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ABSTRACT 
 
This paper follows up a debate as to the consistency of Newtonian cosmology. Whereas 
Malament (1995) has shown that Newtonian cosmology is not inconsistent, to date there 
has been no analysis of Norton’s claim (1995) that Newtonian cosmology was 
inconsistent prior to certain advances in the 1930s, and in particular prior to Seeliger’s 
seminal paper of 1895. In this paper I agree that there are assumptions, Newtonian and 
cosmological in character, and relevant to the real history of science, which are 
inconsistent. But there are some important corrections to make to Norton’s account. Here 
I display for the first time the inconsistencies—four in total—in all their detail. Although 
this extra detail shows there to be several different inconsistencies, it also goes some way 
towards explaining why they went unnoticed for two hundred years. 
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1  Introduction 
 
There is now a substantial literature devoted to inconsistencies in science, with 
examples ranging from the early calculus of Newton and Leibniz to Bohr’s 
theory of the atom to, most recently, classical electrodynamics. Norton (2002) 
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introduces two different approaches to inconsistencies: the ‘content driven’ 
approach and the ‘logic driven’ approach. Preferring the latter are several authors 
(see Meheus 2002) who suggest that, when faced with an inconsistency in a 
given body of assumptions, scientists either do (descriptive claim) or should 
(normative claim) adopt a non-classical, paraconsistent logic which saves them 
from deriving anything and everything by ECQ.1 Norton, in response, suggests a 
‘content driven’ approach where the inconsistency is or should be handled by 
‘[reflecting] on the specific content of the physical theory at hand’, whilst 
maintaining classical deductive logic (2002, p.192). 

Both sides of this debate are concerned to address the question of what 
scientists do or should do when faced with inconsistency. This is of clear 
importance, not least because it could give us important clues as to how we might 
progress in the face of current conflicts, such as that between relativity and 
quantum field theory. However, the focus of this paper lies entirely outside of 
this debate, and addresses a different aspect of inconsistency in science which 
has been largely neglected. Just as important as the pragmatic question of what to 
do when faced with an inconsistency is the epistemic question of how scientists 
come to know about inconsistencies in a given body of assumptions in the first 
place. In particular we may ask the questions, 

 
(i) What is it about the scientific community which prevents an 

inconsistency from being noticed? 
(ii) What is it about the science which prevents an inconsistency from 

being noticed? 
 
There are far fewer papers dedicated to these kinds of question, but research here 
could also carry importance for current science: if we could accelerate the 
identification of conflicts in science we could accelerate science itself. 

The focus of attention in this paper will be what is usually called (an old 
version of) ‘Newtonian cosmology’. In 1895 Seeliger made the remarkable claim 
that a set of natural (Newtonian) assumptions concerning forces in the universe—
assumptions which had been in place since Newton himself, for over two 
hundred years—are mutually inconsistent. This stimulated much debate over the 
years and decades which followed, with the latest additions made by Norton 
(1993, 1995, 1999, 2002) and Malament (1995). But questions (i) and (ii), above, 
remain largely unasked. What was it about the nature of the inconsistency in 
Newtonian cosmology which meant that it went unnoticed by the scientific 
community for two centuries? 

                                                 
1 Ex contradictione quodlibet: From the inconsistent assumptions derive a contradiction 
‘A&~A’. From here infer ‘A’ and ‘~A’. From ‘A’ infer ‘AvB’ for any arbitrary ‘B’. 
From ‘~A’ and ‘AvB’ infer ‘B’. 
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If the derivations were long and complicated, and involved advanced 
mathematics or even mathematics not available to scientists in the relevant 
period, then our question would be answered immediately: the reason the 
contradiction remained hidden would be that it was exceedingly difficult to 
derive. But one look at Norton’s reconstructions shows that no such quick answer 
will be forthcoming. For one thing, there are at least two different 
inconsistencies, so there is double the chance of noticing the problem. But even 
more remarkably, it would seem that in each case a contradiction follows from a 
few basic assumptions in a few simple steps. The inconsistencies are, as 
Malament puts it, ‘so close to the surface that they are hard to miss’ (1995, 
p.489). This in itself seems to contradict the fact that many great scientists did 
miss the inconsistencies for a period of two hundred years! Otherwise we would 
apparently have to admit either that scientists made a serious commitment to 
what they knew to be impossible, or that they were blind to some of the most 
obvious consequences of their beliefs. 

This suggests that the reason the inconsistency remained hidden lies with the 
scientific community rather than the science itself. However, as this paper sets 
out to show, there are several complications to work through to understand the 
inconsistencies properly: they are not as simple and straightforward as Norton 
and Malament make out. Thus, after a brief section (§2) in which I introduce 
‘Newtonian cosmology’ and the relevant assumptions, I turn to the details of the 
inconsistency claims which have been made. Four different inconsistencies are 
distinguished, which are grouped into two types of inconsistency discussed 
separately in §3.1 and §3.2. This analysis uncovers certain complications in the 
science which then help to answer question (ii) in §4. Some factors pertinent to 
question (i) are also brought to light. §5 is the conclusion. 
 
 

2  The concept of ‘Newtonian cosmology’ 
 
What is the theory of ‘Newtonian cosmology’? It would be a mistake to suppose 
that Newtonian cosmology ‘exists’ somehow, perfectly formed, in a textbook 
somewhere, and that all we have to do is identify it and see if it is inconsistent. 
Rather, what we really find are various assumptions, often differently stated by 
different individuals, sometimes saying the same thing and sometimes something 
slightly different. Some of these assumptions are clearly about the universe as a 
whole, others about the local universe, others of a more metaphysical nature. Still 
other assumptions may never be articulated, such as that space is Euclidean or 
that the night sky is dark. There is often no correct way to articulate such 
assumptions precisely, and no specific set of them which together constitute 
‘Newtonian cosmology’. What, then, do we mean when we refer to ‘Newtonian 
cosmology’? What do we mean when we say it is inconsistent? 
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People mean different things by the word ‘theory’. The question is not who is 
right but which conception of ‘theory’ is the right one to use for a given 
investigation.2 The present concern is to investigate the inconsistency of 
Newtonian cosmology, but still this is too vague to tell us which assumptions we 
should be concerned with: we must ask what we are hoping to show by the 
inconsistency of the theory. For example, we will choose different assumptions, 
and aim at something quite different, if we want to show that the assumptions 
used by scientists were inconsistent (but that the inconsistency somehow didn’t 
affect their reasoning) or if we want to show that the assumptions believed by 
scientists were inconsistent (but that they somehow didn’t notice it). The more 
interesting claim for present purposes is the latter, because what seems to be the 
case is that there is a set of assumptions which are inconsistent, all of which were 
believed to be true—or at least important candidates for the truth—by a 
significant number of relevant individuals. However, focusing on belief in this 
way still doesn’t enable us to identify a set of assumptions for investigation. 
There are many different species of ‘belief’, and even if there were not it isn’t 
clear which beliefs should be grouped together to count as ‘Newtonian 
cosmology’. 

Thankfully there is another way to proceed. Instead of trying to group together 
the assumptions for which inconsistency would be interesting, one can instead 
group together the assumptions which are inconsistent, and then investigate how 
interesting that inconsistency is. Of course some sense of which assumptions are 
going to be important is required: there has to be some reason why the 
assumptions will be interesting as a group. The reason here, as made clear in 
Norton’s papers, is the role they play in answering a single question: 

 
(Q) What is the net gravitational force on a given test particle at an arbitrary 
place in the universe? 

 
When this question is asked certain assumptions are naturally drawn together. 
Norton (1995) introduces various such assumptions as follows:3 
 
(a) Newton’s three laws of motion. 
 
(b) Newton’s inverse-square law of gravitational attraction. 
 
(b') Poisson’s equation with gravitational attraction described in terms of the 

                                                 
2 Cf. Vickers (2008), who analyses the disagreements between Mathias Frisch, Fred 
Muller and Gordon Belot concerning the consistency of classical electrodynamics in 
terms of their differing conceptions of ‘theory’. 
3 See pp.513-514. In notation I follow Norton’s lead for ease of cross-reference. 
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potential φ. 
 
(c) Matter in the universe is distributed homogeneously (when viewed on a 

large enough scale) in an infinite Euclidean space. 
 
(d) There is a unique gravitational force on a test mass. 
 
(d') The gravitational potential φ is homogeneous. 
 
It turns out that the question (Q) can be answered in different, contradictory ways 
depending on which of the given assumptions are emphasised. There are 
essentially four different methods of reasoning which can be employed, which 
will be introduced in the forthcoming analysis in the following order: 
 

1. Use Newton’s law of gravitation 
2. Use Poisson’s equation 
3. Use symmetry considerations 
4. Use the gravitational potential 

 
Proceeding in this way means that we can investigate the inconsistencies 

without getting into the messy meta-ontology which accompanies such questions 
as ‘What is the theory?’ and ‘What is Newtonian cosmology?’ Asking such 
questions presumes a simplicity to the history of science which doesn’t exist. 
Instead the analysis can proceed in terms of the given question (Q), various 
methods of answering that question, and the assumptions which those methods 
draw upon. The connection between the given assumptions and the real history of 
science will be considered in §4. 
 
 

3  How was Newtonian cosmology inconsistent? 
 
Inconsistency, of course, means that a contradiction follows. When the noted 
methods of reasoning provide contradictory answers to our question (Q) one of 
two principle kinds of contradiction results: 
 

(i) The force on a given test particle is both F and G where F≠G, or 
(ii) The force on a test particle is both determinate (some vector 

quantity) and indeterminate (in a sense to be clarified). 
 
These will be tackled in §3.1 and §3.2 respectively. The precise inconsistency 
then depends on which of the given assumptions (a)-(d') the contradiction is said 
to follow from. Thus §3.1 and §3.2 are each split into further subsections. 
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3.1  A contradiction of forces 
 
By ‘contradiction of forces’ I simply mean that the given assumptions can be 
used to derive the following contradiction: 
 

(C1) The force on a test mass is F and the force on a test mass is G, where F≠G. 
 
This splits into three different claims depending on which of the assumptions (a)-
(d') are used to make the derivation. 
 

3.1.1  …using Newton’s law of gravitation? 
        
Norton’s original paper (1993) shows the first possible method of reasoning, and 
claims that we have a contradiction of forces from assumptions (a), (b) and (c): 
 
(a) Newton’s three laws of motion. 
(b) Newton’s law of gravitational attraction. 
(c) Matter in the universe is distributed homogeneously (when viewed on a 

large enough scale) in an infinite Euclidean space. 
 
In greater detail, by (b) we mean: 
 
(b) The force of gravity Fi on a test body mt at r due to another body mi at ri 

is given by )(3 rr
rr

F −
−

= i
i

it
i

mm
G . 

 
This gives us the magnitude and direction of the force on our test mass mt due to 
one other mass mi. But in this paper we are asking what the net gravitational 
force is. By (c), since we are supposing the universe to be infinite and the mass 
distribution to be homogeneous, there will be an infinite number of masses. 
Further, (b) comes with no caveat that it doesn’t hold beyond a certain distance 

rr −i . Thus we must infer that every mass in the universe has some effect 

(however small) on our test mass. Thus there are an infinite number of terms in 
our sum, and the net gravitational force is represented as the sum-total of all the 
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contributory forces: ∑= i inet FF .4 

At this point, since we are drawing on assumption (c), it is worth pausing to 
consider what is really meant by the homogeneity of the universe when viewed 
on a large enough scale. Of course nobody ever believed that the universe is 
totally homogeneous, but rather that if you take any arbitrary region of space R of 
a given large volume V then you will always find the same total amount of mass 
there (with small deviations from some mean value, which get smaller for 
volumes of space larger than V). This actually tells us next to nothing about the 
density of matter in the vicinity of a given test particle (it could be sat on the 
surface of a black hole, or be several hundred light years from the nearest 
massive particle). All we know is the total amount of matter in an arbitrary 
region of space R of volume V, which may include our particle. But this 
uncertainty in the local matter distribution doesn’t transfer to an uncertainty in 
the force on such a particle, at least insofar as Norton’s ‘lines of force argument’ 
(1993; 2002) is concerned. All the argument requires is the constant density of 
matter over different regions R at some scale (however big V has to be to achieve 
this constant density). 

Continuing Norton’s argument, from the infinite sum we can apparently get 
different answers depending on how we compute it.5 If we first consider a 
spherical region of the universe upon which our particle is sitting—of any given 
volume V or greater, and situated on any side of our particle—then we get a force 
F towards the centre of that sphere. It can then apparently be shown that the force 
due to all other masses amounts to nothing, since they can be grouped into 
spherical shells, concentric with the centre of the original spherical region, each 
of which has no net effect on our particle. Thus our infinite sum turns into Fnet = 
F + 0 + 0 + 0 +... = F. But the size and direction of the original sphere, and thus 
the force F, was completely arbitrary. Thus Norton claims that the theory is 
‘logically inconsistent in the traditional strict sense… [because] we can prove 
within the theory that the force on a test mass is both some nominated F and also 
not F, but some other force.’ (1993, p.413; 2002, p.186). 

In fact no such contradiction can be legitimately derived. Malament (1995) 
criticised the reasoning as follows: 

 
What Norton presents as an argument for inconsistency is better understood as 
just a vivid demonstration of non-convergence. (A perfect analogue of his 

                                                 
4 For some purposes it is convenient to turn this sum into an integral according to 

∑ ∫=i Vi dVFF , where instead of summing over all (discontinuous) masses we sum 

over all (continuous) points in Euclidean space, as in Malament (1995, p.491). This won’t 
be important here. 
5 For the full argument see Norton 1993 and 2002. 
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argument might be used to “prove” that, for every integer n, the infinite sum 1 – 
1 + 1 – 1 + … is equal to n.) … Rather than asserting that Newtonian theory 
makes inconsistent determinations of gravitational force … Norton should have 
asserted that it makes no determination at all. (1995, p.491, original emphasis) 

 
In other words, Norton should have noted that not all infinite sums have an 
answer. For example, mathematicians in the late 17th and 18th centuries 
rigorously debated whether the infinite sum 1-1+1-1+…, known as ‘Grandi’s 
series’, is equal to 1, 0, ½, or something else. Today, with the benefit of 
hindsight, we can look upon these struggles as mere historical curiosities, and say 
instead that since the series in question is not convergent it has no sum. The 
question is mathematically well-posed but has no answer, just as a question can 
be grammatically well posed and have no answer. 

The key failure of Norton’s argument can be seen by the fact that he groups 
together the effects of masses in certain regions of space in order to get a result. 
This is equivalent to bracketing together terms in Grandi’s series in order to get a 
result. But since this bracketing can be done in more than one way, if this were 
legitimate you could also show Grandi’s series to sum to two different values. 
The most obvious two are as follows: 
 

1...001...)11()11(1...1111
0...00...)11()11(...1111

=−−−=−−−−−=+−+−
=++=+−+−=+−+−

 

 
So does Grandi’s series sum to both 0 and 1? Since this sort of bracketing is 
mathematically illegitimate, one must stop at the unbracketed series and conclude 
that it is equal to no value. 

These facts take on particular significance in the light of Norton’s 1999 
derivation. He argues (p.274) that the infinite sum can be written as follows: 
 

...)11111(ˆ
...ˆˆˆˆˆ

−+−+−Δ=
−Δ+Δ−Δ+Δ−Δ=

x
xxxxxF

rG
rGrGrGrGrGnet

πρ
πρπρπρπρπρ

 

 
where x̂  is a unit vector in any nominated direction. This time he considers 
hemispherical concentric shells, first on one side of the particle (in the direction 
of x̂ ) and then the other (in the direction of x̂− ), which build up to infinity. But 
the outstanding question is: why is this particular style of summation legitimate 
and the others not so? Hasn’t Norton once again illegitimately grouped together 
(in hemispheres) the effects of large numbers of masses to achieve his sum? 
Hasn’t he introduced brackets into the reasoning? 

This is true to some extent. The real infinite sum, without brackets, is a close 
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approximation to a 3D version of Grandi’s series.6 Strictly speaking Norton 
shouldn’t group together the effects of large groups of masses into hemispherical 
shells as he does in his 1999 paper. Crucially, however, this time the grouping 
does not affect the divergence of the summation. The introduction of his brackets 
is analogous to the following manipulation of Grandi’s series: 

 
...1111...)111()111()111(...1111 +−+−=−+−++−−+−=+−+−  

 
In other words, the divergence of the sum is preserved by the bracketing. This is 
the achievement of Norton (1999). Thus although strictly speaking the infinite 
sum should not be set equal to k(1-1+1-1+…)—where k is the relevant constant 
vector—the indeterminate nature of the force Fnet is preserved by Norton’s 1999 
analysis, whereas it isn’t preserved in his 1993 and 2002 analyses. With Norton’s 
1999 analysis we can be sure that the original series is divergent, because the re-
ordering and bracketing of a convergent series would never leave us with a non-
convergent series. 

A further point is in order here. Malament says that what Norton presents is a 
vivid demonstration of non-convergence. However, more specifically what 
Norton presents is a vivid demonstration of alternating non-convergence. Only 
when signs in a divergent series alternate is it possible to make quantities cancel 
out, and achieve various different finite answers through bracketing and re-
ordering. Thus there is a sense in which alternating series don’t diverge, since 
‘diverge’ usually means ‘diverge to infinity’. However you bracket and re-order 
an infinite series which diverges to infinity you get infinity (whether positive or 
negative). Only with alternating series is it possible to achieve any number of 
finite answers for the sum of the series. To make this distinction clear, in what 
follows the word ‘indeterminate’ will be preferred over ‘divergent’ to describe 
the sum of Grandi’s series. 

With this clarified we can still agree with Malament that assumptions (a), (b) 
and (c) make no determination of the net force. But this isn’t because the force is 
divergent, in the sense of ‘diverges to infinity’. If it were divergent then we could 
say that the assumptions predict an infinite force. Rather, it is because we reach a 
force balanced between convergence and divergence, an indeterminate force. 
Norton apparently accepts Malament’s criticism, since he is moved in his reply 
(1995) to add a further assumption to (a), (b) and (c), and introduce a somewhat 
different contradiction, an ‘indeterminacy contradiction’, as we’ll see in §3.2. 
 

3.1.2  …using Poisson’s equation? 

                                                 
6 In fact the real infinite sum could never be presented. Grouping of some sort has to be 
introduced, because in order to consider the universe as homogeneous we have already 
grouped together large portions of it. 
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A second method of reasoning involves Poisson’s equation. Norton never 
suggests that we get a contradiction of forces using Poisson’s equation directly, 
but it will be useful later on to consider precisely why the theory isn’t 
inconsistent in this way. Fleshing out assumption (b') we have: 
 
(b') The force of gravity F on a body mt at r due to the mass distribution in a 

given volume V is given by )()( rrF φ∇−= tm , where φ(r) is such that 

)(4)(2 rr ρπφ G=∇ , where G is a constant and where the gravitational 
potential φ(r) and the mass density ρ(r) are continuous scalar fields on 
V. 

 
To find the net force on a test mass we no longer need to sum up all the 
individual forces, but can simply derive the force from the potential field φ(r). 
From assumption (c) ρ is constant in space, so instead of ‘ρ(r)’ we can simply 
write ‘ρ’, with the added proviso (as we saw in the last section) that the density is 
only constant for regions of space of a given volume V or greater. Poisson’s 
equation then becomes ρπφ G4)(2 =∇ r , where φ(r) now refers to the 
gravitational potential at ‘points’ of space r which actually pick out regions R of 
volume V or greater. Since Poisson’s equation is a differential equation we need 
to integrate, and when you integrate you inevitably incur constants of integration. 
Thus the so-called ‘canonical solutions’ of Poisson’s equation are, 

 
2

03
2)( rrr −= ρπφ G . 

 
Here r0 is the constant of integration.7 If we differentiate this equation to test 
whether it satisfies Poisson’s equation we get the right result 4πGρ whatever ro 
is, because it simply disappears during the calculation. 

We can now move to the force on our test mass using )()( rrF φ∇−= tm . We 
find, 

 

)(
3
4)( rrrF 0 −= ρπGmt . 

 
Once again, it should be emphasised that this really means the average force F in 
a large region of space R—picked out by r—of volume V or greater. We get a 

                                                 
7 I have already eliminated another constant of integration which need not concern us, 
and can anyway be eliminated on very reasonable grounds (see Norton 1995, p.513). 
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different value for this average force depending on how we choose r0, so we can 
get two different, contradictory average forces in the same region R by choosing 
r0 in two different ways. But it would be a gross error to go on to suppose that 
the theory is inconsistent for this reason. The theory just doesn’t tell us what r0 
is, so we must leave it as an unknown constant. We certainly can’t just arbitrarily 
choose it to be two different things. To emphasis that the theory leaves us 
guessing we could write F=?, because r0=? (this will be useful for comparison 
later). 
 

3.1.3  …reasoning from symmetry 
 
Given the tools at our disposal we’ve thus-far seen two different ways of 
reasoning when faced with the question, ‘What is the net force on a given test 
particle?’ We can use Newton’s inverse-square law of gravitation or we can use 
Poisson’s equation. A third possible method of reasoning, and perhaps the most 
obvious (particularly to non-scientists), is to use symmetry considerations. If the 
universe is really infinite and Euclidean, and has a homogeneous mass 
distribution (with the qualifications noted above), then it will be exactly the same 
vis-à-vis the average force on a test mass in any given region R. In other words, 
we can conclude that the average force cannot differ for any two such regions, 
since they are identical in the relevant respects. But equally, if the universe is 
symmetrical, this average force cannot point in any given direction since there 
could be no reason why that direction would be preferred over any other. The 
obvious conclusion is that there is only one possible average force: F=0. In fact 
given the discussion in §3.1.1 we might suppose that there is another possibility: 
that the force is everywhere indeterminate. But once one introduces assumption 
(d)—there is a unique gravitational force on a test mass—then one insists that the 
net force is not indeterminate, and reaches the conclusion that F=0. 

It has sometimes been suggested that this in itself contradicts the fact that we 
do observe accelerations—and thereby infer non-zero forces—within the 
universe.8 But since it is only the average force in large regions which vanishes, 
individual forces within such a region can obviously vary as much as you like. 
However, we can now achieve a genuine contradiction of forces by comparing 
this method of reasoning with the one seen in the previous section. From 
symmetry we infer either that F=0 at every ‘point’ r of the universe or that F is 
everywhere indeterminate. Either way F will not differ from ‘point’ to ‘point’. 
But we saw in the previous section that the average force at a given ‘point’ r will 
be 

 

                                                 
8 Cf. Bentley (1693) cited in Jaki (1969, p.61). 
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)(
3
4)( rrrF 0 −= ρπGmt . 

 
In order to satisfy Poisson’s equation ρπφ G4)(2 =∇ r , r0 must be some real 
vector quantity: 3

0 ℜ∈r . But whatever vector quantity we choose we find that 
the force F will differ from one ‘point’ r to another r'. In fact whatever the 
choice of r0 we find that the average force on a test mass is zero in exactly one 
region in the universe, namely at exactly that ‘point’ r0. Everywhere else it is 
non-zero. Thus we have a genuine contradiction, resulting from reasoning from 
(b'), (c) and (d) in two different ways: 
 

(C2) The average force on a test mass in any two arbitrary, distinct regions of 
space R (of volume V or greater) will not differ (or differ by a negligible 
amount), and the average force on a test mass in any two arbitrary, distinct 
regions of space will differ significantly. 

 
Although this is a contradiction, it is not immediately obvious what it means in 

empirical terms. We will not find the ‘force on a test particle’ F being, 
impossibly, both two different things at a single time (in other words we don’t 
get contradiction (C1)). Whereas the ‘force on a test particle’ is something we 
might say ‘exists’, the average force in a given region of space is a non-existent 
abstraction, just as the average family (with 2.4 children) is an abstraction. The 
real empirical difference here lies with the large scale movements of matter over 
time: with one story there are no large scale movements, whilst with the other 
there will be a large scale acceleration towards the ‘point’ r0.9 

This is closely related to Norton’s so-called ‘inhomogeneity contradiction’, as 
introduced in his 1995 paper (p.514). However, instead of a contradiction of 
forces he introduces the contradiction, 

 
(C3) The gravitational potential φ is homogeneous and it is not the case that the 
gravitational potential φ is homogeneous. 

  
This is only achieved by introducing a new assumption: 
 
(d') The gravitational potential φ is homogeneous. 

                                                 
9 Einstein offered a neat solution to this particular conflict. He suggested that Poisson’s 
equation be altered to ρπλφφ G42 =−∇ , so that a constant solution for φ is possible: 
φ=-4πGρ/λ. This then gives an average force of F=0 everywhere, in line with symmetry 
considerations. See Norton (1999) for this and other ways in which the theory can be 
modified to avoid the problems. 
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Unlike the other assumptions used so far, commitment to (d') by scientists is 
dubious. φ isn’t a physical thing after all, but is just a mathematical tool which 
intermediates between the ‘real’ masses and forces.10 The suggestion seems to be 
that (d') follows from the homogeneity of the mass distribution, but this is to mix 
up the physical and the mathematical. The argument is surely that since the 
universe’s mass distribution is symmetrical the universe cannot differ from 
region to region in certain physical respects. The latter include the (physical) 
force, but not the (unphysical) potential. 

Here it is better to turn to Malament (1995, p.492), who frames the difficulty in 
terms of the homogeneity of the force field. Thus a slightly different 
contradiction is suggested: 

 
(C4) The gravitational field f is homogeneous and it is not the case that the 
gravitational field f is homogeneous. 

 
where f stands for f(r), the force per unit mass at r. This is closely related to 
(C2), but differs from it in two respects which are worth noting. First, Malament 
has left implicit the fact that f must stand for the average force field in large 
regions (thus (C4) makes things seem simpler than they really are). More 
importantly, Malament overlooks the role played by assumption (d) in the 
analysis. Saying that the gravitational field f is homogeneous suggests that the 
force is everywhere zero rather than indeterminate.11 But (C2) can be reached 
without making this extra move—and thus without employing assumption (d)—
since inferring that the force doesn’t differ from region to region gives no 
preference to a zero force over an indeterminate one. Another way to think about 
this is as follows: from symmetry it follows that if such a force field exists then it 
is homogeneous. Poisson’s equation then brings contradiction by telling us that 
such a force field does exist, and that it is inhomogeneous, which affirms the 
antecedent and denies the consequent of our conditional. 

In short what this means is that we can generate contradiction (C2) from (b') 
and (c) alone; if we want to generate the contradiction (C4) we need to draw on 
assumption (d). However, assumption (d) is in fact embedded within (b') so this 
doesn’t amount to adding a new assumption after all. But it does bring to light the 

                                                 
10 The potential was introduced by Laplace in the 1770s, and was considered as a mere 
computational tool from the very beginning (see Cat 2001, p.402ff. and Grattan-Guinness 
1990, p.332). 
11 Malament refers to ‘the assumption that, in the presence of a homogeneous mass 

distribution, the gravitational force field φa∇−  should be homogeneous itself.’ (1995, 
p.509). 
 



 14

extra and unnecessary step which is required to reach Malament’s contradiction 
(C4). One cannot reach the conclusion that the force field is homogeneous from 
symmetry alone, unless one considers a force field which is everywhere 
indeterminate as ‘homogeneous’. 
 
 

3.2  An indeterminacy contradiction 
 
The contradiction of concern in this section will be, 

 
(C5) There is a unique gravitational force on a test mass and it’s not the case that 
there is a unique gravitational force on a test mass. 

 
This isn’t quite the contradiction Norton presents in his 1995 paper, but it is 
surely what he means to present. It is worth pausing to clarify things here, since 
he doesn’t correct his mistake in his 1999 and 2002 papers. 

Norton responds to Malament’s objections (as seen above in §3.1.1) in his 
1995 paper. He accepts that there is no contradiction of forces after all, and 
instead brings to our attention what he calls an ‘indeterminacy contradiction’. On 
p.513 he adds the following assumption to (a), (b) and (c): 
 

(d*) There is a unique gravitational force on a test mass fixed by (b) and (c). 
 
Now, since Malament is right about the non-convergence of the sum, one cannot 
derive a unique gravitational force on a test mass from (b) and (c). Thus it might 
be supposed that we have a contradiction here: 
 

(C6) There is a unique gravitational force on a test mass fixed by (b) and (c) and 
it’s not the case that there is a unique gravitational force on a test mass fixed by 
(b) and (c). 

 
But on closer inspection we don’t have this contradiction after all. If we accept 
Norton’s (d*) we have, 

 
(a) Newton’s three laws of motion. 
(b) Newton’s inverse square law of gravitation. 
(c) Matter is distributed homogeneously and isotropically (when viewed on 

a large enough scale) in an infinite Euclidean space. 
(d*)  There is a unique gravitational force on a test mass fixed by (b) and (c). 

 
(d*) gives us the positive contradictory of (C6), so it only matters that we can 
derive the negative contradictory. However, even if it follows from (b) and (c) 
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that, 
 

It’s not the case that there is a unique gravitational force on a test mass. 
 
this isn’t the contradictory we want. To establish (C6) we need to add ‘…fixed 
by (b) and (c)’ on the end. But since the assumptions in question don’t refer to 
‘(b)’ and ‘(c)’ at all this is an impossible task. (C6) can’t be derived from (a)-(d*) 
after all. 

It is clear what has happened here. In specifying (d*) Norton has accidentally 
mixed up the theory and the meta-theory. He actually meant to add, 
 

(d)  There is a unique gravitational force on a test mass 
 
which leads to contradiction (C5), as we will see in the next section. 
 

3.2.1  …using Newton’s law of gravitation 
 
We saw in §3.1.1 that, as Malament claims, assumptions (a), (b) and (c) tell us 
that the net force on a given test mass is undetermined. But (d) tells us that the 
net force on a test mass is determined. And the introduction of (d) should not be 
dismissed as the ad hoc introduction of the required contradictory. In fact, the 
introduction of (d) is merely the explicit mention of an assumption which is 
already an integral part of Newton’s three laws (a). Take Newton’s second law 
F=ma, for example. What this really means is that, when we observe massive 
bodies in elliptical orbits around the sun, and thus accelerating towards the sun, 
that acceleration is caused by a force on the massive body.12 That force, strictly 
speaking, is the total net force experienced by that body, and not just the force 
due to the sun itself. Now either bodies are accelerating or they are not. Whatever 
the case they are experiencing a unique gravitational net force, which is inferred 
by taking their acceleration and multiplying it by their mass. Similarly, Newton’s 
first and third law presume that bodies experience such a unique net force. Thus 
the introduction of (d) is not the introduction of a new assumption at all, but is 
part and parcel of (a). Thus the indeterminacy contradiction (C5) is meant to 
follow from (a), (b) and (c). 

There is an important distinction to make here. Certainly from (b) and (c) we 
end up with an infinite sum which is indeterminate, from which we cannot 
achieve an answer to the question ‘what is the force?’ But can we conclude from 
here that there is no unique gravitational force on a test mass? That is, we have 
failed using (b) and (c) to determine what the force is. But couldn’t it still be the 

                                                 
12 We might say that there is a matter of fact about what part of a body’s motion is due to 
other masses (gravity) and what part is due to its own inertia (cf. Norton 1995, p.521). 
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case that there is some unique force, and that we could determine what it is by 
another method, using different reasoning or bringing in other considerations?13 
This is crucial, because if we cannot make the further assumption that no force 
exists then we cannot get to the negative contradictory in question, and the 
inconsistency claim falls down. 

The two possible inferences can be distinguished as follows: 
 

(I)    from indeterminacy infer that no solution has been reached. 
(I*)  from indeterminacy infer that there is no solution. 

 
If one makes the weaker inference (I) then the reasoning continues as follows. 
The fact that we can’t figure out what the force is from (b) and (c) can be 
represented by a question mark (cf. §3.1.2, above): 

 

43421
)(),(),(

?
Icb

i i∑ =F  

 
On this understanding, all options are still open—there might be some other way 
to determine what the unique force on a test mass is. There is then no 
contradiction with (d). We might formalise (d) thus: 
 

44 344 21
)(

3 ,
d

netFkk =ℜ∈∃ . 

 
In other words, there exists some vector quantity which equals the net force on a 
test particle.14 If we believe that (b) Newton’s law of gravity holds then we can 
add, 
 

43421
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Placing these beside each other we have, 
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13 This is suggested by Norton’s introduction of (d*). (d*) says that there is no force fixed 
by (b) and (c), not that there is no force. 
14 Of course before the introduction of ‘real numbers’ and the like physicists would have 
talked vaguely about ‘quantities’, but that doesn’t affect the argument at hand. 



 17

 
Now, by substitutivity of identicals, we can fill in the question mark and write: 
 

444 3444 21
)(),(),(

3 ,
dcb

i i∑=ℜ∈∃ Fkk  

 
There is no contradiction here. We couldn’t find an answer to our indeterminate 
sum using (b) and (c), but there is some answer, yet to be discovered. 

This is, of course, the wrong way to think about indeterminate sums. Not only 
do we get no answer when we are faced with an indeterminate sum, we find that 
there is no answer, there cannot be an answer, as stated by (I*).15 As far as the 
sum of gravitational forces goes, this means that, 

 

444 3444 21
*)(

3 ,
I

i i∑ ≠ℜ∈∀ lFl . 

 
With this in place we really do have our contradiction. We now have the 
following three equalities: 

 

44 344 21
)(

3 ,
d

netFkk =ℜ∈∃    
43421

)(b

i inet ∑= FF    
444 3444 21

*)(),(),(

3 ,
Icb

i i∑ ≠ℜ∈∀ lFl  

 
From the substitutivity of identicals we can then write, 
 

lklk ≠ℜ∈∀ℜ∈∃ ,, 33  
 
To be logically rigorous, we could now perform existential and universal 
instantiation to reach the conclusion a≠a. In other words it follows that some 
three-vector a is not equal to itself, a blatant contradiction. 

Thus the inference we make when faced with an indeterminate sum decides 
whether we derive a contradiction or not. As we will see further in §4.2, the force 
of inference (I*) can be easy to overlook, and has been overlooked by several 
authors both in the distant and recent past. Perhaps the most obvious temptation 
is to say that the indeterminacy result tells us that absolute forces in the universe 
do not exist (that our metaphysics is wrong).16 But then it seems we must accept 
                                                 
15 Cauchy wrote in 1821, ‘a divergent series does not have a sum’. However, in this 
paper I am assuming only that alternating divergent series do not have a sum. The reason 
is that, if we are talking physics (rather than mathematics) we cannot infer that a quantity 
which ‘diverges to infinity’ is equal to nothing. Infinity counts as ‘something’ here. 
16 This is the conclusion of Norton’s 1995 paper (see especially p.515). 
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that massive bodies are not experiencing a force. And if bodies are not 
experiencing a force, then we have an absence of force, for which we could 
surely write F=0. Indeterminacy of force would end up being just another way of 
saying that there is zero force. But then we would apparently have shown that 
indeterminate series like Grandi’s do have a sum after all—they sum to zero! 
This in itself is a contradiction: indeterminate series do not sum to zero.  

This follows from the assumption that absolute forces in the universe do not 
exist, but we can’t infer that absolute forces in the universe do exist either, since 
this is also incompatible with an indeterminate force. But, drawing on bivalence, 
we can freely assume that absolute forces either do or do not exist in the 
universe—this is a tautology. Since the derivation of an indeterminate force F is 
incompatible with this tautology, we must infer that to derive an indeterminate 
force is to derive a contradiction. That contradiction is: 

 
(C7) It is not the case that (absolute forces in the universe do exist or absolute 
forces in the universe do not exist) 

 
From (C7) a contradiction ‘A&~A’ follows immediately, since the negation of a 
disjunction implies the negation of both disjuncts. So it would seem that our 
‘indeterminacy contradiction’ (C5) is superfluous. One of the contradictories of 
(C5) is itself a contradiction (or at least implies a contradiction), so we don’t 
need to add assumption (d) at all.17 

So, in conclusion, the theory really is inconsistent in this way, since one can 
reach contradiction (C7) from (b) and (c). One can also reach contradiction (C5) 
from (b), (c) and (d). Including (d) in our assumption set makes the inconsistency 
even more obvious, and since (d) was clearly assumed by nearly everyone in the 
relevant period (C5) will be the more interesting contradiction when in §4 we ask 
‘Why weren’t the inconsistencies noticed?’ 
 

3.2.2  …from summing the potential φ 
 
There is one final method of reasoning we have not yet considered, and there is 
something of a tradition of using it to demonstrate the failures of the theory. The 
gravitational potential at a point r due to a given mass mi at ri can be expressed 
thus: 
 

     
rr

r
−

−=
i

i
i

m
G)(φ     (*) 

                                                 
17 This shows Malament’s suggested distinction (1995, p.489) between the theory being 
inconsistent and the theory being ‘unacceptable a priori’ (because of indeterminacy) to 
be no distinction at all. Indeterminacy is inconsistency. 
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The net gravitational potential at a point will then be )()( rr iinet φφ ∑= . This 

then gives rise to a new assumption about forces in the universe: 
 
(e) The net force of gravity Fnet on a body mt at r is given by 

)()( rrF nettnet m φ∇−= , where φnet is achieved by summing the 
gravitational potential (*). 

 
But the problem with this method of reasoning is that the net gravitational 
potential is everywhere infinite: whereas the components of force on two 
opposite sides of a test mass, being vector quantities, cancel each other out (to 
one degree or another), the components of potential, being scalar quantities, 
accumulate. This time not only does the sum diverge to infinity, but it diverges to 
infinity relatively quickly because the potential is a 1/r relationship, whereas 
masses in the universe increase with r2.18 

What should we conclude from the fact that the potential diverges to infinity at 
every point? As noted in §3.1.3, the potential is merely a mathematical tool, used 
to mediate between physical masses and forces. If there is trouble in an infinite 
potential, that should only be in the fact that the physical consequences are 
unpalatable. Now, as stated, to reach the force on a test mass mt from the 
potential we need to take its gradient: )()( rrF φ∇−= tm . But if φ is infinite 
everywhere this operation isn’t possible, because it is not defined for infinity. 
One cannot proceed to derive F(r)=0, reasoning that φ(r) is everywhere constant. 
‘Constant’ refers to numerical constancy, and infinity is not a number. Thus, I 
suggest, not only do we find that we don’t know what F is in this case, we find 
that F is indeterminate. Thus summing the potential is consistent with summing 
the force directly using Newton’s law of gravity (b), as in §3.2.1. So this is really 
just the same problem of indeterminacy in a different guise. 

There have been several related discussions, but nowhere has the problem been 
identified with indeterminacy. Jaki (1969) writes of a ‘gravitational version of 
Olbers’ paradox’ where in the latter case, in an infinite, homogeneous universe, 
the light from distant stars accumulates to give an infinite amount of light at any 
point.19 In the gravitational case Jaki (1979) writes, 

 
An infinite universe of homogeneously distributed stars or galaxies cannot exist 

                                                 
18 Cf. Norton 1999, p.273. Grandi’s series arises in the context of Newtonian cosmology 
for the force because the force is a 1/r2 relationship and masses in the universe increase 
with r2, thus cancelling each other out. 
19 Olbers, in 1823, derived that the light at any point in the universe would be equal to 
k(1+1+1+1+…) for a given constant k (see Jaki 1969, p.134f.). Clearly this is not 
indeterminate: it diverges to infinity. 
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because in such a universe the gravitational potential is infinite at any point. 
(p.121) 

 
But unlike light the potential is a non-physical thing. Nowhere do we find a 
discussion of exactly why an infinite potential is impossible; nowhere is there a 
discussion of indeterminacy. And those whom Jaki draws on apparently think 
that the theory demands genuinely infinite forces. In particular, Jaki draws at 
length on Einstein (1917), who argues as follows: 
 

According to the theory of Newton, the number of “lines of force” which come 
from infinity and terminate in a mass m is proportional to the mass m. If, on the 
average, the mass-density ρ0 is constant throughout the universe, then a sphere of 
volume V will enclose the average mass ρ0V. Thus the number of lines of force 
passing through the surface F of the sphere into its interior is proportional to ρ0V. 
For unit area of the surface of the sphere the number of lines of force which 

enters the sphere is thus proportional to 
F
V

0ρ  or to ρ0R. Hence the intensity of 

the field at the surface would ultimately become infinite with increasing radius R 
of the sphere, which is impossible. (Einstein 1917, p.106) 

 
This is worth quoting in full, because to my knowledge it has not yet been made 
clear that this reasoning is seriously incomplete. What does Einstein mean by the 
final words ‘which is impossible’? Rather than focusing on the potential φ he is 
here focused on the force field f, the force per unit volume at a point. It is 
certainly true that, in our infinite universe, there will be an infinite component of 
f in a given direction, but what is so impossible about this? The impossibility 
only comes when we consider the combined effect of all such infinite 
components and find that the result is indeterminate, as in §3.2.1, above. The 
impossibility does not lie simply in the absurdity of an ‘infinite force field’, as 
Einstein suggests. 

The supposition that it is possible to derive infinite forces is not unique to 
Einstein. Seeliger, who finally shed light on the problems with Newtonian 
cosmology in 1895, supposes that there are infinite forces in a follow-up paper of 
1896. He writes, ‘It follows from potential theory that there must be in the 
universe unlimited (infinitely) great accelerations.’ (cited in Norton 1999, p.279, 
emphasis in original). But this simply isn’t the case. Once again, all that is shown 
is that there will be an infinite component of force in a given direction, or that the 
potential will sum to infinity. Kelvin is similarly unclear in 1901 (see Norton 
1999, p.285). 

In summary, we do get a contradiction here from summing the potential, and it 
is once again the indeterminacy contradiction (C5). This time we reach the 
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conclusion because the gradient of a scalar field which is everywhere infinite is 
indeterminate just as the sum of an alternating divergent series is indeterminate. 
So what we have here is not a ‘qualitatively different’ type of problem, as Norton 
claims (1999, p.279), but just a different way of reaching the same conclusion. 
 

3.2.3  …using Poisson’s equation 
 
Norton claims that the indeterminacy contradiction (C5) also follows from 
applying Poisson’s equation: 
 

The addition of the potential φ and Poisson equation does not materially affect 
the indeterminacy contradiction of Newtonian cosmology. There are as many 
canonical solutions as there are choices for r0. Each distinct choice of r0 leads to 
a different force on the test body. (1995, p.514) 

 
So Norton is claiming that indeterminacy follows from the fact that, depending 
on how we pick the constant of integration, we get a different result for the force. 
So no unique force follows from the theory, just as no unique force followed 
when we had an infinite sum in §3.2.1. But here as before we need to make a 
distinction between no unique force following from the theory and there being no 
unique force at all. In §3.2.1 this was expressed as two ‘strengths of inference’ 
(I) and (I*). With Poisson’s formulation we get an analogous pair of inferences: 
 

(II) From an unknown constant of integration infer that the theory provides no 
unique solution. 

(II*) From an unknown constant of integration infer that there is no unique 
solution. 

 
But this time only the weaker inference (II) is legitimate. This is because the 
reason why one cannot infer two contradictory forces is different. Recall that in 
§3.1.1 we couldn’t infer two contradictory forces because there cannot be a 
solution to an indeterminate sum. But in §3.1.2 we couldn’t infer contradictory 
forces because, although there certainly can be a solution to an equation with an 
unknown constant, the theory couldn’t tell us what it was. Since we cannot make 
the stronger inference we cannot reach the contradictory in question and, contra 
Norton, there is no indeterminacy contradiction here. 

However, when we consider the relationship between Poisson’s equation (b') 
and Newton’s law of gravitation (b) we do find a conflict. Malament (1995, 
p.491, fn.6) claims (b') is actually a generalisation of (b) because when the 
infinite sum in question converges (b) and (b') agree, whereas (b') can also be 
applied when the sum doesn’t converge. He writes,  
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There is a clear sense in which it [(b')] is a generalization, with a wider domain of 
application… The “integral” formulation [using (b)] is not applicable to 
cosmological contexts of the sort we have considered. (pp. 491 and 508) 

 
But why can’t (b) also be applied when the sum does not converge? To say that it 
cannot seems to be to pick and choose which parts of a theory you apply 
depending on whether you run into a problem. On this understanding any 
inconsistent theory is made consistent by claiming that certain machinery does 
not apply in certain circumstances, wherever there is an undesirable result. But if 
we eschew this ‘toolbox’ construal of Newtonian cosmology and consider it 
instead as a candidate for the explanatory truth of the world then such picking 
and choosing is illegitimate. One can apply (b) to an infinite homogeneous 
universe, and one infers that the force is indeterminate. But, as already seen in 
§3.1.2, using Poisson’s equation instead we can move from ρπφ G4)(2 =∇ r  to 

 
2

03
2)( rrr −= ρπφ G , 

 
where r0 must be some real number (it cannot be indeterminate since then it 
would not be a solution to Poisson’s equation). And from here, using 

)()( rrF φ∇−= tm , since one has a determinate potential one has a determinate 
force. So what we really find here is not that Newtonian cosmology with (b') is a 
generalisation of Newtonian cosmology with (b), but that the two give us 
contradictory results. From (b), (b') and (c) we can infer the indeterminacy 
contradiction (C5), where this time the determinacy of the force follows from 
(b'). 
 
 

4  Why weren’t the inconsistencies noticed? 
 
In all this we find four notable inconsistencies: 
 
(I1) C2 follows from (b') and (c). (§3.1.3) 
(I2)       C5 follows from (b), (c) and (d). (§3.2.1) 
(I3) C5 follows from (e), (c) and (d). (§3.2.2) 
(I4) C5 follows from (b), (b') and (c). (§3.2.3) 
 
In a sense, then, Newtonian cosmology was riddled with inconsistency. Further, 
the assumptions in question are clearly relevant to the real history of science to 
some degree or another. This paper is not the place for a detailed history, but 
Jaki’s history of Olbers’ paradox (Jaki 1969) is a good place to start. Each of the 
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assumptions in question enjoyed serious commitment for the relevant periods in 
between the years 1700 and 1900, and most were widely regarded as obvious 
truths.20 

Thus the question of why the inconsistencies remained hidden for so long is 
more important than ever. This brings us back to questions (i) and (ii) introduced 
in §1: 
 

(i) What was it about the scientific community which prevented the 
inconsistencies from being noticed? 

(ii) What was it about the science which prevented the inconsistencies 
from being noticed? 

 
In particular the content of the present paper enables us to provide an answer to 
question (ii). In addition, in §4.1, some relevant features of the scientific 
community are introduced to provide the beginnings of an answer to question (i). 
 
 

4.1  Because the right question wasn’t asked 
 

There are a multitude of reasons why the question which leads to the 
inconsistencies wasn’t asked. The above analysis highlights one reason in 
particular: the relevant question is actually rather obscure. This is made obvious 
by the contradiction of forces (C2) of §3.1.3. We are not asking what the actual 
force on a given body is: to answer this one would need to know, absurdly, the 
positions and masses of an infinite number of bodies. Rather, our question (Q) 
needs to be changed to, 
 

(Q') What is the average net gravitational force a test body would experience 
over all points of an arbitrary region of the universe R of a given volume V large 
enough so that the universe is homogeneous at that scale? 

 
This could also be framed in terms of the force field f, as per Malament (§3.1.3), 
but still we would not get away from the complications of averaging. And, 
complications aside, it isn’t immediately clear why this question is an interesting 
one, except that answering it in two different ways leads to inconsistency. 

So even if relevant individuals had been asking pertinent cosmological 

                                                 
20 Perhaps this is less obvious regarding assumption (c), and there were some who 
doubted both the infinitude of the universe and its homogeneity, but the majority were 
convinced. For example, Bertrand Russell was convinced enough to write in 1897 that 
the infinitude and homogeneity of the universe, far from being working hypotheses (say), 
were scientific principles ‘established forever’ (as Jaki (1969, pp.184 and 220) puts it). 
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questions there is some reason to suppose that the question at issue wouldn’t 
have been asked. But the fact is that, particularly in the 19th century, the relevant 
individuals weren’t asking cosmological questions at all. Merleau-Ponty (1977, 
p.283) refers to ‘the disappearance of cosmological science as such in the 
nineteenth century, that is, the investigation of the properties of the Universe 
considered in its totality—until its surprising revival in the twentieth century.’ It 
is this ‘revival’ which explains the title of his book of 1976 (co-written with 
Morando): The Rebirth of Cosmology. Therein he goes as far as to say that, in the 
19th century, ‘cosmology itself no longer existed’ (p.66). 

This is a remarkable claim, since there was certainly much work in astronomy 
and celestial mechanics during this period. But, regarding the former, ‘in the 
course of the [19th] century astronomers were discussing the nature and internal 
structure of individual nebulae rather than the wider cosmological problem.’ 
(North 1965, p.16. Cf. Jaki 1979, p.117 and Merleau-Ponty 1977, p.291). 
Similarly those working in celestial mechanics, such as Poisson himself, avoided 
cosmology entirely. For example Laplace, one of the founding fathers of celestial 
mechanics and active in the late 18th and early 19th centuries, never made even a 
single conjecture as to the structure of the universe as a whole (Merleau-Ponty 
1977, p.283; Jaki 1969, p.98). And later in the 19th century, as Jaki puts it, ‘The 
silence of Urbain J. J. Leverrier, the most celebrated French astronomer of those 
times… illustrated the typical aversion to cosmological problems on the part of 
most skilful experts on celestial mechanics.’ (1969, p.157). 

In the light of such facts we may consider afresh the question ‘Was Newtonian 
cosmology inconsistent?’ In the 19th century the answer should really be neither 
‘yes’ nor ‘no’; rather there is a mistake in the question, since Newtonian 
cosmology did not exist in this period in any meaningful sense. In the terms of 
§2, above, we may say that the relevant assumptions were not brought together 
scientifically because cosmological questions were not being asked which would 
have required them to be brought together. This is of course especially relevant 
to inconsistencies (I1) and (I4), since they both draw on Poisson’s equation 
which was only introduced in 1813. And (I3), which depends on potential theory, 
is similarly mainly relevant to the 19th century (recall that Laplace introduced the 
potential in the 1770s). 
 
 

4.2  Because of confusion about non-convergent series 
 
Before the 19th century there is more interest in questions of cosmology, but 
before the 19th century is before Cauchy. Since inconsistencies (I2), (I3) and (I4) 
lead to the indeterminacy contradiction (C5), appreciating them depends on 
making the right inference when faced with a non-convergent series. Thus there 
is some reason to suppose that a lack of understanding of the relevant 
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mathematics contributed to the inconsistency going unnoticed. In general terms 
we may say that one of the inferences necessary for the derivation of the 
contradiction was a peculiar type of inference, alien to the relevant individuals. 
More specifically, I will provide some evidence in this section that certain 
individuals made inference (I) rather than inference (I*), as introduced in §3.2.1, 
and repeated here for convenience: 
 

(I)    from indeterminacy infer that no solution has been reached. 
(I*)  from indeterminacy infer that there is no solution. 

 
This will also constitute my preferred explanation of the attitudes of those—Isaac 
Newton and Svante Arrhenius—who favour what Norton calls the ‘no-solution 
needed’ solution to the inconsistency. He characterises their attitude as follows: 

 
They are aware of the inconsistency but ignore the possibility of deriving 
results that contradict those that seem appropriate… At first glance, it would 
seem that the physical theorists avoid logical anarchy by the simple expedient 
of ignoring it! (2002, p.191) 

 
Instead I claim that they weren’t aware of the inconsistency after all, because 
they only made inference (I)—‘no solution reached’—and not (I*)—‘no solution 
possible’. To decide between Norton’s claims and my own a look at the primary 
evidence is required. 

First to Newton. Was he aware of the inconsistency and chose just to ignore it, 
as Norton claims? In fact, although Norton does describe Newton as subscribing 
to a ‘no-solution solution’ in his 2002 paper, in his historically focused 1999 
paper he suggests instead that Newton wasn’t aware of the inconsistency. When 
the theologian Richard Bentley pressed Newton on the gravitational 
consequences of an infinite universe in 1692, Newton referred to how 
mathematicians handle infinities in terms of limits and convergence. Thus Norton 
concludes, 

 
Having recalled for us that there are perfectly good methods of comparing 
infinites by means of limits, Newton seemed not to have applied them himself to 
the problem at hand… It is hard to understand how Newton could make such a 
mistake. His mathematical and geometric powers are legendary. Perhaps Newton 
was so sure of his incorrect result from the symmetry considerations that he did 
not deem it worthwhile the few moments reflection needed to see through to a 
final result. (1999, p.290f.) 

 
This story goes against the ‘no-solution solution’ as described in his 2002 paper. 
He further writes that Newton ‘would surely have noticed’ that there was an 
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inconsistency if only he had applied the relevant mathematics. So it is not the 
case, then, that Newton noticed the inconsistency but chose to ignore it, as per 
the ‘no-solution solution’. 

This suggests that we read Norton in another way. In sum he appears to be 
saying that either (i) Newton didn’t apply the relevant mathematics and so didn’t 
notice the indeterminacy, or (ii)—the ‘no-solution solution’—Newton did apply 
the relevant mathematics, noticed the indeterminacy, and chose to ignore it. 
Neither of these is particularly plausible. 

This paper can offer an alternative explanation. The fact that Newton is clear 
on how to handle converging infinite series is actually irrelevant insofar as 
Newtonian cosmology is concerned. The relevant series is infinite and diverging, 
so Newton couldn’t have applied the methods of limits to the problem at hand (as 
Norton suggests). And in fact Newton’s grasp on divergent series, and alternating 
divergent series in particular, was not good. In his most in-depth writings on 
infinite series21—an unpublished essay from 1684 entitled ‘On the computation 
of series’—Newton blatantly overlooks the fact that a divergent alternating series 
has no sum. Following one particular passage Whiteside’s annotation reads, 
 

He has, however, ignored the unpleasant fact that no unique sum is assignable to 
a divergent alternating series. (Newton 1971, p.611) 

 
I take it that Whiteside is using the word ‘ignore’ in a loose sense here, and 
doesn’t mean to suggest that Newton saw the correct conclusion but decided to 
ignore it. Newton was not in the habit of ignoring what he knew to be correct 
conclusions. 

In sum, then, a ‘third way’ seems a more plausible explanation of Newton’s 
attitude than either of Norton’s suggestions. This is to suppose that Newton did 
make the calculation in question, but upon coming across an alternating, 
divergent series made inference (I)—no solution reached—rather than inference 
(I*)—no solution possible. Since he found no solution, but didn’t conclude that 
there was no solution, he tried a different tack. As Norton notes, ‘symmetry 
considerations’ guided him, and he concluded that the average net force must be 
zero (as per §3.1.3, above).22 The infinities must balance after all, although 
apparently mathematics isn’t up to the task of showing us this. 

To give a second example, Norton writes that Arrhenius ‘laid out a clear 
statement of the ‘no-solution solution’.’ Arrhenius wrote in 1909, 
 

[I]t is very much understandable that Seeliger’s argumentation is frequently 
construed as conflicting with the infinity of the world. This, however, is not true. 

                                                 
21 See Whiteside’s annotation in Newton 1981, p.267. 
22 Jaki (1969, pp.60-65) gives a nice discussion. 
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The difficulty lies in that the attraction of a body surrounded by infinitely many 
bodies is undetermined according to Seeliger’s way of calculation and can take 
on all possible values. This, however, only proves that one cannot carry out the 
calculation by this method. (cited in Norton 1999, p.291, emphasis added) 

 
Certainly Arrhenius did not think that there was an inconsistency, as Norton 
suggests. The confusion here seems to rest with what Arrhenius means by 
‘cannot’. As Norton interprets it, when Arrhenius says that ‘one cannot carry out 
the calculation by this method’ he means that, although mathematically sound, 
one must avoid that method of calculation because it leads to contradiction. This, 
however, leaves inexplicable why Arrhenius thinks there is no conflict. Things 
make more sense if we read ‘one cannot carry out the calculation by this method’ 
more literally. Arrhenius means that one just doesn’t get an answer that way—
‘one does not reach a solution be this method’—because the sum in question is 
indeterminate. But this means that there still may be an answer, and he suggests 
zero (based, again, on symmetry considerations). His mistake is in not making as 
strong an inference as he ought to make when faced with non-convergence (he 
makes inference (I) instead of (I*)). This is a mistake, but it is not the mistake 
Norton takes it to be. 

Even as late as 1954 Layzer, criticizing Milne and McCrea’s neo-Newtonian 
cosmology of the 1930s, made this same oversight and claimed that we should 
infer that F=0 everywhere (Layzer 1954, p.269). McCrea put things straight the 
following year: 
 

[I]f the gravitational force is to be defined in the present manner, then it does not 
exist in the case of uniform density. Accordingly, nothing further can be inferred 
about this case. In particular, we may not proceed to argue, as Layzer does, that 
the force must be the same at every point, and thence that it must be zero. For, in 
order to prove that a force takes any value, in particular the value zero, the force 
has to exist in the mathematical sense. (1955, p.273, emphasis added) 

 
What he surely means by the final remark is that, if the force really is equal to an 
indeterminate sum, then it can take no value, including zero. 

Still other authors who clearly do understand non-convergence very well aren’t 
sufficiently careful with their words to make the distinction between the force 
being zero (it is determined) and the force not existing (it isn’t determined). Even 
parts of Malament (1995) are unclear on this point. In his criticism of Norton 
(1993) he writes, 
 

The integral I is not convergent, and so it is not the case that I = I1 + I2 + I3 +… 
[…] Newtonian theory … makes no determination [of gravitational force] at all. 
(p.491, original emphasis) 
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Here we have two clear statements of the weaker of our two inferences (I). The 
stronger inference (I*) would state not only that Malament’s integral ‘I’ is not 
equal to I1 + I2 + I3 +… but that it is equal to no quantity whatsoever. And it 
would state not only that Newtonian theory makes no determination of the net 
gravitational force, but that Newtonian theory states that the net gravitational 
force cannot be any quantity. Compare this with §3.1.2, where Poisson’s 
equation makes no determination of the net gravitational force (because we are 
left with unknown constants of integration), but nevertheless demands that it is 
some quantity.23 

This subtle confusion between no force being found and no force being 
possible (even zero) is just the tip of the iceberg when it comes to confusion 
about divergent series in the relevant period, especially in the 18th century. Euler 
and others set the sums of divergent series equal to certain quantities right 
through the 18th century, and were able to reach startling correct conclusions by 
manipulating them (see Hardy 1949, ch.1). That is, setting divergent summations 
equal to certain values proved to be extremely fruitful. In addition, as Hardy 
explains, ‘there is only one sum which it is ‘reasonable’ to assign to a divergent 
series: thus all ‘natural’ calculation with the series [1-1+1-1+…] seems to point 
to the conclusion that its sum should be taken to be ½’ (Ibid., p.6). Apart from 
the fact that ½ is the mean of 1 and 0, there were some very persuasive reasons to 
set Grandi’s series equal to ½. For example if we set 

 
S = 1-1+1-1+1-1+…. 

 
then we might conclude that, 
 

1-S = 1-(1-1+1-1+1-…) = 1-1+1-1+1-… = S. 
 
This would mean that 1=2S, or that S=1/2. Another method was to consider the 
binomial expansion (discovered by Newton in the 1660s), 
 

...1
1

1 32 +−+−=
+

xxx
x

. 

 
This was known to converge for all x such that 0≤x<1. But if it holds for all such 
x then in the limit at x goes to 1 we find that, 

                                                 
23 Further, Malament’s statement that Newton’s law of gravitation is ‘not applicable’ 
when the series in question doesn’t converge (see §3.2.3, above) also suggests the weaker 
inference (I). And recall also Norton’s introduction of assumption (d*), rather than (d), 
which strongly suggests the same. 
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...1111
2
1

+−+−=  

 
This latter method had already been recommended by Leibniz and was still 
popular one hundred years later, in the early 19th century. Poisson himself 
favoured this reasoning, despite living in the time of Cauchy’s groundbreaking 
Cours d’Analyse of 1821, and he ‘retained this staple component of his analysis 
throughout his life’ (Grattan-Guinness 1970, p.88; see also Laugwitz 1989, 
p.218ff.). In fact, Grattan-Guinness claims that when Cauchy wrote in italics ‘a 
divergent series has no sum’ it was partly aimed at Poisson (Ibid.).24 And even as 
late as 1844 De Morgan still failed to appreciate that Grandi’s series did not sum 
to ½ (see Hardy 1949, p.19f.). 

Finally we may speculate as to what might have happened had someone such 
as Leibniz, Poisson or De Morgan noticed the relationship between Grandi’s 
series and cosmology. Presumably, if they had followed Norton’s 1999 analysis, 
they would have set Grandi’s series equal to ½ and reached  x̂2

1 rG Δπρ  for the 
net force (recall §3.1.1, above). But even then the direction of the force is 
indeterminate. Perhaps they would then have concluded that the only force 
compatible with an indeterminate direction was F=0, and that this was anyway 
the ‘average’ of x̂2

1 rG Δπρ  in all possible directions. Whatever the case, this 
would have made for a particularly interesting alternative history. 
 
 

5  Conclusion 
 
The complex web of interrelated assumptions which make up ‘Newtonian 
cosmology’ are thus at least partially disentangled. In the course of this analysis 
we learn a little more about why inconsistencies eluded us in the past, and how 
these inconsistencies eventually came to light. What was required was for 
someone with the relevant expertise to ask the right question. In addition, the fine 
distinction between inferences (I) and (I*) was crucial. Such issues are more 
important to cosmology than other science, because within cosmology only a tiny 
subset of conceivable experiments can actually be carried out. Advances which 
can be made without the need for experiment are thus most valuable. Similarly in 
the current age of science, where it is becoming more and more difficult and 
expensive to test theories by experiment, the more we can learn about our 
theories without having to turn to the laboratory the more chance we have of 
making the next step forward. Reflecting on the mistakes of past science may in 

                                                 
24 For more on Poisson and divergent series see Grattan-Guinness 1990, p.731f. 
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some small way help us to take that next step. 
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