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Just as Boolean rules define Boolean categories, the Boolean operators define
higher-order Boolean categories referred to as modal categories. We examine the
similarity order between these categories and the standard category of logical
identity (i.e. the modal category defined by the biconditional or equivalence
operator). Our goal is 4-fold: first, to introduce a similarity measure for
determining this similarity order; second, to show that such a measure is a good
predictor of the similarity assessment behaviour observed in our experiment
involving key modal categories; third, to argue that as far as the modal categories
are concerned, configural similarity assessment may be componential or
analytical in nature; and lastly, to draw attention to the intimate interplay that
may exist between deductive judgments, similarity assessment and categorisation.
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1. Introduction

In recent years, there has been renewed interest in the study of Boolean concepts
(i.e. categories defined by Boolean rules): in particular, on how the formal properties
of such categories account for their learnability (Feldman 2000; Vigo 2006; Lafond,
Lacauture and Mineau 2006, Vigo 2008). The Boolean expressions or rules that define
Boolean concepts are built with the building blocks of logic: namely, Boolean operators or
logical relations such as conjunction, disjunction, equivalence, implication and exclusive-
or. These operators are the ‘glue’ that keeps a set of objects bound as a category. Although
they play a fundamental role in concept formation, categorisation, syntax and in
reasoning, their cognitive roots have seldom been questioned. They remain abstract
constructs of the highest order, able to organise our world in mysteriously fundamental
ways, which prompt us to ask: What makes these Boolean relations so fundamentally
important to our understanding of the world?

Like the Boolean relations, similarity relations have played a fundamental role in
cognitive science. Indeed, long regarded as a core process of human cognition, similarity
assessment has been central in understanding categorisation and object recognition
behaviour. For example, similarity is the basis of Luce’s choice model of similarity
(Luce 1952), the generalised context model of categorisation (Nosofsky 1984), and
Shepard’s law of generalisation (Shepard 1987). More recently, it has been suggested
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that similarity judgments may operate at multiple levels of comparative analysis.

Under this view, categorisation and concept formation are processes mediated by

similarity and dissimilarity comparisons at multiple levels of attention (Herrnstein 1990;

Love 2000; Kroger et al., 2005). This is consistent with the view held by the analytic

philosopher Rudolf Carnap (1928) who argued that abstract concepts could be derived

from fundamental core experiences via the primitive formal relations of similarity and

modality (the logical relations). In Carnap’s framework, similarity and logic combine to

yield the primitive abstract relations necessary for forming higher-level concepts from our

primitive experiences.
The connection between similarity and the logic operators is further enhanced by the

fact that categorisation based on similarity judgments and on the construction of logical

rules, both have been offered as core explanatory principles underlying human concept

formation (Nosofsky, Palmeri and McKinley 1994). Perhaps more compelling is the fact

that key models of similarity have relied on the the logical relations to do their work in the

first place; most notable among these is Tversky’s (1977) model of similarity assessment

based on the logic of sets. In what follows, we propose the inverse of this characterisation

of similarity in terms of logic. We wish to show that the meaning of the Boolean operators

themselves, the building blocks of Boolean logic and of Boolean concepts, is found in a

similarity relation. One of the reasons why this is not an easy hypothesis to prove stems

from the highly abstract meaning attributed to the connectives in the propositional

calculus in the terms of either propositions (intensional entities) or truth values

(extensional entities). Such representations may suffice for philosophical analysis but

not for cognitive science.
Accordingly, to address this problem successfully, we follow the well-known approach

of using Boolean expressions as Boolean rules that in turn define well-defined categories

(Vigo 2006). This approach has been the staple of Boolean concept research and has led to

a number of significant advancements in the field such as the SHJ learning difficulty

ordering (Shepard, Hovland and Jenkins 1961) and the learning difficulty ordering of

concepts defined by basic Boolean rules involving a single connective (Haygood and

Bourne 1965). For example, in the latter research, Haygood and Bourne presented subjects

with four dimensional stimuli and two focal attributes related by some rule unknown to

the subjects. The rules tested were a conjunctive rule, a disjunctive rule, a conditional rule,

and a rule of joint denial (i.e. only objects that are neither a nor b are positive examples of

the concept). Subjects were then asked to identify the rule in question.
Subject performance was measured by the number of errors made before achieving

16 correct responses in a row. It was discovered that conjunctive rules were the least

difficult to learn, followed by disjunctive rules, joint denial rules, and finally conditional

rules. The result that disjunctive rules are more difficult to learn than conjunctive rules was

consistent with a number of previous empirical findings: most notably those of Hunt and

Hovland (1960), Welles (1963) and Conant and Trabasso (1964). Like in the work of these

researchers, we identify Boolean constructs with categories. However, our approach differs

in that the Boolean operators themselves, alone, define specific Boolean metacategories

referred to as ‘modal categories’. As we shall see, there are only 16 possible types of modal

categories corresponding to the sixteen possible binary Boolean operators. These are rich

in structure and when compared to the standard category of logical identity (i.e. the modal

category defined by the logical equivalence Boolean operator), they yield a clearly defined

similarity order.
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The layout of this article is as follows. Under Section 2, we introduce a representation

of the modal categories as vectors of functions with two possible values. In Sections 3–5,

we introduce a componential modal similarity measure on these representations that

yields a degree of similarity for each modal category in respect to the standard category

corresponding to logical equivalence. The approach taken here is one of step by step

construction in the tradition of analytic philosophy. Section 6 of the article introduces the

experimental paradigm used to test the predictions made by the measure. Also, it is here

that we show that our model of modal similarity makes the correct empirical predictions.
Based on our results, we propose that the logical connectives may be simply a

shorthand for expressing degrees of modal similarity; these degrees correspond to different

strengths of the conceptual ‘glue’ described above. This interpretation gives a highly

plausible answer to why disjunctive concepts are more difficult to learn than conjunctive

concepts. The answer is that disjunctive glue is weaker! Tacit to this point of view is the

idea that deductive reasoning, and indeed other forms of human inference, may depend

substantially on similarity assessment and categorisation. As such, we conjecture that

language-based representations – such as propositions and truth-values – may not be

necessary for deductive thought. Finally, in the conclusion we discuss some open problems

and some suggestions for further research.

2. Modal categories

A modal category is a relational category or metacategory (i.e. a category of categories)

consisting of up to four subcategories. Each subcategory contains a pair of objects and

each object in each pair possesses or lacks a certain specified single feature. Figure 1 below

illustrates a perceptual instance of the modal category described by the logical equivalence

operator in respect to the feature ‘black’.
This category consists of two subcategories. In the first subcategory, we see two objects

that bear a simple relation in respect to a pre-specified feature: namely, both objects are

black. In the second subcategory, the same two objects bear a similar simple relation:

namely, the colour black is absent from both. Together, these two subcategories form the

modal relational category of logical equivalence since the relationship between its two

subcategories is definable completely by the logical equivalence or biconditional operator.

Recall that the biconditional operator assigns a value of true or 1 to two of four possible

states: that is, when both objects (usually propositions) have the value true or 1, and when

Figure 1. Modal relational category (metacategory) in respect to the feature ‘black’ and
corresponding to logical equivalence.
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both objects (usually propositions) have the value false or 0. To the remaining two states

of (1, 0) and (0,1), the equivalence operator assigns a value of false or 0.
More generally, a binary Boolean operator is a function from the cross product

O¼ {1, 0}� {1, 0}¼ {(1, 1), (0, 0), (0, 1), (1, 0)} to the set {1, 0}. There is a total of 24 ways

of assigning values to the four pairs in {1, 0}� {1, 0}. Hence, there are 16 possible binary

Boolean operators. For example, the modal category in Figure 1 above is defined by the

following function in extension (i.e. in terms of sets): {((1, 1), 1), ((0, 0), 1), ((0, 1), 0),

((1, 0), 0) }. By interpreting the pairs to which the function assigns a zero value (i.e. each

pair of arguments with a zero next to it in the previous set) as the pair not being present in

the category, we can further reduce this set to the set {(1, 1), (0, 0)}. These two pairs

represent the two subcategories of the modal category of logical equivalence discussed

above (Figure 1).
Using Boolean operators as descriptions of modal categories suggests that modal

categories, and the objects comprising them, may be construed as functions from features

to the modal states of presence and absence. This qualitative characterisation of a modal

category will prove useful in defining our similarity measure. Thus, we shall say that

a stimulus-object s is endowed – in respect to a specified attended property or feature ’ –

with a binary dimension of modality whose possible values are A (whenever the property or

feature is absent) and P (whenever the property or feature is present). For example,

suppose that the stimulus in question is a sphere and the property in question is the

property ‘red’. Let s stand for the sphere and ’ for the property ‘red’; then, the stimulus s

acts as a function on ’ and is defined as follows:

sð’Þ ¼
P if ’ is present in respect to s
A if ’ is absent in respect to s

ð1Þ

In other words, when the sphere is red its modal dimension value is P (standing for the

property being present); whenever the sphere is not red, its modal dimension value is

A (standing for the property being absent). More generally, the modal dimension values of

a stimulus are those aspects of the stimulus that indicate, in respect to some property or

feature, the presence or absence of that feature. This contextual (i.e. in respect to some

property) definition characterises what it means for an object to be in a modal state in

respect to one of its possible features. Also, please note that ’ in the definition above could

be a set of features rather than a single feature, but for the purpose of our analysis and for

the sake of simplification, ’ for the time being should be interpreted as a single feature.

Henceforth, we shall use the symbol si(’) (where i2 {A, P}) to denote the possible modal

dimension values or modal states of s(’). For example, sA(’) means that ’ is absent in s and

sP(’) means that ’ is present in s.
Under this representation of stimuli as functions, modal categories can be represented

qualitatively by a vector of distinct pairs of modal values. Moreover, since the set

C¼ {(pP(’), qP(’)), (pA(’), qA(’)), (pA(’), qP(’), (pP(’), qA(’))} of all possible distinct pairs of
modal values consists of four elements, then the power set of C is the set of all possible

modal categories, 16 in total (2jCj). These 16 are isomorphic to the Boolean operators as

can be clearly seen from our definition of a Boolean operator above. For example,

E¼h( pP(’), qP(’), ( pA(’), qA(’))i is the vector representation of the modal category

corresponding to logical equivalence (Figure 1) since it stands for two-ordered pairs of

objects, one in which the feature ’ is present in both objects ( p and q) and the other in

which the feature ’ is absent in both stimuli.
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A more succinct way of expressing this is by specifying the values of the functions
explicitly as follows: E¼h(P,P), (A,A)i. Henceforth, we shall use upper case Greek
alphabet symbols as variables standing for the vector representations of modal categories
and upper case Roman alphabet symbols as constants standing for vector representations
of specific categories. Lastly, for any modal category �, �(i) is the ith pair of the modal
category � (where i2 {1, 2, 3, 4}). If such a component does not exist in �, then the value
of �(i) is Ø. For example, for E¼h(P,P), (A,A)i, E(1)¼ (P,P), E(2)¼ (A,A), E(3)¼Ø,
and E(4)¼Ø.

Now that we have a more natural formal representation of modal categories we
proceed to define modal similarity. Modal similarity is the similarity relation between the
modal categories (24¼ 16 in total) and the logical category E of logical equivalence. But
why E as a prototype or standard? This stems from the assumption that similarity
measures purport to measure the degree of identity between two objects. But if these two
objects are made of parts (as modal categories are), then the relationship between those
parts should enter into the determination of overall similarity. Then, in essence, what we
are comparing are relationships. We know that the equivalence operator expresses the
relation of logical identity. Thus, the relationship between the two subcategories of E

corresponds to the relationship of logical identity. In other words, by judging how similar
each modal category is to E, we are in effect determining the degree of logical equivalence
between their subcategories. As such, E is the ideal point for systematic comparison.
This will become clearer in the experimental section of this article.

Finally, it is important to recognise that the standard modal category E is not exactly a
prototype for similarity judgments. Prototype models are models in which exemplars are
compared to some central tendency value. In modal similarity theory, E is not a
central tendency but a high limit or absolute upper boundary representing maximal
similarity among members of a Boolean metacategory. Likewise, the complimentary or
opposite logical category E0 ¼ h(pP(’), qA(’)), (pA(’), qP(’))i (i.e. exclusive-or or negative
biconditional) of E represents the corresponding lower limit or absolute lower boundary
representing minimal similarity. Let us say that it is the 0 point of our scale. This way of
characterising the similarity relation is conceptually more along the lines of a bounded
prototype or limit prototype model of similarity.

3. A modal similarity measure

Next, we introduce a measure for determining the degree of similarity between any modal
category � and the modal category E in respect to some property or feature ’.
Two features of our measure will stand out: first, its componential nature; second, the
intimate interplay that similarity and dissimilarity plays at a lower level of comparative
analysis. The measure depends on two primitive measures on the four basic pairs of items
(in set C above) that define the contents of a modal category:

SimMðE;�; ’Þ ¼ f ðsimpðpP; qPÞ; simpðpA; qAÞ; dispðpP; qAÞ; dispðpA; qPÞÞ ð2Þ

Here, the modal similarity SimM(E,�, ’) between the two modal categories E and � in
respect to ’ is a function of the values of two primitive partial measures simp and disp
(one similarity measure and one dissimilarity measure) on the four component pairs of the
modal category generated by the lower-order objects p and q (e.g. in Figure 1 p and q are a
rectangle and a circle). Note that simp(pP, qP) above should have be written as
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simp(pP, qP, ’), and similarly for the other primitive measures. We have not specified ’ to

avoid extremely long equations.
Clearly, the ternary modal similarity measure SimM and the primitive measures are

functionals (i.e. functions from functions to scalars) since their arguments are objects or

vectors of objects and in our framework objects are functions. The partial similarity

measure simp and the partial dissimilarity measure disp represent primitive similarity

judgments and primitive dissimilarity judgments consistent with our intuitions.

For example, when ’ is present in both stimuli agents should judge the highest degree

of modal similarity. It also seems reasonable that the next highest degree of primitive

modal similarity should be judged when ’ is absent from both stimuli.
However, for the partial dissimilarity measure disp, whenever ’ is absent in p and

present in q we have a degree of modal dissimilarity that would seem to be equal to the

case where ’ is present in p but absent in q. Nonetheless, the order of the stimuli must bear

on the dissimilarity measure since p and q are different objects. This assumption is

supported by numerous experimental results that suggest that human similarity assessment

is not symmetric (Tversky 1977). In these experiments we find evidence that in going from

the first stimulus to the second in a comparison task, the eventual presence of a property is

less grounds for dissimilarity than its eventual absence. Thus, we assign the higher degree

of dissimilarity to disp(pA, qP) and the lower degree to disp(pP, qA).
As is often done with similarity measures, we shall assign them a value in the real

number interval [0, 1]. Furthermore, the two primitive similarity measures will be the

weights of the higher-order function eM� defined in (3) and (4) below. As such, they act as

two parameters �1 and �2 within our model. Intuitive values under the above criteria are

illustrated in Table 1 below.
Correspondingly, the first two weights contribute to a total similarity of 1, while the

other two contribute to a total dissimilarity of 1. Hence, the choice of �i and 1� �i in the

table. Next, we need to be able to describe within our formalism the presence or absence of

the four possible subcategories or pairs of objects that may make up a modal category �.

We do so with the following higher-order function eM�:

eM�ðði; jÞÞ ¼
1 if ði; jÞ is present in �
0 if ði; jÞ is absent in �

ð3Þ

Or equivalently,

eM�ððsð’Þ; rð’ÞÞÞ ¼
1 if ðsð’Þ; rð’ÞÞ is present in �
0 if ðsð’Þ; rð’ÞÞ is absent in �

ð4Þ

The purpose of this higher-order function is to indicate and count the presence or absence

of a particular subcategory in the modal category in question. A cognitive interpretation of

this function is that modal similarity judgments involve metaprocessing.

Table 1. The four primitive similarity measures act as parameters at a lower level.
Intuitive parameter values under our criteria are given below.

Primitive similarity measure Corresponding weight variable Chosen value

simp(pP, qP, �) �1 0.7
simp(pA, qA, �) 1��1 0.3
disp(pP, qA, �) �2 0.4
disp(pA, qP, �) 1��2 0.6

6 R. Vigo
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Now that we have the corresponding weights defined by our primitive similarity and
dissimilarity relations, we see a broader picture of degrees of modal similarity as a function
of these two primitives. Each eM� will act as a coefficient that determines which primitive
similarity and dissimilarity values should contribute to overall similarity. The following
formulation, where � is a logical category, illustrates the role of eM�:

SimMðE;�; ’Þ ¼ simpðpPð’Þ; qPð’ÞÞeM�ðpPð’Þ; qPð’ÞÞ þ simpðpAð’Þ; qAð’ÞÞeM�ðpAð’Þ; qAð’ÞÞ

� dispðpPð’Þ; qAð’ÞÞeM�ðpPð’Þ; qAð’ÞÞ � dispðpAð’Þ; qPð’ÞÞeM�ðpAð’Þ; qPð’ÞÞ

ð5Þ

Or equivalently,

SimMðE;�; ’Þ ¼ simpðEð1ÞÞeM�ðEð1ÞÞ þ simpðEð2ÞÞeM�ðEð2ÞÞ

� dispðE
0ð1ÞÞeM�ðE

0ð1ÞÞ � dispðE
0ð2ÞÞeM�ðE

0ð2ÞÞ ð6Þ

By using the parameters �1 and �2 in place of the primitive similarity–dissimilarity
measures, we get the more succinct formula below:

SimMðE;�; ’Þ ¼ �1eM�ðEð1ÞÞ þ ð1� �1ÞeM�ðEð2ÞÞ � �2eM�ðE
0ð1ÞÞ � ð1� �2ÞeM�ðE

0ð2ÞÞ

ð7Þ

But this function will not do. The measure must include an additional parameter
responsible for the relative emphasis of similarity over dissimilarity (as determined by eM�,
E(k) and E0(k)). We select higher-order weights � and 1�� to compute the emphasis on
similarity or dissimilarity by an agent. The addition of such weights at a higher level makes
the measure non-linear. This feature is consistent with experiments showing that in respect
to relational comparisons, similarity and dissimilarity are not perfect compliments or
linear inverses of each other (Medin, Goldstone, and Gentner 1990). In fact, our model
provides a possible explanation for such lack of symmetry. Namely, that at a
metacognitive processing level there is considerably more information to process (e.g. to
compare), and that this change in complexity changes the character of the relationship
between similarity and dissimilarity from linear to non-linear. Thus, with this additional
modification to formula (7) above we get:

SimMðE;�; ’Þ ¼ �½�1eM�ðEð1ÞÞ þ ð1� �1ÞeM�ðEð2ÞÞ�

� ð1� �Þ½�2eM�ðE
0ð1ÞÞ þ ð1� �2ÞeM�ðE

0ð2ÞÞ� ð8Þ

One more definition is needed to finalise the construction of our modal similarity measure.
Modal categories where E(1) is present are called positive modal categories. Accordingly,
modal categories where E(1) is not present are called negative modal categories.
The complements of the positive modal categories are the negative modal categories
and vice versa. For example, the positive modal category D¼h(P,P), (P,A), (A,P)i
defined by the Boolean disjunction operator has the negative modal category D0 ¼ h(A,A)i
as its complement. Likewise, the positive modal category E¼h(P,P), (A,A)i has the
negative modal category E0 ¼ h(P,A), (A,P)i as its complement. There are a total of eight
positive categories and eight negative ones. This leads us to the final assumption
underlying our measurement. For complements of positive modal categories, i.e. for
negative modal categories, the �1 and �2 values for the primitive similarity and
dissimilarity measures are switched.

Journal of Experimental & Theoretical Artificial Intelligence 7
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This means that when the modal category is negative, the difference between �1 and

1� �1 is greater for primitive dissimilarity than for primitive similarity. This seems
reasonable since the presence of E(1) in � should contribute more to increasing the overall

judged similarity to E than its absence should contribute to lowering its overall judged
similarity to E. In turn, the presence of E0(1) under the absence of E(1) should subtract
more from our perceived overall similarity than its absence. In essence, these are

contextual effects that will prove essential to the measure’s predictive performance. We
invite readers to test for themselves the feasibility of this assumption by examining the

experiment under Section 5. To account for this contextual property, Equation (7) above
must be extended. This is accomplished by defining the measure as a step function in terms

of the absence or presence of E(1). Let b� be the decimal representation of the binary
sequence heM�ðpP; qPÞ; eM�ðpA; qAÞ; eM�ðpP; qAÞ; eM�ðpA; qPÞi, then we can finally define

modal similarity as follows:

SimMðE;�; ’Þ ¼

�½�1eM�ðEð1ÞÞ þ ð1� �1ÞeM�ðEð2ÞÞ�

�ð1� �Þ½�2eM�ðE
0

ð1ÞÞ þ ð1� �2ÞeM�ðE
0

ð2ÞÞ� if b� 2 f8; . . . ; 15g

�½�2eM�ðEð1ÞÞ þ ð1� �2ÞeM�ðEð2ÞÞ�

�ð1� �Þ½�1eM�ðE
0

ð1ÞÞ þ ð1� �1ÞeM�ðE
0

ð2ÞÞ� if b� 2 f0; . . . ; 7g

Note that the order of the parameters �1 and �2 above have been switched, as planned, for
the second condition b� 2 f0; . . . ; 7g. This reverses the similarity and dissimilarity

primitives according to whether the modal category is positive or negative. We have
listed this and other key assumptions underlying the above measure in the Technical

Appendix at the end of this article.
The degrees of modal similarity between stimuli for each of the 16 modal categories

corresponding to the 16 Boolean operators in the propositional calculus can now be
computed. For example, when we let �¼ 0.55 (a slight emphasis on similarity over

dissimilarity), �1¼ 0.7, and �2¼ 0.4, we can generate the values shown in Table 2. This
slight emphasis is consistent with the idea that subjects have a bias towards modal

similarity over modal dissimilarity comparisons. Note that the measure yields a linear
order for the set of all 16 possible modal relations. This shows by construction that the

linear completeness property (property 7 in the Technical Appendix) has been satisfied.
If we look at each Boolean operator or logical connective in terms of the modal similarity

measure assigned to the modal category that it defines, some interesting intuitive patterns
emerge regarding their meaning: for one, conjunctions, implications and biconditionals

may be regarded as expressing subsymbolically high degrees of modal similarity between
stimuli, while disjunctions, and particularly ‘exclusive-or’ (equivalent to the negation of

the biconditional connective), may be expressing subsymbolically low degrees of modal
similarity. This seems to conform with the pragmatic notion that cognitive agents need to
be able to express pronounced modal distinctions as well as pronounced modal likenesses

in everyday life. More compelling is the connection to categorisation. Perhaps the reason
why Boolean categories defined by disjunctive rules are more difficult to learn than

conjunctive ones (Haygood and Bourne 1965) is because the categorical ‘glue’ provided by
a disjunctive operator is weaker!

Those operators with modal similarity values that lie at the middle of the scale close to

zero or neutrality, do not have much expressive power in this respect and consequently,
may not play an overt role in natural language discourse. Second, the table confirms that
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modal similarity is non-linear. These are but a few of the observations one may draw from
this table; we leave it to other researchers to draw others. Regardless, the general

representational approach introduced here for the modal categories and modal similarity

can yield useful results by choosing appropriate values for the three discussed parameters
as will be seen under the experiment under Section 5.

4. Comparisons to Tversky’s featural similarity measure

Clearly, our approach to measuring similarity judgments differs considerably from
similarity distance measures that are dependent on representations of stimuli as

n-dimensional points in an n-dimensional psychological space (Shepard 1974). This

geometric approach is illustrated by Equation (10) below where n is the number of

dimensions in some psychological space, xpi is the value of the ith dimension of stimulus p
and r is a positive integer that allows for different spatial metrics. The Euclidean metric

(r¼ 2) is the best known of these.
Clearly, in these representations dissimilarity is measured by the sum of the distances

(i.e. differences) between points across their dimensions. It has been convincingly argued
by Shepard (1987) that subjective similarity is an inverse exponential function of this

psychological distance. Perhaps the best known objection to this representational

Table 2. Modal similarity measure predictions when �1¼ 0.55.
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approach comes from Tversky (1977) who argues that the metric axioms on which the
measure is based are not psychologically plausible. In addition, the measure does not
account adequately for the very distinct contributions that similarity and dissimilarity
comparisons between stimuli make to the total similarity measure.

dðp; qÞ ¼
Xn
i¼1

xpi � xqi
�� ��r" #1=r

ð9Þ

In contrast, Equation (12) illustrates Tversky’s (1977) featural approach to measuring
similarity between stimuli. Here, objects are represented by sets of features P and Q.
By determining what the two sets have in common (i.e. their intersection) and determining
their differences, one can determine the overall degree of similarity between objects p
and q. In this formula, f is a function that assigns a number value to the set theoretic
expressions and �i (i2 {1, 2, 3}) are weights that adjust the degree of emphasis of the
measure of commonality and differences between sets.

Simðp; qÞ ¼ �1 f ðP \QÞ þ �2 f ðP�QÞ þ �3 f ðQ� PÞ ð10Þ

But this approach, among other things, does not: a) yield a discriminating and meaningful
result for sets with a single feature and b) capture the dynamic quality of the possible
modal dimension values of stimuli in respect to attended features.

In contrast, our representation of stimuli as functions tacitly suggests the process of
attention in the sense that modal similarity has no meaning unless it is defined contextually
relative to the feature that is being attended to by the agent. In other words, our
modal similarity relation is not a binary relation as in the above models, but a ternary one.
In this respect, it has been argued by Goodman (1951) that the similarity relation only
makes sense as a ternary relation, and as far as modal similarity is concerned, we tend
to agree.

Some readers have probably wondered whether or not we can dispense with the
introduced modal similarity measure by extending Tversky’s featural similarity measure.
Such an extension is possible but only to the point where Tversky’s approach will no
longer be recognised for what it is. In this section, I shall attempt such an extension to
show its inadequacy. First, Tversky represents stimuli as sets of their features. Instead, in
accordance with our aim, I shall substitute these sets of features with modal categories.
In Tverky’s notation, we have the following measure.

SimðE;�Þ ¼ �1 f ðE \�Þ þ �2 f ðE��Þ þ �3 f ðE��Þ ð11Þ

If we let f be the cardinality function (as is often done with this measure), this clearly will
not do since the measure then does not distinguish between the four modal pairs present or
absent in �. Thus, it cannot assign unique values to them. Trying to remedy this by
defining some esoteric function f on sets, the measure would still not account for the
contextual effects induced by the complements of the modal categories. Finally, the use of
set interception contributes nothing to the measure as is plainly apparent upon
examination of the eight properties listed in the Technical Appendix.

However, we could be more inventive. Suppose instead that we modify the above
measure by including only two set operations, two functions s and d and the weights � and
1� � as seen below.

SimðE;�Þ ¼ � �
X
x

sðx 2 ½E���Þ � 1� �ð Þ �
X
y

dðy 2 ½�� E�Þ ð12Þ
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This formulation is far more promising. By defining s and d as functions that assign each
element of E�� and ��E a specific value from {�1, 1� �1} and {�2, 1��2}, respectively
(i.e. the values corresponding to the primitive similarity measure and the primitive
dissimilarity measure defined in the previous section), the resulting measure is equivalent
to our modal similarity measure minus the ability to account for negative modal
categories. The obvious criticism here is that such a measure is not along the lines of what
Tversky (1977) had intended in the first place.

5. The experiment

To determine the empirical similarity order of the key subset of the modal categories and
to determine how well such an order is predicted by the similarity measure introduced in
Section 3 above, we ran a simple perceptual experiment involving visual modal categories.
In our experiment, we tested the modal categories corresponding to the commonly
used Boolean operators: namely, equivalence, implication, conjunction, disjunction,
exclusive-or and their negative counterparts or compliments.

5.1. Participants

A group of 25 undergraduate students from introductory psychology courses at Indiana
University at Bloomington participated in the experiment. Subjects earned course credits
for their participation. The data from an additional four participants were excluded for
failure to follow the instructions adequately.

5.2. Apparatus

The experiment was conducted with the E-prime presentation software v. 2.0 (2005)
running on a Dell Pentium 5 PC using a Dell 15’ LCD monitor.

5.3. Procedure

Prior to running the experiment, participants were given instructions on two screens. The
first screen explained the comparison task. The second screen contained a specific example
of the comparison task. The subjects were instructed to compare cultures in terms of the hat-
wearing behaviour of marital couples. Each screen displayed a target culture to the left of a
vertical line and five cultures to the right of the same line. The target culture was always that
corresponding to the standard modal category defined by the logical equivalence operator.
Four of the five cultures to the the right of the line were cultures corresponding to the
positive modal categories defined by the following operators or connectives: implication,
disjunction and conjunction, and as controls, the negative equivalence (i.e. exclusive-or)
modal category and the equivalence or biconditional modal category.

In addition to the positive task, a negative task was tested. Accordingly, for the
negative task, the five cultures to the the right of the line were cultures
corresponding to the negatives of the five modal categories displayed in the positive
task: negative implication, negative disjunction, negative conjunction, negative
equivalence and again as control the equivalence modal category. For both the positive
and negative tasks, the subjects were asked to judge the degree of similarity between
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each of the cultures to the right of the line to the target culture to the left of the line
in terms of the hat-wearing behaviour of the cultures (i.e. on whether or not a hat
was present on the head of a male or a female for the sets of marital couples).
Subjects were asked to make the comparison on a scale from 1 to 10, 1 being least similar
and 10 being identical. Figures 2 and 3 above show sample screens of the positive
and negative tasks.

Figure 2. Experimental Display for the common positive modal categories: B stands for
biconditional, C stands for conjunction, I stands for implication, D stands for disjunction and
NB stands for negative biconditional or exclusive-or. The B and NB modal categories were used as
controls in this positive set. These labels were not present in the actual displays seen by subjects.

Figure 3. Experimental Display for the common negative modal categories: B stands for
biconditional and serves as a control, ND stands for the negative of the disjunction NC stands
for the negative of the conjunction, NI stands for the negative of implication, and NB stands for the
negative of the biconditional or exclusive-or. These labels were not present in the actual displays seen
by subjects.
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Subjects were presented with 20 trials of the positive tasks and 20 trials of the negative
tasks where the order of the cultures was displayed at random in each trial. Also, for
each trial the pairs of marital couples were permuted randomly within each culture.
Subjects were asked to enter their responses using a prompt located at the lower left hand
side of the screen. Furthermore, they could edit their entries in order to correct mistakes
before moving to the next trial.

5.4. Results and discussion

We assessed the underlying similarity ordering by taking the average responses for the
20 positive trials and the 20 negative trials. The similarity ordering for the tested logical
categories is given in Tables 3 and 4 above. Since in the experimental paradigm the positive
and negative tasks were given separately, we obtained two separate orders: one for the
positive logical categories and one for the negative logical categories. As can be seen in
Tables 3 and 4 above, both orders are predicted by the modal similarity measure
introduced in Section 3. The parameters �1¼ 0.7, �2¼ 0.4, and �1¼ 0.55 chosen earlier in
our theoretical discussion turned out to be the correct ones to make these predictions.
These values are seen also in Table 2 under Section 3 above.

6. Conclusions and future research

We have proposed a modal similarity measure for simple key metacategories defined by
the Boolean operators. The proposed similarity representation differs from geometric
and featural representations in several ways: first, stimuli are represented as functions
into two possible modal-dimensions or modal states of presence or absence. Second, the
representation is componential in nature. This kind of parameterised component model
of similarity, as far as we know, is new to the literature. Its design is consistent with the

Table 3. Predictions for positive logical categories.

Table 4. Predictions for negative logical categories.
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hypothesis that similarity judgments are the result of compounding lower-level similarity
judgments based on modal aspects of the pair of stimuli. Third, our modal similarity
measure is a functional from vectors to real numbers rather than a function. Fourth,
similarity and dissimilarity are treated as separate and competing contributors to the
similarity judgment process. Fifth, the measure, as a ternary relation, suggests selective
attention processes in that it defines similarity relative to a feature or a set of features
(i.e. ‘� is similar to E in respect to ’’).

Another unique aspect of the proposed measure is that it derives a degree of similarity
for each of the logical categories not as a value within [0, 1] but as a value within [�1, 1].
We feel that this is the correct choice since it stresses the importance of treating similarity
and dissimilarity as independent contributors to total similarity (or more accurately,
total ‘collation’). Moreover, the resulting similarity order for the modal categories also
conformed to our intuitions regarding the well-known Boolean operators that
define them. More specifically, if we think of Boolean operators as expressions of degrees
of modal similarity, then this would explain why some are more useful than others in
daily discourse. This hypothesis can have a great impact on categorisation. As mentioned,
it might explain why Boolean categories defined by disjunctive rules are more difficult to
learn than conjunctive ones (Haygood and Bourne, 1965). The answer, according to our
model, is simple: the categorical glue (modal similarity) provided by a disjunctive operator
is much weaker!

As importantly, the proposed model of similarity was able to predict the empirical
similarity order for the key modal categories. These are key categories in that they
correspond to the most widely used connectives. A possible extension of this research is
to determine an empirical order for the remaining modal categories and see whether or
not the proposed model can predict this larger order as well. Notwithstanding the success of
our measure, we attempted to extend Tversky’s (1977) featural similarity measure to
accommodate the modal categories. Although after considerable manipulation of some
fundamental ideas, we were able to obtain a measure equivalent to our modal similarity
measure, it bore little or no resemblance to Tversky’s original measure.

Although we restricted our discussion to objects possessing a single property or feature,
the theory can be easily extended to objects possessing a finite number of properties or
features. This extension is interesting since it can provide a more robust link to the role
that attention processes may play in modal similarity judgments. Another possible
research direction is to extend the measure so that it can predict the similarity order of
other types of metacategories beyond those defined by Boolean operators: for example,
such as those obtained by increasing the number of objects in the modal category from two
to three and beyond. These scenarios are worth exploring from the standpoint of a theory
of combined ‘atomic measures’ relative to each feature in the set of relevant features. Such
a theory could help establish the desired link between similarity-based categorisation and
categorisation based on logical rules by the systematic decomposition of rules into atomic
similarity components.

In conclusion, there seem to be aspects of similarity that are still uncharted and
that conceptually fall somewhere between the widely-known featural and dimensional
approaches to similarity. Central to these uncharted aspects are the notions of higher-order
dimensions (e.g. modal dimensions), lower-level components of relational or metacatego-
rical stimuli, and modal categories. Meanwhile, it is hoped that the questions raised in this
article as well as their proposed solutions pave the way and shed some light on the cognitive
nature of the logical operators and on the nature of configural similarity.
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Technical Appendix

Modal similarity analytic postulates

Please note that the following analytic postulates are not meant as the basis for an
axiomatic representation theory of modal similarity; instead, they are meant to summarise
the basic assumptions underlying the modal similarity measure. Below, E¼h(pP(’), qP(’)),
(pA(’), qA(’))i, � is a modal category, and ’ is a property or feature. (Readers should refer
to section 3 of this manuscript for a detailed explanation of the rest of the notation used
below.)

(1) Existence Property I (of Primitive Similarities and Dissimilarities). For any pair of
objects p and q there exist two primitive modal similarity measures and two
primitive modal dissimilarity measures from which our total measure will be
derived: namely, simp(pP(’), qP(’)), simp(pA(’), qA(’)), disp(pP(’), qA(’)), and
disp(pA(’), qP(’)). These two measures are real-valued functions between zero and
one that satisfy postulates 3 and 4 below.

(2) Compositional Property. Total modal similarity is a real-valued function of
primitive similarity and dissimilarity: SimM(E,�, ’)¼ f (simp(pP(’), qP(’)),
simp(pA(’), qA(’)), disp(pP(’), qA(’)), disp(pA(’), qP(’)))

(3) Order Property. The primitive similarity and dissimilarity measures are ordered
as follows: simp(pP(’), qP(’))4 simp(pA(’), qA(’)) and disp(pA(’), qP(’))4
disp(pP(’), qA(’))

(4) Summation Postulate. Partial similarity adds up to 1 and partial dissimilarity
adds up to 1: simp (pP(’), qP(’))þ simp(pA(’), qA (’))¼ 1; disp(pP(’), qA(’))þ
disp(pA(’), qP (’))¼ 1

(5) Maximal and Minimal Modal Similarity Property. Maximal and minimal
similarity values for the modal similarity measure are given by:
Max(SimM(E,�, ’))¼ SimM(E,E, ’) and MinðSimMðE;�; ’ÞÞ ¼ SimM E;E; ’

� �
where E ¼h(pP(’), qA(’)), (pA(’), qP(’))i.

(6) Zero Property. The modal similarity value for the empty vector h i or Ø is zero:
SimM(E, Ø,’))¼ 0.

(7) Contextual Reversal Property. Suppose that simp(pP(’), qP(’))¼ �1 and disp(pP(’),
qA(’))¼ �2 if E(1)2�, then simp(pP(’), qP(’))¼ �2 and disp(pP(’), qA(’))¼ �1 if
E(1)��.

(8) Existence Property II (of metafunction eM). For any pair of modal dimensional
values (p(’), q(’))2 {(pP(’), qP(’)), (pA(’), qA(’)), (pP(’), qA(’)), (pA(’), qP(’))}, there

exists a metafunction eM such that:

eM�ððpð’Þ; qð’ÞÞÞ ¼
1 if ðpð’Þ; qð’ÞÞ is present in �
0 if ðpð’Þ; qð’ÞÞ is absent in �

Please note that postulate 6 simply states that the empty modal relation Ø expresses
neither a degree of similarity nor a degree of dissimilarity: this means that in some sense it
expresses ‘‘comparative’’ neutrality – or perhaps better yet, it expresses nothing in respect
to similarity or dissimilarity. Postulate 7 simply states that the measure must do what we
expected it to do: namely, to assign to each modal category corresponding to each of the
logical connectives a unique degree of modal similarity.
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Erratum: 

In the appendix, postulate 7 has a proper subset symbol where there should be 
a "not an element of" symbol. Also, the sentence before equation 10 on page 10
was mistakenly truncated by the typesetter. It should say: "...and differences
between sets, where the parameters alpha 2 and alpha 3 are negative real numbers." 
These errors were introduced by the typesetter.
 
  




