(,)( , (2.1) 
yield  

 )(u
t
T

x
X

Γ== , (2.2) 

where )(uΓ denotes the common value of both ratios. Since each 
frame can count itself stationary while the other is moving, the 
proportionality factor should be such that  

 ( ) ( )uu −Γ=Γ−1  and ( ) 10 =Γ . (2.3) 

To determine the factor )(uΓ  we use tentatively the Galilean law 
of velocity addition. To the S observers the light’s trip 

)( Xandxb → ,  that yields equation (2.1ii) when viewed within s, 
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is identical to the trip )( xandXBatb → . Since b however is 
moving with velocity u relative to S, the S observers relate the period t 
of the trip to its length X by the equation  
 tucX )( += . (2.4) 
Similarly, and since B is moving relative to s with velocity –u, the s 
observers relate the period T of the trip )( XandxbatB →  to its 
length x by the equation 
 Tucx )( −= . (2.5) 
Dividing the last two equations side to side and using (2.1) we obtain, 
on setting cu /=β , the relation  

 
Γ−

+
=Γ

1
1
1

β
β

,  

which determines the scaling factor:  

 
β
β

−
+

=Γ
1
1)(u . (2.6) 

The transformations (2.2), which was derived in previous works8-10 
through different methods, will be referred to as the contraction-
elongation relation, or the longitudinal scaling relation. The reason 
underlying this terminology will appear soon.  

3. Remarks on the Contraction-Elongation 
Relation. 
(i) It is important to note that the same transformations (2.2) holds if B 
is the true source of light while b is merely a virtual source. It is also 
clear that if s in which b is stationary is moving with velocity )( u−  
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relative to S, then u is to replaced by )( u−  in (2.2). A similar 
replacement has be made if the coordinate x is negative (but u is still 
positive).  

(ii) The transformations (2.2) guarantee that txTX // = , which 
in turn gives rise to the first postulate of SR in a specific sense: if light 
propagates in one frame with velocity c, it propagates also with the 
same velocity c in the other frame. This does not mean however that 
the velocity of light is independent of the source's velocity7.  

(iii) At the beginning of the light’s trip the true and virtual sources 
b and B are contiguous to each other while the observers rx and rX are 
not, and the converse is true at the end of the trip. In a given frame, 
say S, the distance x between a body b and an observer rX is by 
definition their distance at the final instant 0=T , while the distance 
X of its location from rX is the distance between them at the instant 
light was emitted )/( cXT −= ; or as to say, it is the distance 
between an S observer at B and the observer rX. The relations (2.2) 
relate the distance separating the body b and the observer rX to the 
distance between its location and rX. It follows that one frame, say s, 
can be dismantled, while there exists in the other (here is S) two types 
of distance intervals:(i) the geometric (or stationary or static) distance 
which is the distance of the body from the observer at )/( cX− , and 
the “proper” (or mobile or kinematical) distance xX p =  which is the 
distance of the body from the observer at 0=T .  

(iv) Given two objects A and B moving on the same line, an 
inertial frame S can be chosen such that either object, say A, is 
stationary in S and taken as an observer, whereas the other, B, is a 
source. By remark (iii) and the transformations (2.2), the distance D 
between the location of the object B and the observer A relates to the 
distance d between the object B and the observer A by duD )(Γ=  if 
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A and B approach each other with a relative velocity u, and by 

duduD )()(1 −Γ=Γ= −  if A and B recede from each other with 
velocity u.  

(v) Because of the concept of location in S is a primary one, it is 
quite natural for the S observers to consider light emanating from 

SB∈ . But why do we require that the s observers should adopt B as 
a virtual source of light? Our requirement is justified by the fact that, 
if B was a true source whereas b was not, then b would be the location 
of the body B in s when light is emitted, and the s observers would 
certainly consider light emanating from b as well as from B and 
demand that the S observers should imagine b as a virtual source of 
light. This leads the S and the s observers, when both observe light’s 
emission from a source, to treat virtual and real sources evenly.  

4. Interpretations of the Scaling Transformations 

The Active View 
In a given frame S, a unit of length (or distance) is presupposed and 
can be chosen arbitrarily in any convenient way, such as, the distance 
between any given two material points in S, or the length of a rod 
joining such, or the wave length of a specific spectral line 
characterizing stationary emission of some chemical element. After 
choosing a unit of length, the geometric distance in S between any 
two material points A and B, that are stationary in S, can be quantified. 
Moreover, the axes of a rectangular Cartesian system OXYZ in S can 
be calibrated by multiples and fractions of the chosen unit, and 
consequently, points in S can be specified by their coordinates. When 
S is endowed with the system OXYZ, the geometric distance between 
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a material point on an axis and the origin O is the absolute value of its 
coordinate on that axis.  

Reverting to the frame S considered above, we identify X as the 
“geometric” distance between an S observer at the location B of the 
body b and the observer rX. Being geometric, the distance X depends 
only on the two points B and rX in S, so that whenever these two 
points are specified the distance X can be determined by geometric 
means, and it is independent of the instant at which the measurement 
is carried out. On the other hand, the quantity x can be envisaged as 
the distance of the moving body b from the observer rX when light is 
received by rX. Equivalently, x is the distance between an S observer 
B′ , that is contiguous to b when light is received, and the S observer 
rX, i.e., it is what we have already named the proper, or mobile, 
distance between the source b and the observer rX. Thus the relations 
(2.2) can be interpreted as transformations within the same frame S, 
between the geometric length X and the proper length x at any instant 
of observation. Note that in this interpretation X can be assumed 
already given or known, while x which is calculable by the 
transformations (2.2) has to coincide with its measured value in S if 
the theory is correct. According to the latter interpretation, the 
transformations (2.2) which hold within the same frame of reference 
S, there exists in addition to the usual geometric distance between a 
body and an S observer, a proper distance that depends on the velocity 
of the body, and these two types of distance are identical only for 
stationary bodies in S. On account of (2.1) parallel statements hold for 
the geometric and proper durations T and t respectively.  

Alternatively, the transformations (2.2) hold within s, but with the 
rules of b and B as true and virtual sources are interchanged; X is the 
proper distance of a true body B, which is moving with velocity –u in 
s, and x is its geometric distance from rx. Although it is convenient to 
consider the geometric quantities as given or known data, it is also 
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possible to start from the measured mobile quantities and calculate the 
geometric quantities pertaining to the virtual source at the instant of 
emission. 

In the active view, the stationary and proper distances are 
essentially coordinates. The distances X and x are the coordinates of 
the observers rX and rx in S at the instant of light reception. Or, we 
may view x and X as the coordinates of the body b and its location B 
in S if the origin of S is taken at the conjugate observers rX and rx and 
the X-axis is directed towards the body. We shall adopt the latter 
convention whenever we speak of the geometric and mobile 
coordinates of a moving body in S. For cu << , the transformations 
(2.2) are approximated by  
 uTTcuuTXxX ≈+−=Γ−=− ..)()11( 2 .  

It is noted that the active view “decouples” the two frames S and s, 
in the sense that one can be contented with measurements of 
quantities pertaining to a body and its location in one frame.  

The Passive View  
In the active view no ambiguity arises regarding units, because the 
same units in a single frame S are used to measure the length and 
duration of the trips )( XB → and )( Xb → . When two frames are 
involved in measuring the length and duration of the same trip, it is 
necessary beforehand to specify the units of length and time in each 
frame.  

We have seen in section 2 that light emitted from the body b and 
received latter by the conjugate observers rX  and rx  can be 
considered by all observers to emanate from the same point )( Batb  

)( batB≡ and to end up at the same point (X and x) in the 3-physical 
space. Thus, a single light's trip )( rxandrXborB → , which 
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involves only one true source, is considered an absolute entity in the 
3-physical space, and processes accordingly absolute length and 
duration, whereas the relations (2.2) are interpreted as transformations 
between units of length and time in S and s. Denote the units of length 
(time) in S and s by SLU (STU) and slu (stu) respectively, then by 
(2.2), 1sluSLU =Γ . Hence, the units of lengths in S and s are in the 
proportion 1:Γ , or, sluSLU Γ= . If the unit of time in each frame is 
set equal to the duration taken by light to cross the unit length trip, 
then 1// stuSTU =Γ , and 1=c  in each frame. It is possible of 
course to adopt any chosen length (period) in one frame as the unit of 
length (time), but the choice of the unit of length (time) in any other 
frame must respect the proportion specified above. Units of length 
(time) in S and s that respect the proportion specified above will be 
called relatively absolute units. 

Now, if b is the source of light, then the length of the trip )( xb →  
which occurs exclusively within s is equal to its geometric length 

ulsxx g .=  in s. In the passive view of the scaling transformations, a 
single light's trip is considered an absolute entity in the 3-physical 
space, and hence its length X in S must be equal to its length x in s, i.e. 

ulsxxX g .== . The light trip )( rxb →  which occurs within s can 
be viewed in S as starting from the moving source b in S and ending at 
the S observer rX, which is the trip )( rXb→ . The question now is 
that: if it is known that the length of a light’s trip within s is gx  

(which means sluxx g .= ), then what would be its measured length 

mX in S? The answer is simple. Since the unit of length in S is 
Γ times the unit of length in s, the length of the trip )( rxb →  when 
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observed in S is its length within s divided by Γ , i.e. Γ= /gm xX . 
Indeed, and if ULSXX m .= , then  

 Γ=⇔Γ=⇔= gmmgmg xXulsXulsxULSXulsx ).(...   

Similarly, and if the S observers assign to a light's trip )( rXB →  
that occurs exclusively within S a length gX , then its length, when 
observed in s, is .gm Xx Γ=   

In the remainder of this section we summarize the passive view of 
interpretation of the scaling transformations by the following 
elements  

- The transformations (2.2) define relatively absolute units of 
length and time in S and s that are in the proportion 1:Γ . 

- If it is known in s that the geometric length and duration of a 
given  trip is ),( gg tx , then the observed values in S corresponding to 
these geometric data are given by  

 .1
Γ

==
g

m

g

m

t
T

x
X  (4.1a) 

Similarly, there corresponds to the S geometric data ),( gg TX  the 

observed values ),( mm tx  in s, where  

 
Γ

==
1

m

g

m

g

t
T

x
X

. (4.1b) 

Therefore and when observed in S, the value of a geometric s-
quantity is simply the S equivalents (means using S units) of its value 
in s, and vice versa. 

- A concise form of (4.1) is  
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Γ

==
1

t
T

x
X

,  (4.2) 

provided we understand that  
1. X and x refers to the coordinates of the 3-physical point 

)( Batb )( batB≡ in the frames S and s respectively, or as to 
say, to the coordinates of one true source, either b or B, (but 
not both) in S and s respectively.  

2.  Either the quantities in the numerator or the denominators, 
but not both, are geometrically measured. Precisely, the 
geometric quantities pertains to the frame in which the body is 
at rest.  

Note that although the scaling transformations (4.2) between two 
frames have the inverse form of the contraction-elongation relations 
(2.2) which hold within one frame, both forms embody the same 
geometric and physical contents.  

5. Conjugate Sources  
If B and b are both true sources of light then we have two light's 
pulses emanating simultaneously from B and b. Now each observer 
rX and rx receives two pulses but not simultaneously, and hence rX 
and rx are conjugate observers only for the pulse that is first received. 
To see that this is indeed the case, we use the fact that the length of a 
light's trip is absolute and equal to its geometric length. The length of  
the light's trip )( rxb →  is ulsxx g= , and the length of the light's 
trip )( rXB →  is ULSXX g .= . It follows that  

  
Γ

===
Γ

1
.
.1

g

g

g

g

X
x

ULSX
ulsx

X
x , (5.1) 

and hence  
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 lgg aXx == . (5.2) 

Similarly 
 tgg aTt == . (5.3) 

This means that the readings of the geometric lengths and 
durations of the true trips )( rXB →  and )( rxb →  in S and s 
respectively are equal. The lengths of these trips however and their 
durations are not equal. Indeed 
 Γ=Γ== XULSaulsax ll , (5.4) 

 Γ=Γ== TUTSautsat tt . (5.5) 

The last relation means that the trip )( rxb → takes less time than 
the trip )( rXB →  provided that 1)( >Γ u , and longer time provided 
that .1)( <Γ u  Confining ourselves to the case 1)( >Γ u , we see that 
the conjugate observers rX and rx receive first the pulse emanating 
from b, and after they individuate, each receive the pulse emanating 
from B. Each of the observers rX and rx can claim itself stationary 
while receiving the two pulses, whereas the other has moved a certain 
distance after receiving the first pulse. Assuming that the emission of 
the two pulse of light from (b and B) takes place at 0== tT , the 
observer rx registers ulsat t .=  at receiving the first pulse (from b) 
and Γ=Γ tulsat  at receiving the second (from B). The difference 
between these is   
 ulsatrxt t )1()1()( −Γ=−Γ=Δ .  

The observer rX register Γ=Γ TULSat )( at receiving the first pulse 
(from b) and TULSat =  at receiving the second (from B). The delay 
period between receiving these two pulses is  
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 ULSaTrXT t )11()11()( Γ−=Γ−=Δ .  

Thus, although the speed of light within each inertial frame is c, 
the velocity of light is not independent of the relative velocity 
between the source and the observer. Indeed, the two pulses emanated 
at the same time from two conjugate sources b and B do not reach rX 
(or rx) at the same time.  

6. The Scaling Relations in General 
Let OXYZS ≡  be an inertial frame endowed with a system of 
spherical coordinates ),,( φθR , with θ  is the azimuth angle between 
the OX axis and the radius vector R . Consider a body b moving 
relative to S with velocity )0( >= uiuu , with i is the unit vector of 
OX and )0( >u . It is shown7,11 that the transformations from the 
geometric coordinates ),,( φθR  of the body b to its proper 
coordinates ),,( φθ ′′r  are given by  

 ),(,,),,( u
T
tu

R
r θφφθθθ Γ==′=′Γ= , (6.1) 

with  

 
2

22

1

cossin1
),(

β

θβθβ
θ

−

+−
=Γ u , (6.2) 

and  

 
2

22
1

1

cossin1
),(),(

β

θβθβ
θθ

−

−−
=−Γ=Γ− uu . (6.3) 
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The transformations (6.1) will be referred to as the scaling 

transformations. On account of the equations  

 ),(
1
1),0( uu Γ≡
−
+

=Γ
β
β )(),( 1 uu −Γ≡Γ π , (6.4) 

the transformations (6.1) reduce to the contraction-elongation 
relations  

 )0(0,0,)(1 >====Γ= − XzZyYxuX  (6.5) 

for 0=θ , and to  
 )0(0,0,)( <====Γ= XzZyYxuX  (6.6) 

for πθ = . The relation (6.5) corresponds to the case in which the 
body is receding from the observer, and the second, (6.6), to the case 
in which the body is approaching the observer. For πθ 2

1= , the 
transformations (6.1) reduce to the identity transformations in the 
plane containing the source and perpendicular to the velocity vector 
 .,,0 zZyYxX ====  (6.7) 

In the last case there is no contraction or elongation effect.  
Using the passive view, the relations (6.1) hold between the units 

of length and time in S and s, and the scaling transformations between 
S and s assume the form 
 ),(,,),,( utTurR θφφθθθ Γ=′=′=Γ= , (6.8) 

with ),,( φθR  and ),,( φθ ′′r are the coordinates of the body b in S 
and s respectively.  
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7. Comparison with Experiment  

Lifetime of Meta Stable Particles 

The −μ meson particles have a short lifetime s610.2 −≈τ , during 
which and even it moves with the velocity of light, it can covers only 
a distance kmcd 6.0=≈ τ . The −μ meson particles are generated 
at an altitude kmD 60=  with a very high speed close to that of light. 
In spite of its short lifetime, these particles can be detected abundantly 
at the earth surface. According to the active view, the distance of an 
−μ meson particle generated at an altitude D and approaching the 

earth’s surface shrinks to a value Dd 1−Γ= , and in order to reach 
the earth surface the particle should possess a velocity v such that 

 606.0
1
1

>
−
+
β
β

. (7.1) 

This yields 99980002.0>β , which is a probable value for the 
speeds of such particles. Relative to an observer at an altitude 
D=60km and stationary with respect to the earth, the particles heading 
towards the earth surface are receding away from him, and hence 

dD Γ= , which is equivalent to the formula used above.  

The Drag Effect 
This effect3 is explained in the SRT using the law of velocity addition, 
which is also valid in the current theory as we show here: Let 0>x , 
and S be moving with velocity )0( >vv  relative to a third reference 
frame S ′  whose origin is contiguous to B at the instant of light’s 
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emission. Adopting the passive view, we find that the transformations 
from s to S ′ is  

 ,)()()()(
1111 xVxuvXvX
−

Γ=ΓΓ=Γ=′ −−−   (7.2) 
where  

 
cV
cVV

/1
/1)(

−
+

=Γ , (7.3) 

and  

 2/1 cuv
uvV

+
+

= . (7.4) 

Equation (7.3) is interpreted as asserting that the frame s moves 
relative to S ′  with velocity V given by (7.4), which is the same law 
of velocity addition in special relativity.  

Doppler’s Effect 
Let OXYZS ≡  and oxyzs ≡  be inertial frames in standard 
configuration, and assume that s translates parallel to OX with a 
constant velocity u (u>0). Let b be a source of light that is stationary 
in s, and hence moving with a constant velocity iuu =  relative to S. 
Suppose that the source b is radiating a monochromatic light of a 
characteristic wave-length 0λ . The light emitted from b is received 
by any s observer and in particular by the observer o, as a 
monochromatic light of the same wave-length 0λ . If ),,( ϕθR and 

),,( ϕθr  are the spherical coordinates of b in S and s respectively, 
then at any instant of actual observation,  
 φφθθθ ==Γ= ,,),( ruR , (7.5)  
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where the passive view is adopted. If the distance r corresponds to 
one wave length 0λ  in s, then the distance R corresponds to one wave 
length λ  in S (which is the distance between two nodes for example). 
Setting λ=R  and 0λ=r  in (7.5) yields the generalized Doppler’s 
formula  

 02

22

1

sin1cos
λ

β

θβθβ
λ

−

−+
=  (7.6) 

which determines the wave length as measured by the stationary 
observer O. Note that the radiating source here is at a position of 
azimuth angle θ , and that the polar axis is OX. The last relation 
shows that 0λ>λ  for πθ 2

10 << , and 0λ<λ  for πθπ <<2
1 . 

The source b is receding from the observer in the first case, and 
approaching it in the second.  

The generalized formula (7.6) reduces, for 0=θ , to the  red shift 
Doppler’s formula  

 01
1 λ

β
βλ

−
+

=  (7.7) 

corresponding to the source and the observer receding from each 
other. For πθ = , the relation (7.6) reduces to the blue shift 
Doppler’s formula  

 01
1

λ
β+
β−

=λ  (7.8) 

corresponding to the source and the observer approaching each other. 
For πθ 2

1= , the relation (7.6) reduces to  
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 0λλ = , (7.9) 

which, contrary to the relativistic prediction, shows that there is no 
traverse Doppler’s effect.  

The Sagnac's Effect 
Consider two electromagnetic waves emitted from a point at the 
earth’s equator parallel to the equator and in opposite directions. It is 
experimentally verified that the spinning of the earth about its axis 
amounts for a complete round to approximately 207 ns advance 
(delay) for a wave propagating westward (eastward) parallel to the 
earth’s equator5.  

Let OXYZS ≡  be the inertial frame of fixed stars with origin O at 
a point o of the earth’s equator, and take OX tangent to the equator at 
o and directed eastward, so that the linear velocity u of o in S, when o 
is contiguous to O, is positive. Suppose that two pulses of light are 
emitted simultaneously from o in opposite directions parallel to the 
equator. Let eX  ( wX ) be an S observer that is contiguous to o when 
light emitted is received back by o and hence by )( we XX . In other 
words, o and eX (o and wX ) are conjugate observers when light 
emitted eastward (westward) is received by o.  

The path of light circling the equator can be decomposed into 
straight segments with two conjugate observers, an S observer and an 
equatorial observer, at the end of each segment. The problem can thus 
be visualized as a linear one. Let oxyzs ≡  be an inertial frame in 
standard configuration with S and moving relative to S with velocity u 

)0( >u . We may envisage the pulse emitted eastwards from (o and 
O) and received by (o and eX ), as if received by the conjugate S and 
s observers ( o′  and eX ), with o′  on the negative x-axis of s and at a 
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distance x from o that is equal to the circumference of the earth, as 
measured in s. For the eastward trip the emitter is receding from the 
observer eX , and the relatively absolute units of time in S and s are 
in the proportion )(:1 uΓ . The westward trip can be viewed as a trip 
starting from (o and O) and ending at (o ′′ and )wX , with o ′′ on the 
positive side of the x-axis and at a distance x equal to the earth 
circumference as measured in s. For the westward trip the emitter o is 
approaching the observer wX , and hence the absolute units of time in 
S and s are in the proportion )(1:1 uΓ .  

It is important to note that the S time is the time read by our clocks 
on earth. To the unit “second” of the S time, there correspond two 
relatively absolute units of time in s, which we name the east and west 
equatorial seconds. Let’s denote the latter absolute units by Esec and 
Wsec respectively. According to the passive view of interpretation, 
the latter absolute units relate to the unit of time in S by 
 .sec).(sec1sec,).(sec1 EuWu −Γ=Γ=  (7.10) 

Similar relations hold for the units of length, say “meter”:  
 .).(1,).(1 EmumWmum −Γ=Γ=  (7.11) 

Let et  be the geometric duration of the eastward trip 
)( eXandoOato ′→  in s. Since the length of the trip in s is the earth’s 

circumference in absolute s units, we have 

 .sec
15
2

sec)/(000,300
)(000,40 E

EEkm
Ekm

c
circumte ===  (7.12) 

Similarly .sec15
2 Wtw = The difference between these  
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−
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 (7.13) 

represents the delay period between receiving the two waves. When 
calculating (7.13), the linear velocity u of a point of the equator was 
taken 

 
skm

shhkmu
/46425.0

min)(60)(min60min5623000,40
≈

××=
  

Michelson and Morley Experiment 
Perhaps there is no experiment in physics' history that was studied,  
analysed, and disputed as much as was the Michelson's and Morley's 
experiment (MM for short). The experiment was designed to detect 
the earth's motion through the ether by measuring the difference in  
time taken by light to make from a point, 2-way trips along two 
perpendicular axes, one of which points in the direction of the almost 
translational motion of the earth around the sun and the other is 
perpendicular to it. The observed effect was much less than the 
expected one. Similar experiments were carried out by other  
scientists1, and the same result was found: the observed fringe shift is 
much less than the calculated one. 

In this article we argue that the expected effect in the MM and 
similar experiments is due to the rotational motion of the earth about 
its axis, but not to its orbital motion around the sun. This argument is 
based on the following facts:  

- There is no ether in the scaling theory,  
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- The time we use on earth is the time of the frame S translating 
with the earth in its orbital motion, and hence there can be no 
fringe displacement due to the earth's orbital motion.  
- A frame with origin at the earth surface and rotating with the 
earth can be considered during a short period of time an inertial 
frame that is translating relative to S with the linear velocity of its 
origin, and hence its units of length and time are different from 
those of S.  
In the following treatment, it is assumed that the reader is well 

informed of the MM experiment which can be found in most text 
books on special theory of relativity1-3 .   

The frame S, with origin O at the earth's center, which does not 
rotate relative to distant stars can be considered inertial, for it executes 
within a small period of time only a translational motion. Relative to S 
the earth spins about its axis with a constant angular velocity, and the 
linear velocity of the a point o of the earth's surface is θsinu  where u 
is the linear velocity of a point of the earth's equator, and θ  is the 
azimuth angle of the point o. For simplicity we assume temporarily 
that the experiment is carried out at the earth equator, with one of the 
arms is pointing eastwards and the other northwards. Let oxys ≡  be a 
frame rotating with the earth, with origin at the light's source o, the x-
axis pointing eastwards, and oy northwards. For a trip of light along 
oy, southwards or northwards, the units of length in S and s are equal. 
The units of length (and time) in S and s are respectively in the 
proportion )0,(:1 uΓ  for an eastwards trip and in the proportion 

)0,(/1),(:1 uu Γ=Γ π  for an westwards trip. Assuming that the arms 
are oriented initially eastwards and northwards respectively, and that 
the length of each arm is l, then the difference in the light's path will 
be 
 meterlWmeterlEmeterl .2)..( −+=Δ , (7.14) 
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or  

 l
cu
cu

cu
cul 2

/1
/1

/1
/1

−⎟⎟
⎠

⎞
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⎝

⎛

+
−

+
−
+

=Δ   

 ( )( ) ( ) meterculcul 22/1212 ≈−=
−

. (7.15) 
When the interferometer is rotated by a right angle the difference 
doubles giving rise to a fringe shift  

 
22
⎟
⎠
⎞

⎜
⎝
⎛=

c
ulf

λ
. (7.16) 

In the MM experiment  

 meter7106 −×=λ , cml 120= .  

Substituting skmu 46425.0=  and skmc 5.298792= we obtain  
 00001.0≈f ,  
which is just (1/4000) of the commonly predicted value, and (1/1000) 
of the observed result, which is 0.01 fringe.  

Going through  the results of various trials of the MM experiments 
listed in Wikipedia, or in French1, we note that the observed effect 
corresponds to a velocity u that is always greater than the rotational 
speed of the earth about its axis. According to the Wikipedia, the least 
upper limit of u, which is therein the orbital velocity of the earth, 
while it is the linear rotational speed of the earth in our argument, 
occurs in the Illingworth's trial (1927) with u is less than one kilo 
meter per second. The second reasonable upper limit is found in Joos' 
trial (1930), with skmu 55.1= . In fact the MM experiment yields a 
fringe shift corresponding to an orbital speed skmu 75.4= , which is 
still closer to the value of the linear rotational speed, 
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skm)sin46425.0( θ , of the location at which the experiment is 
carried out.   

8. Lorentz Transformations 
Let S and s be inertial frames as prescribed in section 2, and assume 
that s is moving relative to S with velocity u (u>0). Let o and x be 
points in s, with 0>x . At the instant 0=t in s a source of light b at 
x emits two pulses, a pulse (+) in the +x-direction and a pulse (-) in 
the –x-direction. At an instant t in s the pulse (+) reaches a point +p  
in s with coordinate ctx + , while the pulse (-) reaches a point −p  
with coordinate ctx +−  in s. When the pulses )(±  reach the 
observers ±p , at the instant t in s, there exist two S observers ±P  that 
are contiguous to ±p . The observers ±p  can consider light reaching 
them from x as emanated from o at the instants cx /∓  respectively. 
When light is emitted from x, at t=0 in s, there exist two points X and 
O in S that are contiguous to x and o respectively. The light received 
by the s observers ±p  and by the conjugate S observers ±P  can be 
considered by the S and s observers as emitted from x or from the 
point X in S that was contiguous to x at the instant of light emission. 
The S observers are at liberty to start the clock at X at any time they 
wish, say 0=T , and synchronize the rest of their clocks with the X-
clock in the natural procedure of light synchronization3. There 
corresponds to the period t in s during which the pulses emitted from 
x reached ±p  a period T in S during which the pulses emitted from X 
reach ±P . When the pulses reach ±P  the clock at X reads T. The 
observers S, can consider light reaching −P  as emanated from X at an 
instant 0=T , or from O at an instant cXT /= . The coordinate of 
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−P when light is received is .)/( cTXcXTc −=−− The light 
reaching +P can be considered by the observers S as had been emitted 
from X at 0=T , or from O at cXT /−= . The coordinate of +P  at 
light reception is cTX + . Thus the S observers associate with the 
light trip )( −−→ Pandpo  the period cxt /−  and with the light 
trip )( −−→ PandpO  the period cXT /− , and since o is receding 
from −P , the contraction-elongation relation yield  

 )/(/ 1 cxtcXT −Γ=− − . (8.1a) 

The S observers assign to the light trip )( ++→ PandpO  a period 
cXT /+  and to the light trip )( ++→ Pandpo  the period 

cxt /+ . Since o is approaching +P  the S observers relate the latter 
periods, according to the contraction elongation relation, by  
 )/(/ cxtcXT +Γ=+ . (8.1b) 

Solving equations (8.1) for X and T we obtain the Lorentz 
transformations (LT)  

 .
1

/,
1 22 β−

+
=

β−

+
=

cuxctcTutxX  (8.2) 

The method used to derive LT promotes the following comments:  
(i) Equations (8.1) are valid only after the observers O and o have 

received the wave front (-) mentioned above. Assuming 0≥X , we 
should have ,0≤− cTX  which implies that cTX ≤≤0 . The last 
inequality combined with the result of a similar argument concerning 
the case 0≤X , renders LT valid in the domain  
 cTX ≤|| . (8.3) 
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Therefore, LT is valid only for time-like and null intervals. The 
physical meaning of the latter statements is that, the pulses received 
by +P  and −P  can be considered as have been emitted from any X 
that satisfies (8.3) for a given T. 

 The LT (8.2) reduce to 
  ),0(, >==Γ= xcxtforcTXxX   (8.4) 

and to  

 )0(/,1 <−=−=Γ= − xcxtforcTXxX . (8.5) 

(ii) Since T is always positive, it is not legitimate to consider the 
invariance of LT under time inversion.  

(iii) Objections may rightfully be raised claiming that the 
constraint (8.3) is a consequence of the particular method followed to 
derive LT. In reply, we note that the LT (8.2) is algebraically 
equivalent to (8.1), and hence a tangible interpretation for (8.1) must 
be sought. In fact, the factors Γ and 1−Γ appearing in the form (8.1): 
 )(),( 1 ctxcTXctxcTX −Γ=−+Γ=+ −   
of LT are precisely the factors sought by Einstein in his simple 
derivation13 of LT.  

9. The Generalized Lorentz Transformations  
Let OXYZS ≡  be an inertial frame endowed with a system of 
spherical coordinates ),,( φθR , with θ  is the azimuth angle between 
the OX axis and the radius vector R . Consider a body b moving 
relative to S with velocity )0( >= uiuu , with i is the unit vector of 
OX and )0( >u . In a way very much similar to that followed in 
deriving the restricted LT, a general form of Lorentz transformation 



 Apeiron, Vol. 15, No. 1, January 2008  

© 2008 C. Roy Keys Inc. — http://redshift.vif.com 

120

(GLT) relating the geometric quantities );,,( TR φθ and the mobile 
quantities );,,( tr φθ ′′  can be obtained12; it is thus written  

 
2

22

1

cossin1

β

θβθβ

−

+−
=

ctr
R  (9.1a) 

 φφθθ ′=′= ,  (9.1b) 
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β

θβθβ

−

+−
=

rct
cT . (9.1c) 

The transformation (9.1) are valid in the domain  

 cTRR ≤= || . (9.2) 
One consequence of the last constraint on validity region of GLT 

is that, choosing a common origin of two frames of reference is not a 
passive process, for it entails a specific restriction on the possible 
values that can be assigned to spatial and time coordinates, which is 
due to mutual observation of the same light trip by O and o. 
Moreover, and as it is shown below, the relative motion of an 
observed object and an observer, if one dimensional, then LT is 
reduced to a transformation of motion in one-dimensional space. The 
GLT preserve the Minkowski metric. i.e.  

 222222 rtcRTc −=− . (9.3) 
For πθθ == or0  the GLT reduce to  
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cuxctcTutxX
 (9.4) 
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For 2/πθ =  , the LT assume the form  
 tTzZyYxX ===== 0 . (9.5) 

Velocity Addition Once More 
If a particle has an instantaneous velocity v along the radius vector in 
s then its instantaneous velocity in S is also radial and has the 
algebraic magnitude  

 
222

22

/cossin1

cossin1

cuv

uv
V

θθβ

θθβ

+−

+−
= . (9.6) 

The relation (9.6) is obtained through dividing the differentials of 
(9.1a) and (9.1c), with φθ ′′, kept constants because the motion is 
radial. The relation (9.6) reduces to the familiar formula (7.4) of 
velocity addition in SRT for 0=θ or πθ = . For 2/πθ = , we have 

vV = . Moreover, the relation (9.6) guarantees that c is invariant. 
Indeed and setting cv =  in (9.6) gives .cV =  The last result, by no 
means, implies that c is the maximum speed in nature; it implies 
however that (9.6) is valid, in the same way as the theory itself, for 
motions with velocities that doesn’t exceed c. The speculation that c 
is the maximum speed in nature should be postulated independently. 

Conclusion 
We have shown that the postulate of SRT regarding light velocity is a 
result of a weaker postulate, and that optical effects that formed a 
challenge to the pre-relativistic era can be explained in a simple 
manner using the scaling formulae obtained above. It was also 
demonstrated that the same formulae lead to LT confined to the 
region of time–like and null intervals. The expressions of GLT were 
listed and briefly commented on. The concept of the 3-physical space 
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introduced in this work is the subject of an expound study in 
subsequent works7,12.  
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