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A unified general theory of human concept learning based on the idea that humans detect
invariance patterns in categorical stimuli as a necessary precursor to concept formation is
proposed and tested. In GIST (generalized invariance structure theory) invariants are
detected via a perturbation mechanism of dimension suppression referred to as dimensional
binding. Structural information acquired by this process is stored as a compound memory
trace termed an ideotype. Ideotypes inform the subsystems that are responsible for learna-
bility judgments, rule formation, and other types of concept representations. We show that
GIST is more general (e.g., it works on continuous, semi-continuous, and binary stimuli) and
makes much more accurate predictions than the leading models of concept learning diffi-
culty, such as those based on a complexity reduction principle (e.g., number of mental mod-
els, structural invariance, algebraic complexity, and minimal description length) and those
based on selective attention and similarity (GCM, ALCOVE, and SUSTAIN). GIST unifies these
two key aspects of concept learning and categorization. Empirical evidence from three
experiments corroborates the predictions made by the theory and its core model which
we propose as a candidate law of human conceptual behavior.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The ability to form concepts (i.e., sparse mental repre-
sentations of multiplicity of entities in the environment
and mind) lies at the very core of human cognition. With-
out it, humans would not be able to efficiently classify,
organize, identify, nor store complex information – in
short, humans would not be able to make sense of the
world in which they live. Indeed, organisms in general
would not be able to survive because a classification task
as simple as distinguishing a poisonous food source from
a non-poisonous one depends on having acquired an
appropriately general representation (i.e., a concept) of
non-poisonous food sources. In view of the basic role that
concepts play in our everyday physical and mental lives,
one of the ultimate goals of cognitive science has been to
discover the laws that govern concept learning and catego-
rization behavior and to characterize them with the same
level of systematicity and rigor found in the physical sci-
ences. To achieve this goal, several mathematical and com-
putational models that aim to accurately predict the
degree of learning difficulty of concepts of all types have
been developed with different constructs and principles
at their core.

For example, two of the most influential models of con-
cept learning and categorization, the generalized context
model (GCM; Nosofsky, 1984, 1986) and ALCOVE
(Kruschke, 1992), are based on the basic principle that
the mind forms concepts by determining similarities
between different examples of the concept. More specifi-
cally, the GCM computes the probability that an object
from a category of objects will be classified correctly by
determining its similarity to remembered exemplars (i.e.,
memory traces of objects) whose categories have already
been mentally encoded. Similarity between the exemplars
is regulated by the assignment of attention weights to their
dimensions. The resulting probability scores can be trans-
formed into an overall percentage of classification errors
for the particular category which then may be used to
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operationalize how difficult it is to learn a concept from it
(for details, see the appendix of Nosofsky, 1984). The same
similarity and selective attention framework of the GCM
was implemented in ALCOVE (Kruschke, 1992) as a
three-layered, feed-forward connectionist network model
of concept learning.

Similarity and selective attention also play a fundamen-
tal role in a more recent connectionist model named SUS-
TAIN (Love, Medin, & Gureckis, 2004). SUSTAIN functions
by creating clusters in multi-dimensional space that repre-
sent a concept structure. Concept learning difficulty in
SUSTAIN is a function of the number of clusters in the con-
cept representation, where an increase in the number of
clusters indicates an increase in learning difficulty.
Although the GCM, ALCOVE, and SUSTAIN have been suc-
cessful in predicting the well-known concept learning dif-
ficulty ordering of categorical stimuli consisting of four
object-stimuli defined over three dimensions (Shepard,
Hovland, & Jenkins, 1961), they have not been able to ac-
count for human classification performance with respect
to large classes of categorical stimuli defined by logical
rules on binary dimensions (Feldman, 2006; Goodwin &
Johnson-Laird, 2011). One reason may be that they do
not capture the specific kinds of patterns that humans
are able to detect in categorical stimuli and that are neces-
sary for concept formation.

This emphasis on stimulus structure was proposed by
Gibson (1966) and explored by Garner in subsequent years
(Garner, 1963; Garner and Felfoldy, 1970; Garner, 1974).
Ever since, an abundance of laboratory experiments have
supported the core idea suggested by these researchers
that, in order to learn concepts, subjects extract rules from
perceived patterns or regularities in categorical stimuli
(Bourne, 1966; Estes, 1994). Inspired by this research and
by the early probabilistic and connectionist models of cat-
egorization, alternative deterministic formal models of de-
gree of concept learning difficulty have emerged which
place the construct of complexity reduction or simplifica-
tion at their core. These accounts have focused on concepts
defined by functions from first order sentential logic and
are known as Boolean concepts. Although several of these
deterministic accounts have emerged recently, we shall fo-
cus on the three leading ones.

The first account, due to Feldman (2000), posits that
since humans report forming rules when performing labo-
ratory categorization tasks, one can then measure the de-
gree of concept learning difficulty associated with a
categorical stimulus by the length of the shortest logical
rule that defines it. So, for example, if the rule xy + xy0 con-
sisting of four literals (i.e., unprimed and primed variables)
describes the category consisting of a black round object
and a black square object (where x is black and y is round):
such rule may then be reduced to a single literal rule x by
the Boolean algebraic laws of distribution and complemen-
tarity. That is, we can factor out the variable x and cancel
out y and its negation. This yields the single literal x which
represents the minimal one dimensional rule ‘‘black’’, and
this is the rule that we derive to make categorization
decisions.

This proposal, referred to as ‘‘minimization complexity’’
(MinC), does not answer key questions about concept
learning as a rule-oriented process: notably, what is the
nature of the relational pattern detection process that must
precede (and that is necessary for) the formation of efficient
rules and simplification heuristics in the first place, and
what are the limits of our capacity to detect such relational
patterns? In other words, rule simplification procedures
based on the symbolic calculus of Boolean logic should,
but do not, give a deep rationale for why it is easier to form
rules about certain sets of stimuli but not about others.
Such a rationale is necessary to better understand why cat-
egorization performance is often inconsistent with rule-
based accounts of concept learning (Vigo, 2006; Lafond
et al., 2007). Indeed, MinC does not predict the canonical
learning difficulty ordering of categorical stimuli consisting
of four objects defined over three dimensions (Shepard
et al., 1961). For a discussion of this and other challenges
facing MinC the reader is referred to Vigo (2006).

A second and somewhat more elaborate structural ap-
proach referred to as the ‘‘Algebraic Complexity Model’’
(ACM) was introduced by Feldman (2006). The ACM de-
scribes how a Boolean concept may be decomposed alge-
braically into a ‘‘spectrum’’ of component patterns or
regularities, each of which is a simpler or more ‘‘atomic’’
regularity. Regularities of higher degree represent more
idiosyncratic patterns while regularities of lower degree
represent simpler patterns in the original concept. The full
spectral breakdown of the component patterns of a con-
cept in terms of minimal component regularities is known
as the power series of the pattern. These are expressed in
terms of what are called ‘‘implication polynomials’’. The
power spectrum of a Boolean concept is the number of
minimal implication polynomials associated with the con-
cept. The algebraic complexity of a concept is then defined
by the weighted sum of its power spectrum where the
weights increase linearly with respect to the degree of
decomposition and the sum of their absolute value equals
one. In other words, the weighted average of the complex-
ity of these ‘‘atomic’’ rules (as measured by the number of
variables they instantiate) per level of decomposition is a
measure of the algebraic complexity of the concept.

Another model of concept learning difficulty that is
based on complexity reduction has been proposed recently
by Goodwin and Johnson-Laird (2011). The ‘‘number of
mental models’’ model (NOMM) is based on the notion of
a ‘‘mental model’’ which has found its greatest exponent
in Johnson-Laird (1983). There has been a long debate con-
cerning the nature, definition, and validity of the notion
(e.g., Bonatti, 1994; O’Brien et al., 1994) so we shall not at-
tempt to define it in depth here. Instead, we give the spe-
cific definition used by Goodwin and Johnson-Laird in their
2011 paper. They define the mental models representation
of the extension of a Boolean concept as a disjunction of its
possible instances, where each instance is represented as a
conjunction of properties, though some of them may be
negative. In other words, mental models have a conjunc-
tive symbolic structure that is represented as a list of con-
junctions of variables, where each variable stands for a
particular property and each conjunction for a concept
instance.

Take, for example, the concept representing a category
containing two objects defined by two dimensions whose
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structure is spelled out by the Boolean rule xy + xy0. The
two mental models corresponding to this rule are repre-
sented symbolically in NOMM by two conjunctions of the
two properties represented by the variables x and y, and
the negation of the second property as follows: xy and
xy0. The authors then give a simple heuristic for reducing
the number of mental models. The basic idea is that elim-
inating ‘‘irrelevant’’ dimensions is at the heart of concept
learning. The minimization heuristic employs two rules
of Boolean algebra: distribution and complementarity.
For example, y and y0 cancel each other, making y irrele-
vant and leaving x as the only mental model left after the
reduction. According to NOMM, the number of mental
models we are left with after the application of this simple
reduction heuristic is a good predictor of the degree of
learning difficulty of a Boolean concept. In other words,
the minimal number of mental models that a Boolean con-
cept can be reduced to determines how difficult it is to
learn it.

Note that NOMM’s minimization heuristic is simpler
than MinC’s since it is consistent primarily with the use
of only two simplification laws from Boolean algebra: dis-
tribution and complementarity. In contrast, MinC’s heuris-
tic achieves a greater variety of possible simplifications, as
well as shorter minimal representations due to the use of
more Boolean algebraic rules (for the rules involved in
MinC, see Feldman, 2000). Note also that these two com-
plexity reduction approaches are, in spirit, similar (not sur-
prisingly, both models provide equally accurate fits to data
from our classification experiment in Section 6). That is,
both rely on a symbolic representation that is reduced by
a set of simple Boolean algebraic axioms and/or meta-
rules. Nonetheless, Goodwin and Johnson-Laird (2011) be-
lieve that the very nature of a mental model makes their
model more ‘‘cognitive’’ than alternative proposals and
suggest that the symbolic representation of a mental mod-
el should not be construed as the mental model:
‘‘. . .though actual mental models aren’t strings of words
but representations of situations in the world’’ (p. 42).

Notwithstanding, the three complexity reduction ap-
proaches discussed boil down to the use of Boolean alge-
braic rules on some symbolic representation of the
Boolean concept. We propose that this approach does not
reveal the implicit and structurally rich sub-symbolic laws,
computations, and processes that make such symbolic cal-
culi (and the generation of explicit symbolic rules) feasible
in the first place. Researchers have attempted to reconcile
these two aspects of a concept learning system. For exam-
ple, Ashby and associates proposed a theory that describes
how implicit subsymbolic processing and procedural expli-
cit rule processing combined to facilitate concept learning
(Ashby et al., 1998). Similarly, Pothos and Chater (2002)
proposed ‘‘the simplicity model’’ which attempts to ex-
plain the process of simplifying sets of object-stimuli as a
perceptual organization principle using cost functions on
various aspects of cluster analysis. The model aimed to ac-
count for unsupervised categorization performance with
respect to the way that humans will spontaneously divide
into groups a set of objects.

Although these theories and their core models have
contributed significantly to our understanding of the
nature of concept learning beyond Boolean concepts, the
discovery of a mathematically precise and elegant rela-
tional principle of concept learning that is sufficiently gen-
eral to predict highly accurately the degree of learning
difficulty of a wide range of category structures (e.g., de-
fined with either discrete or continuous dimensions) re-
mains an open problem. In this paper, we attempt to
solve this problem with an alternative theory of concept
learning named Generalized Invariance Structure Theory
(GIST) that is a natural and direct descendant of categorical
invariance theory (CIT; Vigo, 2009). The theory posits that
the human conceptual system, at its core, functions as a
particular kind of subsymbolic qualitative pattern detec-
tion system: namely, one that is sensitive to invariance.
More specifically, the theory propounds that the process
of concept formation necessitates the detection of qualita-
tive patterns referred to as ‘‘invariants’’. These are revealed
by a process named ‘‘dimensional binding’’ where dimen-
sional values are temporarily suppressed. This mechanism,
along with other key constructs of the theory, are ex-
plained in the next few sections.

1.1. Invariance and pattern detection

Many seminal ideas in the physical and mathematical
sciences may be traced to invariance principles. Loosely
speaking, invariance is the property of entities to stay the
same in some respect after undergoing some transforma-
tion or change. Invariance is all around us in obvious and
not so obvious ways: for example, when a piece of paper
is crumpled, neither its color nor weight changes. Simi-
larly, when a melody is transformed from one key to an-
other, or played by different instruments, we recognize it
as the same melody because several of its characteristics
are invariant in respect to such changes. In short, invari-
ance is permanency or constancy in change. Perhaps be-
cause it facilitates the predictability of events and
attributes, and because it facilitates the identification of
key features of the objects in the complex world around
us, the ability to detect invariance is of paramount impor-
tance to the human cognitive system.

Some cognitive scientists have suggested that invari-
ance plays a role in higher level cognition (Garner, 1963,
1970; Garner & Felfoldy, 1970; Leyton, 1992). However,
these suggestions have been limited in three respects. First,
they have lacked generality because they have been based
on ideas of coherent geometric or spatial structure (see, for
example, Shepard, 1984), such as symmetry, that limit
their scope to spatial domains. Secondly, they were not de-
signed to account for key results in the concept learning
and categorization literature. Thirdly, the majority have
lacked mathematical and/or computational precision.
These limitations were addressed in CIT (Vigo, 2009) and
have been inherited by GIST, the theory introduced in the
next few sections.

GIST and its core model overcomes several stumbling
blocks for theories of concept learning: namely, (1) it pre-
dicts the learning difficulty ordering of the six key category
structures corresponding to the class of categorical stimuli
with four objects defined over three dimensions (Shepard
et al., 1961); (2) it is able to accurately account for the



R. Vigo / Cognition 129 (2013) 138–162 141
learnability of complementary stimulus structures (i.e., in
‘‘down parity’’); (3) it accurately fits the data and, more
generally, accounts for the learnability of an unprece-
dented number of 84 categorical stimulus structures tested
in Experiment 1 (R2 = .91, p < 0.0001); (4) using a scaling
parameter, it has the potential to account for key individ-
ual differences in classification performance; (5) it intro-
duces an original mathematical and deterministic
framework for the study of concept learning behavior
and cognition in general; (6) it predicts the learning diffi-
culty ordering of categories defined over multivalued,
dichotomous, and continuous dimensions; (7) it unifies in
precise quantitative terms key and ubiquitous constructs
in universal science – such as pattern detection, symmetry,
invariance, similarity, and complexity – from the perspec-
tive of concept learning research. With respect to these se-
ven points, GIST outperforms the most successful models
to date.

1.2. Informal terminology

We begin by informally defining some terms. By a cat-
egorical stimulus we shall mean a set of dimensionally
definable objects that, by virtue of sharing dimensions,
are related in some way. Concepts, on the other hand, we
shall define roughly as sparse mental representations of
categorical stimuli. Accordingly, categorical stimuli are
the raw material from which concepts are learned or
formed.

Dimensionally-definable stimulus objects are objects
that can be characterized in terms of a fixed number of
shared attributes or properties (i.e., dimensions), each
ranging over a continuum or over discrete values. For
example, the properties of brightness, shape, and size, as
well as the more subjective attributes of satisfaction and
personal worth, are all possible dimensions of the objects
of some categorical stimulus. In addition, we shall assume
that all of the dimensions associated with a specific cate-
gorical stimulus range over a specific and fixed number
of values that combined specify a gradient (standardized
in the [0,1] interval) for the particular dimensions. For
example, the brightness dimension may have five fixed
values representing five levels of brightness on a contin-
uum standardized from 0 to 1 (from least bright to most
bright). This continuum may be established empirically
ahead of the concept learning experiment by eliciting judg-
ments about the degree of the attributes of the objects
comprising the categories. In fact, we employed this proce-
dure in part 1 of Experiment 2. On the other hand, we shall
assume that whenever the dimensions range, in principle,
over an infinite number of possible values, it simply means
that they are continuous.

Since one of the goals of this paper is to introduce a
more general theory of concept learning than theories that
exclusively pertain to Boolean concepts, we introduce
notation to designate the various kinds of non-Boolean
concepts that should be accounted for by a general theory.
We shall say that a concept associated with a categorical
stimulus consisting of p objects defined over D dimensions,
and for which the dimensions have n standardized values
in the real number interval [0,1], is a Dn[p] type concept.
Furthermore, we shall say that such categorical stimulus
is a member of the Dn[p] class of categorical stimuli. Please
note that p refers to the specific number of objects in a gi-
ven categorical stimulus and not to the total number of ob-
jects in both the given categorical stimulus and a negative
or complimentary categorical stimulus (a complimentary
categorical stimulus consists of those objects definable by
the same given dimensions but that are not in the categor-
ical stimulus). Also, as mentioned, in the extreme case that
the dimensions of the stimulus have an infinite number of
possible values, we let n =1. For example, a categorical
stimulus with four objects whose four dimensional values
lay on a continuum is said to belong to the 41[4] class of
categorical stimuli. In general, the greater the number of
dimensions and dimensional values used to define a cate-
gorical stimulus, the more ill-defined it will appear to be.
Indeed, our ultimate aim is to develop a theory of classifi-
cation performance on dimensionally-defined category
structures ranging from the Boolean variety, to the semi-
continuous, and the continuous variety.

Six examples of categorical stimuli of the 32[4] class of
categorical stimuli and consisting of objects defined over
the three separable binary dimensions of color, shape,
and size are given in Fig. 1b. Note that each of the six cat-
egorical stimuli contains four objects and has a certain
structure, which is to say that each displays a specific rela-
tionship between its dimensional values. There are exactly
six possible structures associated with the 32[4] class of
categorical stimuli (see Higonnet & Grea, for a proof). These
six unique structures are represented by the six cubes of
Fig. 1a. We shall call the set of structures corresponding
to any Dn[p] class of categorical stimuli ‘‘the Dn[p] structure
family’’. On the other hand, the categorical stimuli con-
forming to each structure are called its structure instances.

One of the ultimate goals of theories of concept learning
difficulty is to accurately account for the different degrees
of learnability associated with the different types of struc-
tures corresponding to different classes of categorical stim-
uli. In addition, due to their specific binary dimensional
nature, they may be represented by Boolean algebraic
expressions or, simply stated, logical rules (i.e., expressions
consisting of disjunctions, conjunctions, and negations of
variables that stand for binary dimensions). These alge-
braic representations of a categorical stimulus are referred
to as concept functions. Concept functions are useful in
spelling out the logical structure of a stimulus set. For
example, suppose that x stands for blue, x0 stands for red,
y stands for round, and y0 stands for square, then the
two-variable concept function (x0 � y) + (x � y0)(where ‘‘+’’
denotes ‘‘or’’, ‘‘�’’ denotes ‘‘and’’, and ‘‘x0’’ denotes ‘‘not-x’’)
defines the category which contains two objects: a red
and round object and a blue and square object. Clearly,
the choice of labels in the expression is arbitrary. Hence,
there are many Boolean expressions that define the same
category structure (for a detailed explanation see Vigo,
2006).

The six category structures depicted in Fig. 1a and b
were studied empirically by Shepard, Hovland, and Jenkins
(1961) who observed the following increasing concept
learning difficulty ordering between the six structures
based on classification performance: I < II < [III, IV, V] < VI
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Fig. 1. Examples of the 32[4] category structures and structure instances used in Experiment 1. (a) Shows the stimuli of each type denoted by the corners of
a cube where the sides of the cube represent dimensions. Corners with circles represent positive examples whereas empty corners are negative examples of
the category. (b) Shows examples of structure instances used in Experiment 1 for each structure type. These consist of four flasks defined over three
dimensions (in this example: color, shape, and size).
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(with types III, IV, and V of approximately the same degree
of learning difficulty). This ordering, which henceforth we
shall refer to as the ‘‘SHJ ordering’’, has been empirically
replicated numerous times by several researchers (Kru-
schke, 1992; Shepard et al., 1961; Nosofsky et al., 1994a;
Love & Medin, 1998), but has been challenging to predict
quantitatively. Throughout this article, we shall revisit this
empirical result which has become an essential benchmark
for theories of classification performance.

In addition to the 32[4] family ordering, another bench-
mark for classification performance may be found in a
more recent and broader study by Feldman (2000). He ob-
served an approximate empirical difficulty ordering for 76
category structures from the 32[2], 32[3], 32[4], 42[2], 42[3],
and 42[4] families along with their complementary ‘‘down
parity’’ counterparts. A category is in down parity when-
ever it has more objects than its complementary category
(Feldman, 2000); otherwise, it’s in ‘‘up parity’’. Note that
the complement of a category is the set of objects that
are also definable by D dimensions but that are not in
the category.

Finally, we contrast between two experimental para-
digms in the concept learning literature. Under the first
and more popular paradigm, subjects are asked to classify,
in succession, members of a category and a contrasting cat-
egory without prior knowledge of the category. Hence-
forth, we shall call such empirical situations
serioinformative (serio for serial) to distinguish them from
their parainformative counterparts (para for parallel) where
a category and its contrasting category are shown simulta-
neously for a certain amount of time before their members
are displayed sequentially during the classification phase.
While the majority of the well-known concept learning
experimental paradigms are serioinformative in nature (e.g
Kruschke, 1992; Shepard et al., 1961; Nosofsky, et al., 1994a
Love & Medin, 1998), and thus, of a primarily inductiv
character, there have been a significant
number of experiments of a parainformative nature in 
the literature (for examples see Haygood and Bourne, 
1965; Garner, 1974; Feldman, 2000). For the remainder 
of this paper we shall focus exclusively on parainformative 
tasks as the target of our models, predictions, and tests.

2. Categorical invariance theory

In this section we lay the foundation for a general the-
ory of concept learning named ‘‘Generalized Invariance
Structure Theory’’ (GIST). Its core model, the generalized
invariance structure theory model (GISTM), and its variant,
the GISTM-SE will be derived using the construct of cate-
gorical invariance introduced in CIT (Vigo, 2009). Appropri-
ately, we begin with an introduction to CIT. CIT was
developed primarily as a stimulus-oriented theory of con-
ceptual behavior where the degree of concept learning dif-
ficulty of a categorical stimulus is modeled quantitatively
as the ratio between its size and its degree of categorical
invariance (to be explained). This idea is now known as
the structural invariance or categorical invariance model
(CIM, Vigo, 2009). In contrast, GIST is an observer-centered
theory that focuses on the ability of observers to detect
invariance patterns in categorical stimuli.

GIST uses the mathematical notion of categorical invari-
ance introduced first in CIT (Vigo, 2009, 2011a, 2011b) to de-
scribe the kinds of patterns that humans are sensitive to in
categorical stimuli. To understand how categorical invari-
ance and its related invariance measure work, consider a
simple example. The categorical stimulus consisting of a tri-
angle that is black and small and a circle that is black and
small and a circle that is white and large is described by
the concept function xyz + x0yz + x0y0z0 (note that, for read-
ability, we have eliminated the symbol ‘‘�’’ representing
‘‘and’’). Let’s encode the features of the objects in this cate-
gorical stimulus using the digits ‘‘1’’ and ‘‘0’’ so that each ob-
ject may be represented by a vector of zeros and ones. For
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example, the vector (1,1,1) stands for the first object when
x = 1 = triangular, y = 1 = small, and z = 1 = black. Thus, the
entire categorical stimulus can be represented by
C = {(1, 1, 1), (0, 1, 1), (0, 0, 0)}. If we perturb this categorical
stimulus with respect to the shape dimension (dimension 1)
by assigning the opposite shape value to each of the object-
stimuli in the set, we will get the perturbed categorical stim-
ulus T1(C) = {(0, 1, 1), (1, 1, 1), (1, 0, 0)} which indicates a
transformation along the first dimension. More generally,
if C is a categorical stimulus defined over D binary dimen-
sions (where D P 1), then, for any dimension i (1 6 i 6 D),
the transformation Ti on C is defined as follows:
TiðCÞ ¼ fðx1; . . . ; x0i; . . . ; xDÞ ðx1; . . . ; xi; . . . ; xDÞj 2 Cg where
x0i ¼ 1 if xi = 0 and x0i ¼ 0 if xi = 1 .

Now, if we compare the original categorical stimulus to
the perturbed set, we see that they have two object-stimuli
in common. The object-stimuli that ‘‘survive’’ the transfor-
mation (from the standpoint of membership in the cate-
gorical stimulus) are called ‘‘invariants’’. Thus, two out of
three objects are invariants or remain the same. Intuitively,
the ratio of invariants to number of objects in the categor-
ical stimulus may be construed as a measure of the partial
homogeneity of the categorical stimulus with respect to
the dimension of shape and can be written more formally
as jC \ TiðCÞj=jCj. In this expression, |C| stands for the num-
ber of object-stimuli in the categorical stimulus C and
|C \ Ti(C)| for the number of object-stimuli that C and its
perturbed counterpart Ti(C) share (Vigo, 2009).

The first pane of Fig. 2 illustrates this qualitative trans-
formative process. Doing this for each of the dimensions
generates the partial invariance scores of the categorical
stimulus C which are then arranged as a vector referred
to as the logical manifold K of the Boolean categorical stim-
ulus C as shown by Eq. (1).

KðCÞ ¼ jC \ T1ðCÞj
jCj ;

jC \ T2ðCÞj
jCj ; . . . ;

jC \ TDðCÞj
jCj

� �
ð1Þ

Each component of this vector represents a degree of
partial invariance for the categorical stimulus. But we also
wish to characterize the global or total degree of gestalt
invariance of the categorical stimulus. We do this by taking
the Euclidean distance of each logical manifold from the
Fig. 2. Logical manifold transformations across the dimensions o
zero logical manifold whose components are all zeros
(i.e., 0 = (0, . . .,0)). Thus, the overall degree of categorical
invariance U of a categorical stimulus C defined over D bin-
ary dimensions is given by Eq. (2) (where |C| > 0:

UðCÞ ¼
XD

i¼1

0� jC \ TiðCÞj
jCj

� �2
" #1=2

¼
XD

i¼1

jC \ TiðCÞj
jCj

� �2
" #1=2

ð2Þ

Intuitively, degree of categorical invariance may be
construed as a measure of the overall gestalt homogene-
ity of the categorical stimulus or its coherence. Further-
more, the larger the degree of categorical invariance of
a categorical stimulus, the easier it should be to learn a
concept from it. Using our example from the first pane
of Fig. 2, we showed that the original categorical stimulus
and the perturbed categorical stimulus have two ele-
ments in common (out of the three transformed ele-
ments) with respect to the shape dimension; thus, its
degree of partial invariance is expressed by the ratio 2/
3. Conducting a similar analysis with respect to the
dimensions of color and size, its logical manifold com-
putes to 2

3 ;
0
3 ;

0
3

� �
and its overall degree of categorical

invariance is given by Eq. (3).

Uðfð1;1;1Þ; ð0;1;1Þ; ð0;0;0ÞgÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

� �2

þ 0
3

� �2

þ 0
3

� �2
s

¼ :67 ð3Þ

There are two glaring limitations of the above formal
framework of invariance extraction as a psychological the-
ory. The first is that it applies only to categorical stimuli
defined over binary dimensions. The second is that the idea
of perturbing categorical stimuli may seem psychologically
implausible as a theory of how humans detect categorical
invariants. GIST overcomes both limitations in the follow-
ing section by reconceptualizing the invariance pattern
extraction process described here in terms of the capacities
of discrimination, similarity assessment, attention, and
short-term memory. However, this more psychologically
plausible and observer-oriented description should be con-
strued as a high-level cognitive description of how people
accomplish the discussed computations and not as a
f shape, color, and size for a 32[3] type structure instance.
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detailed process account describing precisely the concept
learning mechanisms and representations underlying the
human conceptual system.

3. Generalized invariance structure theory

The central working hypothesis of GIST is that humans
detect optimally (i.e., in a way that maximizes classifica-
tion performance within the limits of their cognitive capac-
ities), categorical invariants with respect to each
dimension of a categorical stimulus. Invariants were pre-
cisely described in the previous section. An example of a
pair of invariants (note their pairwise symmetry) is shown
in the bottom pane of Fig. 2 for a very simple stimulus con-
sisting of a small white triangle and a small white circle. In
GIST, the proportion of invariants (with respect to a partic-
ular stimulus dimension) to the number of objects in the
categorical stimulus is referred to as a structural kernel or
SK. Each structural kernel is simply each individual compo-
nent of the sum in Eq. (2). Furthermore, each structural
kernel is interpreted as a measure of the degree of partial
(with respect to a particular dimension) homogeneity of
a categorical stimulus. We shall explain the connection be-
tween invariance and homogeneity later in this section.

There are as many SKs corresponding to a categorical
stimulus and its corresponding concept as the number of
dimensions that defines it. As we shall see, SKs carry criti-
cal information about the classification potential of each
dimension of the categorical stimulus. The SKs of a cate-
gorical stimulus are stored as a compound memory trace
referred to as an ideotype. Ideotypes contain the essential
structural information of categorical stimuli and are repre-
sented by points whose coordinates are the values of their
SKs in a psychological space (see Fig. 3 to visualize). Be-
cause an ideotype carries only structural information, a
single ideotype may correspond to different categorical
stimuli. Indeed, in this sense, an ideotype may be regarded
as a type of meta-concept. In addition, the distance in psy-
chological space between the ideotype of a categorical
stimulus and the zero ideotype (i.e., the ideotype contain-
ing only zero SKs and indicating a total lack of invariants)
determines the degree of overall gestalt homogeneity or
coherence of the categorical stimulus that it encodes.

In the previous section, we defined a mathematical
operator (the logical manifold operator K) that character-
Fig. 3. Cartesian coordinates representation of ideotypes corresponding
to the 32[4] class of categorical stimuli graphed in ideotype (psycholog-
ical) space. Note that type VI, the most difficult to learn and the one
perceived to be the most difficult to learn, coincides or is closest to the
zero ideotype.
ized in precise mathematical terms the detection of invari-
ants and the formation of logical manifolds. However, the 
process required the perturbation of categorical stimuli. In 
GIST, we reconceptualize the operator K as a mental 
operator that is capable of generating SKs and ideotypes. 
We do this by reducing the process of the detection of 
invariants to a process grounded on the ubiquitous cogni-
tive capacities of similarity and attention. Specifically, 
invariants are detected by first determining how the sup-
pression of each dimension defining the categorical stimu-
lus influences the similarity between its members. This is 
achieved by a simple goal-oriented attention process that 
we shall refer to as dimensional binding. In effect, dimen-
sional binding now becomes the perturbation mechanism 
of invariance detection defined in CIT (Vigo, 2009) and de-
scribed in Section 2.

In order to better understand the process underlying
dimensional binding, we turn to the debate concerning
the nature of selective visual attention. Several researchers
have argued and presented empirical evidence (Allport,
1987; Neumann, 1987; Prinz, 1983; Schneider, 1993) in
support of the idea that attentional selection should not
be viewed solely as a limited capacity of the human visual
system, but more as a facility for constraining possible cog-
nitive actions. The basic idea underlying this view is that
our sensory system is able to detect many different stimuli
simultaneously, but our higher-level cognitive system is
normally limited to carrying out actions serially. Under this
view of goal-directed control of attention, attentional pro-
cesses are needed to constrain the selection of the appro-
priate action on the basis of the incoming information.
For example, Neumann (1987) writes that this type of
attention prevents ‘‘the behavioral chaos that would result
from an attempt to simultaneously perform all possible ac-
tions for which sufficient causes exist’’ (p. 347).

With this notion of goal-directed attention in mind, we
interpret the detection of invariants and SKs in a categori-
cal stimulus as a ‘‘partial similarity’’ assessment process
involving three levels of attention on the stimulus set.
First, at the stimulus-object level, the observer rapidly
shifts her attention from one pair of objects to another to
select the objects that will be compared next. Second, after
a pair of objects have been selected, the observer will tem-
porally bind (i.e., disregard or suppress) one of the dimen-
sions. Third, while in binding mode, the observer will pay
attention to the ‘‘free’’ (non-bound) dimensions and assess
the similarity between the two objects based on these free
dimensions. This three-stage attention-regulated process
of assessing similarities is significantly different from that
found in other concept learning models based on similarity
assessment (e.g., Nosofsky’s GCM, 1984 and Kruschke’s AL-
COVE, 1992) – the key difference being the way that
dimensional binding changes the character of similarity
assessment.

Dimensional binding constrains similarity assessment
in a way that is equivalent to the process of extracting
invariance patterns in categorical stimuli described in Sec-
tion 2 (see Fig. 2). More specifically, perturbing a dimen-
sion of a pair of object-stimuli in a set, and determining
whether the generated pair of objects remained in the
set, is equivalent to determining, after a dimension has
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been bound, whether the two distinct objects in the set are
identical with respect to their free dimensions. If so, then
they are categorically-invariant: that is, no matter what
the value of the bound dimension is, the objects remain
the same in the sense that they both continue to be mem-
bers of the (unperturbed) categorical stimulus. On the
other hand, if they are not identical, then they will not be
members of the categorical stimulus. We refer to this rela-
tionship as the invariance-similarity equivalence principle.
Fig. 4 illustrates this equivalence between the categorical
invariance detection process and the partial similarity
comparison between two objects with respect to the
bound dimension of shape. The mathematical theory
describing the equivalence between invariance structure
detection and the detection of partial similarities via
dimensional binding has been sketched in the technical
Appendix B and discussed in greater detail in the support-
ing documents website.

Note that now we can clarify what was meant at the
beginning of this section by the statement that the struc-
tural kernels (representing proportion of invariants) are
measures of degree of partial homogeneity. To illustrate,
consider that the simple categorical stimulus of Fig. 2 con-
sisting of three objects is partially homogeneous (objects
are partially alike) when their shape dimension is ignored.
Specifically, only two out of the three objects are identical
when we bind the shape dimension. Likewise, if we bind
the color dimension, no objects look alike in the categorical
stimulus. This alternative theory of the invariance detec-
tion process, based on dimensional binding and similarity
assessment, does not have the limitations of the theory
presented in Section 2. Indeed, the theory is now psycho-
logically plausible and it applies to a wider range of cate-
gorical stimuli beyond the Boolean variety. The ‘‘mental’’
K operator (henceforth referred to as the structural mani-
fold operator) will now stand for a more general invariance
detection operator; one that extracts SKs and ideotypes
from categorical stimuli defined over binary, multivalued,
and continuous dimensions via the cognitive operations
of similarity assessment and dimensional binding.

In GIST, the processes of SK detection and ideotype
formation inform two distinct systems respectively: the
first is responsible for the formation of symbolic rules,
101 001

001 101
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→
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Fig. 4. Equivalence of invariance to partial similarity across two dimen-
sions. The two objects (a large white triangle and a large white circle) are
identical when an observer binds the shape dimension. This renders the
shape dimension as redundant because it cannot determine set mem-
bership (i.e., both objects belong in the set). Note the qualitative
symmetry between the two invariant objects (i.e., invariants) indicated
by the pair of broken arrows. These are referred to as ‘‘invariant-
symmetries’’.
the second for the formation of magnitude judgments (or
more accurately, meta-judgments) about concept learna-
bility. Note that in this article we will not discuss the
mechanisms underlying these secondary systems (how-
ever, we refer the reader to RULEX (Nosofsky, Palmeri, &
McKinley, 1994b) for an example of the kind of cognitive
mechanism that may be at play after the degree of
diagnosticity of each dimension is determined by the core
model in GIST). Instead, we explain how and why
ideotypes and SKs act as precursors to other types of con-
cept representations. First, the perceived degree of learning
difficulty of a categorical stimulus is a function of the dis-
tance between its ideotype and the zero ideotype in psy-
chological space. The shorter this distance is, the less
homogenous the categorical stimulus is perceived to be
and, consequently, the more difficult it is judged to be from
the standpoint of concept formation.

Secondly, ideotypes are precursors to rules because the
SKs of the ideotype contain necessary information for rule
formation about the degree of ‘‘diagnosticity’’ (the quality
of completely determining category membership) and
‘‘redundancy’’ (the quality of playing no role in determin-
ing category membership) of the dimensions on which
the categorical stimulus is defined. But how do SKs deter-
mine the degree of diagnosticity of the dimensions? Recall
that the SKs are generated by the process of invariant
detection. If the act of binding a dimension results in ab-
sence of invariants, this signals that the categorical stimu-
lus and its perturbed counterpart do not have any object-
stimuli in common. This means that the particular dimen-
sion (e.g., color) can perfectly determine membership in
the categorical stimulus for any of it objects and any of
the objects of its perturbed counterpart. Accordingly, as
the number of invariants increase, the less diagnostic the
dimension becomes and the more it becomes redundant
or non-essential. Thus, the degree of diagnosticity of the
dimension can be precisely characterized by the propor-
tion of invariants associated with it.

For example, take the two object category of Fig. 4. Note
that when the categorical stimulus is perturbed or, equiv-
alently, bound on the shape dimension, two invariants
emerge (i.e., namely the entire content of the categorical
stimulus). Thus, the shape dimension cannot be used as a
basis for distinguishing between the original and the per-
turbed categorical stimulus. Although dimensions with
correspondingly high SKs do not carry diagnostic informa-
tion about the categorical stimulus that they define, they
signal the presence of degrees of redundant information
that may be eventually eliminated. For example, take the
first categorical stimulus shown on Fig. 1b consisting of
three dimensions: color, size, and shape. This is also known
as Type I of the 32[4] family of structures. Clearly, this is a
simple stimulus with its most relevant or diagnostic
dimension being color (and in particular, the color black).
Now, applying the structural manifold operator on this cat-
egorical stimulus yields the (0,1,1) ideotype which has
three SK values (one per dimension in the following order:
color, shape, and size).

Note that the first dimension is the most diagnostic be-
cause it has the lowest proportion of invariants associated
with it: namely, zero. The other two dimensions have ker-
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nel values of one, indicating that they are fully redundant
or dispensable because they have the highest proportion
of invariants possible (i.e., transforming the categorical
stimulus objects along these two dimensions yields the
same original categorical stimulus). One of the core
assumptions in GIST is that our conceptual system strongly
favors and is greatly biased toward the extreme SK values
of 0 and 1 because of their greater utility in forming clear
cut rules. This partly stems from the fact that it is harder
to ascertain the exact degrees of partial invariance or
homogeneity that lie between these two extreme values.

The key points in this section may be summarized in
terms of the following two principles that link categorical
invariance to concept learning difficulty:

I. Concept–invariance principle: The more sensitive an
organism is to the invariants of a stimulus set, the
easier it is for the organism to learn a concept from
it and to determine its learnability.

II. Invariance–parsimony principle: For any given ideo-
type, the extreme SK values of 0 and 1 have a much
greater relative impact on the perceived learnability
of a concept than the SK values between 0 and 1.

In addition to these two principles, we will adopt the
following principle, referred to as the invariance-learnabil-
ity principle, about the nature of the learnability of catego-
ries: the percentage change in the perceived initial raw
complexity of a categorical stimulus relative to said initial
raw complexity is negatively proportional to the degree of
perceived invariance of the stimulus or, in other words, its
gestalt homogeneity (where the perceived initial raw com-
plexity of a categorical stimulus is measured by the num-
ber of objects it contains). For a more detailed
explanation of this principle the reader is referred to
Appendix A. From this principle and from the mathemati-
cal description of the similarity-based mechanism under-
lying invariance extraction, we formally derive a simple
candidate mathematical law of conceptual behavior in
Appendix A: namely, that the degree of subjective learning
difficulty w of a categorical stimulus X is directly propor-
tional to its cardinality or size p and inversely proportional
to the exponent of its perceived gestalt homogeneity as
measured by categorical invariance (see Eq. (4)). In Eq.
(4), the hatted Greek capital phi U

_

stands for the more gen-
eral and process-oriented measure of degree of categorical
invariance (i.e., one which applies to categorical stimuli de-
fined over dichotomous, semi-continuous, and continuous
dimensions) based on the ‘‘mental’’ structural manifold
operator K introduced formally in Appendix B and dis-
cussed informally at the beginning of this section.

The scaling parameter k (0 6 k <1) is a distance scaling
parameter reflecting overall discriminability (or the capac-
ity to discriminate overall) in the ideotype psychological
space (e.g., the ability to discriminate ideotypes of different
dimensionality in ideotype space). It accounts for differ-
ences in categorization performance on categories with
different number of dimensions when their degree of
invariance is equal and non-zero. Under this interpretation,
only one parameter value is required for all ideotypes of
the same dimensionality.
wðXÞ ¼ pe�k U
_
ðXÞ ð4Þ

In addition, Eq. (4) is a complete generalization (via the
generalization of degree of invariance U

_

of a similar equa-
tion introduced in Vigo (2009, 2011a). We refer to it as the
ECIM (exponential categorical invariance model). It should
be construed as a steady-state behavior model (Bush, Luce,
& Rose, 1964) or a phenomenological description (Luce,
1995) of the role that invariance pattern information plays
in the concept learning process. Support for an exponential
function of invariance comes from converging evidence.
First, as mentioned above, it is consistent with the invari-
ance-learnability principle and other basic assumptions
in GIST (for a proof see Appendix A). Second, the exponen-
tial relation provides the overall best fits (when compared
to other mathematical forms) for the data from two large
scale classification experiments: the Feldman (2000) study
of 76 category structures and our own experiment labeled
Experiment 1 under the methods section involving 84 cat-
egory structures. Indeed, in other areas of cognitive re-
search, candidate laws have been proposed solely on the
basis of accurate data fits and criticized for this very rea-
son. In particular, Steven’s power law (Stevens, 1955)
comes to mind. Third, the mathematical framework in
Appendix B suggests that there may be a strong exponen-
tial link to invariance via a lower-level type process of gen-
eralization. This suggests a possible connection to
Shepard’s law of universal generalization.

An intuitive way of interpreting the exponential GISTM
concerns the tradeoff between the initial ‘‘perceived raw
complexity’’ of a categorical stimulus and its degree of per-
ceived invariance. In particular, the invariance-learnability
principle articulates this tradeoff precisely in terms of a
‘‘percentage change’’ in order to establish an initial, scale-
independent, upper bound level of perceived raw complex-
ity that is then reducible by the degree of homogeneity of
the categorical stimulus. Although we measure the per-
ceived raw complexity of a categorical stimulus before it
is processed as the number of items it contains, more psy-
chological measures, such as the total number of pairwise
comparisons between its objects (i.e., p2), are also plausi-
ble. Regardless of the raw complexity measure chosen, this
quantity is subject to exponential decay (as degree of
homogeneity increases) if it is decreased at a rate propor-
tional to its value (see Appendix A).

Although, Eq. (4) yields accurate fits to data from key
historical experiments and our own experiments (de-
scribed under the methods section), the invariance-parsi-
mony principle, which states that the SKs with 0 and 1
values should play a much greater role in determining de-
gree of difficulty, is not satisfied by the simple exponential
model of Eq. (4). We remedy this and other limitations by
adjusting the basic functional form of the model in
Section 4.

4. The generalized invariance structure theory model

The first additional extension is based on the previously
discussed invariance-parsimony principle involving SKs:
namely, humans highly favor SK-values of 0 and 1 and
in-between values play a disproportionate lesser role in
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lowering perceived difficulty. In other words, there is an
inherent strong bias toward the dimensions whose kernels
are zeros or ones. We capture this disproportional contri-
bution of the kernel values by squaring the degree of
invariance. Squaring works because the contributions of
the kernels with values of 1 or 0 to the overall degree of
invariance are amplified when compared to the contribu-
tions of all the SKs with in-between values (for a formal
justification and discussion of this assumption and notion
see Vigo, 2009); the power of two is the smallest positive
integer power to accomplish this.

Ultimately, squaring the degree of categorical invari-
ance transforms the exponential form of the function to a
Gaussian form as shown in Eq. (5) where X is a continuous
or dichotomous category X, w is degree of subjective learn-
ing difficulty (aka, subjective complexity), p is the number
of objects in the categorical stimulus, and k is a scaling
parameter interpreted in the same way as in our discussion
of Eq.(4).

wðXÞ ¼ pe�kU
_

2ðXÞ ð5Þ

Note that letting the scaling parameter k above be the
discrimination index defined by k=D0/D (where D is the
number of dimensions of the categorical stimulus and
D0 =2 a lower bound on the number of dimensions), gives
a non-parametric version of Eq. (5) (named GISTM-NP)
with virtually the same fits to our data (see Figure 6C)1.
For a discussion of the non-parametric variants of the
GISTM, the reader is referred to the supporting documents
website. Next, we discuss another variant of Eq. 5 that intro-
duces a potentially powerful new construct for the analysis
of concepts and concept learning.

4.1. Structural equilibrium as a moderator

In GIST, degree of categorical invariance is characterized
as a global distance metric on ideotype space. Yet, each ide-
otype also contains local information (i.e., independent of
other ideotypes) that may contribute to overall concept
learning difficulty. For example, associated with each ideo-
type is a certain degree of ‘‘structural equilibrium’’. A cate-
gorical stimulus X is in structural equilibrium (SE)
whenever the SKs of its ideotype are all zero or, in other
words, whenever each of its dimensions is diagnostic or
essential. SE indicates perfect structural stability because
when a categorical stimulus is in SE, each of its dimensions
plays the exact same structural role (for a more detailed
explanation of this construct, see the supporting docu-
ments to this article). Psychologically, degree of SE, as mea-
sured by the percentage of zero SKs in the ideotype, is
indicative of the degree of perceived independence be-
tween the dimensions of a stimulus or, equivalently, of
how easy it is to discriminate between the structural roles
that the dimensions play in a categorical stimulus. We pro-
pose that high SE exerts a positive moderating effect in
1 By transforming the Euclidean metric that defines degree of categorical
invariance U

_

in appendix B to the following metric instead
U
_
0ðXÞ ¼

PD
d¼1½H½d�ðXÞ�

2, then Eq. (5) may retain the original external non-
Gaussian form of Eq. (4): namely, wðXÞ ¼ pe�kU

_
0 ðXÞ) and wðXÞ ¼ pe�ð

D0
D ÞU

_
0 ðXÞ

for the non-parametric variant.
concept learnability by facilitating the identification of
the dimensions that are subsequently processed by a rule
formation system. In other words, perfectly diagnostic
dimensions make categorization easy.

For example, a categorical stimulus X that is a structure
instance of structure IV in Fig. 1, has an ideotype repre-
sented by the (.5, .5, .5) structural manifold. There is a
strong interaction between dimensions here because there
are no zero SKs present. It is this perceptual confound in
the diagnostic role that the dimensions play that makes
it just as hard to learn this type of stimulus as it would
be to learn one whose overall degree of homogeneity is
slightly lower but whose ideotype has a value of (0, .5, .5)
(i.e., a structure instance of structure V in Fig. 1). For this
latter ideotype, our conceptual system readily and
unequivocally recognizes that the first dimension is the
most diagnostic. In this sense, high degree of SE may play
a moderating secondary and minor influence in lowering
the perception of concept learning difficulty by clarifying
the diagnostic role of the dimensions of the categorical
stimulus. Note that ideotypes corresponding to the down
parity structure types tested in our experiment do not con-
tain any zero kernels (see Table 1) so the learning difficulty
of their associated categorical stimuli is not alleviated by
this moderating factor. The degree of structural equilib-
rium of a categorical stimulus X is the percentage of zero
SKs in its ideotype (+1 to avoid zero percentages and divi-
sion by zero). Based on this quantity, we defined the struc-
tural equilibrium coefficient g(X) (see supporting
documents website). Incorporating g(X) (abbreviated as
g) into Eq. (5) results in the following variant of the GISTM
(Eq. (6)) which we shall refer to as the GISTM-SE; in the
next section, we test both models.

wðXÞ ¼ pe�kU
_2ðXÞ

g
¼ g�1pe�kU

_
2ðXÞ ð6Þ
5. Methods and empirical evidence

Three experiments were conducted to test the qualita-
tive and quantitative predictions made by the GISTM and
GISTM-SE and to compare these to those made by other
well-known categorization models. Of the three experi-
ments, only Experiments 1 and 2 are described in detail.
The reader is referred to the supporting documents web-
site for a discussion of Experiment 3. Experiment 1 aimed
to test, extend, and replicate the results obtained by Feld-
man (2000) in his study involving 76 category structures.
Like Feldman, in our experiment we used a parainforma-
tive task. However, we increased the number of structures
tested to 84: namely, the 76 structures studied by Feld-
man, the four structures involving two dimensions, and an-
other four structures (of three and four dimensions) in up
and down parity involving a single object. The structures
tested are listed in Table 1 in terms of the Boolean formu-
lae that define them).

In contrast, Experiment 2 aimed to test and compare
the aforementioned models on 24 category structures de-
fined over three quaternary dimensions whose values lied
on a [0,1] gradient. Only four of the eight models tested



Table 1
List of the 84 category structures tested. The first column displays the structure labels, the second column the Boolean functional description
of the structure, the third column the structural manifold of the structure, the fourth column the degree of categorical invariance of the
structure. The U stands for up parity and the D stands for down parity. Asterisks on structure labels in the first column identify the
structures that were not among the 76 structures studied by Feldman (2000).
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Table 2
Distribution of the 18 tested structure families consisting of a total of 84 structures distributed among six groups of 
subjects. The first column shows a group label, the second column displays the particular structure families in each 
group. The third column specifies the number of structures in each particular structure family and the fourth column 
shows the number of subjects assigned per group. The U stands for up-parity and the D stands for down-parity structure 
families. Asterisks identify the 11 structure families from Feldman (2000). Note that the U-42[4] family and its down-
parity counterpart, the D-42[4] or 42[12] family (each of which consists of 19 structures), were split into 3 groups of 6, 6, 
and 7 structures.
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were capable of processing this kind of categorical stimuli
(i.e., the GCM, ACM, GISTM, and GISTM-SE). Hence, our dis-
cussion focuses on these four. Finally, Experiment 3 aimed
to show that relative magnitude judgments of concept
learning difficulty are consistent with results on categori-
zation performance as measured by error rates on parain-
formative tasks. Recall that both the GISTM and GISTM-SE
attempt to predict perceived degree of learning difficulty.
Yet, Experiments 1 and 2 are designed to test classification
performance in terms of proportion of classification errors.
This is not an issue as long as we accept the assumption
that degree of learning difficulty may be operationalized
in terms of proportion of classification errors. Experiment
3 aimed to corroborate this way of operationalizing per-
ceived degree of concept learning difficulty by directly
testing people’s magnitude judgments on the learning dif-
ficulty of the 32[4] structures.

5.1. Experiment 1: Difficulty ordering of 84 category
structures

5.1.1. Subjects
A total of 180 Ohio University undergraduates partici-

pated in the experiment. Six groups of 30 subjects each
were assigned to the following six sets of structure families:
{22[1], 22[2], 22[3]}, {32[1], 32[2], 32[3], 32[4], 32[5], 32[6],
32[7]}, {42[1], 42[2], 42[3], 42[15], 42[14], 42[13]}, {42[4]–
(1–6), 42[12]–(1–6)}, {42[4]–(7–12), 42[12]–(7–12)}, and
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Fig. 6. (a) GISTM fit to data from the 84 classification tasks involving 84
category structures. Three values of the scaling parameter k were used in
total, one for all the two dimensional categories stimuli (k2 = .69), one for
the three dimensional stimuli (k3 = .72), and one for the four dimensional
stimuli (k4 = .55). rs stands for Spearman’s Rho. (b) Using a single
parameter accounts for about 88% of the variance but is contrary to the
homogeneous subspaces hypothesis proposed in Section 4. (c) Using the
non-parametric variant also accounts for about 88% of the variance (for
more details, see the support documents website).

Fig. 5. Example of a stimulus shown on a computer display to subjects in
Experiment 1. The categorical stimulus above the line is a structure
instance from one of the six structures in the 32[4] family of structures,
below the line is its logical complement.
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{42[4]–(13–19), 42[12]–(13–19)}. In total, 18 structure fam-
ilies (including their down parity counterparts) were tested
for a grand total of 84 structures. These 84 structures are
specified in column 2 of Table 1 in terms of their Boolean
concept function descriptions (see Section 1.2 for an expla-
nation). Column 3 of the same table displays the structural
manifold of each structure. On the other hand, Table 2
shows the number of structures in each of the 18 structure
families and how the structures were assigned to the six
distinct groups of 30 subjects.

Each of the 84 structures was tested using four distinct
categorical stimuli conforming to the structure (i.e., four
distinct structure instances per structure). Fig. 1b shows
six structure instances, each corresponding to one of the
six structures in the 32[4] structure family. Structure in-
stances were sampled at random from the entire popula-
tion of possible structure instances of each particular
structure. Finally, as illustrated in Table 2, the 42[4] struc-
ture family was spliced into three sets of structures due to
their large number of structures (19 in total).

5.1.2. Materials
An HP XW4600 workstation with a Dell 1708FP 15 in.

flat panel LCD monitor (5 ms response time) was used to
display the stimuli. Categorical stimuli were sets of flat
flasks that varied in color (black or white) and size (large
or small) for two dimensional stimuli, in color (black or
white), size (large or small), and shape (triangular or rect-
angular) for three dimensional stimuli, and in color (black
or white), size (large or small), shape (triangular or rectan-
gular), and neck width (narrow or wide) for four dimen-
sional stimuli. Each stimulus consisted of two sets of
spatially separated flasks: one on top of a line in the middle
of the digital display and the other (its complement) below
the line as exemplified in Fig. 5.

5.1.3. Procedures
Prior to the start of the experiment, the classification

task was explained to each subject. Subjects were told that
an art collector likes collecting flasks and that for a period
of 20 s they would be shown the flasks that the art collec-
tor likes to collect above the horizontal line in the middle
of the screen and, below the line, those that the art collec-
tor does not like to collect. Moreover, the subjects were
told that after the 20 s learning period, they would be
shown each of the flasks seen above and below the line,
one at a time and at random, for about three seconds. They
then were to determine and specify within the three sec-
onds, by pressing one of two mouse buttons (the left one
labeled ‘‘Y’’ and the right one labeled ‘‘N’’), which flask
was liked by the art collector and which was not. They
were also told that failure to press a button within three
seconds counted as a classification error.

After receiving these verbal instructions, each subject
sat in front of the digital display so that their eyes were
approximately 2.5 feet away. The experiment, a program
written in Psychophysics toolbox (version 3), began upon
the press of the space bar on the keyboard. The first screen
of the experiment contained the same instructions that
had been given verbally. After the instructions were read
by the subject, the first block of classification trials began
by the press of the space bar. Per the given verbal instruc-
tions, each block consisted of the following sequence of
events: (1) the categorical stimulus was presented for
20 s during the learning phase, (2) afterward, each object
from the categorical stimulus seen during the learning
phase was displayed at random and one at a time for a per-
iod of three seconds, (3) for each block of the 2D trials (cor-
responding to the number of possible objects in the two
displayed categorical stimuli above and below the line),
subjects had up to 3 s to make a classification decision by
pressing one of two mouse buttons that were clearly la-



Table 3
Approximate R2 (first number), Spearman’s Rho (second number), and Root Mean Square Error (third number) for the GISTM (top of first column) and GISTM-SE
(top of second column) using data from the 84 structures studied by the author and the 76 structures studied by Feldman. Scaling parameter k values are also
included where the subscript on each k indicates the dimensionality of the ideotype subspace.
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beled as ‘‘Y’’ (left button) and ‘‘N’’ (right button). There
were a total of four blocks of classification trials, one per
structure instance. The program recorded the percentage
of classification errors per block of trials and the average
percentage of errors across each set of four blocks of clas-
sification trials corresponding to each of the 84 structures
tested.

5.2. Methodological design of Experiment 1

Our first experiment tested classification performance
on parainformative classification tasks involving 84 dis-
tinct categorical stimulus structures. Although Feldman
(2000) used a similar parainformative paradigm, there
are significant differences between the two experiments
that we believe account for the major differences found
in their corresponding results. In the remainder of this dis-
cussion, FEXPRO refers to Feldman’s experimental protocol
and VEXPRO to the author’s. To start with, FEXPRO utilizes
different training periods for categorical stimuli of differ-
ent dimensionality. The assumption being that the higher
the dimensionality of the categorical stimulus is, the more
time it will take to learn it. More specifically, subjects are
given 5p seconds of training time (where p is the number
of objects in the categorical stimulus). However, applica-
tion of the 5p seconds rule may have introduced a bias. In-
deed, there are higher dimensional stimuli that take less
time to learn than lower dimensional stimuli. In contrast,
VEXPRO assigns the same amount of time per categorical
stimulus regardless of its dimensionality: namely, 20 s.

The second methodological difference between VEXPRO
and FEXPRO is that in VEXPRO, we have sampled from the
entire population of structure instances. That is, VEXPRO
samples at random from the entire class of possible cate-
gorical stimuli or instances of a particular structure; in
contrast, FEXPRO does not sample from the entire popula-
tion of all possible structure instances according to the
Supplementary Support Webpage of experimental details
cited by Feldman (2000). This, again, could introduce some
significant biases in the experiment. The third methodo-
logical difference concerns the nature of the categorical
stimuli presented to subjects. FEXPRO uses a world of
‘‘amoeba’’. This world may have been perceived as consid-
erably more abstract than the world of art collectors col-
lecting sets of flasks used in VEXPRO. Thus, it may have
been harder to communicate the nature of the task at hand.
On the same line of argument, we point at the way that
instructions were delivered to subjects. Under VEXPRO,
subjects were explained the experimental task in a rather
thorough fashion both verbally and in writing. A greater
amount of briefing time can influence an experiment by
eliminating noise associated with a subject’s uncertainty
as to what he/she is supposed to do. The fourth methodo-
logical difference between the two experiments concerns
the way that the stimuli were assigned per group of sub-
jects. FEXPRO assigns to each group of subjects (six groups
in total) a family of structures and their down parity coun-
terparts. Therefore, some groups of subjects are getting a
much higher number of structure instances than others.
In VEXPRO, larger families of structures (e.g., the 42[4] fam-
ily) are split and distributed among several groups as de-
scribed under Section 5.1.1. The value of this is to reduce
what would be a two hour experiment to a less than one
hour experiment. We believe that this strategy reduces
noise in the data by reducing subject fatigue.

Finally, in addition to the methodological differences
discussed above, we also note two facts that lead us to be-
lieve that the data obtained under VEXPRO is less noisy
than the data obtained under FEXPRO. First, Feldman
(2000) did not observe the SHJ ordering in his data. In fact,
error rates per type in his experiment were as follows:
I(.06), II(.17), III(.16), IV(.23), V(.19), VI(.28). In contrast,
our data clearly reflected the SHJ ordering: I(.02), II(.07),
III(.19), IV(.18), V(.17), VI(.32) (pairwise t-tests indicated
no significant differences between types III, IV, and V). Fi-
nally, the correlation between our data and Feldman’s data
on the 76 category structures that he tested was not very
high (r ¼ :66; p 6 :0001; rs = .65). All of the above points
suggest that the VEXPRO data is probably less noisy and
more reliable than the FEXPRO data.



Fig. 7. GISTM and GISTM-SE fits for 11 families of categorical stimulus structures using data from Experiment 1. The first R2 value corresponds to the
GISTM-SE, the second R2 value corresponds to the GISTM. Likewise, the top scaling parameter k value corresponds to the GISTM-SE, the bottom to the
GISTM. Also note that the scaling parameter k values are the same for all structures of the same dimensionality regardless of their family of origin.
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5.2.1. Model fits
In this section we examine how well the GISTM and

the GISTM-SE fit the VEXPRO-84 data (data from all 84
structures tested in Experiment 1), the VEXPRO-76 data
(data from Experiment 1 on the 76 structures tested in
Feldman, 2000), and the FEXPRO-76 data (data from Feld-
man’s experiment on 76 structures; Feldman, 2000). The
model fitness analysis was conducted with the following
statistics: the coefficient of determination R2, the root
mean square error (RMSE), Spearman’s Rho (rs) which
measures ordinal correlation, and the Wilke-Shapiro nor-
mality test on the distribution of the residuals. The scal-
ing parameter k estimates were computed using the
RISK SOLVER ENGINE, a program that implements classi-
cal methods of constrained optimization (such as the
Lagrangian) using gradient descent algorithms (see Dael-
lenbach & George, 1978 for a theoretical explanation) to
maximize the coefficient of determination or, equiva-



Fig. 8. Model fits to our VEXPRO-76 data involving the 76 structures studied in Feldman (2000). Note that the quality of each fit is reflected by the
distribution of the residuals. Note the significantly lower RMSE for the GISTM and the GISTM-SE. Also, note that structural equilibrium accounts for the SHJ
ordering. The Shapiro–Wilk W Test is a measure of the extent to which the residuals are normally distributed (e.g., W = 1 indicates a perfectly normal
distribution).
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lently, minimize the sum of squared differences between
the model predictions and the empirical data. Parameter
estimates for the scaling parameter k were performed at
two levels: dimensional classes of structures and all
structures combined. So, for example, at the dimensional
level, the 76 structures tested by Feldman (a subset of
the 84 tested by the author) were divided into 3-dimen-
sional and 4-dimensional stimuli. Thus, two parameter
values were generated (one value, labeled k3, for all the
three dimensional stimuli and one value, labeled k4, for
all the four dimensional stimuli). Similarly, three scaling
values were used on the 84 structures (with an additional
estimated value, labeled k2, for all the two-dimensional
stimuli).



Table 4
Model comparisons discussed in this section are summarized in the table above. There are a total of five performance benchmarks reported, one per row. rs
stands for the Spearman rho coefficient which is a measure of correlation at an ordinal level. Note that the GISTM, GISTM-NP (non-parametric GISTM) and the
GISTM-SE hold a significant advantage over the rest of the models and that they perform similarly well (with a slight advantage held by the GISTM-SE in being
able to precisely predict the SHJ ordering with a single scaling parameter value k=1.02)
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Moreover, a single scaling parameter value was esti-
mated for all 84 structures. We first report fits for this single
parameter value as a reference point to appreciate the
robustness of the model. Estimating for a single best scaling
parameter value (k = .54) accounted for about 88% of the
variance in the VEXPRO-84 data (R2 = 0.88, p < .0001,
RMSE = .04, rs = .94) as shown in Fig. 6b. However, the learn-
ing difficulty ordering of the 32[4] family of category struc-
tures was only approximated: I(1.3) < II(2.3) < [III(2.7) =
IV(2.7) = V(3)] < VI(4). On the other hand, the GISTM-SE
with a single scaling parameter estimate (k = .71) accounted
for 83% of the variance (R2 = 0.83, p < .0001, RMSE = .05,
rs = .91), but predicted the learning difficulty ordering of
the 32[4] family of category structures: I(.78) < II(1.45) <
[III(2.3) = IV(2.3) = V(2.3)] < VI(2.83). When using three
scaling parameter values (one per dimensional subspace),
as is called for by the heterogeneous psychological space
proposed in Section 4, the fits to the data are a bit better.
For example, Fig. 6a shows how well the GISTM captures
the variance of the VEXPRO-84 data (R2 = 0.90, p < .0001,
RMSE = .037, rs = .95). Likewise, the GISTM-SE fitted the data
about as accurately with (R2 = 0.91, p < .0001, RMSE = .037,
rs = .97). Accordingly, with respect to the VEXPRO-76 data,
the fits by the GISTM and the GISTM-SE were equally accu-
rate (GISTM: R2 = 0.90, p < .0001, RMSE = .038, rs = .95;
GISTM-SE: R2 = 0.91, p < .0001, RMSE = .037, rs = .96) as
shown in Table 3 which also specifies the scaling parameter
estimates.

To test the robustness of both models, and to deter-
mine whether they are over fitting the data, we applied
a 10-fold cross-validation test with 100 iterations using
a program written in Matlab 7.7. The test yielded nearly
identical average R2s and root mean square errors to
those reported above and in Table 3 with respect to the
VEXPRO-76 data. This seems to indicate that both models
are highly robust and that neither model is over fitting
the data (GISTM, avg. R2 = 0.90, avg. RMSE = .036;
GISTM-SE, avg. R2 = 0.91, avg. RMSE = .037). Furthermore,
the average k parameter estimates for all of the cross-
validation tests closely matched those reported in Table 3
(i.e., for the three dimensional data the actual k = .69, the
cross-validation k = .63; for the four dimensional data the
actual k = .54, the cross validation k = .54). The same
performance levels were achieved by both models using
the same cross-validation procedure with respect to the
VEXPRO-84 data.
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As expected, the GISTM and the GISTM-SE fitted the
FEXPRO-76 data less accurately than it fitted the VEX-
PRO-76 data (GISTM: R2 = 0.69, p < .0001, RMSE = .049,
rs = .83; GISTM-SE: R2 = 0.66, p < .0001, RMSE = .05,
rs = .81). These results, along with their corresponding
parameter values, are specified in Table 3. We hypothesize
that this is due to more noise in Feldman’s data and to dif-
ferences in the protocols employed by each experiment
(for a detailed discussion see Section 5.2). However, the ob-
tained fits were still superior to the leading models pro-
posed thus far as demonstrated in the following section.

In addition to these tests, we divided our data in terms
of structure families as shown in Fig. 7 to determine how
accurately the data was fitted on a per family basis. Note
that Fig. 7 specifies the scaling parameter value that was
estimated. This one value was used for all the families of
the same dimensionality. Note that, on a per family basis,
the fits of both the GISTM and the GISTM-SE were very
accurate, accounting for about 80–100% of the variance in
the data depending on the given family.

5.2.2. Model comparisons
In Section 1 we discussed several theories of concept

learning and their core models. These included ALCOVE
(Kruschke, 1992), MinC (Feldman, 2000), SUSTAIN (Love,
Medin, & Gureckis, 2004), Algebraic Complexity (Feldman,
2006), and Categorical Invariance (Vigo, 2009). In this sec-
tion we compare the performance of their core models
with the GISTM and GIST-SE. However, we do not consider
ALCOVE nor SUSTAIN because they have already been com-
pared unfavorably with the NOMM and the ACM across a
wide range of Boolean concepts (see Feldman, 2006 and
Goodwin & Johnson-Laird, 2011). However, we do consider
the core model underlying ALCOVE, the GCM (Nosofsky,
1984), because like the GISTM and unlike the rest, it is a
‘‘phenomenological model’’ (Luce, 1995) of concept learn-
ing. In other words, the model is a high level description
of a phenomenon using a mathematical equation that
exhibits overall properties of the phenomenon, but not
its internal structure. To explain, Luce (1995, p. 3) writes:
‘‘This approach is like that of classical physics, in which ob-
jects have properties, e.g. mass, charge, temperature-but
no explicit molecular or atomic structure is attributed to
them.’’ In the GCM, the degree of learning difficulty of a
concept is operationalized as is done in the appendix of
Nosofsky (1984) by taking the average of the probabilities
corresponding to each object-stimulus being classified cor-
rectly, and converting these to a percentage of correct re-
sponses for the categorical stimulus as a whole.

To generate the NOMM (Goodwin & Johnson-Laird,
2011) and the ACM (Feldman, 2006) predictions we used
the same computer programs used by the authors and
available for download from their supporting documents
websites (see the cited articles for the URLs). Regarding
the NOMM, the model predictions for the 76 structures
were also posted on the authors’ (Goodwin & Johnson-
Laird) supporting document’s website, so we used these
values. Furthermore, predictions for the additional eight
structures tested were computed manually and, for confir-
mation, by the LISP program posted in the authors’ sup-
porting documents website. For the ACM, we used the
‘‘Concept Algebra Toolbox’’ (CAT) program to generate
the algebraic complexity values. For MinC, as Goodwin
and Johnson-Laird (2011) did, we used the predictions
published in Feldman’s catalogue (Feldman, 2003) with
the corrections made by Vigo’s QMV method (Vigo, 2006).

We compared the performance of the GISTM and the
GISTM-SE to the performance of the models discussed un-
der section 2 in terms of their ability to fit and predict the
data from our experiment and Feldman’s experiment.
More specifically, we used six performance benchmarks:
namely, (1) the ability to predict the SHJ ordering (Shepard
et al., 1961), (2) the ability to predict the learning difficulty
ordering of the 84 (and the well-known subset of 76) cat-
egory structures (in up and down parity) tested in our
Experiment 1, (3) the potential to account for individual
differences between subjects, (4) the ability to predict clas-
sification performance on the 41 structures (i.e., those in
up parity and those without parity) tested by Feldman
(2000), (5) the ability to handle continuous and multi-val-
ued dimensions, and (6) the ability to predict the learning
difficulty ordering of the 24 category structures tested in
our Experiment 2 involving three quaternary dimensions.
Table 4 summarizes these comparisons.

Both the GISTM and the GISTM-SE excelled at each
benchmark. For example, with respect to the first bench-
mark, only the GIST-SE (with one scaling parameter value
(k = 1.02) for all 3-dimensional structures) and the GCM
(with 13 free parameter values; two parameter values
per each of the six structures and one scaling parameter)
could predict the canonical 32[4] structures ordering found
in our data precisely (note that in the GCM the attention
weight parameters must sum to one so that only two
attention weight parameters need to be estimated to
determine the third). This ability we think is due to the
moderating effect that structural equilibrium has on lear-
nability, making structure V (see Fig. 1) slightly easier to
learn than it would otherwise be strictly on the basis of
its relatively low degree of homogeneity. Note that the
GISTM comes in a close second place (after the GISTM-
SE) among all the models tested (rs = .92) when predicting
the SHJ ordering at an ordinal level.

With respect to the second benchmark, ability to pre-
dict classification performance on the 84 structures tested
under Experiment 1, both the GISTM and GISTM-SE ac-
count for over 90% of the variance in the VEXPRO-84 data
as discussed previously. Moreover, with respect to the
VEXPRO-76 data, both the GISTM and GISTM-SE fitted
the data equally well as illustrated in Fig. 8 (R2 = 0.90,
p < .0001, RMSE = .038, rs = .95; R2 = 0.91, p < .0001,
RMSE = .037; rs = .96). In contrast, as shown in Table 4
and Fig. 8, the NOMM, ACM and MinC fitted the VEXPRO-
84 data (Table 4) and the VEXPRO-76 data (Fig. 8) similarly,
accounting for somewhere between 57% and 66% of the
variance in the data. This fact is consistent with a sugges-
tion made under Section 1: namely, that the reduction
strategies underlying these models are closer than may
seem. Also, note that the NOMM, the ACM, and MinC ac-
counted respectively for approximately 57%, 49%, and
31% of the variance in the FEXPRO 76 structures data
(Goodwin and Johnson-Laird, 2011). These differences in
performance are not surprising given that the FEXPRO-76



Table 5
Twenty-four category structures associated with the 34[4] family tested in Experiment 2. Column 1 shows their general label, column 2 shows the rule that 
defines it with the standardized value for each dimension placed next to each dimensional variable within parentheses, column 3 shows its structural manifold, 
column 4 shows the empirical error rate (what percentage of the classification decision were wrong on average for all subjects), and columns 5 and 6 show the 
predictions by the GISTM and GISTM-SE.

Group 24 Gradient substructures Structural manifold Error rate GISTM GISTM-SE

1 x(.66)y(.34)z(.34) + x(.66)y(.34)z(.66) + x(.34)y(.34)z(.34) + x(.34)y(.34)z(.66) (1,0,1) .16 1.8 0.4
x(0)y(.34)z(.34) + x(0)y(.66)z(.34) + x(0)y(.66)z(.66) + x(0)y(.34)z(.66) (0,1,1) .17 1.8 0.4
x(0)y(.34)z(0) + x(1)y(.34)z(0) + x(1)y(.66)z(0) + x(0)y(.66)z(0) (1,1,0) .12 1.8 0.4
x(1)y(1)z(0) + x(1)y(1)z(1) + x(1)y(0)z(1) + x(1)y(0)z(0) (0,1,1) .13 1.8 0.4

2 x(.34)y(.66)z(.34) + x(.66)y(.34)z(.66) + x(.34)y(.34)z(.34) + x(.66)y(.66)z(.66) (0,1,0) .34 2.7 1.1
x(1)y(.66)z(.34) + x(0)y(.34)z(.34) + x(1)y(.66)z(.66) + x(0)y(.34)z(.66) (0,0,1) .24 2.7 1.1
x(.34)y(1)z(0) + x(.34)y(0)z(0) + x(.66)y(1)z(1) + x(.66)y(0)z(1) (0,1,0) .29 2.7 1.1
x(1)y(0)z(0) + x(1)y(0)z(1) + x(0)y(1)z(1) + x(0)y(1)z(0) (0,0,1) .32 2.7 1.1

3 x(.34)y(.34)z(.66) + x(.66)y(.34)z(.66) + x(.34)y(.66)z(.66) + x(.34)y(.66)z(.34) (.5, .5, .5) .32 3.0 1.9
x(.66)y(0)z(.34) + x(.66)y(1)z(.66) + x(.66)y(1)z(.34) + x(.34)y(1)z(.66) (.5, .5, .5) .29 3.0 1.9
x(1)y(1)z(.66) + x(0)y(0)z(.34) + x(0)y(0)z(.66) + x(1)y(0)z(.66) (.5, .5, .5) .27 3.0 1.9
x(1)y(1)z(0) + x(1)y(1)z(1) + x(1)y(0)z(0) + x(0)y(1)z(1) (.5, .5, .5) .35 3.0 1.9

4 x(.34)y(.34)z(.34) + x(.66)y(.66)z(.34) + x(.66)y(.34)z(.34) + x(.66)y(.34)z(.66) (.5, .5, .5) .30 3.0 1.9
x(.34)y(.34)z(1) + x(.66)y(.34)z(0) + x(.66)y(.66)z(1) + x(.66)y(.34)z(1) (.5, .5, .5) .26 3.0 1.9
x(1)y(0)z(.66) + x(0)y(0)z(.34) + x(0)y(0)z(.66) + x(0)y(1)z(.66) (.5, .5, .5) .26 3.0 1.9
x(0)y(1)z(1) + x(0)y(1)z(0) + x(0)y(0)z(0) + x(1)y(1)z(0) (.5, .5, .5) .34 3.0 1.9

5 x(.66)y(.66)z(.34) + x(.34)y(.66)z(.66) + x(.34)y(.34)z(.66) + x(.34)y(.34)z(.34) (0, .5, .5) .33 3.3 2.0
x(1)y(.34)z(.34) + x(0)y(.66)z(.34) + x(1)y(.66)z(.66) + x(0)y(.66)z(.66) (.5,0, .5) .32 3.3 2.0
x(.34)y(0)z(0) + x(.66)y(1)z(1) + x(.66)y(0)z(1) + x(.66)y(1)z(0) (0, .5, .5) .35 3.3 2.0
x(0)y(0)z(1) + x(1)y(1)z(0) + x(0)y(1)z(1) + x(0)y(0)z(0) (0, .5, .5) .39 3.3 2.0

6 x(.34)y(.66)z(.34) + x(.66)y(.66)z(.66) + x(.34)y(.34)z(.66) + x(.66)y(.34)z(.34) (0,0,0) .44 4.0 2.8
x(0)y(.66)z(.34) + x(1)y(.34)z(.34) + x(1)y(.66)z(.66) + x(0)y(.34)z(.66) (0,0,0) .42 4.0 2.8
x(0)y(.66)z(1) + x(1)y(.34)z(1) + x(0)y(.34)z(0) + x(1)y(.66)z(0) (0,0,0) .40 4.0 2.8
x(1)y(1)z(1) + x(1)y(0)z(0) + x(0)y(0)z(1) + x(0)y(1)z(0) (0,0,0) .39 4.0 2.8

Fig. 9. Structure instance of a category structure with three quaternary
dimensions and four objects shown to subjects on a computer screen
during the second condition of Experiment 3: note that only four objects
comprise the negative or complementary category below the horizontal
line.
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and VEXPRO-76 datasets reflect significantly different dif-
ficulty orderings for the 76 structures as is evident by a
low ordinal correlation between them (rs = .65). Indeed, gi-
ven this latter fact, we expected even bigger differences in
the model fits to the two datasets as was the case with the
GISTM. Finally, the GCM accounts for only 27% of the var-
iance in the VEXPRO-84 data as shown in Table 4 using a
set of uniformly distributed attention weights (per group
of 2, 3, and 4-dimensional stimuli) and using optimal value
estimates of three scaling parameter values (one
parameter value per group of 2, 3, and 4-dimensional
stimuli).

Likewise, both the GISTM and GISTM-SE yield the best
fits to Feldman’s data on the 41 structures (in up parity
and no-parity) accounting for about 92% of the variance
in the data. In contrast, the GCM accounts for 24% of the
variance in the data (R2 = 0.24, p < .0001), MinC accounts
for about 42% of the variance (R2 = 0.42, p < .0001), and
NOMM account for about 63% of the variance in the data
(R2 = 0.63, p < .0001). But again, due to the fact that the
32[4] structures family ordering was not observed in Feld-
man’s data, these fitness values may be misleading. Not-
withstanding, the GISTM achieves a better fit to the
FEXPRO-76 data than the competing models by accounting
for nearly 70% of its variance (see Table 3). Indeed, none of
the discussed competing models accounted for more than
about 57% of the variance on the FEXPRO-76 data (Good-
win and Johnson-Laird, 2011).

With respect to the fourth benchmark, as we shall see in
the following section, the GISTM and GISTM-SE fitted the
data of Experiment 2 (on continuous dimensional values)
accurately, accounting for about 91% of the variance. The
two other models (GCM and ACM) capable of handling
and accounting for this kind of data did not fit the data
nearly as well (see next section for a discussion). With re-
spect to the fifth benchmark, among all the models tested,
only the GCM, GISTM, and GISTM-SE can potentially ac-
count accurately for individual differences mainly because
the other models (i.e., the ACM, NOMM, and MinC) are
parameter-free. The GCM, GISTM, and GISTM-SE poten-
tially account for individual differences via the scaling
parameter k in the GISTM and GISTM-SE and via attention
weights and a scaling parameter in the GCM. Because such
an analysis would be very elaborate and beyond the scope
of this article, we did not test the ability of these models to



Fig. 10. The GISTM predictions of degree of concept learning difficulty
with respect to categorical stimuli consisting of four object-stimuli
defined over three quaternary dimensions (k = .39).
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account for individual differences among subjects,
although the ability of the GCM to do so has been well doc-
umented (Nosofsky, 1986; Nosofsky et al., 1994a; Rehder
and Hoffman, 2005) and the GISTM seems to have similar
potential (especially if invariance-pattern detection
weights per dimension are used as suggested in Vigo,
2011a). Finally, with respect to the sixth benchmark, note
that MinC and NOMM do not function on categorical stim-
uli defined over continuous dimensions: we regard this
fact as a significant limitation.

5.3. Experiment 2: Application to the 34[4] class of categorical
stimuli defined over quaternary continuous dimensions
5.3.1. Subjects
A total of 50 Ohio University undergraduates partici-

pated in the experiment which consisted of two parts. In
the first part of the experiment, subjects were assigned
to 24 categorical stimuli (one per trial) consisting of four
objects defined over three quaternary dimensions. In the
second part of the experiment, each subject was assigned
to four randomly generated structure instances of each of
the 24 structures in Table 5.

5.3.2. Materials
An HP XW4600 workstation with a Dell 1708FP 15 in.

flat panel LCD monitor (5 ms. response time) was used to
display the categorical stimuli. We used categorical stimuli
consisting of four round geometric shapes that varied on a:
(1) color brightness gradient (black (RGB: 0, 0, 0), medium
gray (RGB: 85, 85, 85), light gray (RGB: 170, 170, 170), or
white (RGB: 255, 255, 255); (2) a continuity gradient
(two bumps in the circular outline, four bumps in the cir-
cular outline, six bumps in the circular outline, and eight
bumps in the circular outline), and (3) a size gradient
(.5 in. in diameter, 1 in. in diameter, 1.5 in. in diameter,
and 2 in. in diameter). These values were chosen so that
they would map (i.e., standardize) into four evenly distrib-
uted and linearly increasing values in the [0,1] real number
interval (i.e., [0, .34, .66,1]). There are a total of 43 = 64 pos-
sible objects that are definable on these four values. Under
each object a text field appeared for subjects to enter a
magnitude judgment for each of the four dimensional val-
ues of an indicated particular dimension.

On the other hand, Part 2 aimed at testing classification
performance with respect to some of the structures of the
34[4] class of categorical stimuli. Table 5 lists the 24 categor-
ical structures utilized. The number and nature of the possi-
ble structures associated with this class of stimuli has not
been determined by Boolean algebraists. Thus, the struc-
tures were generated bottom-up by selecting four objects
(i.e., a categorical stimulus consisting of four objects) at ran-
dom from a possible 43 = 64 objects. Each generated cate-
gorical stimulus conformed to a structure which was
visually inspected to ensure its uniqueness among the rest.
The structures are organized in Table 5 in six groups with
shared degree of invariance. Column 1 shows their general
label, column 2 shows the rule that defines it (with the stan-
dardized value for each dimension placed next to each
dimensional variable within parentheses), and column 3
shows the structural manifold of the structure as computed 
by GISTM. Subjects were tested on four randomly generated 
structure instances conforming to each of the 24 structures 
for a total of 96 trials. As in Experiment 1, each stimulus was 
comprised of a structure instance (i.e., the positive categor-
ical stimulus consisting of four objects) and a negative or 
complementary categorical stimulus consisting also of four 
objects not in the positive categorical stimulus (these were 
also selected at random but this time from the remaining 
60 out of the 64 possible objects from which the positive cat-
egorical stimuli were selected). Again, this meant that only a 
small subset of the true complement of the positive categor-
ical stimulus (consisting of 60 objects) was used as the neg-
ative category (see Fig. 9 for an example).
5.3.3. Procedure
Each subject participated in both parts of the experi-

ment. Prior to the start of the first part of the experiment,
the experimenter told the facts of the experiment to each
participant. Per the instructions given, participants viewed
sets of four objects with three quaternary dimensions (see
Section 1.2 for an explanation). With respect to two of the
three dimensions, dimensional values were identical for all
four objects. However, for the remaining dimension, each
object was assigned a unique dimensional value out of
the four values defined on an intensity-gradient. For exam-
ple, for a particular trial, all objects were gray in color and
1.5 in. in diameter, but each possessed a different number
of bumps in its circular outline: two, four, six, and eight.
Each set of four objects was accompanied by the following
written instructions at the top of the screen: ‘‘You have
30 s to type a number from 1 to 10 in the blank field under
each of the four objects to indicate the perceived degree of
its x dimension’’ (where x denotes brightness, size, or con-
tour discontinuity). After entering a value for each of the
four objects, participants were presented with the next
trial. In total, participants performed 24 trials (eight sets
of objects for each of the tested three dimensions).

After the first part of the experiment was completed and
prior to the start of the second part, each participant was
told the facts of the experiment: first, that an art collector
likes collecting decorative plates and that for a period of
20 s they would be shown a set of these plates above a line
in the middle of the computer display that the art collector
likes and another set of four plates below the same line that
the art collector does not like. Moreover, the subjects were
told that after the 20 s learning period, they would be
shown each of the decorative plates seen during the
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training period (in the two sets) one at a time and at ran-
dom for about three seconds. They were also told that their
task was to determine and specify within the three seconds,
by pressing one of two mouse buttons (the left one labeled
‘‘Y’’ and the right one labeled ‘‘N’’), which plate was liked by
the art collector and which was not; Failure to press a but-
ton within the three seconds would count as a classification
error. After receiving these verbal instructions, each subject
sat in front of the digital display so that their eyes were
approximately 2.5 feet away from the screen. The experi-
ment, a program written in Psychophysics toolbox (version
3), began upon the press of the space bar on the keyboard.
The first screen of the experiment contained the same
instructions that had been given verbally. After the instruc-
tions were read, the first block of classification trials began
by the press of the space bar.

Per the verbal and written instructions, each block con-
sisted of the following sequence of events: (1) the random
stimulus, consisting of a categorical stimulus and its com-
plement, was presented for 20 s during the learning phase,
(2) for each classification trial, each of the eight objects
seen during the learning phase was displayed at random
and one at a time for a period of three seconds, and (3)
for each trial, subjects had up to 3 s to make a classification
decision. Non responses counted as errors. Subjects were
tested on four randomly generated structure instances
per structure, so they executed four classification blocks
per each structure of Table 5 for a total of 24 � 4 = 96
blocks. After the completion of each block, a new block
would begin after about one second. The program recorded
the percentage of classification errors per block of trials
and the average percentage of errors across each set of four
blocks of trials for each of the 24 structures.

5.3.4. Results of Experiment 2
The purpose of Experiment 2 was to show how effec-

tively the GISTM and the GISTM-SE fit classification data
involving categorical stimuli that are defined by dimen-
sions with a gradient of values. First, we examined the re-
sults from the first part of the experiment. Recall that the
aim of part one was to validate our theoretical standard-
ized numerical assignment of 0, .33, .67, and 1 to the four
qualitative states represented by each dimension. The data
showed that the values assigned by subjects on a 1–10
scale to each of the four possible dimensional values for
the dimensions of brightness, size, and continuity were
on average 0, .30, .66, and 1 after normalizing. These re-
sults confirmed that the objective assignment of numerical
values to the dimensions of our chosen stimuli (i.e., 0, .33,
.67, and 1) were consistent with the subjective assign-
ments made by the 50 subjects.

The classification performance data (error rates) from
part 2 of the experiment is shown in the fourth column
of Table 5. The GISTM, with k = .39, accounted for nearly
90% of the variance in the data of Experiment 2 (R2 = .87,
p < .0001; RMSE = .03) as illustrated in Fig. 10. On the other
hand, the GISTM-SE, with k = 1, was able to account for 76%
of the variance (R2 = .76, p < .0001; RMSE = .04) in the data.
In contrast, the ACM accounted for 57% of the variance
(R2 = .57, p < .0001; RMSE = .08) with three bound (non-
free) parameters assigned by the CAT program (Feldman,
2003) and corresponding to three levels of decomposition
(one level per dimension), while the GCM accounted for
about 27% of the variance in the data (R2 = .27, p < .0001;
RMSE = .10) using a scaling parameter for all the structures
and two attention-weight free parameters.

6. Conclusion and research directions

In this paper, we have presented a new theory of con-
cept learning based on invariance pattern detection that
addresses some of the shortcomings of the well-known
theories to date. In particular, we introduced a general
model of conceptual behavior that is equally adept at pre-
dicting classification behavior with respect to stimuli
interpreted on binary, multivalued, and continuous dimen-
sions. Data from three new experiments and from two pre-
vious key experiments provided empirical support for the
theory and model.

Furthermore, model comparisons showed that the
GISTM and its structural equilibrium variant (GISTM-SE)
make more accurate quantitative and qualitative predic-
tions than the leading alternatives. In addition to: (1) accu-
rately fitting the data from every key dataset considered,
(2) predicting the SHJ learnability ordering, and (3) provid-
ing a plausible explanation for human classification perfor-
mance, GIST bridges two core constructs on which theories
of concept learning are based: complexity reduction and
attention regulated similarity assessment. It does this by
showing how the invariance structure detection process
that is central to it can be explained in terms of a simple
cognitive mechanism involving the core capacities of sim-
ilarity assessment, discrimination, and goal-directed atten-
tion. We think this finding is significant not only to concept
learning research but to further our understanding of the
cognitive nature of invariance structure in general.

Beyond bridging structural and similarity constructs in
human concept learning, GISTM, via the use of its scaling
parameter k, may potentially account for individual differ-
ences in classification performance among humans. Empir-
ical tests need to be conducted to attest to this important
feature of the model. Moreover, the scaling/discriminabil-
ity parameter k could be construed as a bound parameter
in GIST by assuming that observers learn the optimal dis-
crimination weights (i.e., one that maximizes classification
performance) for categorical stimuli of different dimen-
sionality. This point is similar to the idea proposed by
Nosofsky (1984) that the 32[4] ordering can be predicted
a priori by the GCM if one assumes that observers learn
the ‘‘optimal’’ attention weights for each dimension of
the stimuli (Nosofsky, 1984), thereby not requiring estima-
tion of these weights as free parameters. Again, further
empirical tests are necessary to assess the validity of the
optimality assumption underlying the GIST. Furthermore,
in spite of fundamental differences, there are some theo-
retical connections that emerge from the principles under-
lying GIST and some of the assumptions of rival theories
(e.g., the notion of discarding ‘‘irrelevant’’ dimensions in
the NOMM) which should be further explored.

Notwithstanding these promising results, GIST and
GISTM also introduce a number of theoretical and empiri-
cal challenges: for example, we did not describe, nor
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modeled, the possible mechanisms underlying the encod-
ing of ideotypes (and their distal relationships in ideotype
space) into rules and magnitude judgments. Exactly how
these representations emerge from the proposed system
of pattern detection is an important future direction for
the current research. Also, other questions emerge regard-
ing the generality of GIST: can it predict classification per-
formance with respect to natural categories? Can it be as
effective in predicting the learnability of categorical stim-
uli of higher dimensionality and cardinality? These are
open questions that will require a considerable amount
of empirical research to answer adequately.

Finally, some of the core assumptions of GIST, such as
dimensional binding, need to be further investigated, per-
haps with the aid of eye tracking technology as it has been
done effectively in other areas of concept learning research
(e.g., Rehder & Hoffman, 2005; Vigo, Zeigler, and Halsey,
2013). In spite of these open challenges, we have shown
that GIST provides a robust and general alternative to other
theories of concept learning and classification performance
based on its potential to unify competing theories and to
account accurately for the learnability of a wide range of
categorical stimuli beyond the Boolean variety.
Author’s Note:

A program written in Matlab (version 7) that is able to
compute the structural manifold of any dimensionally-de-
fined categorical stimulus (with binary, multivalued, or
continuous dimensions) is available from the author at
http://www.scopelab.net/resources.htm. Additional sup-
porting materials, including tables and figures, are avail-
able on the same webpage in a PDF document.
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Appendix A. Derivation of the exponential law of
invariance

If we let subjective maximal baseline complexity or de-
gree of learning difficulty be measured by cardinality, then
consider a categorical stimulus X with |X| object stimuli
(|X| stands for the cardinality or the number of elements
in X). Now let’s assume that the percentage change in the
perceived degree of learning difficulty of X (denoted by
wðXÞ) is negatively proportional to the degree of perceived
invariance of the stimulus X. For example, if |X| = 4 then we
begin with a maximal perceived degree of difficulty of 4 at
the baseline of 0 degree of perceived gestalt homogeneity
or invariance. Then as the perceived homogeneity in-
creases to 1, and then 2, and 3, the percentage change in
perceived raw complexity will decrease systematically as
follows: ((4–0)/4) = 1, ((4–1)/4) = 3/4, ((4–2)/4) = 1/2, ((4–
3)/4) = 3/4, ((4–4)/4) = 0. This can be formally articulated
with the following expression where the negative sign
means that percentage change in subjective degree of dif-
ficulty decreases as perceived invariance increases:

DwðU
_

ðXÞÞ
wðU

_

ðXÞÞ
¼ �k U

_

ðXÞ ð7:1Þ

Via algebraic manipulation, we can derive the following
equation from Eq. (7.1):

DwðU
_

ðXÞÞ
U
_

ðXÞ
¼ �kwðU

_

ðXÞÞ ð7:2Þ

This equation can be rewritten as the rate of change of
w with respect to U

_

by adding a delta to the denominator
of (7.2). This is entirely consistent with our original
assumption. We then get:

DwðU
_

ðXÞÞ
DU

_

ðXÞ
¼ �kwðU

_

ðXÞÞ ð7:3Þ

Now, if we further assume that w and U
_

are differentia-
ble functions (note that in GIST they are not), then we get:

dwðU
_

ðXÞÞ
d U
_

ðXÞ
¼ �kwðU

_

ðXÞÞ ð7:4Þ

The solution to Eq. (7.4) is the exponential rate of
change:

wðU
_

ðXÞÞ ¼ w0e�k U
_
ðXÞ ð7:5Þ

Here wðU
_

ðXÞÞ is the quantity at degree of invariance U
_

ðXÞ
and w0 = w(0) is the initially perceived degree of difficulty
of the categorical stimulus X or its baseline maximal de-
gree of difficulty which is defined by its cardinality when
its degree of invariance U

_

ðXÞ ¼ 0. Since our theory is dis-
crete due to the fact that all points in psychological space
represent only categorical stimuli as ideotypes, then there
will be ‘‘real-world gaps’’ in the functions w and U

_

. How-
ever, we assume that these two functions are special cases
of the differential functions above: that is, they apply to a
subset of points in their respective continuous domains,
and as such, some of their desired properties are also valid
for these relatively few discrete ‘‘real-world points’’. The
scaling parameter k preserves relative distances in ideo-
type space.
Appendix B. Generalization to continuous domains
using the invariance-similarity equivalence principle

Note: A more detailed account of this generalization is
given in the supporting documents website.

In the upcoming discussion we shall employ the follow-
ing notation:

(1) Let X be a categorical stimulus and |X| stand for the
cardinality (i.e., the number of elements) of X.

(2) Let the object-stimuli in X be represented by the
vectors ~x1;~x2; . . . ;~xn (where n = |X|).

(3) Let the vector ~xj ¼ ðx1; . . . ; xDÞ 2 X be the j-th D-
dimensional object-stimulus in X (where D is the
number of dimensions of the stimulus set).

http://www.scopelab.net/resources.htm
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(4) Let ~xji be the value of the i-th dimension of the j-th
object-stimulus in X. We shall assume throughout
our discussion that all dimensional values are real
numbers greater than or equal to zero.

(5) Let Sð~xj;~xkÞ stand for the similarity of object-stimulus
~xj 2 X to object-stimulus ~xk 2 X as determined by
the assumption made in multidimensional scaling
theory that stimulus similarity is some monotoni-
cally decreasing function of the psychological
distance between the stimuli.

(6) Let l be a standardization operator that transforms
the values of a square matrix to values in the [0, 1] 
closed real number interval. The operator is pre-
cisely defined in the supplementary documents.

We begin by describing formally the hypothetical
processes of dimensional binding and partial similarity
assessment. To do so, we will introduce a new kind of
distance operator. But first, let’s define the generalized
Euclidean distance operator Dr (a.k.a. Minkowski distance)
between two object-stimuli ~xj;~xk 2 X with attention
weights xi as:

Drð~xj;~xkÞ ¼
XD

i¼1

xi � j~xji �~xkijr
" #1=r

ð7:6Þ

As in the GCM (Nosofsky, 1984), the inclusion of a
parameter xi represents the selective attention allocated
to dimension i such that

P
ixi = 1.We use this parameter

family to represent individual differences in the process
of assessing similarities between object-stimuli at this
level of analysis. For the sake of simplifying our explana-
tion and examples below, we shall disregard this
parameter.

Next we introduce a new kind of distance operator
termed the partial psychological distance operator Dr

½d� to
model dimensional binding and partial similarity
assessment.

Dr
½d�ð~xj;~xkÞ ¼

X
i–d

xij~xji �~xkijr
" #1=r

¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i¼1

xij~xji �~xkijr
" #

�xd½j~xjd �~xkdjr�

vuut ð7:7Þ

Eq. (7.7) computes the psychological distance between
two stimuli ignoring their dth dimension (1 6 d 6 DÞ. In
other words, it computes the partial psychological distance
between the exemplars corresponding to the object-stim-
uli~xj;~xk 2 X, by excluding dimension d in the computation
of the Minkowski generalized metric. For example, if the
categorical stimulus X consists of four object-stimuli, we
represent the partial pairwise distances between the four
corresponding exemplars with respect to dimension d with
the following partial distances matrix:

Dr
½d�ðXÞ¼

Dr
½d�ð~x1;~x1Þ Dr

½d�ð~x1;~x2Þ Dr
½d�ð~x1;~x3Þ Dr

½d�ð~x1;~x4Þ
Dr
½d�ð~x2;~x1Þ Dr

½d�ð~x2;~x2Þ Dr
½d�ð~x2;~x3Þ Dr

½d�ð~x2;~x4Þ
Dr
½d�ð~x3;~x1Þ Dr

½d�ð~x3;~x2Þ Dr
½d�ð~x3;~x3Þ Dr

½d�ð~x3;~x4Þ
Dr
½d�ð~x4;~x1Þ Dr

½d�ð~x4;~x2Þ Dr
½d�ð~x4;~x3Þ Dr

½d�ð~x4;~x4Þ

2
66664

3
77775
Similarly, we can define the partial similarity between
the two exemplars corresponding to the two object-stimuli
– as is done in the GCM (Nosofsky, 1984) and in multidi-
mensional scaling (Shepard et al., 1972; Kruskal & Wish,
1978) – as a monotonically decreasing function F of the
partial distance between the two exemplars corresponding
to the two object-stimuli.

S½d�ð~xj;~xkÞ ¼ FðlðDr
½d�ð~xj;~xkÞÞÞ ð7:9Þ

As in Shepard (1987), we define subjective similarity as
the negative exponent of the partial distance measure
Dr
½d�ð~xj;~xkÞ and set r = 1 (i.e., we use the city block metric

in our example) as shown in Eq. (7.10).

S½d�ð~xj;~xkÞ ¼ e�D1
½d�ð~xj ;~xkÞ ð7:10Þ

In spite of using the above metric, we acknowledge the
possibility that a different kind of function may be playing
a similar role in the computation of partial similarities.
Next we can construct the matrix of the pairwise partial
psychological similarities between all four exemplars cor-
responding to the four object-stimuli in X as seen in (7.12):

S½d�ðXÞ ¼

� S½d�ð~x1;~x2Þ S½d�ð~x1;~x3Þ S½d�ð~x1;~x4Þ
S½d�ð~x2;~x1Þ � S½d�ð~x2;~x3Þ S½d�ð~x2;~x4Þ
S½d�ð~x3;~x1Þ S½d�ð~x3;~x2Þ � S½d�ð~x3;~x4Þ
S½d�ð~x4;~x1Þ S½d�ð~x4;~x2Þ S½d�ð~x4;~x3Þ �

2
6664

3
7775

Again, as a process assumption, we have excluded
reflexive or self-similarities in the diagonal of the partial
distances matrix shown in (7.11). However, we include
symmetric comparisons since we assume that they are
processed by humans when assessing the overall homoge-
neity of a stimulus; besides, they add to the homogeneity
of the stimulus as characterized by the categorical invari-
ance (see Fig. 4) principle and the categorical invariance
measure, and we wish to be consistent with both of these
constructs (see Section 2).

Adding the values of the similarity matrix that corre-
spond to differences within a chosen discrimination
threshold sd for each dimension d we derive the following
expression which is functionally analogous to the local
homogeneity or local invariance operator defined in Sec-
tion 2 (for any pair of objects ð~xj;~xkÞ where ~xj;~xk 2 X,
j – k, and j, k 2 {1, 2, . . ., |X|}):

H½d�ðXÞ ¼

P
06Dr

½d� ð~xj ;~xkÞ6sd
S½d�ð~xj;~xkÞ

jXj ð7:12Þ

Note that, in this article, r = 1 and sd = 0 for all subjects
and any dimension d; however, the latter threshold may also
be treated as a free parameter that accounts for individual
differences in classification performance. The assumption
is that humans vary in their capacity to discriminate be-
tween stimuli and in their criterion for discriminating.

Lastly, we define the generalized structural manifold by Eq.
(7.13). This construct is analogous to the global homogeneity
construct defined in Eq. (2) of Section 2, except that it applies
to both binary and continuous dimensions and is equipped
with a distance discrimination threshold. It measures the
perceived degree of global homogeneity of any stimulus set.

KðXÞ ¼ ðH½d¼1�ðXÞ;H½d¼2�ðXÞ; . . . ;H½d¼D�ðXÞÞ ð7:13Þ
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The overall degree of perceived global homogeneity or
invariance of a categorical stimulus X defined over D P 1
dimensions and for any pair of objects ð~xj;~xkÞ (such that
~xj;~xk 2 X, j – k, and j, k 2 {1, 2, . . ., |X|}) is then given by
Eq. (7.14) as follows:

U
_

ðXÞ ¼
XD

d¼1

½H½d�ðXÞ�2
" #1

2

ð7:14Þ
Appendix C. Supplementary material

Supplementary documentation associated with this
article can be found, in the online version, at http://
dx.doi.org/10.1016/j.cognition.2013.05.008 and at http://
www.scopelab.net/resources.htm. Computer programs
associated with this article may be downloaded at http://
www.scopelab.net/programs.htm.
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